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ABSTRACT13

Research software is a critical component of contemporary scholarship. Yet, most research software is

developed and managed in ways that are at odds with its long-term sustainability. This paper presents

findings from a survey of 1149 researchers about sustainability challenges they face in developing and

using research software. Some of our key findings include a repeated need for more opportunities and

time for developers of research software to receive training. These training needs cross the software

lifecycle and various types of tools. We also identified the recurring need for better models of funding

research software and for providing credit to those who develop the software so they can advance in

their careers. The results of this survey will help inform future infrastructure and service support for

software developers and users, as well as national research policy aimed at increasing the sustainability

of research software.
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INTRODUCTION24

In almost all areas of research, from hard sciences to the humanities, the processes of collecting, storing,25

and analyzing data and of building and testing models have become increasingly complex. Our ability26

to navigate such complexity is only possible because of the existence of specialized software, often27

referred to as research software. Research software plays such a critical role in day to day research that a28

comprehensive survey reports 90-95% of researchers in the US and the UK rely upon it and more than29

60% were unable to continue working if such software stopped functioning (Hettrick, 2014). While the30

research community widely acknowledges the importance of research software, the creation, development,31

and maintenance of research software is still ad hoc and improvised, making such infrastructure fragile32

and vulnerable to failure.33

In many fields, research software is developed by academics who have varying levels of training,34

ability, and access to expertise, resulting in a highly variable software landscape. As researchers are under35

immense pressure to maintain expertise in their research domains, they have little time to stay current36

with the latest software engineering practices. In addition, the lack of clear career incentives for building37

and maintaining high quality software has made research software development unsustainable. The lack38

of career incentives has occurred partially because the academic environment and culture have developed39

over hundreds of years, while software has only recently become important, in some fields over the last40

60+ years, but in many others, just in the last 20 or fewer years (Foster, 2006).41

Further, only recently have groups undertaken efforts to promote the role of research software (e.g.,42

the Society of Research Software Engineers1, the US Research Software Engineer Association2) and train43

1https://society-rse.org
2https://us-rse.org
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researchers in modern development practices (e.g., the Carpentries3, IRIS-HEP4, and MolSSI5). While44

much of the development of research software occurs in academia, important development also occurs45

in national laboratories and industry. Wherever the development and maintenance of research software46

occurs, that software might be released as open source (most likely in academia and national laboratories)47

or it might be commercial/closed source (most likely in industry, although industry also produces and48

contributes to open source).49

The open source movement has created a tremendous variety of software, including software used for50

research and software produced in academia. It is difficult for researchers to find and use these solutions51

without additional work (Joppa et al., 2013). The lack of standards and platforms for categorizing software52

for communities often leads to re-developing instead of reusing solutions (Howison et al., 2015). There53

are three primary classes of concerns, pervasive across the research software landscape, that have stymied54

this software from achieving maximum impact.55

• Functioning of the individual and team: issues such as training and education, ensuring appropriate56

credit for software development, enabling publication pathways for research software, fostering sat-57

isfactory and rewarding career paths for people who develop and maintain software, and increasing58

the participation of underrepresented groups in software engineering.59

• Functioning of the research software: supporting sustainability of the software; growing community,60

evolving governance, and developing relationships between organizations, both academic and61

industrial; fostering both testing and reproducibility, supporting new models and developments (e.g.,62

agile web frameworks, Software-as-a-Service), supporting contributions of transient contributors63

(e.g., students), creating and sustaining pipelines of diverse developers.64

• Functioning of the research field itself : growing communities around research software and65

disparate user requirements, cataloging extant and necessary software, disseminating new develop-66

ments and training researchers in the usage of software.67

In response to some of the challenges highlighted above, the US Research Software Sustainability68

Institute (URSSI)6 conceptualization project, funded by NSF, is designing an institute that will help69

with the problem of sustaining research software. The overall goal of the conceptualization process is70

to bring the research software community together to determine how to address known challenges to71

the development and sustainability of research software and to identify new challenges that need to be72

addressed. One important starting point for this work is to understand and describe the current state of73

the practice relative to those important concerns. Therefore, in this paper we describe the results of a74

community survey focused on this goal.75

BACKGROUND76

Previous studies of research software have often focused on the development of cyberinfrastructure (Borgman77

et al., 2012) and the various ways software production shapes research collaboration (Howison and Herb-78

sleb, 2011, 2013; Paine and Lee, 2017). While these studies provide rich contextual observations about79

research software development processes and practices, they often focus on small groups or in laboratory80

settings that are difficult to generalize. Therefore, there is a need to gain a broader understanding of the81

research software landscape.82

A number of previous surveys have provided valuable insight into research software development83

and use, as briefly described next in the next subsection. Based on the results of these surveys and from84

other related literature, the remainder of this section motivates a series of research questions focused on85

important themes related to the development of research software.86

Previous Surveys87

The following list provides an overview of the previous surveys on research software, including the88

context of each survey. Table 1 summarizes the surveys.89

3https://carpentries.org
4https://iris-hep.org
5https://molssi.org
6http://urssi.us
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• How do Scientists Develop and Use Scientific Software? (Hannay et al., 2009) describes the results90

of a survey of 1972 scientists who develop and use software. The survey focused on questions91

about (1) how and when scientists learned about software development/use, (2) the importance of92

developing/using software, (3) time spent developing/using software, (4) hardware platforms, (5)93

user communities, and (6) software engineering practices.94

• How Do Scientists Develop Scientific Software? An External Replication (Pinto et al., 2018) is a95

replication of the previous study (Hannay et al., 2009) conducted ten years later. The replication96

focused on scientists who develop R packages. The survey attracted 1553 responses. The survey97

asked very similar questions to the original survey, with one exception. In addition to replicating98

the original study, the authors also asked respondents to identify the “most pressing problems,99

challenges, issues, irritations, or other ‘pain points’ you encounter when developing scientific100

software.” A second paper, Naming the Pain in Developing Scientific Software (Wiese et al., 2020),101

describes the results of this question in the form of a taxonomy of 2,110 problems that are either (1)102

technical-related, (2) social-related, or (3) scientific-related.103

• A Survey of Scientific Software Development (Nguyen-Hoan et al., 2010) surveyed researchers in104

Australia working in multiple scientific domains. The survey focused on programming language105

use, software development tools, development teams and user bases, documentation, testing and106

verification, and non-functional requirements.107

• A Survey of the Practice of Computational Science (Prabhu et al., 2011) reports the results of108

interviews of 114 respondents from a diverse set of domains all working at Princeton University.109

The interviews focused on three themes: (1) programming practices, (2) computational time and110

resource usage, and (3) performance enhancing methods.111

• Troubling Trends in Scientific Software (Joppa et al., 2013) reports on the results from about 450112

responses working in a specific domain, species distribution modeling, that range from people who113

find software difficult to use to people who are very experienced and technical. The survey focused114

on understanding why respondents chose the particular software they used and what other software115

they would like to learn how to use.116

• Self-Perceptions About Software Engineering: A Survey of Scientists and Engineers (Carver et al.,117

2013) reports the results from 141 members of the Computational Science & Engineering commu-118

nity. The primary focus of the survey was to gain insight into whether the respondents thought119

they knew enough software engineering to produce high-credibility software. The survey also120

gathered information about software engineering training and about knowledge of specific software121

engineering practices.122

• “Not everyone can use Git:” Research Software Engineers’ recommendations for scientist-centered123

software support (and what researchers really think of them) (Jay et al., 2016) describes a study that124

includes both Research Software Engineers and domain researchers to understand how scientists125

publish code. The researchers began by interviewing domain scientists who were trying to publish126

their code to identify the barriers they faced in publishing their code. Then they interviewed127

Research Software Engineers to understand how they would address those barriers. Finally, they128

synthesized the results from the Research Software Engineer interviews into a series of survey129

questions sent to a larger group of domain researchers.130

• It’s impossible to conduct research without software, say 7 out of 10 UK researchers (Hettrick, 2018,131

2014) describes the results of 417 responses to a survey of 15 Russel Group Universities in the UK.132

The survey focused on describing the characteristics of software use and software development133

within research domains. The goal was to provide evidence regarding the prevalence of software134

and its fundamental importance for research.135

• Surveying the US National Postdoctoral Association Regarding Software Use and Training in136

Research (Nangia and Katz, 2017) reports on the results of 209 responses to provide insight into the137

role of software in conducting research at US universities. The survey focused on the respondents’138

use of research software and the training they have received in software development.139

• Towards Computational Reproducibility: Researcher Perspectives on the Use and Sharing of140

Software (AlNoamany and Borghi, 2018) reports on the results from 215 respondents across a range141

of disciplines. The goal of the survey was to understand how researchers create, use, and share142

software. The survey also sought to understand how the software development practices aligned143

with the goal of reproducibility.144
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• Software Saved International Survey (Philippe et al., 2019) reports on the results from approximately145

1000 responses to a survey of research software engineers from around the world. The goal of146

the survey is to describe the current state of research software engineers related to various factors147

including employment, job satisfaction, development practices, use of tools, and citation practices.148

Study Focus Respondents

Hannay et al. (2009) How scientists develop and use software 1972

Pinto et al. (2018) Replication of Hannay et al. (2009) 1553

Wiese et al. (2020) Additional results from Pinto et al. (2018) focused

on problems encountered when developing scientific

software

1577

Nguyen-Hoan et al. (2010) Software development practices of scientists in Aus-

tralia

60

Prabhu et al. (2011) Practice of computational science in one large uni-

versity

114

Joppa et al. (2013) Researchers in species domain modeling with vary-

ing levels of expertise

∼450

Carver et al. (2013) Software engineering knowledge and training among

computational scientists and engineers

141

Hettrick (2018, 2014) Use of software in Russell Group Universities in the

UK

417

Jay et al. (2016) How scientists publish code 65

Nangia and Katz (2017) Use of software and software development training

in US Postdoctoral Association

209

AlNoamany and Borghi

(2018)

How the way researchers use, develop, and share

software impacts reproduciblity

215

Philippe et al. (2019) Research Software Engineers ∼1000

Table 1. Previous Surveys

Software Engineering Practices149

Based on the results of the surveys described in the previous subsection, we can make some observations150

about the use of various software engineering practices employed while developing software. The set of151

practices research developers find useful appear to have some overlap and some difference from those152

practices employed by developers of business or IT software. Interestingly, the results of the previous153

surveys do not paint a consistent picture regarding the importance and/or usefulness of various practices.154

Here we highlight some of the key results from these previous surveys, organized roughly in the order of155

the software engineering lifecycle.156

Requirements The findings of two surveys (Pinto et al., 2018; Hannay et al., 2009) reported both157

that requirements were important to the development of research software but also that they were one158

of the least understood phases. Other surveys reported that (1) requirements management is the most159

difficult technical problem (Wiese et al., 2020) and (2) the amount of requirements documentation is160

low (Nguyen-Hoan et al., 2010).161

Design Similar to requirements, surveys reported that design was one of the most important phases (Han-162

nay et al., 2009) and one of the least understood phases (Pinto et al., 2018; Hannay et al., 2009). In163

addition, other surveys reported that (1) testing and debugging are the second most difficult technical164

problem (Nguyen-Hoan et al., 2010) and (2) the amount of design documentation is low (Wiese et al.,165

2020).166

Testing There were strikingly different results related to testing. A prior survey of research software167

engineers found almost 2/3 of developers do their own test, but less than 10% reported the use of formal168

testing Philippe et al. (2019). Some surveys ((Pinto et al., 2018; Hannay et al., 2009)) reported that testing169

was important. However, another survey reported that scientists do not regularly test their code (Prabhu170
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et al., 2011). Somewhere in the middle, another survey reports that testing is commonly used, but the use171

of integration testing is low (Nguyen-Hoan et al., 2010).172

Software Engineering Practices Summary This discussion all leads to the first research question:173

RQ1: What activities do research software developers spend their time on, and how does this impact the174

perceived quality and long-term accessibility of research software?175

Software tools and support176

The development and maintenance of research software includes the use of standard software engineering177

tools such as version control systems (Milliken et al., 2021) and continuous integration(Shahin et al., 2017)178

as well as custom libraries developed for a specific analytic tasks, or even language specific interpreters to179

ease program execution.180

Previous surveys have asked researchers and research software engineers about the most frequently181

used open-source software in development. Surveys of research software developers and users have182

reported the use of standard software languages and even the types of tools used in analaysis (AlNoamany183

and Borghi, 2018), but there has been relatively little description of the tools upon which research software184

developers depend, and to what extent these tools are seen by developers as supporting sustainable185

research software practices. We therefore seek to understand tool usage and support in a second research186

question that asks: RQ2: What tools do research software developers use and what additional tools are187

needed to support sustainable development practices?188

Education and Training189

While researchers often develop research software for the express purpose of conducting research, previous190

studies demonstrate that these researchers are rarely purposely trained to develop software. A 2012 survey191

reported that research software developers had little formal training and were mostly self-taught (Carver192

et al., 2013).193

A UK survey (Hettrick, 2018, 2014) reported only 55% of respondents had some software development194

training. Of those only 40% had formal training, with 15% being self-taught. In addition, only 2% of195

respondents who develop their own software had no training in software development. The 2017 survey196

of US National Postdoctoral Association (Nangia and Katz, 2017) found similar results: while 95% of197

the respondents used research software, 54% reported they had not received any training in software198

development (Nangia and Katz, 2017). When analyzed by gender (self reported binary of men and199

women) these two surveys show remarkable similarities in the gap of training for men (63% in the UK and200

63% in the US) and women (39% in the UK and 32% in US). The AlNoamany and Borghi (2018) survey201

reported similar results: 53% of respondents had formal training in coding conventions and best practices.202

The Hannay et al. (2009) survey along with the Pinto et al. (2018) replication reported slightly less203

positive results. Regarding different mechanisms for learning about software development, 97% and 99%204

of the respondents thought self-study was important or very important, while only 13% and 22% found205

formal training to be important or very important.206

The results of these prior surveys suggest that research software developers may not have access207

to sufficient training in software development. In addition, the results of the Joppa et al. (2013) survey208

indicate that most respondents want increased computational skills. The authors advocate for formal209

training in software engineering as part of the University science curriculum.210

Therefore, we pose the following research question that guides our specific survey questions related211

to training – RQ3: What training is available to research software developers and does this training meet212

their needs?213

Funding and Institutional Support214

One of the key sustainability dilemmas for research software is the lack of direct financial support for215

development and maintenance. Successful research grants often focus on the merits of a new idea and216

the potential novel scientific or scholarly contribution of progress made on that idea. However, both217

institutions that support research (e.g., universities and national laboratories) and grant-making bodies that218

fund research (e.g., federal agencies and philanthropic organizations) often fail to recognize the central219

importance of software development and maintenance in conducting novel research (Goble, 2014). In220

turn, there is a little direct financial support for the development of new software or the sustainability of221

existing software upon which research depends (Katerbow et al., 2018). In particular, funding agencies222
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typically have not supported the continuing work needed to maintain software after its initial development.223

This lack of support is despite increasing recognition of reproducibility and replication crises that depend,224

in part, upon reliable access to the software used to produce a new finding (Hocquet and Wieber, 2021).225

In reaction to a recognized gap in research funding for sustainable software, many projects have226

attempted to demonstrate the value of their work through traditional citation and impact analysis (Anzt227

et al., 2020) as well as through economic studies. An example of the latter was performed by a development228

team of the widely used AstroPy packages in Astronomy. Using David A. Wheeler’s SLOCCount method229

for economic impact of open-source software they estimate the cost of reproducing AstroPy to be230

approximately $8.5 million and the annual economic impact on astronomy alone to be approximately231

$1.5 million (Muna et al., 2016).232

There is, recently, increased attention from funders on the importance of software maintenance233

and archiving, including the Software Infrastructure for Sustained Innovation (SI2) program at NSF,234

the NIH Data Commons (which includes software used in biomedical research), the Alfred P. Sloan235

Foundation’s Better Software for Science program, and the Chan Zuckerberg Initiative’s Essential Open236

Source Software for Science program which provide monetary support for the production, maintenance,237

and adoption of research software. Despite encouraging progress there is still relatively little research238

that focuses specifically on how the lack of direct financial support for software sustainability impacts239

research software engineers and research software users. We seek to better understand this relationship240

through two specific research questions that focus on the impact of funding on software sustainability:241

RQ4a: What is the available institutional support for research software development? and RQ4b: What242

sources of institutional funding are available to research software developers?243

Career Paths244

While most of previous surveys did not address the topic of career paths, the survey of research software245

engineers (Philippe et al., 2019) did briefly address this question. Because the results differ across the246

world, we only report results for respondents in the US. First, 57% of respondents were funded by grants247

and 47% by institutional support. Second, respondents had been in their current position for an average of248

8.5 years. Last, 97% were employed full-time.249

Because of the lack of information from prior surveys, we focus the rest of this discussion on250

other work to provide background. In 2012, the Software Sustainability Institute (SSI) organized the251

Collaborations Workshop7 that addressed the question: why is there no career for software developers in252

academia? The work of the participants and of the SSI’s policy team led to the foundation of the UK253

RSE association and later to the Society of Research Software Engineering. More and more national RSE254

associations are being founded, such as the US Research Software Engineer Association (US-RSE)8, and255

have gained momentum recently.256

Current evaluation and promotion processes in academia and national labs typically follow the257

traditional pattern of rewarding activities that include publications, funding, and advising students.258

However, there are other factors that some have considered. Managers of RSE teams state that when259

hiring research developers, it is important that those developers are enthusiastic about research topics and260

have problem-solving capabilities9. Another factor, experience in research software engineering, can be261

evaluated by contributions to software in platforms like GitHub. However, while lines of code produced,262

number of solved bugs, and work hours may not be ideal measures for developer productivity, they can263

provide insight into the sustainability and impact of research software, i.e. the presence of an active264

community behind a software package that resolves bugs and interacts with users is part of sustainability265

of software and impact on research 10. In addition, CaRCC (the Campus Research Computing Consortium)266

has defined job families and templates for job positions that can be helpful both for hiring managers and267

HR departments that want to recognize the role of RSEs and HPC Facilitators in their organizations11.268

However, there is still not a clearly defined and widely accepted career path for research software269

engineers in the US. We pose the following research question that guides our specific survey questions270

7http://software.ac.uk/cw12
8http://us-rse.org/
9https://cosden.github.io/improving-your-RSE-application

10https://github.com/Collegeville/CW20/blob/master/WorkshopResources/WhitePapers/

gesing-team-organization.pdf
11https://carcc.org/wp-content/uploads/2019/01/CI-Professionalization-Job-Families-and-Career-Guide.

pdf
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related to career paths – RQ5: What factors impact career advancement and hiring in research software?271

Credit272

While most of the previous surveys did not address the topic of credit, the survey of research software273

engineers (Philippe et al., 2019) does contain a question about how researchers are acknowledged when274

their software contributes to a paper. The results showed that 47% were included as a co-author, 18%275

received only an acknowledgement, and 21% received no mention at all. Therefore, we focus on other276

work to provide the necessary background.277

Considering credit leads to a set of interlinked research questions, which we can investigate by asking278

individuals who, with roles as software developers and software project collaborators, directly have279

important information. Here we take a white box approach and examine the inside of the box.280

• How do individuals want their contributions to software projects to be recognized, both as individu-281

als and as members of teams?282

• How do software projects want to record and make available credit for the contributions to the283

projects?284

In addition, the same individuals can express opinions that help investigate additional questions, in285

particular where these opinions provide a view about organizations into which they may not have direct286

insight. Here we can only take a black box approach and examine the box from the outside. (A white box287

approach would require a survey of different participants.)288

• How does the existing ecosystem, based largely on the historical practices related to contributions289

to journal and conferences papers and monographs, measure, store, and disseminate information290

about contributions to software, and what is being missed?291

• How do institutions (e.g. hiring organizations, funding organizations, professional societies) use292

the information about contributions to software that exists, and what information is being missed?293

We also recognize that there are not going to be simple answers to these questions (CASBS Group294

on Best Practices in Science, 2018; Albert and Wager, 2013), and that any answers will likely differ295

to some extent between disciplines (Dance, 2012). Many professional societies and publishers have296

specific criteria for authorship of papers (e.g., they have made substantial intellectual contributions, they297

have participated in drafting and/or revision of the manuscript, they agree to be held accountable for any298

issues relating to correctness or integrity of the work (Association for Computing Machinery, 2018)),299

typically suggesting that those who have contributed but do not meet these criteria be recognized via an300

acknowledgment. While this approach is possible in a paper, there is no equivalent for software, other301

than papers about software. In some disciplines, such as those where monographs are typical products,302

there may be no formal guidelines. Author ordering is another challenge. The ordering of author names303

typically has some meaning, though the meaning varies between disciplines. Two common practices are304

alphabetic ordering, such as is common in economics (Weber, 2018) and ordering by contribution with305

the first author being the main contributor and the last author being the senior project leader, as is occurs306

in many fields (Riesenberg and Lundberg, 1990). The fact that the contributions of each author is unclear307

has led to activities and ideas to record their contributions in more detail (Allen et al., 2014; The OBO308

Foundry, 2020; Katz, 2014).309

Software in general has not been well-cited (Howison and Bullard, 2016), in part because the scholarly310

culture has not treated software as something that should be cited, or in some cases, even mentioned.311

The recently-perceived reproducibility crisis (Baker, 2016) has led to changes, first for data (which also312

was not being cited (Task Group on Data Citation Standards and Practices, 2013)) and more recently for313

software. For software, these changes include software papers being published, both in general journals314

and in journals that specialize in software papers (e.g., the Journal of Open Source Software (Smith et al.,315

2018)), and principles calling for direct software citation (Smith et al., 2016) and guidance on how to do316

so (Katz et al., 2021). Software, as a digital object, also has the advantage that it is usually stored as a317

collection of files, often in a software repository. This fact means that it is relatively simple to add an318

additional file that contains metadata about the software, including creators and contributions, in one of319

a number of potential styles (Wilson, 2013; Druskat, 2020; Jones et al., 2017). This effort has recently320

been reinforced by GitHub, who have made it easy to add such metadata to repositories and to generate321

citations for those repositories (Smith, 2021).322
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Therefore, we pose the following research questions to guide our specific survey questions related to323

credit – RQ6a What do research software projects require for crediting or attributing software use? and324

RQ6b: How are individuals and groups given institutional credit for developing research software?325

Diversity326

Previous research has found that both gender and tenure (length of commitment to a project) are positive327

and significant predictors of productivity in open source software development (Vasilescu et al., 2015).328

Using similar data, Ortu et al. (2017) demonstrate that diversity of nationality among team members is a329

predictor of productivity. However, this demographic characteristic of a team also leads to less polite and330

civil communication (via filed issues and discussion boards).331

Nafus (2012)’s early qualitative study of gender in open source, through interview and discourse332

analysis of patch notes, describes sexist behavior that is linked to low participation and tenure for women333

in distributed software projects.334

The impact of codes of conduct (CoC) - which provide formal expectations and rules for the behavior335

of participants in a software project - have been studied in a variety of settings. In open-source software336

projects codes of conduct have been shown to be widely reused (e.g. Ubuntu, Contributor Covenant,337

Django, Python, Citizen, Open Code of Conduct, and Geek Feminism have been reused more than 500338

times by projects on GitHub) (Tourani et al., 2017).339

There are few studies of the role and use of codes of conduct in research software development. Joppa340

et al. (2013) point to the need for developing rules which govern multiple aspects of scientific software341

development, but specific research that addresses the prevalence, impact, and use of a code of conduct in342

research software development have not been previously reported.343

The 2018 survey of the research software engineer community across seven countries (Philippe et al.,344

2019) showed the percentage of respondents who identified as male as between 73% (US) and 91% (New345

Zealand). Other diversity measures are country-specific and were only collected in the UK and US, but in346

both, the dominant group is overrepresented compared with its share of the national population.347

Therefore, we pose the following research question to guide our specific survey questions related to348

diversity – RQ7: How do current Research Software Projects document diversity statements or codes of349

conduct, and what support is needed to further diversity initiatives?350

METHODS351

To understand sustainability issues related to the development and use of research software, we developed352

a Qualtrics12 survey focused on the seven research questions defined in the Background section. This353

section describes the design of the survey, the solicited participants, and the qualitative analysis process354

we followed.355

Survey Design356

We designed the survey to capture information about how individuals develop, use, and sustain research357

software. The survey first requested demographic information to help us characterize the set of respondents.358

Then, we enumerated 38 survey questions (35 multiple choice and 3 free response). We divided these359

questions among the seven research questions defined in the Background Section. This first set of 38360

questions went to all survey participants, who were free to skip any questions.361

Then, to gather more detailed information, we gave each respondent the option to answer follow-up362

questions on one or more of the seven topic areas related to the research questions. For example, if a363

respondent was particularly interested in Development Practices she or he could indicate their interest in364

answering more questions about that topic. Across all seven topics, there were 28 additional questions (25365

multiple choice and 3 free response). Because the follow-up questions for a particular topics were only366

presented to respondents who expressed interest in that topic, the number of respondent to these questions367

is significantly lower than the number of respondents to first set of 38 questions. This discrepancy in the368

number of respondents is reflected in the data presented below.369

In writing the questions, where possible, we replicated the wording of questions from the previous370

surveys about research software (described in the Background Section).371

12http://www.qualtrics.com
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Survey Participants372

We distributed the survey to potential respondents through two primary venues:373

1. Email Lists: To gather a broad range of perspectives, we distributed the survey to 33,293 NSF374

and 39,917 NIH PIs whose projects were funded for more than $200K in the five years prior to375

the survey distribution and involve research software and to mailing lists of research software376

developers and research software projects.377

2. Snowball Sampling: We also used snowballing by asking people on the email lists to forward the378

survey to others who might be interested. We also advertised the survey via Twitter.379

The approach we used to recruit participants makes it impossible to calculate a response rate. We do380

not know how many times people forwarded the survey invitation or the number of potential participants381

reached by the survey.382

Research Ethics383

We received approval for the survey instruments and protocols used in this study from the University of384

Notre Dame Committee Institutional Review Board for Social and Behavioral Responsible Conduct of385

Research (protocol ID 18-08-4802). Prior to taking the survey, respondents had to read and consent to386

participate. If a potential respondent did not consent, the survey terminated. To support open science,387

we provide the following information: (1) the full text of the survey and (2) a sanitized version of the388

data (Carver et al., 2021).389

ANALYSIS390

After providing an overview of the participant demographics, we describe the survey results relative to391

each of the research questions defined in the Background section.392

Participant Demographics393

We use each of the key demographics gathered on the survey to characterize the sample. Note that because394

some questions were optional, the number of respondents differs across the demographics.395

Respondent Type We asked each respondent to characterize their relationship with research software396

as one of the following:397

• Researcher - someone who only uses software398

• Developer - someone who only develops software399

• Combination - both of the above roles400

The respondents were fairly evenly split between Researchers at 43% (473/1109) and Combination at401

49% (544/1109). Note that depending on how the respondent answered this question, they received402

different survey questions. If a respondent indicated they were a Researcher, they did not receive the403

more development-oriented questions. We report the number of respondents for each question along with404

the results below. For the remainder of this analysis, we use these subsets to analyze the data.405

Organization Type Next, respondents indicated the type of organization for which they worked. The406

vast majority 86% (898/1048) worked for Educational Institutions. That percentage increased to 93%407

(417/447) for Researcher type respondents408

Geographic Location Because the focus of the URSSI project is the United States, we targeted our409

survey to US-based lists. As a result, the vast majority of responses (990/1038) came from the United410

States. We received responses from 49 states (missing only Alaska), plus Washington, DC, and Puerto411

Rico.412

Job Title People involved in developing and using research software have various job titles. For413

our respondents, Faculty was the most common, given by 63% (668/1046) of the respondents and414

79% (354/447) of the Researcher type respondents. No other title was given by more then 6% of the415

respondents.416

Respondent Age Overall, 77% (801/1035) of the respondents are between 35 and 64 years of age. The417

percentage is slightly higher for Researcher type respondents (370/441 - 84%) and slightly lower for418

Combination type respondents (378/514 - 74%).419
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Respondent Experience The respondent pool is highly experienced overall, with 77% (797/1040)420

working in research for more than 10 years and 39% (409/1040) for more than 20 years. For the Researcher421

type respondents, those numbers increase to 84% (373/444) with more than 10 years and 44% (197/444)422

with more than 20 years.423

Gender In terms of self-reported gender, 70% (732/1039) were Male, 26% (268/1039) were Female,424

with the remainder reporting Other or Prefer not to say. For Researcher respondents, the percentage of425

Females is higher (151/443 - 34%)426

Discipline The survey provided a set of choices for the respondents to choose their discipline(s).427

Respondents could choose more than one discipline. Table 2 shows the distribution of respondents by428

discipline. Though the respondents represent a number of research disciplines, our use of NSF and NIH429

mailing lists likely skewed the results towards participants from science and engineering fields.430

Discipline Total Researchers Developers Combination

Biological sciences 325 149 20 156

Mathematical and physi-

cal sciences

480 174 36 269

Engineering 207 74 18 115

Computer & information

science

268 61 33 174

Medicine 105 49 5 51

Dentistry and health 17 8 1 8

Social sciences 98 55 2 41

Humanities and language

based studies

24 4 1 18

Administrative & business

studies

12 10 0 2

Agricultural 23 10 0 13

Forestry and veterinary

science

11 5 1 5

Education 61 29 2 30

Architecture and planning 7 1 1 5

Design 12 4 1 7

Creative & performing

arts

7 0 0 7

Table 2. Disciplines of Respondents

Software Engineering Practices431

This section focuses on answering RQ1: What activities do research software developers spend their time432

on, and how does this impact the perceived quality and long-term accessibility of research software?433

based on relevant survey questions.434

Where Respondents Spend Software Time We asked respondents what percentage of their time they435

currently spend on a number of software activities and what percentage of time they would ideally like to436

spend on those activities. As Figure 1 shows, there is a mismatch between these two distributions. Overall,437

respondents would like to spend more time in design and coding and less time in testing and debugging.438

Which aspects of the software development process are more difficult than they should be? Fig-439

ure 2 illustrates the results for this question. Interestingly, the aspects most commonly reported are those440

that are more related to people issues rather than to technical issues (e.g. finding personnel/turnover, use441

of best practices, project management, and keeping up with modern tools). The only one that is technical442

is testing.443
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Figure 1. Where Respondents Spend Software Time

Figure 2. Aspects of software development that are more difficult than they should be

Use of Testing Focusing on the one technical aspect that respondents perceived to be more difficult than444

it should be, we asked the respondents how frequently they employ various types of testing, including:445

Unit, Integration, System, User, and Regression. The respondents could choose from frequently, somewhat,446
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rarely, and never. Figure 3 shows the results from this question. The only type of testing more than 50%447

of respondents used frequently was Unit testing (231/453 – 51%). On the other extreme only about 25%448

reported using System (118/441 – 27%) or Regression testing (106/440 – 24%) frequently.449

Figure 3. Use of Testing

Use of Open-Source Licensing Overall 74% (349/470) of the respondents indicated they used an450

open-source license. This percentage was consistent across both combination and developer respondents.451

However, this result still leaves 26% of respondents who do not release their code under and open-source452

license.453

Frequency of using *best* practices As a follow-up question, we asked the respondents how fre-454

quently they used a number of standard software engineering practices. The response options were Never,455

Sometimes, Half of the time, Most of the time, Always. The following list reports those who responded456

Most of the time or Always for the most commonly used practices (in decreasing order):457

• Continuous Integration – 54% (54/100)458

• Use of coding standards – 54% (54/100)459

• Architecture or Design - 51% (52/101)460

• Requirements – 43% (43/101)461

• Peer code review – 34% (34/99)462

Documentation In terms of what information respondents document, only 55% (56/101) develop User463

manuals or online help either Most of the time or Always. However, 86% (87/101) Comment code and464

95% (96/101) Use descriptive variable/method names either Most of the time or Always. Interestingly,465

even though a very large percentage of respondents indicated that they comment their code, when we look466

in more detail at the types of information documented, we see a different story. The following list reports467

those who responded Most of the time or Always for each type of documentation:468

• Requirements – 49% (49/100)469

• Software architecture or design – 34% (34/100)470

12/27PeerJ Comput. Sci. reviewing PDF | (CS-2021:11:67516:0:1:NEW 10 Nov 2021)

Manuscript to be reviewedComputer Science

reviewer
Pencil



• Test plans or goals – 25% (25/100)471

• User stories/use cases – 24% (24/100)472

Tools473

This section focuses on answering RQ2: What tools do research software developers use and what474

additional tools are needed to support sustainable development practices? based on relevant survey475

questions.476

Tools support for development activities The results in Figure 4 indicate that a large majority of477

respondents (340/441 – 77%) believe Coding is Extremely supported or Very supported by existing tools.478

Slightly less than half of the respondents find Testing (196/441 - 44%) and Debugging (188/441 – 43%)479

to be Extremely supported or Well supported. Less than 30% of the respondents reported Requirements,480

Architecture/design, Maintenance, and Documentation as being well-supported. Because coding is481

the only practice where more than half of the respondents indicate Extremely supported or Very supported,482

these responses indicate a clear opportunity for additional (or better) tool support in a number of areas.483

Figure 4. Availability of tool support

Version control and continuous integration In a follow-up question, almost all of those who re-484

sponded (83/87) indicated they do use version control. In addition, a slightly lower but still very large485

percentage of respondents (74/83) indicated they used Git either Always or Most of the time. Git was by486

far the most commonly used version control system. Finally, almost all respondents (76/83) check their487

code into the version control system either after every change or after a small group of changes. However,488

when we investigate further about the version control practices, we find 29% of the Combination type489

respondents (26/56) indicated they use copying files to another location and 10% (6/56) used zip file490

backups as their method of version control either Always or Most of the time. The lack of use of standard491

version control methods is an area where additional training could help.492

Regarding continuous integration, less than half of the respondents (39/84) indicated they used it493

either Always or Most of the time. This result suggests another area where additional training could help.494

Training495

This section focuses on answering RQ3: What training is available to research software developers and496

does this training meet their needs? based on relevant survey questions.497
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Have you received training? The percentage of respondents answering yes depends upon the type of498

respondent: Developers - 64% (39/61), Combination - 44% (170/384), and Researchers - 22% (93/421).499

When we examine the responses to this question by gender we also see a difference: 30% (69/229) of the500

Female respondents received training compared with 37% (220/601) of the Male respondents.501

Where have you received training? Of those who reported receiving training, 82% had received this502

training from a Class/School and 48% received it Online/Self-directed. [Note that respondents could report503

more than one source of training.] Interestingly, only 10% of the respondents had Software Carpentry504

training. When we examine these responses by gender, we find approximately the same percentage of505

Male and Female responds received training in a Class/School or Online/Self-directed. However, the506

percentage of Female respondents who reported Software Carpentry or Other training was lower than for507

Male respondents.508

Are there sufficient opportunities for training? When we turn to the availability of relevant training,509

an interesting picture emerges. As Figure 5 shows, slightly more half half of the respondents indicate510

there is sufficient training for obtaining new software skills. However, when looking at the response based511

upon gender, there is a difference with 56% of male respondents answering positively but only 43% of512

the female respondents. But, as Figure 6 indicates, approximately 75% of the respondents indicated they513

do not have sufficient time to take advantage of these opportunities. These results are slightly higher for514

female respondents (79%) compared with male respondents (73%). So, while training may be available,515

respondents do not have adequate time to take advantage of it.516

Figure 5. Sufficient opportunities for training

Preferred modes for delivery of training The results showed that there is not a dominant approach517

preferred for training. Carpentries, Workshops, MOOCs, and On-site custom training all had approxi-518

mately the same preference across all three topic ares (Development Techniques, Languages, and Project519

Management). This result suggests that there is benefit to developing different modes of training about520

important topics, because different people prefer to learn in different ways.521

Funding522

This section uses the relevant survey questions to answer the two research questions related to funding:523

• RQ4a: What is the available institutional support for research software development?524

• RQ4b: What sources of institutional funding are available to research software developers?525
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Figure 6. Sufficient time for training

First, 54% (450/834) of the respondents reported they have included funding for software in their526

proposals. However, that percentage drops to 30% (124/408) for respondents who identify primarily as527

Researchers.528

When looking at the specific types of costs respondents include in their proposals, 48% (342/710)529

include costs for developing new software, 22% (159/710) for reusing existing software and 29% (209/710)530

for maintaining/sustaining software. [Note that respondents could provide more than one response.] It is531

somewhat surprising to see such a large number of respondents who include funding for maintaining and532

sustaining software.533

In examining the source of funding for the projects represented by the survey respondents, the largest534

funder is NSF, at 36%. But, as Figure 7 shows, a significant portion of funding comes from the researchers’535

own institutions. While other funding agencies provide funding for the represented projects and may be536

very important for individual respondents, overall, they have little impact. This result could have been537

impacted by the fact that we used a mailing list of NSF projects as one means of distributing the survey.538

However, we also used a list of NIH PIs who led projects funded at least at $200K, so it is interesting that539

NSF is still the largest source.540

In terms of the necessary support, Figure 8 indicates that, while institutions do provide some RSE,541

financial, and infrastructure support, it is inadequate to meet the respondents’ needs, overall. In addition,542

when asked in a follow-up question whether the respondents have sufficient funding to support software543

development activities for their research the overwhelming answer is no (Figure 9).544

When asked about whether current funding adequately supports some key phases of the software545

lifecycle, the results were mixed. Respondents answered on a scale of 1-5 from insufficient to sufficient.546

For Developing new software and Modifying or reusing existing software there is an relatively uniform547

distribution of responses across the five answer choices. However, for Maintaining software, the responses548

skew towards the insufficient end of the scale.549

For respondents who develop new software, we asked (on a 5-point scale) whether their funding550

supports various important activities, including refactoring, responding to bugs, testing, developing new551

features, and documentation. In all cases less than 35% of the respondents answered 4 or 5 (sufficient) on552

the scale.553
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Figure 7. Sources of funding

Figure 8. Sufficiency of institutional support

Career Paths554

This section focuses on answering RQ5: What factors impact career advancement and hiring in research555

software? based on relevant survey questions.556

Institutions have a number of different job titles for people who develop software. The most frequently557

reported title is postdoc (411), with other titles including Research Software Engineers (223), Research558

Programmers (251), Software Developer(253), and Programmer (253). There were also a good number559

of respondents who were Faculty (215) or Research Faculty (242). Note that people could provide more560
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Figure 9. Necessary funding to support software development activities

than one answer, so the total exceeds the number of respondents.561

While there are a number of job titles that research software developers can fill, unfortunately, as562

Figure 10 shows, the respondents saw little chance for career advancement for those whose primary job563

is software development. Only 21% (153/724) of the Combination and Researcher respondents saw564

opportunity for advancement. When we look at the result by gender, only 16% (32/202) of the female565

respondents see an opportunity for advancement compared with 24% (139/548) for the male respondents.566

Figure 10. Opportunities for career advancement for software developers
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We asked respondents who have the responsibility for hiring people into software development roles567

to indicate the importance of the following concerns:568

• Identifying a pipeline for future staff569

• Attracting staff from underrepresented groups570

• Ability of staff to work across disciplines571

• Competing with industry for high performers572

• Offering a viable career path573

• Opportunities to outsource skilled work574

As Figure 11 shows, most factors were at least moderately important, with the exception of opportunities575

to outsource work.576

Figure 11. Concerns when trying to hire software development staff

When examining the perceptions of those that have been hired into a software development role, we577

asked a similar question. We asked respondents the importance of the following concerns when they were578

hired into their current role:579

• Diversity in the organization580

• Your experience as a programmer or software engineer581

• Your background in science582

• Your knowledge of programming languages583

• Your knowledge and capabilities across disciplines584

• Your potential for growth585

As Figure 12 shows, for job seekers, their background in science, ability to work across disciplines,586

and opportunities for growth were the most important factors. Interestingly, the respondents saw less im-587

portance in their experience as a programmer or software engineering or their knowledge of programming588

languages.589

Besides these factors, we asked a follow-up question about the importance of the following factors590

when deciding on whether to accept a new job or a promotion:591

• Title of the position592

• Salary raise593

• Responsibilities for a project or part of a project594
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Figure 12. Concerns when being hired as software development sfaff

• Leading a team595

• Available resources such as travel money596

As Figure 13 shows Salary, Responsibility, and Leadership are the most important factors.597

Figure 13. Importance of factors when taking a job or promotion

Lastly, in terms of recognition within their organization, we asked respondents to indicate whether598

other people in their organization use their software and whether other people in their organization have599

contacted them about developing software. Almost everyone (54/61) that responded to these follow-up600
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questions indicated that other people in the organization use their software. In addition just over half of601

the Combination respondents (27/51) and 72% (8/11) of the Developer respondents indicated that people602

in their organization had contacted them about writing software for them.603

Credit604

This section uses the relevant survey questions to answer the two research questions related to credit:605

• RQ6a: What do research software projects require for crediting or attributing software use?606

• RQ6b: How are individuals and groups given institutional credit for developing research software?607

When asked how respondents credit software they use in their research, as Figure 14 shows, the most608

common approaches are either to cite a paper about the software or to mention the software by name.609

Interestingly, authors tended to cite the software archive itself, mention the software URL, or cite the610

software URL much less frequently. Unfortunately, this practice leads to fewer trackable citations of the611

software, making it more difficult to judge its impact.612

Figure 14. How authors credit software used in their research

Following on this trend of software work not being properly credited, when asked how they currently613

receive credit for their own software contributions, as Figure 15 shows, none of the standard practices614

appear to be used very often.615

An additional topic related to credit is whether respondent’s contributions are valued for performance616

reviews or promotion within their organization. As Figure 16 shows, approximately half of the respondents617

indicate that software contributions are considered. Another large percentage say that it depends.618

While it is encouraging that a relatively large percentage of respondents’ institutions consider software619

during performance reviews and promotion some or all of the time, the importance of those contributions620

is still rather low, especially for respondents who identify as Researchers, as shown in Figure 17.621

Diversity622

This section focuses on answering RQ7: How do current Research Software Projects document diversity623

statements and what support is needed to further diversity initiatives? based on relevant survey questions.624

When asked how well their projects recruit, retain, and include in governance participants from625

underrepresented groups, only about 1/3 of the respondents thought they did an “Excellent” or “Good”626

job. Interestingly, when asked how well they promote a culture of inclusion, 68% of the respondents627

(390/572) indicated they did an “Excellent” or “Good” job. These two responses seem to be at odds with628
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Figure 15. How respondents current receive credit for their software contributions

Figure 16. Does institution consider software contributions in performance reviews or promotion

casess?

each other, suggesting that perhaps projects are not doing as well as they think they are. Conversely,629

it could be that projects do not do a good job of recruiting diverse participants, but do a good job of630

supporting the ones they do recruit. Figure 18 shows the details of these responses.631

We asked follow-up questions about whether the respondents’ projects have a diversity/inclusion632

statement or have a code of conduct. As Figure 19 and 20 show, most projects do not have either of these,633

nor do they plan to develop one. This answer again seems at odds with the previous answer that most634
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Figure 17. Importance of software contributions during performance review or promotion

Figure 18. How respondents think their project does with inclusion

people thought their projects fostered a culture of inclusions.635

Lastly, we asked respondents to indicate the aspects of diversity or inclusion for which they could use636

help. As Figure 21 shows, respondents indicated they needed the most help with recruiting, retaining, and637

promoting diverse participants. They also need help with developing diversity/inclusion statements and638

codes of conduct.639
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Figure 19. Whether the respondents’ projects have a diversity/inclusion statement

Figure 20. Whether the respondents’ projects have a code of conduct

DISCUSSION640

In this section, we discuss our results within the context of the findings from the previous surveys described641

in the Background section.642

It is interesting to observe that the most difficult aspects of the software development process focused643

mostly on topics related to people, rather than on more technical topics, with the exception of testing644

and keeping up with tools. This result suggests that there is a need for training on the social and human645
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Figure 21. Type of support needed for inclusion and diversity

aspects of software development rather than only on the technical aspects.646

Regarding software testing, previous surveys reported mixed results, with some finding that software647

testing was important and highly used while others showed that scientists did not test their code. Our648

results found testing to be one of the more difficult aspects of the software process. Our results also649

showed fairly high use of unit testing, but much lower for other types of testing.650

One more observation about the software development process relates to where people spend their651

time. For most activities, the respondents said they were spending about the same amount of time as they652

would ideally like to spend. However, one notable exception regards debugging, where people reported653

spending more time than they would have liked. Our study did not focus on the reason(s) for this, but654

it could be a combination both of the availability of tools and the lack of training on how to effectively655

debug complex software code.656

Lastly, overall there is a low level of use for commonly accepted best practices from software657

engineering. Of the practices we included in our survey (Continuous Integration, Coding Standards,658

Architecture/Design, Requirements, and Peer Code Review), none were used by more than 54% of the659

respondents. This result indicates a need for additional work to gather information about how these660

practices can and are being using in the development research software and disseminate that information661

to the appropriate communities. There may also be a need for additional training in these areas.662

Regarding the use of software tools, previous surveys reported few results. Our results showed that663

respondents found only the coding activity to be very well supported by tools. This result suggests the664

need for additional tools to support important activities like Requirements, Design, Testing, Debugging,665

and Maintenance. The availability of useful tools that can fit into developers current workflows can666

increase the use of these key practices for software quality and sustainability.667

One of the key concepts that arose in many of the items highlighted above is the need for training.668

Previous surveys found that less than half (and sometimes much less) of developers reported they had669

formal training in software development. Our results are in line, with Developers reporting a higher670

percentage. In either case, approximately half of the people developing research software have received671

no formal training. Consistent with this number, only about half of the respondents to our survey reported672

that there were sufficient opportunities for training. However, approximately 3/4 indicated they did673

not have sufficient time for training that was available. Together these results suggest two conclusions:674

(1) there is a need for more training opportunities (as described above) and (2) developers of research675

software need more time for training, either by prioritizing in their own schedule or by being given it from676
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their employers.677

Next we turn to the question of funding. As we discussed in the Background section, historically678

there has not been sufficient funding dedicated to the development and maintenance of research software.679

The results from our survey support this trend, with just under half of the respondents including costs680

for developing software into their proposals, even less for reusing or maintaining software. From the681

perspective of software sustainability, these results are troubling. Without support for maintaining and682

sustaining research software, at least some of the initial investments made in software are lost over time.683

As a result of this funding gap, institutions may need to take on more of the responsibility for funding the684

maintenance and sustainability of software projects.685

Related to the idea of funding is the types of career paths available for people who focus their686

work on developing research software. As identified in the Background section, many organizations687

do not adequately recognize or value contributions to research software when it comes to evaluation688

and promotion. The results of our survey echo this sentiment, with a very low percentage reporting689

that they have had opportunities for career advancement in their roles. We see changes in institutional690

policies as the primary remedy to this situation. We call on Universities, National Laboratories, and691

other organizations to revisit their evaluation and promotion criteria to include measures that capture the692

contributions to research that are made by developers of research software.693

Closely related to the idea of career paths for research software developers is the concept of credit.694

As described in the Background section, the idea of obtaining credit for software work has just begun695

receiving recognition recently. However, that recognition is still not at the level that most in this field696

would like. The results of our survey are consistent with this trend showing that none of the standard697

methods for giving credit to software are used very frequently. There has been recent activity to help in698

this area, including work in software citation aimed at changing publication practices (Katz et al., 2021),699

in software repositories (Smith, 2021), and a proposed definition for FAIR software to add software to700

funder requirements for FAIR research outputs (Chue Hong et al., 2021).701

Finally, in regards to diversity, there has been a problem in this area for many years, as highlighted702

in the Background work. Recently Codes of Conduct and other efforts have tried to improve the703

situation. However, as the results from our survey show, problems still exist. Our results showed that704

about 2/3 of the respondents thought their organizations promoted a “culture of inclusion.” Conversely,705

only about 1/3 indicated that their organization did a good job of recruiting and including diverse706

participants. Unfortunately, the majority of respondents also indicated that their projects do not have a707

diversity/inclusion statement or a code of conduct, and they have no plans to create them. Clearly, we still708

have a long way to go in this area. Fortunately, there are a number of groups interested in this topic and709

working to improve the situation.710
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