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ABSTRACT
Cloud computing enables users to outsource their databases and the computing
functionalities to a cloud service provider to avoid the cost of maintaining a private
storage and computational requirements. It also provides universal access to data,
applications, and services without location dependency. While cloud computing
provides many benefits, it possesses a number of security and privacy concerns.
Outsourcing data to a cloud service provider in encrypted form may help to
overcome these concerns. However, dealing with the encrypted data makes it difficult
for the cloud service providers to perform some operations over the data that will
especially be required in query processing tasks. Among the techniques employed in
query processing task, the k-nearest neighbor method draws attention due to its
simplicity and efficiency, particularly on massive data sets. A number of k-nearest
neighbor algorithms for query processing task on a single encrypted database have
been proposed. However, the performance of k-nearest neighbor algorithms on a
single database may create accuracy and reliability problems. It is a fact that
collaboration among different cloud service providers yields more accurate and more
reliable results in query processing. By considering this fact, we focus on the k-nearest
neighbor (k-NN) problem over two encrypted databases. We introduce a secure two-
party k-NN interpolation protocol that enables a query owner to extract the
interpolation of the k-nearest neighbors of a query point from two different databases
outsourced to two different cloud service providers. We also show that our protocol
protects the confidentiality of the data and the query point, and hides data access
patterns. Furthermore, we conducted a number of experiment to demonstrate the
efficiency of our protocol. The results show that the running time of our protocol is
linearly dependent on both the number of nearest neighbours and data size.

Subjects Cryptography, Security and Privacy
Keywords Big data, Cloud computing, Interpolation, k-nearest neighbour

INTRODUCTION
Due to its low cost, scalability and reliability, cloud computing has increased its reputation
in both the business and scientific communities. In addition to the benefits, it introduces
new concerns that need to be addressed carefully (Krutz & Vines, 2010). One of the
emerging issues in cloud computing is extracting knowledge from sensitive data while
protecting the privacy of data owners, which is called privacy-preserving data mining
(Agrawal & Srikant, 2000; Vaidya & Clifton, 2004). A privacy-preserving data mining
method aims to provide data privacy using either data perturbation or cryptographic
methods. Data perturbation-based models struggle with data quality issues, i.e. the
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valuable statistical information might be dissolved. This may yield less accurate and less
reliable results. On the other hand, cryptographic-based models achieves the privacy of
data owners through the encryption of data before outsourcing it to the cloud. However,
this presents challenges of performing required operations over the encrypted data.

In addition to these facts, collaboration among different cloud service providers may
also help them to create more accurate and reliable results in a privacy-preserving data
mining method, i.e. more clouds can discover more knowledge than they can uncover on
their own when they combine their data (Demir & Tugrul, 2018). There are some studies
that propose privacy-preserving solutions for horizontally-partitioned databases to
increase the total number of data samples with the goal of creating more accurate data
mining models (Inan et al., 2007). In some cases, vertically-partitioned database solutions
can be preferred to increase the number of attributes for the same instances (Skillicorn &
McConnell, 2008). Institutions such as hospitals operating in different parts of a
country may prefer the first choice. On the other hand, institutions such as banks and
insurance companies may aggregate their data using the second choice.

In this study, we will examine the k-NN interpolation method that preserves the
confidentiality of two different databases stored by two different cloud service providers.
k-NN, categorized as a lazy learner, is a non-parametric method used for classification,
clustering and interpolation which utilizes the idea that neighboring objects possess or
display similar characteristics. Complex interpolation methods such as Kriging involve
advanced operations and thus pose a great challenge to cloud computing. In addition, the
high time requirements of such methods make them unsuitable in some scenarios such
as healthcare applications. On the contrary, the simplicity and interpretability of the k-NN
method make it an efficient tool for query processing tasks.

Our contribution
In this article, we introduce an efficient secure two-party k-NN (STPkNN) interpolation
protocol that enables two different data owners to outsource their databases together with
the query processing service to the cloud, and allows a query owner to extract the
interpolation of the k-nearest neighbors of a query point from the encrypted databases.
Our protocol preserves the confidentiality of data, assures the privacy of user’s query point,
and hides data access patterns.

The STPkNN protocol can be considered as an extension of the protocol SkNNm

proposed in Elmehdwi, Samanthula & Jiang (2014), that enables a query owner to retrieve
the k-nearest neighbors of a query point from a single encrypted database, to two-cloud
settings. Briefly, the SkNNm protocol calculates the k-nearest neighbors in an iterative way
by performing the following steps k times: (i) it finds the minimum of the Euclidean
distances between the data records and the query point, (ii) it calculates the one of the
nearest neighbors that corresponds to the index of the minimum distance, and excludes
the corresponding distance from the Euclidean distances. On the other hand, in two-cloud
settings, the clouds have to share their local minimums of the Euclidean distances to decide
on the global minimum that corresponds the index of the nearest neighbor of two
databases at the moment, and remove that record from further iterations. However, it is
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not trivial to achieve this without revealing which data record corresponds to global
minimum to any cloud.

To this aim, we first propose two new security primitives, the Secure Transformation
(ST) protocol and the Secure Bit-AND-OR (SBAOR) protocol that enable the clouds to
decide on the global minimum and exclude it from the further calculations without
revealing data access pattern to any cloud. We show that both protocols protect the
confidentiality of the input values which will be in encrypted form, i.e. no information
about the input values is leaked to any party during the protocols, and the output is only
revealed to one of the parties in the protocols. Briefly, the ST protocol allows the servers to
securely transform the encryption of a record under a public key to an encryption of same
record under another public key. On the other hand, for given the encryptions of two bit
vectors x and y, the SBAOR protocol enables the servers to securely compute the negation
of the logical disjunction of all bitwise multiplications xi · yi in encrypted form without
revealing the bit vectors to any party.

By employing the ST and SBAOR protocols together with the other existing security
protocols, we build our main protocol STPkNN that enables a query owner (QO) to extract
the interpolation of the k-nearest neighbors of a query point chosen by QO from two
different databases outsourced to two different cloud service providers. In the protocol,
data owners encrypt their data before outsourcing them to the cloud service providers, and
they do not participate in the STPkNN protocol. Thus, no information about the data
is leaked to the cloud service providers during the protocol. Besides, our protocol
guarantees that any record from both databases or any intermediate result generated in the
protocol is not leaked to the cloud service providers. Also, it hides the data access pattern
from both data owners and cloud service providers, i.e. the protocol does not reveal
the information of which data records were used to produce the interpolation of k-nearest
neighbors to any cloud service provider. On the other hand, the STPkNN protocol outputs
the interpolation of k-nearest neighbors only to the query owner, and the query owner
gets no information other than the interpolation.

We also conduct various experiments on two real-world datasets from the UCI machine
learning repository, the cervical cancer (risk factors) dataset and the default of credit card
clients dataset, to show the practicability of our protocol in real world scenarios. The
experimental evaluation presents that our protocol scales well for the large datasets.

Related works
Due to its usefulness in many application scenarios such as classification, similarity search,
and collaborative filtering, the problem of computing the k-nearest neighbors of a
query point has been gained a lot of attention in recent years. The early studies mostly
focused on how to implement a secure k-NN method between data owner and clients
without using cloud systems. Shaneck, Kim & Kumar (2009) proposed a privacy-
preserving protocol that employs secure multiparty computation to compute k-NN in
horizontally partitioned databases. Besides, they also showed how their protocol can be
efficiently used in different application such as outlier detection, classification, and
clustering problems. Moreover, Qi & Atallah (2008) proposed a provable secure protocol
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for the single-step k-NN search problem that enjoys linear computation and communication
complexity. Vaidya & Clifton (2005) introduced a privacy-preserving algorithm that
performs top-k queries in vertically partitioned data. Additionally, Kantarcoğlu & Clifton
(2004) proposed a method that privately calculates the k-NN classification over horizontally
partitioned data in the distributed database model. Note that all of the above methods
require the data owners to perform the necessary calculations to generate the result, and to
return it directly to the query users. However, in our model, the data is outsourced to the
cloud in encrypted form instead of being kept by the data owners. All of the computation
required to process k-NN queries are performed by the cloud.

The recent studies have mostly focused on solutions in cloud computing settings.Wong
et al. (2009) proposed an asymmetric scalar-product-preserving encryption (ASPE)
scheme that can be employed to construct a secure k-NN protocol. The protocol proposed
in Wong et al. (2009) uses a distance comparison function instead of an exact distance
calculation. However, the secret key in the protocol should be disclosed to the query users.
Zhu, Huang & Takagi (2016) introduced a secure protocol that achieves k-NN query
processing on encrypted data without totally revealing the data owner’s secret key to the
query user. However, their scheme requires data owners to be involved in the encryption of
query points. Hu et al. (2011) proposed a secure traversal framework that can used,
together with privacy homomorphism, to achieve secure k-NN query processing protocol.
Cheng et al. (2015) proposed a privacy-preserving protocol that employs an encrypted
hierarchical index tree to perform k-NN queries over spatial data outsourced to cloud in
encrypted form. All three protocols (Hu et al., 2011; Zhu, Huang & Takagi, 2016; Cheng
et al., 2015) leak data access pattern to the cloud. On the other hand, Kesarwani et al.
(2018) proposed a secure k-NN query processing protocol over encrypted data by utilizing
a leveled fully homomorphic encryption scheme. Wu et al. (2019) introduced a privacy
preserving k-NN classification scheme over the encrypted cloud database that is secure
against known-plaintext attack. Besides, Lei et al. (2020) shed light on the connection
between a secure k-NN query processing scheme and a secure range query scheme. Based
on this connection, they utilize a secure range query scheme together with a data structure
named as random Bloom filter to build a secure k-NN query processing scheme. All
three protocols (Kesarwani et al., 2018; Wu et al., 2019; Lei et al., 2020) hide data access
pattern as well as preserving the data privacy and query privacy. However, they require the
decryption keys to be given the query users. However, in our model, the decryption keys
are not shared with the query users.

On the other hand, Elmehdwi, Samanthula & Jiang (2014) tackled with the same
problem using homomorphic encryption method. In addition to ensuring the
confidentiality of data owners and clients, the protocol proposed in Elmehdwi, Samanthula
& Jiang (2014) also achieves to hide data access patterns from the clouds. Moreover,
Xu et al. (2017) proposed an efficient secure k-NN protocol which achieves sublinear
computational complexity. Similar to Elmehdwi, Samanthula & Jiang (2014), their
protocol also achieves hiding of data access patterns using garbled circuits to simulate
Oblivious RAM. Furthermore, Guo & Sun (2020) adopted the data structure R-tree to
build an efficient k-NN scheme that requires only two rounds of interactions between the

Osmanoglu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.965 4/24

http://dx.doi.org/10.7717/peerj-cs.965
https://peerj.com/computer-science/


client and cloud servers to generate the result. They also utilized the Merkle hash tree
techniques to obtain a better k-NN scheme that is secure against even a malicious
cloud servers. There are also some studies that engage in location-based query processing
over encrypted geospatial data (Lei et al., 2019; Lian et al., 2020). Lian et al. (2020)
proposed an efficient k-NN scheme by employing the Moore curves together with the AES
encryption scheme, that ensures the spatial data and location privacy.

The aforementioned studies use k-NN methods for either classification or query search
applications. Unlike previous solutions, Kalideen, Osmanoglu & Tugrul (2019) proposed
an efficient solution for the problem of computing the interpolation of k-NN to a given
point in cloud computing settings. However, their solution reveals the knowledge of
which data records were used to produce the interpolation to the cloud servers, and leaking
such information might not be desired in some application required the data security.
Unlike the protocol presented in Kalideen, Osmanoglu & Tugrul (2019), our protocol
assures the desired security features, i.e. it hides data access pattern.

PROBLEM FORMULATION
In this section, we will give more precise definition of the problem and its security
requirements.

Secure two-party k-NN interpolation problem
In our system there are two data owners DO1 and DO2 holding two different spatial
databases D1 and D2, respectively. Each database Du consists of n records dðuÞ1 ; . . . ; dðuÞn

such that each record dðuÞi is an m-dimensional spatial vector, i.e. dðuÞi ¼ dðuÞi;1 ; . . . ; d
ðuÞ
i;m

D E
where u = 1,2. There are also two cloud pairs (CSP1

(u), CSP2
(u)) so that each one is associated

with a public key-secret key pair (pku, sku) of a public key encryption scheme that is
semantically secure (Goldwasser &Micali, 1982). As the most of the studies in this field, we
also consider each pair of cloud service providers (CSP1

(u), CSP2
(u)) as two non-colluding

cloud servers, i.e. CSP1
(u) stores the database and performs most of the homomorphic

operations; on the other hand, CSP2
(u) keeps the secret key and helps CSP1

(u) to perform the
complex operations over the ciphertexts.

In our problem, we assume that each data owner DOu initially encrypts his database Du as

EpkuðDuÞ where EpkuðDuÞ consists of the attribute-wise encryptions Epku dðuÞi;j

� �
for 1 ≤ i ≤ n

and 1 ≤ j ≤ m. Each DOu then outsources EpkuðDuÞ together with the query processing
service to CSP1

(u). Note that the underlying public key encryption scheme should enable
cloud servers to perform homomorphic operations over ciphertexts.

There is also an authorized query owner QO who wants to retrieve the interpolation of
k-nearest neighbors of a query point Q from both databases D1 and D2 stored in CSP1

(1)

and CSP1
(2), respectively. After QO requests the interpolation, the cloud service providers

generate the result by performing required operations over the encrypted databases.
This process should output the interpolation of k-nearest neighbors only to the query
owner. The query owner should not learn any information other than the interpolation
during this process. We denote such process as secure two-party k-nearest neighbors
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(STPkNN) protocol. We remark that STPkNN protocol should preserve the confidentiality
of the records in the databases D1 and D2, and protect the privacy of the query point.
Moreover, the protocol should hide data access patterns, i.e. it should not reveal the
information of which data records were used to produce the interpolation of k-nearest
neighbors to any data owner or any cloud service provider.

Example
In 2016, European Union adopted a new regulation on the protection of personal data,
Regulation (EU) 2016/679 of the European Parliament and Of The Council (European-
Parliament, 2016). The regulation states that ‘the protection of natural persons in relation
to the processing of personal data is a fundamental right’. All of the personal health records
that reveal information relating to the past, current or future physical or mental health
status of the data subject are considered as personal sensitive data in the regulation.
Therefore, the personal health records should be protected against unauthorized parties,
i.e. only the one approved by the owner should be able to access to the data.

On the other hand, the processing of health data may be significant to advance research
or healthcare practices. Consider a doctor who tries to determine whether a person has a
particular hearth disease or not by analyzing the medical records of the person. In addition,
the doctor may desire to compare the patient’s medical records with other patients’
presenting similar properties in order to improve diagnostic accuracy. In fact, this
comparison enables the doctor to evaluate the validity of some tests, especially when the
scores do not match the expected values. Consequently, the doctor can make an accurate
diagnosis, if he is allowed to reach the data of other patients in the same region or
across the country. Moreover, if the personal health records are stored in the cloud as
encrypted in order not to violate the fundamental right of the owner of the records, it will
be possible to perform reliable analysis on large datasets.

Let us clarify it with an example. Consider the subset of heart disease data set from UCI
Machine Learning Repository depicted in Table 1. There are 10 different instances shown
in the table, and each instance is associated with five attributes: ID (patient’s identity),
trestbps (resting blood pressure in mm Hg), chol (serum cholesterol in mg/dl), thalach
(maximum heart rate achieved), and oldpeak (ST depression induced by exercise relative
to rest). Assume the data owner, which can be viewed as hospital in this context, encrypts
these attributes, and outsources the encrypted database Epk(D) together with the future
query processing to the cloud. Also, assume there is a doctor who wants to determine
whether a specific patient carries risk for a particular hearth disease. Let the medical record of
the patient be Q ¼ h150; 250; 145; 3i. The doctor, that will be the query owner in our
context, asks the interpolation of k-nearest neighbors of Q from the cloud by providing the
encryption Epk(Q) to the cloud. Then, the cloud determines the interpolation of k-nearest
neighbors by searching the encrypted database Epk(D). For simplicity, let k be 3 for
this example. As we observe here, the instances having IDs 1, 7, and 9 will be the 3 nearest
neighbors to Q. So, the cloud returns the interpolation T ¼ h141:6; 251:6; 152:3; 2:4i to the
doctor that will benefit from T to make an accurate diagnosis. Consequently, necessary

Osmanoglu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.965 6/24

http://dx.doi.org/10.7717/peerj-cs.965
https://peerj.com/computer-science/


analysis can be carried out without revealing any sensitive information about both his patient
and the other patients.

Effect of collaboration on interpolation accuracy
Aguilar et al. (2005) stated that if interpolation models are developed with an insufficient
amount of data, they will be less accurate and reliable. Namely, the collaboration between
participants affects the accuracy of interpolation models. We here conduct a series of
experiments to assess the impact of collaboration between participants on the accuracy of
prediction in the interpolation methods. In our experiments, we employ two publicly
available datasets from U.S. National Geochemical Survey Database that present sodium
(Na) content of the soil in two states: Colorado and Wisconsin. Summary statistics of both
data sets are presented in Table 2.

There are various performance evaluation metrics for interpolation methods. We here
employed Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE), which are
often chosen as evaluation metrics for numerical prediction. The small values of both
MAE and RMSE indicate that models will produce results that are more accurate. MAE
and RMSE values are calculated as follows;

Table 1 A subset heart disease data set.

ID trestbps chol thalach oldpeak

1 145 233 150 2.3

2 160 286 108 1.5

3 120 229 129 2.6

4 130 250 187 3.5

5 130 204 172 1.4

6 120 236 178 0.8

7 140 268 160 3.6

8 120 354 163 0.6

9 130 254 147 1.4

10 140 203 155 3.1

Table 2 Summary statistics of data sets.

Colorado Wisconsin

Mean 0.999 0.773

Median 0.912 0.771

Minimum 0.063 0.007

Maximum 3.230 2.043

Standard Deviation 0.460 0.299

Skewness 0.912 −0.177

Kurtosis 4.034 3.131
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MAE ¼ 1
n

Xn
i¼1
jpðxi; yiÞ � aðxi; yiÞj

" #
(1)

RMSE ¼ 1
n

Xn
i¼1

pðxi; yiÞ � aðxi; yiÞð Þ2
" #1=2

(2)

where n is the total number of data points in the dataset, p({xi, yi}) and z({xi, yi}) are
predicted and actual values at location ({xi, yi}), respectively. The effects of varying k values
on MAE and RMSE values are shown in Fig. 1.

We assume that two data holders share all data points in the data set. Both data sets are
randomly divided into two parts using sampling without replacement strategy, assuming
each party has one of the pieces. In some situations, data holders may not have data in
equal proportions. So, we have determined different sharing ratios considering the cases
where there is no equal distribution. We specify the β value as the distribution ratio, which
means that if one party holds β portion of the data, the other party will hold the remaining
portion (1 − β). After several trials, the MAE and RMSE values obtained according to
the various number of nearest neighbor counts are shown in the Tables 3 and 4,
respectively.

As seen from the results, the smallest MAE and RMSE values are observed when the
10-nearest neighbors are used for all points in each data set. The smallest MAE and RMSE
are underlined in the tables. As seen from the Table 3, if only half of the data is available
for creating a prediction model, there will be a deterioration in MAE values of 4.31%
for theWisconsin data set and 6.60% for the Colorado data set. It is also possible to observe
similar aspects in Table 4 for each split ratio. As observed from the results, the data holder
who has less amount of data always produces less accurate predictions. On the contrary,

Figure 1 Effects of varying k values on MAE and RMSE for Colorado and Wisconsin data sets.
Full-size DOI: 10.7717/peerj-cs.965/fig-1
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if there is a sufficient amount of data, the predictions generated by the model are more
accurate and reliable.

PREMILINARIES
In this section, we will present the notations and the definitions of some primitives that will
be used in our proposed protocols.

Notation
We here give the notations used in this paper.

� n, the number of records in each database

� m, the number of the attributes in each record

� ‘, the domain size (in bits) of the squared Euclidean distance

� DOu, the u
th data owner

� Du, the u
th database

� dðuÞi , the ith record of the database Du

� QO, the query owner

� Q, the query point

� [x], the encryption of the individual bits of x

� dminp , the p
th closest record to Q

Table 3 Effects of collaboration for varying k and β (split ratio between parties) values on MAE.

β Wisconsin Colorado

k 25 50 75 100 25 50 75 100

1 0.183 0.169 0.163 0.155 0.319 0.298 0.290 0.283

5 0.156 0.147 0.146 0.145 0.258 0.241 0.235 0.232

10 0.158 0.145 0.143 0.139 0.258 0.242 0.234 0.227

15 0.161 0.147 0.142 0.140 0.259 0.245 0.236 0.232

30 0.167 0.154 0.149 0.143 0.269 0.252 0.244 0.238

50 0.181 0.161 0.154 0.150 0.286 0.262 0.252 0.246

Table 4 Effects of collaboration for varying k and β (split ratio between parties) values on RMSE.

β Wisconsin Colorado

k 25 50 75 100 25 50 75 100

1 0.254 0.243 0.241 0.233 0.443 0.421 0.408 0.402

5 0.208 0.199 0.199 0.198 0.361 0.334 0.327 0.321

10 0.212 0.196 0.193 0.188 0.358 0.337 0.325 0.317

15 0.215 0.198 0.193 0.189 0.358 0.341 0.329 0.323

30 0.224 0.206 0.200 0.195 0.368 0.348 0.338 0.331

50 0.238 0.214 0.207 0.202 0.385 0.360 0.347 0.340
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� (pku, sku), the public key-secret key pair assigned to the uth cloud pair

� (CSP1
(u), CSP2

(u)), the uth cloud pair, i.e. the former holds the encryption of the database
EpkuðDuÞ and the latter holds the corresponding secret key sku.

Homomorphic encryption
Homomorphic encryption is an encryption scheme that allows users to perform some
mathematical operations on ciphertexts, such as addition and multiplication. This
property enables to protect the confidentiality of the data, and makes the encryption
scheme a very practical and useful tool in cloud computing, especially for the sensitive
data. For that reason, homomorphic encryption schemes have been gaining a lot of
attention in recent years. Within this direction, many homomorphic encryption schemes
have been proposed (Goldwasser & Micali, 1982; Elgamal, 1984; Boneh, Goh & Nissim,
2005). In this study we use a well-known homomorphic encryption system, the Paillier
scheme, to construct our protocols.

Let Epk(·) be the encryption function with the public key pk and Dsk(·) be the decryption
function with the secret key sk. For any given two plaintexts a and b, the Paillier scheme
satisfies the following properties:

� Addition: Dsk(Epk(a + b)) = Dsk(Epk(a) � Epk(b) mod N2)

� Multiplication: Dsk(Epk(a � b)) = Dsk(Epk(a)
b mod N2)

Note that the Paillier encryption scheme is semantically secure (Paillier, 1999).

Basic security primitives
Here, we briefly explain a set of basic security protocols. In these protocols, it’s assumed
that there exist two semi-honest parties P1 and P2 joining the protocols, and the Paillier’s
secret key is known only to one of them. We will also introduce two new security
primitives in “Construction” that will be employed together with the basic primitives given
here as building blocks in forming our construction.

Secure multiplication (SM) protocol
Consider two parties P1 and P2 such that the former holds (Epk(x), Epk(y)) and the
latter holds the secret key sk, where x and y are not known to both parties. The protocol
outputs Epk(x � y) to P1. Note that the output Epk(x � y) is only known to P1, and no
information about x and y is revealed to any party during the protocol.

Secure squared Euclidean distance (SSED) protocol
The protocol considers two parties P1 and P2 with the inputs (Epk(X), Epk(Y)) and the
secret key sk, respectively, and outputs Epk(|X − Y|2) to P1, where X and Y are m
dimensional vectors. In the protocol, the encryption of squared Euclidean distance
Epk(|X − Y|2) is only known to P1.
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Secure bit-decomposition (SBD) protocol
The protocol considers P1 with the input Epk(x) and P2 with the secret key sk, and outputs
the encryptions of the bit-decomposition of x as ½x� ¼ hEpkðx1Þ; . . . ;Epkðx‘Þi, where
0 � x � 2‘. Note that the encryptions of bit-decomposition [x] is known to only P1.

Secure minimum (SMIN) protocol

In the protocol, P1 with the inputs ([x], [y]) and P2 with the secret key sk securely compute
the encryption of individual bits of minimum between x and y as [min(x,y)]. Note that
the output [min(x,y)] is only known to P1, and no information about x and y is revealed to
any party during the protocol.

Secure minimum out of n numbers (SMINn) protocol
In the protocol, P1 with the inputs ([x1],…,[xn]) and P2 with the secret key sk securely
compute [min(x1,…,xn)], where [min(x1,…,xn)] is the encryption of the individual bits of
min(x1,…,xn). Note that the output [min(x1,…,xn)] is only known to P1, and no
information about xi for any i is revealed to any party during the protocol.

Secure Bit-OR (SBOR) protocol
Consider two parties P1 and P2 such that the former holds (Epk(a), Epk(b)) and the latter
holds the secret key sk, where a and b are two bits. The protocol outputs Epkða _ bÞ to P1.
The output Epkða _ bÞ is only known to P1, and no information about a and b is revealed to
any party during the protocol.

Since we don’t aim to study the existing protocols given above, we simply consider the
most efficient implementation of them which were presented in Elmehdwi, Samanthula &
Jiang (2014) and Samanthula, Hu & Jiang (2013). However, the implementation of the
SMINn protocol given in Elmehdwi, Samanthula & Jiang (2014) fails for some inputs,
i.e. it generates an incorrect output if the size of the input is given as n = 8k + 1 for some k∈
Z. Let me illuminate it with an example: assume the protocol takes nine inputs ([x1],…,
[x9]). At the last step, the protocol applies the SMIN protocol to the intermediate values
[x′1] and [x′7]) (the encryptions of the local minimums), and outputs the encryption of
0 since [x′7] was set to the encryption of zero at some previous steps. Therefore, independent
of the inputs, the protocol always outputs the encryption of zero as the final output when
the size of the input is given as n = 8k + 1 for some k ∈ Z. Thus, we develop a new
implementation of the SMINn protocol that simply works as follows:

1. The server P1 initially executes the SMIN protocol together with P2 on [x1] and [x2] to
get [R1] = [min(x1,x2)] as the encryption of the individual bits of min(x1,x2),

2. it then iteratively runs the SMIN protocol together with P2 on [Ri−1] and [xi+1] to get
[Ri] = [min(Ri−1,xi+1)] as the encryption of the individual bits of min(x1,x2,…,xi+1) for
i = 2… (n − 1).

Note that the final output of the iterative steps will be [Rn−1] = [min(x1,…,xn)], which is
the encryption of the individual bits of min(x1,…,xn).
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CONSTRUCTION
In this section, we first introduce two new security primitives: the Secure bit-AND-OR
(SBAOR) protocol and Secure Transformation (ST) protocol. We then give the security
analysis of this protocols. By utilizing SBAOR and ST protocols together with the basic
security primitives given in “Premilinaries”, we construct our main protocol. Furthermore,
we also give the security analysis of the main protocol and discuss the computation
complexity at the end of this section.

Secure bit-AND-OR (SBAOR) protocol
The SBAOR protocol allows the servers to securely compute the negation of the logical
disjunction of all bitwise multiplications xi · yi in encrypted form without revealing the bit
vectors to any party. In the main protocol, it will help the servers to separate the index of
the current closest record to the query point from all other records of both databases by
assigning the encryption of 1 to that particular index and the encryption of 0 to all other
indices. In this way, the servers will be able to calculate the current closest record, and
remove the corresponding index from further calculations.

The protocol considers two parties P1 and P2 such that the former holds ([x], [y]) and
the latter holds the secret key sk, where [x] and [y] are the encryption of individual bits of x
and y. The protocol enables the parties P1 and P2 to securely compute the encryption

EpkðAÞ where A ¼ 1� A and A ¼ ðx1 � y1Þ _ ðx2 � y2Þ _ � � � _ ðx‘ � y‘Þ. The output EpkðAÞ
is only known to P1, and no information about x and y is revealed to any party during the
protocol.

In the protocol, P1 and P2 first runs the SM protocol on the inputs Epk(xi) and Epk(yi) to
calculate Epk(xi � yi) for i 2 ½‘� where xi and yi are the i-th bits of x and y, respectively. Note
that each Epk(xi � yi) is only revealed to P1. The server P1 then calculates
Epkðx1 � y1 _ � � � _ x‘ � y‘Þ as follows:

� it initially executes the SBOR protocol together with P2 on Epk(x1 � y1) and Epk(x2 � y2) to
get EpkðR1Þ ¼ Epkðx1 � y1 _ x2 � y2Þ,
� it then iteratively runs the SBOR protocol together with P2 on Epk(Ri−1) and Epk(xi+1 � yi+1)
to get EpkðRiÞ ¼ EpkðRi�1 _ xiþ1 � yiþ1Þ for i ¼ 2 � � � ‘� 1.

Note that the final output of the iterative steps will be EpkðR‘�1Þ¼ Epkðx1 � y1_���_x‘ � y‘Þ.
Finally, P1 applies the equation EpkðR‘�1Þ¼ Epkð1Þ�EpkðR‘�1ÞN�1 to compute the final
output.

Security Analysis of SBAOR: At the beginning of the protocol, the servers P1 and P2
execute the Secure Multiplication protocol. As emphasized in “Premilinaries”, the output
of the protocol is only revealed to the server P1, and no information about the plaintexts
xi and yi is revealed to any party during this protocol. Later, the servers run the Secure
Bit-OR (SBOR) Protocol on the inputs Epk(Ri) and Epk(xi+1 � yi+1). The SBOR protocol
outputs the new Epk(Ri+1) only to the server P1, and no information about the plaintexts is
revealed to any party during the protocol. At the final, the server P1 only applies some
homomorphic operations on the encryption EpkðR‘�1Þ computed at the previous step.
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Therefore, the SBAOR protocol protects the confidentiality of the data, i.e. no information
about the contents of the encryptions is revealed to any party during the protocol.

Secure Transformation (ST) protocol
The ST Protocol enables the servers to transform the encryption of a record under a public
key to the encryption of same record under another public key. In the main protocol, the
servers employ ST Protocol to collect the encryptions of local minimums, that indicate the
indexes of local closest records of both databases, under the same public key so that they
can decide the minimum among them.

The protocol considers three parties Pðu1Þ1 with the input Epku1 ðtÞ, P
ðu1Þ
2 with the secret

key sku1 , and Pðu2Þ1 . The protocol simply aims to transform the encryption of a record t
under the public key pku1 to the encryption of t under the public key pku2 . Note that no
information about t is revealed to any party during the protocol and the output Epku2 ðtÞ is
only known to the party Pðu2Þ1 .

Briefly, Pðu1Þ1 first masks Epku1 ðtÞ with the randomly chosen vector r0 2 Zm
N as

l ¼ Epku1 ðtÞ � Epku1 ðr0Þ, and sends μ to P
ðu1Þ
2 and Epku2 ðr0Þ to P

ðu2Þ
1 . After getting μ, Pðu1Þ2 first

decrypts it as l0 ¼ Dsku1
ðlÞ, then encrypts μ′ with the public key pku2 as Epku2 ðl0Þ, and

finally sends the encryption to Pðu2Þ1 . After receiving the encryption, the party Pðu2Þ1 first
removes the randomness r′ from the encryption Epku2 ðl0Þ and gets the encryption Epku2 ðtÞ
as Epku2 ðtÞ ¼ Epku2 ðl0 � r0Þ. From the homomorphic property of the underlying encryption
scheme, Epku2 ðl0 � r0Þ can easily be calculated as Epku2 ðl0Þ � Epku2 ðr0Þ

N�1.
Security Analysis of ST: At the beginning of the protocol, the servers Pðu1Þ1 randomizes

the encryption Epku1 ðtÞ with r0 2 Zm
N before sending it to the server Pðu1Þ2 . So, the decryption

computed by Pðu1Þ2 will be uniformly random in Zm
N . Besides, P

ðu2Þ
1 locally subtracts the

encryption of the randomness r′ under the public key pku2 from the encryption sent by

Pðu1Þ2 by performing some homomorphic operations. Thus, the protocol does not reveal
any information about the record t to any party.

Algorithm 1 SBAOR.

Input: ([x], [y]) from P1 and sk from P2

Output: Epkðx � yÞ to P1

1. P1 and P2;

for i = 1 to ‘ do

Epkðxi � yiÞ  SMðEpkðxiÞ; EpkðyiÞÞ;
2. P1 and P2;

EpkðR1Þ  SBORðEpkðx1 � y1Þ; Epkðx2 � y2Þ;
for i = 2 to ‘ − 1 do

EpkðRiÞ  SBORðEpkðRi�1Þ; Epkðxiþ1 � yiþ1ÞÞ;
3. P1;

Epkðx � yÞ  Epkð1� R‘�1Þ  Epkð1Þ � EpkðR‘�1ÞN�1;
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Main protocol
In this section, we will give the construction of our main protocol that enables a query
owner to extract the interpolation of k-nearest neighbors for a query point of his choice as
shown in Fig. 2. As we stated in the “Introduction”, our construction can be viewed as an
extension of the protocol presented in Elmehdwi, Samanthula & Jiang (2014) that proposes

Figure 2 The STPkNN protocol: for u = 1, 2; (1) each DOu uploads its data to the server CSP1
(u); (2)

each DOu gives its secret key to CSP2
(u); (3) QO sends its query point Q in encrypted form to the

servers CSP1
(u); (4) CSP1

(u) and CSP2
(u)

find the local nearest neighbours; (5) CSP1
(1) and CSP1

(2)

decide on the global nearest neighbour among the local nearest neighbors (4 and 5 are repeated k
times in the protocol); (6) the final prediction value is forwarded to QO.

Full-size DOI: 10.7717/peerj-cs.965/fig-2

Algorithm 2 ST.

Input: Epku1 ðtÞ from Pðu1Þ1 and sku1 from Pðu1Þ2

Output: Epku2 ðtÞ to Pðu2Þ1

1. Pðu1Þ1 ;

l Epku1 ðtÞ � Epku1 ðr0Þ; r0 2R Zm
N ;

send μ to Pðu1Þ2 and Epku2 ðr0Þ to Pðu2Þ1 ;

2. Pðu1Þ2 ;

l0  Dsku1
ðlÞ;

send Epku2 ðl0Þ to Pðu2Þ1 ;

3. Pðu2Þ1 ;

Epku2 ðtÞ  Epku2 ðl0 � r0Þ  Epku2 ðl0Þ � Epku2 ðr0Þ
N�1;
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an efficient solution of the k-nearest neighbor query problem over encrypted database
outsourced to a single cloud.

We assume that each data owner DOu has a database Du that consists of n records

dðuÞ1 ; . . . ; dðuÞn where each dðuÞi is m-dimensional vector that lies in ½0; 2‘�. We also assume

that there exist two non-colluding semi-honest cloud service providers, CSPðuÞ1 and CSPðuÞ2

for each database Du where CSP
ðuÞ
1 is given the encryption of the database Du and CSP

ðuÞ
2 is

given the corresponding secret key sku.
Initially, each DOu encrypts his database Du as Epku dðuÞi;j

� �
where 1≤ i ≤ n and 1≤ j ≤ m.

Each DOu then outsources the encryptions of the database, together with the future query
service to the clouds, i.e. DOu gives Epku dðuÞi;j

� �
to CSPðuÞ1 and his secret key sku to CSPðuÞ2 .

When the query owner (QO) wants to retrieve the interpolation of the k-nearest neighbors
for a query point Q, he produces two encryptions of his query point Q as
Epk1ðQÞ ¼ hEpk1ðq1Þ; . . . ; Epk1ðqmÞi and Epk2ðQÞ ¼ hEpk2ðq1Þ; . . . ; Epk2ðqmÞi using the

public keys of the data owners DO1 and DO2, respectively; and gives each encryption

EpkuðQÞ to the corresponding cloud service provider CSPðuÞ1 .

After receiving the encryption EpkuðQÞ, each CSPðuÞ1 runs the SSED protocol together
with the corresponding server CSPðuÞ2 on the input EpkuðQÞ; Epku dðuÞi

� �� �
where

Epku dðuÞi

� �
¼ Epku dðuÞi;1

� �
; . . . ; Epku dðuÞi;m

� �D E
for 1 ≤ i ≤ n, and obtains the encryption of the

squared Euclidean distance between Q and dðuÞi as Epku eðuÞi

� �
where eðuÞi ¼ jQ� dðuÞi j2.

From the SSED protocol, Epku eðuÞi

� �
is revealed only to CSPðuÞ1 .

Opposite to the protocol proposed in Kalideen, Osmanoglu & Tugrul (2019), instead of
sending the encryptions Epku eðuÞi

� �
to the server CSPðuÞ2 where 1 ≤ i ≤ n, that reveals the

information of which indexes being used to compute the interpolation to CSPðuÞ2 , each

CSPðuÞ1 securely runs the SBD protocol with the server CSPðuÞ2 on the inputs Epku eðuÞi

� �
to

compute ½eiðuÞ� ¼ Epku eðuÞi;1

� �
; . . . ; Epku eðuÞi;‘

� �D E
, the encryptions of the individual bits of

eðuÞi . Note that eðuÞi

h i
is only revealed to CSPðuÞ1 .

After this stage, the servers produce the interpolation of the k-nearest neighbours of the
query point Q in an iterative way. In each iteration:

� Each pair of servers CSPðuÞ1 and CSPðuÞ2 securely calculate the encryptions of the
individual bits of the minimum value eðuÞmin

h i
among eðuÞ1

h i
; . . . ; eðuÞn

h i
by running the

protocol SMINn. Note that eðuÞmin

h i
is only revealed to CSPðuÞ1 .

� Each CSPðuÞ1 then locally calculates the encryption of emin from eðuÞmin

h i
as

Epku eðuÞmin

� �
¼

Y‘�1
i¼0

Epku eðuÞmin;i

� �2‘�i�1

¼ Epku eðuÞmin;1 � 2‘�1 þ . . .þ eðuÞmin;‘

� �
:
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� At this stage of the protocol, the servers CSPð1Þ1 and CSPð2Þ1 have Epk1 eð1Þmin

� �
and

Epk2 eð2Þmin

� �
as the encryption of the minimum distances. Now, the servers apply the

following steps to decide the minimum among eð1Þmin and eð2Þmin:

– the servers CSPð2Þ1 with the input Epk2 eð2Þmin

� �
, CSPð2Þ2 with the secret key sk2, and

CSPð1Þ1 securely runs the ST protocol to compute the encryption of eð2Þmin under the

public key pk1. Note that Epk1 eð2Þmin

� �
is only known to CSPð1Þ1 .

– the server CSPð1Þ1 now executes the SBD protocol with the server CSPð1Þ2 on the
inputs Epk1 eð1Þmin

� �
and Epk1 eð2Þmin

� �
to compute eð1Þmin

h i
and eð2Þmin

h i
where

eðuÞmin

h i
¼ Epk1 eðuÞmin;1

� �
; . . . ;Epk1 eðuÞmin;‘

� �D E
. From the SBD protocol, ½eð1Þmin� and ½eð2Þmin�

are only revealed to CSPð1Þ1 .

– CSPð1Þ1 then runs the SMIN protocol with CSPð1Þ2 on the inputs ½eð1Þmin� and ½eð2Þmin�, and
gets ½emin� ¼ min eð1Þmin; e

ð2Þ
min

n oh i
.

– after getting [emin], CSP
ð1Þ
1 locally calculates the encryption of emin as

Epk1ðeminÞ ¼
Y‘�1
i¼0

Epk1ðemin;iÞ2
‘�i�1

:

– the servers CSPð1Þ1 with the input Epk1ðeminÞ, CSPð1Þ2 with the secret key sk1, and

CSPð2Þ1 securely runs the ST protocol to compute the encryption of emin under the
public key pk2. Note that Epk2ðeminÞ is only known to CSPð2Þ1 .

� After identifying the minimum emin among eð1Þmin and eð2Þmin, each CSPðuÞ1 locally computes

the encryption of difference emin � eðuÞi

� �
for each i as Epku λðuÞi

� �
¼ Epku emin � eðuÞi

� �
¼ EpkðeminÞ � Epk eðuÞi

� �N�1
.

� Each CSPðuÞ1 then randomizes Epku λðuÞi

� �
as Epku aðuÞi

� �
¼ Epku λðuÞi

� �rðuÞi ¼
Epku λðuÞi � rðuÞi

� �
where rðuÞi is a random number in ZN. It is a fact that only one is

the encryption of zero among all 2n encryptions EpkuðaðuÞi Þ and all others are the
encryptions of some random numbers where i = 1 … n and u = 1, 2.

� Each CSPðuÞ1 securely runs the SBD protocol with the server CSPðuÞ2 on the inputs

Epku aðuÞi

� �
to compute aðuÞi

h i
¼ Epku aðuÞi;1

� �
; . . . ; Epku aðuÞi;‘

� �D E
, the encryptions of

the individual bits of aðuÞi . Note that aðuÞi

h i
is only revealed to CSPðuÞ1 .

� After getting the encryptions aðuÞi

h i
, each CSPðuÞ1 runs the SBAOR protocol with the

server CSPðuÞ2 on aðuÞi

h i
and [1] for each i where ½1� ¼ hEpkuð1Þ; . . . ; Epkuð1Þi, and gets

Epku bðuÞi

� �
¼ Epku aðuÞi � 1

� �
. Note that one of the encryptions among all Epku bðuÞi

� �
is

Epkuð1Þ and the remaining encryptions are Epkuð0Þ where i ∈ [n] and u = 1,2.

Furthermore, if bðvÞj ¼ 1, then dðvÞj is the closest record to Q from both databases.
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� CSPðuÞ1 securely runs the SM protocol with CSPðuÞ2 on the inputs Epku bðuÞi

� �
and

Epku dðuÞi;j

� �
to compute b0ðuÞi;j ¼ Epku bðuÞi � dðuÞi;j

� �
, for 1 ≤ i ≤ n and 1 ≤ j ≤ m. Then, each

CSPðuÞ1 can now calculate the encryption of its candidate for the first closest record d0ðuÞ1

as Epku d0ðuÞ1

� �
¼ Epku d0ðuÞ1;1

� �
; . . . ;Epku d0ðuÞ1;m

� �D E
where Epku d0ðuÞ1;j

� �
¼Qn

i¼1 b
0ðuÞ
i;j . As we

stated before, since only one of the encryptions among all Epku bðuÞi

� �
is Epkuð1Þ and

the remaining are Epkuð0Þ, one of the encryptions Epku d0ðuÞ1

� �
will be the encryption of

zero and the other one will be the encryption of nonzero number that will be the first
closest record.

� CSPð2Þ1 with the input Epk2ðd0ð2Þ1 Þ, CSPð2Þ2 with the secret key sk2, and CSP
ð1Þ
1 securely runs

the ST protocol to compute the encryption of d0ð2Þ1 under the public key pk1. Note that

Epk1 d0ð2Þ1

� �
is only known to CSPð1Þ1 .

� CSPð1Þ1 now can calculate the encryption of the first closest record as Epk1ðdmin1Þ ¼
Epk1 d0ð1Þ1

� �
� Epk1 d0ð2Þ1

� �
. From the homomorphic property of the underlying

encryption scheme, Epk1 d0ð1Þ1

� �
� Epk1 d0ð2Þ1

� �
¼ Epk1 d0ð1Þ1 þ d0ð2Þ1

� �
, and since one of

them is zero, Epk1 d0ð1Þ1 þ d0ð2Þ1

� �
will be the encryption of the first closest record from

both databases.

� As the final step of the first iteration, the first closest records dmin1 should be excluded
from the further iterations. To this aim, each CSPðuÞ1 securely executes the SBOR
protocol with CSPðuÞ2 on the inputs bðuÞi and Epku eðuÞi;h

� �
where 1 ≤ i ≤ n and 1 � h � ‘. As

the output of the protocol, CSPðuÞ1 gets the encryptions of renewed distances as

Epku eðuÞi;h

� �
¼ Epku bðuÞi _ eðuÞi;h

� �
. Observe that if bðuÞj ¼ Epkuð1Þ for a particular j, the

corresponding distance eðuÞj will take themaximum value, i.e. eðuÞj

h i
¼ hEpkuð1Þ; . . . ; Epkuð1Þi.

On the other hand, if bðuÞi ¼ Epkuð0Þ, the SBOR protocol will have no effect on eðuÞi .

Because our protocol outputs the interpolation of the k-nearest neighbors of the query
point Q, the server CSPð1Þ1 does not need to keep all the nearest records separately. Instead, it
gradually builds the interpolation, i.e. after each iteration, CSPð1Þ1 adds the current closest
record Epk1ðdminpÞ to the previous sum Epk1ðSp�1Þ ¼ Epk1ðdmin1 þ . . .þ dminp�1Þ as
Epk1ðSp�1Þ � Epk1ðdminpÞ, and gets the current sum Epk1ðSpÞ ¼ Epk1ðdmin1 þ . . .þ dminPÞ.

After k iterations, CSPð1Þ1 will have the sum Epk1ðSkÞ ¼ Epk1ðdmin1 þ . . .þ dminkÞ as the
encryption of the sum of the k-nearest neighbors of the query point Q. CSPð1Þ1 then
computes the randomization of the encryptions as cj ¼ Epk1ðSk;jÞ � Epk1ðrjÞ where rj are
random numbers in ZN and 1 ≤ j ≤ m. CSPð1Þ1 then sends γj to CSPð1Þ2 and rj to the query
owner. Upon receiving γj, CSP

ð1Þ
2 decrypts them as c

0
j ¼ Dsk1ðcjÞ and sends the decryptions

to the query owner. The query owner QO then computes the sum of k-nearest record
as S

0
k;j ¼ c

0
j � rj where 1 ≤ j ≤ m. As the final step, QO computes the interpolation of

k-nearest neighbors of Q as hS0k;1=k; . . . ; S0k;m=ki.
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Security analysis
In this section, we will give the security analysis of the protocol shown in Algorithm 3. As
we emphasized above, the data owners encrypt their data before outsourcing them to
the cloud. Since they use the Paillier encryption scheme which is semantically secure, the
data is not leaked to any cloud service provider. On the other hand, at the first step of
Algorithm 3, the query point Q is encrypted before given to the corresponding cloud
service providers. Similarly, since the underlying encryption scheme (the Paillier
cryptosystem) is semantically secure, the query point Q is not revealed to any data owner
or any cloud service provider.

At the second step of Algorithm 3, the servers CSPðuÞ1 and CSPðuÞ2 execute the protocols
SSED and SBD. As stated in Elmehdwi, Samanthula & Jiang (2014), the outputs of the
protocols will be in the encrypted format, and will only be revealed to the servers CSPðuÞ1 .
Besides, no information about the plaintexts is revealed to any party during these
protocols. At the step 3(a) of each iteration in Algorithm 3, the output of the protocol
SMINn is only revealed to the servers CSPðuÞ1 . Besides, the SMINn protocol guarantees that
the servers involved in the protocol do not know which records from both databases
correspond to the current minimum distances. Similarly, the output of the SMIN protocol
executed at the step 3(b) of Algorithm 3 is only revealed to the server CSPð1Þ1 . Also, the
protocol does not reveal which record corresponds to the current global minimum.

The servers also run the ST protocol at the steps 3(b) and 3(e) of Algorithm 3 to
transform the encryption of the current minimum distance under the public key pku1 to
the encryption under the public key pku2 . As we explained at the beginning of this section,
the ST protocol protects the content of the encryption from all parties involved in the
protocol. Furthermore, at the step 3(c), each server CSPðuÞ1 runs the SBAOR protocol with

CSPðuÞ2 that outputs either the encryption of 1 just for the index corresponding to the
current global minimum or the encryption of 0 for all the other indexes. Note that the
SBAOR protocol uses the protocols SM and SBD as sub procedures, and it does not leak
the index that corresponds to the current global minimum. Thus, data access patterns are
protected from all the involved servers through the protocol, i.e. the servers do not know
which data records used in producing the interpolation of k-nearest neighbors.

In conclusion, the STPkNN protocol preserves the confidentiality of the data, secures
the privacy of user’s query point, and hides data access patterns.

Complexity analysis
In this section, we will discuss the computation complexity of our protocol. The servers
perform n instantiations of SSED and SBD protocols at the second step of the protocol.
Since the computation complexity of the SSED protocol proposed in Elmehdwi,
Samanthula & Jiang (2014) is bounded by O(m) multiplications and O(m)
exponentiations, and the computation complexity of the SBD protocol proposed in
Samanthula, Hu & Jiang (2013) is bounded by Oð‘Þ multiplications and Oð‘Þ
exponentiations, the computation complexity of this step is bounded by Oðn � ðmþ ‘ÞÞ
multiplications and Oðn � ðmþ ‘ÞÞ exponentiations.
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Algorithm 3 STPkNN.

Input: Epk1ðDuÞ from CSPðuÞ1 ; sku from CSPðuÞ2 ; Q from QO

Output: T, the interpolation of k-nearest neighbors of Q

1. QO;

a) compute EpkuðQÞ ¼ hEpkuðq1Þ; . . . ; EpkuðqmÞi;
b) send each EpkuðQÞ to the corresponding server CSPðuÞ1 ;

2. CSPðuÞ1 and CSPðuÞ2 ;

for i = 1 to n do

Epku eðuÞi

� �
 SSED EpkuðQÞ; Epku dðuÞi

� �� �
;

eðuÞi

h i
 SBD Epku eðuÞi

� �� �
3. for p = 1 to k do

a) CSPðuÞ1 and CSPðuÞ2 ;

– ½eðuÞmin�  SMINnð½eðuÞ1 �; . . . ; ½eðuÞn �Þ;
– CSPðuÞ1 computes Epku eðuÞmin

� �
 Q‘�1

i¼0 Epku eðuÞmin;i

� �2‘�i�1

;

b) CSPð1Þ1 , CSPð1Þ2 , CSPð2Þ1 , and CSPð2Þ2 ;

– CSPð2Þ1 , CSPð2Þ2 , and CSPð1Þ1 execute Epk1 eð2Þmin

� �
 ST Epk2 eð2Þmin

� �� �
;

– CSPð1Þ1 and CSPð1Þ2 compute eðuÞmin

h i
 SBD Epk1 eðuÞmin

� �� �
;

– CSPð1Þ1 and CSPð1Þ2 compute emin½ �  SMIN Epk1 eð1Þmin

h i
; eð2Þmin

h i� �� �
;

– CSPð1Þ1 computes Epk1ðeminÞ  
Q‘�1

i¼0 Epk1ðemin;iÞ2
‘�i�1

;

– CSPð1Þ1 , CSPð1Þ2 , and CSPð2Þ1 execute Epk2ðeminÞ  STðEpk1ðeminÞÞ;
c) CSPðuÞ1 and CSPðuÞ2 ;

for i = 1 to n do

Epku λðuÞi

� �
 Epku eðuÞi � emin

� �
;

Epku aðuÞi

� �
 Epku λðuÞi

� �rðuÞi
, where rðuÞi 2R ZN ;

aðuÞi

h i
 SBD Epku aðuÞi

� �� �
;

Epku bðuÞi

� �
 SBAOR aðuÞi

h i
; ½1�

� �
;

d) CSPðuÞ1 and CSPðuÞ2 ;

for i = 1 to n and j = 1 to m do

b0ðuÞi;j  SM Epku bðuÞi

� �
; Epku dðuÞi;j

� �� �
;

Epku d0ðuÞp;j

� �
 Qn

i¼1 b
0ðuÞ
i;j

e) CSPð2Þ1 , CSPð2Þ2 , and CSPð1Þ1 ;

–Epk1 d0ð2Þp

� �
 ST Epk2 d0ð2Þp

� �� �
;

f) CSPð1Þ1 ;

– Epk1ðdminpÞ  Epk1 d0ð1Þp þ d0ð2Þp

� �
 Epk1 d0ð1Þ1

� �
� Epk1 d0ð2Þ1

� �
;

– Epk1ðSpÞ  Epk1ðSp�1Þ � Epk1ðdminpÞ;
g) CSPðuÞ1 and CSPðuÞ2 ;

for i = 1 to n and h = 1 to ‘ do

Epku eðuÞi;h

� �
 SBOR Epku bðuÞi

� �
; Epku eðuÞi;h

� �� �

(Continued)
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On the other hand, at the third step of our protocol, the servers perform the following
operations O(k) times: a single instantiation of SMINn protocol, a single instantiation of
SMIN, 2 instantiations of ST protocol, n instantiations of SBD and SBAOR protocols, n ·m
instantiations of SM protocol, and n � ‘ instantiations of SBOR protocol. The computation
complexity of the SMINn protocol presented in this paper is bounded by Oð‘ � nÞ
multiplications andOð‘ � nÞ exponentiations and the computation complexity of the SMIN
protocol presented in Elmehdwi, Samanthula & Jiang (2014) is bounded by Oð‘Þ
multiplications and Oð‘Þ exponentiations. Besides, the ST protocol proposed in this paper,
the SM protocol presented in Elmehdwi, Samanthula & Jiang (2014), and the SBOR
protocol presented in Elmehdwi, Samanthula & Jiang (2014) only contain a constant
number of multiplications and a constant number of exponentiations. Also, as we
emphasized above, the computation complexity of the SBD protocol is bounded by Oð‘Þ
multiplications and Oð‘Þ exponentiations (Samanthula, Hu & Jiang, 2013). Moreover,
since the SBAOR protocol proposed in this paper deploys ‘ instantiations of SM protocol
and ‘ − 1 instantiations of SBOR protocols as sub procedures, the computation complexity
of the SBAOR protocol bounded by by Oð‘Þ multiplications and Oð‘Þ exponentiations.
Thus, the computation complexity of the third step is bounded by Oðk � n � ðmþ ‘ÞÞ
multiplications and exponentiations at total.

In addition, the servers perform only O(m) operations at the remaining steps of the
protocol. Thus, the total computation complexity of our protocol is bounded by
Oðk � n � ðmþ ‘ÞÞ multiplications and exponentiations.

PERFORMANCE EVALUATION
In this section, we evaluated the performance of the proposed protocol STPkNN by
carrying out a number of experiments under different parameter settings. We deployed
Paillier cryptosystem (Paillier, 1999) for the encryption, and implemented the proposed
protocols in Java. All the experiments were performed on a virtual Linux machine with an

Algorithm 3 (continued)

4. CSPð1Þ1 ;

for j = 1 to m do

– cj  Epk1ðSk;jÞ � Epk1ðrjÞ, where rj ∈R ZN;

– sends γj to CSPð1Þ2 and rj to QO

5. CSPð1Þ2 ;

for j = 1 to m do

– c0j  Dsk1ðEpk1ðcjÞÞ;
– sends c0j to QO

6. QO;

a) for j = 1 to m do

S0k;j  c0j � rj

b) computes the interpolation as T ¼ hS0k;1=k; . . . ; S
0
k;j=ki;
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IntelR XeonR Two-CoreTM CPU 2.20 GHz processor and 4 GB RAM running Ubuntu
16.04 LTS. For the experiments, we utilized two real data sets from UCI machine learning
repository (Dua & Graff, 2017); Heart Disease that consists of 600 data records such
that each one contains 14 attributes concerning heart disease diagnosis, and Bank
Marketing that contains 800 data records such that each one includes 15 attributes that
helps to predict whether a new client will pay a term deposit. We first processed these data
sets so that they contain only non-negative integer values. We then split each data set into
two equal parts so that each one will be operated by a single cloud pair. Note that, for all the
measurements, the experiment was repeated for multiple query points and the average
time taken to execute a query was reflected to the table.

We first evaluated the computation cost of STPkNN on finance data set in minutes for
varying the number of nearest neighbors (k) and the number of attributes (m). As shown in
Fig. 3A, if we fix the number of attributes as m = 6, the running time of our protocol
varies from 74.08 to 226.16 min for finance data set when k is changed from 5 to 15.
Besides, form = 12, the running time of our protocol varies from 78.85 to 239.21 min when
k is changed from 5 to 15. So the running time of our protocol grows linear with k. Also,
we observe that the computation cost of our protocol increases by nearly a factor of
1.06 when m is doubled.

Similarly, we also evaluated the computation cost of STPkNN on heart disease data set
in minutes for varying the number of nearest neighbors (k) and the number of attributes
(m). As shown in Fig. 3B, if we set the number of attributes as m = 6, the running time
of our protocol varies from 55.89 to 168.26 min when k is changed from 5 to 15. Besides,
for m = 12, the running time of our protocol varies from 59.56 to 178.63 min when k is

Figure 3 Running time of STPkNN for varying k values on the (A) finance and the (B) health data set.
Full-size DOI: 10.7717/peerj-cs.965/fig-3
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changed from 5 to 15. Thus, it is easy to observe that our protocol scales linearly with k.
On the other hand, the running time of our protocol increases by almost a factor of
1.34 when the number of data records (n) is changed from 300 to 400. Thus, the running
time of our protocol grows linear with n.

CONCLUSIONS
In this study, we proposed a secure k-NN method that produces an interpolation of k-
nearest neighbors to a query point over encrypted databases. We here claimed that instead
of using one, employing two different databases in the protocol will yield more accurate
and reliable interpolation value. We validated this claim by conducting experiments on
publicly available real data sets. We also showed that our protocol preserves the
confidentiality of data, assures the privacy of user’s query point, and hides data access
patterns. We finally analyzed the performance of the proposed protocol through a number
of experiments under different parameter settings. As a future study, we will examine and
expand our work to apply other interpolation methods on encrypted data in distributed
architecture. We will extend our protocol, that considers two encrypted databases stored in
two different clouds, to multi-cloud settings.
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