A survey of the state of the practice for
PeerJ research software in the United States

Jeftrey C. Carver', Nic Weber’, Karthik Ram’, Sandra Gesing® and Daniel S. Katz’

! Computer Science, University of Alabama, Tuscaloosa, AL, United States of America

% Information School, University of Washington, Seattle, WA, United States of America

? Berkeley Institute for Data Science, University of California, Berkeley, Berkeley, CA, United States of America
* Discovery Partners Institute, Chicago, IL, United States of America

>NCSA & CS & ECE & iSchool, University of Illinois at Urbana-Champaign, Urbana, IL, United States of
America

ABSTRACT

Research software is a critical component of contemporary scholarship. Yet, most
research software is developed and managed in ways that are at odds with its long-
term sustainability. This paper presents findings from a survey of 1,149 researchers,
primarily from the United States, about sustainability challenges they face in developing
and using research software. Some of our key findings include a repeated need for more
opportunities and time for developers of research software to receive training. These
training needs cross the software lifecycle and various types of tools. We also identified
the recurring need for better models of funding research software and for providing
credit to those who develop the software so they can advance in their careers. The
results of this survey will help inform future infrastructure and service support for
software developers and users, as well as national research policy aimed at increasing
the sustainability of research software.

Subjects Computer Education, Scientific Computing and Simulation, Software Engineering

Keywords Research software, Survey, Communities, Policy, Best practices, Education & training,
Software sustainability

Submitted 10 November 2021 INTRODUCTION

Accepted 6 April 2022 . .

Published 5 May 2022 In almost all areas of research, from hard sciences to the humanities, the processes of
Corresponding author collecting, storing, and analyzing data and of building and testing models have become
Jeffrey C. Carver, carver@cs.ua.edu increasingly complex. Our ability to navigate such complexity is only possible because
Academic editor of the existence of specialized software, often referred to as research software. Research
Yilun Shang software plays such a critical role in day to day research that a comprehensive survey
Additional Information and reports 90-95% of researchers in the US and the UK rely upon it and more than 60% were
E:g (Iaage;tlons can be found on unable to continue working if such software stopped functioning (Hettrick, 2014). While

. the research community widely acknowledges the importance of research software, the
DOI 10.7717/peerj-cs.963

creation, development, and maintenance of research software is still ad hoc and improvised,

;%zc(émyright | making such infrastructure fragile and vulnerable to failure.
t al. . . .
e In many fields, research software is developed by academics who have varying levels of

Distributed under

Creafive Commons GC-BY 4.0 training, ability, and access to expertise, resulting in a highly variable software landscape. As

researchers are under immense pressure to maintain expertise in their research domains,
OPEN ACCESS they have little time to stay current with the latest software engineering practices. In

How to cite this article Carver JC, Weber N, Ram K, Gesing S, Katz DS. 2022. A survey of the state of the practice for research software in
the United States. Peer] Comput. Sci. 8:€963 http://doi.org/10.7717/peerj-cs.963

https://peerj.com/computer-science
mailto:carver@cs.ua.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.963
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

addition, the lack of clear career incentives for building and maintaining high quality
software has made research software development unsustainable. The lack of career
incentives has occurred partially because the academic environment and culture have
developed over hundreds of years, while software has only recently become important,
in some fields over the last 60+ years, but in many others, just in the last 20 or fewer
years (Foster, 2006).

Further, only recently have groups undertaken efforts to promote the role of research
software (e.g., the Society of Research Software Engineers (https:/society-rse.org), the US
Research Software Engineer Association (https:/us-rse.org)) and to train researchers in
modern development practices (e.g., the Carpentries (https:/carpentries.org), IRIS-HEP
(https:/iris-hep.org), and MolSSI (https:/molssi.org)). While much of the development
of research software occurs in academia, important development also occurs in national
laboratories and industry. Wherever the development and maintenance of research software
occurs, that software might be released as open source (most likely in academia and national
laboratories) or it might be commercial/closed source (most likely in industry, although
industry also produces and contributes to open source).

The open source movement has created a tremendous variety of software, including
software used for research and software produced in academia. It is difficult for researchers
to find and use these solutions without additional work (Joppa et al., 2013). The lack
of standards and platforms for categorizing software for communities often leads to
re-developing instead of reusing solutions (Howison et al., 2015). There are three primary
classes of concerns, pervasive across the research software landscape, that have stymied this
software from achieving maximum impact.

e Functioning of the individual and team: issues such as training and education, ensuring
appropriate credit for software development, enabling publication pathways for research
software, fostering satisfactory and rewarding career paths for people who develop
and maintain software, and increasing the participation of underrepresented groups in
software engineering.

e Functioning of the research software: supporting sustainability of the software; growing
community, evolving governance, and developing relationships between organizations,
both academic and industrial; fostering both testing and reproducibility, supporting
new models and developments (e.g., agile web frameworks, Software-as-a-Service),
supporting contributions of transient contributors (e.g., students), creating and
sustaining pipelines of diverse developers.

e Functioning of the research field itself : growing communities around research software
and disparate user requirements, cataloging extant and necessary software, disseminating
new developments and training researchers in the usage of software.

In response to some of the challenges highlighted above, the US Research Software
Sustainability Institute (URSSI) (http:/urssi.us) conceptualization project, funded by NSF,
is designing an institute that will help with the problem of sustaining research software.
The overall goal of the conceptualization process is to bring the research software community
together to determine how to address known challenges to the development and sustainability

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 2/42

https://peerj.com
https://society-rse.org
https://us-rse.org
https://carpentries.org
https://iris-hep.org
https://molssi.org
http://urssi.us
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

of research software and to identify new challenges that need to be addressed. One important
starting point for this work is to understand and describe the current state of the practice in
the United States relative to those important concerns. Therefore, in this paper we describe
the results of a community survey focused on this goal.

BACKGROUND

Previous studies of research software have often focused on the development of
cyberinfrastructure (Borgman, Wallis ¢ Mayernik, 2012) and the various ways software
production shapes research collaboration (Howison ¢ Herbsleb, 2011; Howison ¢ Herbsleb,
2013; Paine & Lee, 2017). While these studies provide rich contextual observations about
research software development processes and practices, their results are difficult to
generalize because they often focus either on small groups or on laboratory settings.
Therefore, there is a need to gain a broader understanding of the research software
landscape in terms of challenges that face individuals seeking to sustain research software.
A number of previous surveys have provided valuable insight into research software
development and use, as briefly described in the next subsection. Based on the results of
these surveys and from other related literature, the remainder of this section motivates a
series of research questions focused on important themes related to the development of
research software. The specific questions are based on the authors’ experience in common
topics mentioned in the first URSSI workshop (Ram et al., 2018) as well as previously
published studies of topics of interest to the community (Katz et al., 2019; Fritzsch, 2019).

Previous surveys
The following list provides an overview of the previous surveys on research software,
including the context of each survey. Table 1 summarizes the surveys.

e How do Scientists Develop and Use Scientific Software? (Hannay et al., 2009) describes
the results of a survey of 1972 scientists who develop and use software. The survey
focused on questions about (1) how and when scientists learned about software
development/use, (2) the importance of developing/using software, (3) time spent
developing/using software, (4) hardware platforms, (5) user communities, and (6)
software engineering practices.

e How Do Scientists Develop Scientific Software? An External Replication (Pinto, Wiese ¢
Dias, 2018) is a replication of the previous study (Hannay et al., 2009) conducted ten
years later. The replication focused on scientists who develop R packages. The survey
attracted 1,553 responses. The survey asked very similar questions to the original survey,
with one exception. In addition to replicating the original study, the authors also asked
respondents to identify the “most pressing problems, challenges, issues, irritations,
or other ‘pain points’ you encounter when developing scientific software.” A second
paper, Naming the Pain in Developing Scientific Software (Wiese, Polato ¢ Pinto, 2020),
describes the results of this question in the form of a taxonomy of 2,110 problems that
are either (1) technical-related, (2) social-related, or (3) scientific-related.

e A Survey of Scientific Software Development (Nguyen-Hoan, Flint ¢& Sankaranarayana,
2010) surveyed researchers in Australia working in multiple scientific domains. The

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 3/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

Table 1 Previous surveys.

Study Focus Respondents

Hannay et al. (2009) How scientists develop and use software 1972

Pinto, Wiese ¢ Dias (2018) Replication of Hannay et al. (2009) 1553

Wiese, Polato ¢ Pinto (2020) Additional results from Pinto, Wiese ¢ Dias (2018) focused 1577
on problems encountered when developing scientific
software

Nguyen-Hoan, Flint & Sankaranarayana (2010) Software development practices of scientists in Australia 60

Prabhu et al. (2011) Practice of computational science in one large university 114

Joppa et al. (2013) Researchers in species domain modeling with varying levels ~450
of expertise

Carver et al. (2013) Software engineering knowledge and training among 141
computational scientists and engineers

Hettrick (2018); Hettrick (2014) Use of software in Russell Group Universities in the UK 417

Jay, Sanyour & Haines (2016) How scientists publish code 65

Nangia ¢ Katz (2017) Use of software and software development training in US 209
Postdoctoral Association

AlNoamany & Borghi (2018) How the way researchers use, develop, and share software 215
impacts reproduciblity

Philippe et al. (2019) Research Software Engineers ~1000

survey focused on programming language use, software development tools, development
teams and user bases, documentation, testing and verification, and non-functional
requirements.

A Survey of the Practice of Computational Science (Prabhu et al., 2011) reports the results
of interviews of 114 respondents from a diverse set of domains all working at Princeton
University. The interviews focused on three themes: (1) programming practices, (2)
computational time and resource usage, and (3) performance enhancing methods.

Troubling Trends in Scientific Software (Joppa et al., 2013) reports on the results from
about 450 responses working in a specific domain, species distribution modeling,
that range from people who find software difficult to use to people who are very
experienced and technical. The survey focused on understanding why respondents chose
the particular software they used and what other software they would like to learn how
to use.

Self-Perceptions About Software Engineering: A Survey of Scientists and Engineers (Carver
et al., 2013) reports the results from 141 members of the Computational Science &
Engineering community. The primary focus of the survey was to gain insight into whether
the respondents thought they knew enough software engineering to produce high-
credibility software. The survey also gathered information about software engineering
training and about knowledge of specific software engineering practices.

“Not everyone can use Git:” Research Software Engineers’ recommendations for scientist-
centered software support (and what researchers really think of them) Jay, Sanyour &
Haines (2016) describes a study that includes both Research Software Engineers and
domain researchers to understand how scientists publish code. The researchers began

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 4/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

by interviewing domain scientists who were trying to publish their code to identify the
barriers they faced in publishing their code. Then they interviewed Research Software
Engineers to understand how they would address those barriers. Finally, they synthesized
the results from the Research Software Engineer interviews into a series of survey
questions sent to a larger group of domain researchers.

e It’s impossible to conduct research without software, say 7 out of 10 UK researchers
(Hertrick, 2018; Hettrick, 2014) describes the results of 417 responses to a survey of 15
Russel Group Universities in the UK. The survey focused on describing the characteristics
of software use and software development within research domains. The goal was to
provide evidence regarding the prevalence of software and its fundamental importance
for research.

e Surveying the US National Postdoctoral Association Regarding Software Use and Training
in Research (Nangia ¢» Katz, 2017) reports on the results of 209 responses to provide
insight into the role of software in conducting research at US universities. The survey
focused on the respondents’ use of research software and the training they have received
in software development.

e Towards Computational Reproducibility: Researcher Perspectives on the Use and Sharing
of Software (AlNoamany & Borghi, 2018) reports on the results from 215 respondents
across a range of disciplines. The goal of the survey was to understand how researchers
create, use, and share software. The survey also sought to understand how the software
development practices aligned with the goal of reproducibility.

o SSI International RSE Survey (Philippe et al., 2019) reports on the results from
approximately 1000 responses to a survey of research software engineers from around
the world. The goal of the survey is to describe the current state of research software
engineers related to various factors including employment, job satisfaction, development
practices, use of tools, and citation practices.

Software engineering practices

Based on the results of the surveys described in the previous subsection, we can make
some observations about the use of various software engineering practices employed while
developing software. The set of practices research developers find useful appear to have
some overlap and some difference from those practices employed by developers of business
or IT software. Interestingly, the results of the previous surveys do not paint a consistent
picture regarding the importance and/or usefulness of various practices. Our current survey
is motivated by the inconsistencies in previous results and the fact that some key areas are
not adequately covered by previous surveys. Here we highlight some of the key results from
these previous surveys, organized roughly in the order of the software engineering lifecycle.

Requirements

The findings of two surveys (Pinto, Wiese ¢ Dias, 2018; Hannay et al., 2009) reported
both that requirements were important to the development of research software but
also that they were one of the least understood phases. Other surveys reported that (1)
requirements management is the most difficult technical problem (Wiese, Polato ¢ Pinto,

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 5/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

2020) and (2) the amount of requirements documentation is low (Nguyen-Hoan, Flint ¢

Sankaranarayana, 2010).

Design

Similar to requirements, surveys reported that design was one of the most important phases
(Hannay et al., 2009) and one of the least understood phases (Pirnto, Wiese ¢ Dias, 2018;
Hannay et al., 2009). In addition, other surveys reported that (1) testing and debugging
are the second most difficult technical problem (Nguyen-Hoan, Flint ¢ Sankaranarayana,
2010) and (2) the amount of design documentation is low (Wiese, Polato ¢ Pinto, 2020).

Testing

There were strikingly different results related to testing. A prior survey of research software
engineers found almost 2/3 of developers do their own testing, but less than 10% reported
the use of formal testing approaches (Philippe et al., 2019). Some surveys (Pinto, Wiese ¢
Dias, 2018; Hannay et al., 2009) reported that testing was important. However, another
survey reported that scientists do not regularly test their code (Prabhu et al., 2011).
Somewhere in the middle, another survey reports that testing is commonly used, but
the use of integration testing is low (Nguyen-Hoan, Flint & Sankaranarayana, 2010).

Software engineering practices summary. This discussion all leads to the first research
question: RQI: What activities do research software developers spend their time on, and how

does this impact the perceived quality and long-term accessibility of research software?

Software tools and support

Development and maintenance of research software includes both the use of standard
software engineering tools such as version control (Milliken, Nguyen ¢ Steeves, 2021)
and continuous integration (Shahin, Babar & Zhu, 2017). In addition, these tasks require
custom libraries developed for specific analytic tasks or even language-specific interpreters
that ease program execution.

Previous surveys have asked researchers and research software engineers about the
most frequently used open-source software in development. Surveys of research software
developers and users have reported the use of standard software languages and even the
types of tools used in analaysis (AINoamany ¢ Borghi, 2018), but there has been relatively
little description of the tools upon which research software developers depend, and to
what extent these tools are seen by developers as supporting sustainable research software
practices. We therefore seek to understand tool usage and support in a second research
question that asks: RQ2: What tools do research software developers use and what additional
tools are needed to support sustainable development practices?

Education and training

While researchers often develop research software for the express purpose of conducting
research, previous studies demonstrate that these researchers are rarely purposely trained
to develop software. A 2012 survey reported that research software developers had little

formal training and were mostly self-taught (Carver et al., 2013).

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 6/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

A UK survey (Hettrick, 2018; Hettrick, 2014) reported only 55% of respondents had
some software development training. Of those only 40% had formal training, with 15%
being self-taught. In addition, only 2% of respondents who develop their own software
had no training in software development. The 2017 survey of US National Postdoctoral
Association (Nangia ¢» Katz, 2017) found similar results: while 95% of the respondents
used research software, 54% reported they had not received any training in software
development. When analyzed by gender (self reported binary of men and women) these
two surveys show remarkable similarities in the gap of training for men (63% in the UK
and 63% in the US) and women (39% in the UK and 32% in US). The AlNoamany e
Borghi (2018) survey reported similar results related to training: 53% of respondents had
formal training in coding conventions and best practices. The Hannay et al. (2009) survey
along with the Pinto, Wiese ¢ Dias (2018) replication reported slightly less positive results.
Regarding different mechanisms for learning about software development, 97% and 99%
of the respondents thought self-study was important or very important, while only 13%
and 22% found formal training to be important or very important.

The results of these prior surveys suggest that research software developers are either
unaware of their need for or may not have access to sufficient formal training in software
development. In addition, the results of the Joppa et al. (2013) survey indicate that most
respondents want increased computational skills. The authors advocate for formal training
in software engineering as part of the University science curriculum.

Therefore, we pose the following research question that guides our specific survey
questions related to training —RQ3: What training is available to research software developers
and does this training meet their needs?

Funding and institutional support

One of the key sustainability dilemmas for research software is the lack of direct financial
support for development and maintenance. Successful research grants often focus on the
merits of a new idea and the potential novel scientific or scholarly contribution of progress
made on that idea. However, both institutions that support research (e.g., universities and
national laboratories) and grant-making bodies that fund research (e.g., federal agencies
and philanthropic organizations) often fail to recognize the central importance of software
development and maintenance in conducting novel research (Goble, 2014). In turn, there
is a little direct financial support for the development of new software or the sustainability
of existing software upon which research depends (Katerbow et al., 2018). In particular,
funding agencies typically have not supported the continuing work needed to maintain
software after its initial development. This lack of support is despite increasing recognition
of reproducibility and replication crises that depend, in part, upon reliable access to the
software used to produce a new finding (Hocquet ¢ Wieber, 2021).

In reaction to a recognized gap in research funding for sustainable software, many
projects have attempted to demonstrate the value of their work through traditional citation
and impact analysis (Anzt et al., 2021) as well as through economic studies. An example
of the latter was performed by a development team of the widely used AstroPy packages
in Astronomy. Using David A. Wheeler’s SLOCCount method for economic impact of

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 7/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

open-source software they estimate the cost of reproducing AstroPy to be approximately
$8.5 million and the annual economic impact on astronomy alone to be approximately
$1.5 million (Muna et al., 2016).

There is, recently, increased attention from funders on the importance of software
maintenance and archiving, including the Software Infrastructure for Sustained Innovation
(S12) program at NSF, the NIH Data Commons (which includes software used in biomedical
research), the Alfred P. Sloan Foundation’s Better Software for Science program, and the
Chan Zuckerberg Initiative’s Essential Open Source Software for Science program which
provide monetary support for the production, maintenance, and adoption of research
software. Despite encouraging progress there is still relatively little research that focuses
specifically on how the lack of direct financial support for software sustainability impacts
research software engineers and research software users. We seek to better understand this
relationship through two specific research questions that focus on the impact of funding
on software sustainability: RQ4a: What is the available institutional support for research
software development? and RQ4b: What sources of institutional funding are available to
research software developers?

Career paths

While most of previous surveys did not address the topic of career paths, the survey of
research software engineers (Philippe et al., 2019) did briefly address this question. Because
the results differ across the world and our paper focuses on the US, we only report results
for respondents in the US. First, 57% of respondents were funded by grants and 47%
by institutional support. Second, respondents had been in their current position for an
average of 8.5 years. Last, 97% were employed full-time.

Because of the lack of information from prior surveys, we focus the rest of this discussion
on other work to provide background. In 2012, the Software Sustainability Institute
(SSI) organized the Collaborations Workshop (http:/software.ac.uk/cw12) that addressed
the question: why is there no career for software developers in academia? The work of the
participants and of the SSI’s policy team led to the foundation of the UK RSE association
and later to the Society of Research Software Engineering. RSEs around the world are
increasingly forming national RSE associations, including the US Research Software
Engineer Association (US-RSE) (http:/us-rse.org)).

Current evaluation and promotion processes in academia and national labs typically
follow the traditional pattern of rewarding activities that include publications, funding,
and advising students. However, there are other factors that some have considered.
Managers of RSE teams state that when hiring research developers, it is important that those
developers are enthusiastic about research topics and have problem-solving capabilities
(https:/cosden.github.iofimproving-your-RSE-application). Another factor, experience in
research software engineering, can be evaluated by contributions to software in platforms
like GitHub. However, while lines of code produced, number of solved bugs, and work
hours may not be ideal measures for developer productivity, they can provide insight into
the sustainability and impact of research software, i.e., the presence of an active community
behind a software package that resolves bugs and interacts with users is part of sustainability

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 8/42

https://peerj.com
http://software.ac.uk/cw12
http://us-rse.org/
https://cosden.github.io/improving-your-RSE-application
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

of software and impact on research (https:/github.com/Collegeville/CW20/blob/master/
WorkshopResources/WhitePapers/gesing-team-organization.pdf). In addition, CaRCC
(the Campus Research Computing Consortium) has defined job families and templates for
job positions that can be helpful both for hiring managers and HR departments that want to
recognize the role of RSEs and HPC Facilitators in their organizations (https:/carcc.orgmp-
contentuploads/201901/CI-Professionalization-Job-Families-and-Career- Guide.pdf).
However, there is still not a clearly defined and widely accepted career path for research
software engineers in the US. We pose the following research question that guides
our specific survey questions related to career paths —RQ5: What factors impact career
advancement and hiring in research software?

Credit

While most of the previous surveys did not address the topic of credit, the survey of research
software engineers (Philippe et al., 2019) does contain a question about how researchers
are acknowledged when their software contributes to a paper. The results showed that 47%
were included as a co-author, 18% received only an acknowledgement, and 21% received
no mention at all. Because of the lack survey results related to credit, we focus on other
work to provide the necessary background.

The study of credit leads to a set of interlinked research questions. We can answer these
questions by directly asking software developers and software project collaborators to
provide their insights. Here we take a white box approach and examine the inside of the
box.

e How do individuals want their contributions to software projects to be recognized, both
as individuals and as members of teams?

e How do software projects want to record and make available credit for the contributions
to the projects?

In addition, these respondents can help answer additional questions from their
perspective as someone external to other organizations. Here we can only take a black
box approach and examine the box from the outside. (A white box approach would require
a survey of different participants.)

e How does the existing ecosystem, based largely on the historical practices related to
contributions to journal and conference papers and monographs, measure, store, and
disseminate information about contributions to software?

e How does the existing ecosystem miss information about software contributions?

e How do institutions (e.g., hiring organizations, funding organizations, professional
societies) use the existing information about contributions to software, and what

information is being missed?

We also recognize that there are not going to be simple answers to these questions (CASBS
Group on Best Practices in Science, 2018; Albert ¢ Wager, 2009), and that any answers
will likely differ to some extent between disciplines (Darnce, 2012). Many professional
societies and publishers have specific criteria for authorship of papers (e.g., they have

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 9/42

https://peerj.com
https://github.com/Collegeville/CW20/blob/master/WorkshopResources/WhitePapers/gesing-team-organization.pdf
https://github.com/Collegeville/CW20/blob/master/WorkshopResources/WhitePapers/gesing-team-organization.pdf
https://carcc.org/wp-content/uploads/2019/01/CI-Professionalization-Job-Families-and-Career-Guide.pdf
https://carcc.org/wp-content/uploads/2019/01/CI-Professionalization-Job-Families-and-Career-Guide.pdf
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

made substantial intellectual contributions, they have participated in drafting and/or
revision of the manuscript, they agree to be held accountable for any issues relating to
correctness or integrity of the work (Association for Computing Machinery, 2018), typically
suggesting that those who have contributed but do not meet these criteria be recognized
via an acknowledgment. While this approach is possible in a paper, there is no equivalent
for software, other than papers about software. In some disciplines, such as those where
monographs are typical products, there may be no formal guidelines. Author ordering
is another challenge. The ordering of author names typically has some meaning, though
the meaning varies between disciplines. Two common practices are alphabetic ordering,
such as is common in economics (Weber, 2018) and ordering by contribution with the
first author being the main contributor and the last author being the senior project leader,
as occurs in many fields (Riesenberg & Lundberg, 1990). The fact that the contributions of
each author is unclear has led to activities and ideas to record their contributions in more
detail (Allen et al., 2014; The OBO Foundry, 2020; Katz, 2014).

Software in general has not been well-cited (Howison ¢ Bullard, 2016), in part because
the scholarly culture has not treated software as something that should be cited, or in some
cases, even mentioned. The recently-perceived reproducibility crisis (Baker, 2016) has led
to changes, first for data (which also was not being cited (Task Group on Data Citation
Standards and Practices, 2013)) and more recently for software. For software, these changes
include the publication of software papers , both in general journals and in journals that
specialize in software papers (e.g., the Journal of Open Source Software Smith et al., 2018),
as well as calls for direct software citation (Smith et al., 2016) along with guidance for those
citations (Katz et al., 2021). Software, as a digital object, also has the advantage that it is
usually stored as a collection of files, often in a software repository. This fact means that
it is relatively simple to add an additional file that contains metadata about the software,
including creators and contributions, in one of a number of potential styles (Wilson, 2013;
Druskat, 2020; Jones et al., 2017). This effort has recently been reinforced by GitHub, who
have made it easy to add such metadata to repositories and to generate citations for those
repositories (Smith, 2021).

Therefore, we pose the following research questions to guide our specific survey
questions related to credit — RQ6a What do research software projects require for crediting
or attributing software use? and RQ6b: How are individuals and groups given institutional

credit for developing research software?

Diversity

Previous research has found that both gender diversity and tenure (length of commitment
to a project) are positive and significant predictors of productivity in open source software
development (Vasilescu et al., 2015). Using similar data, Ortu et al. (2017) demonstrate
that diversity of nationality among team members is a predictor of productivity. However,
they also show this demographic characteristic of a team leads to less polite and civil
communication (via filed issues and discussion boards).

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 10/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

Nafus (2012)’s early qualitative study of gender in open source, through interview and
discourse analysis of patch notes, describes sexist behavior that is linked to low participation
and tenure for women in distributed software projects.

The impact of codes of conduct (CoC) - which provide formal expectations and rules
for the behavior of participants in a software project - have been studied in a variety
of settings. In open-source software projects codes of conduct have been shown to be
widely reused (e.g., Ubuntu, Contributor Covenant, Django, Python, Citizen, Open Code
of Conduct, and Geek Feminism have been reused more than 500 times by projects on
GitHub) (Tourani, Adams ¢~ Serebrenik, 2017).

There are few studies of the role and use of codes of conduct in research software
development. Joppa et al. (2013) point to the need for developing rules which govern
multiple aspects of scientific software development, but specific research that addresses the
prevalence, impact, and use of a code of conduct in research software development have
not been previously reported.

The 2018 survey of the research software engineer community across seven countries
(Philippe et al., 2019) showed the percentage of respondents who identified as male as
between 73% (US) and 91% (New Zealand). Other diversity measures are country-
specific and were only collected in the UK and US, but in both, the dominant group is
overrepresented compared with its share of the national population.

Therefore, we pose the following research question to guide our specific survey questions
related to diversity —RQ7: How do current Research Software Projects document diversity
statements or codes of conduct, and what support is needed to further diversity initiatives?

METHODS

To understand sustainability issues related to the development and use of research software,
we developed a Qualtrics (http:/iwww.qualtrics.com) survey focused on the seven research
questions defined in the Background section. This section describes the design of the
survey, the solicited participants, and the qualitative analysis process we followed.

Survey design

We designed the survey to capture information about how individuals develop, use, and
sustain research software. The survey first requested demographic information to help
us characterize the set of respondents. Then, we enumerated 38 survey questions (35
multiple choice and 3 free response). We divided these questions among the seven research
questions defined in the Background Section. This first set of 38 questions went to all
survey participants, who were free to skip any questions.

Then, to gather more detailed information, we gave each respondent the option to
answer follow-up questions on one or more of the seven topic areas related to the research
questions. For example, if a respondent was particularly interested in Development Practices
she or he could indicate their interest in answering more questions about that topic. Across
all seven topics, there were 28 additional questions (25 multiple choice and 3 free response).
Because the follow-up questions for a particular topic were only presented to respondents
who expressed interest in that topic, the number of respondent to these questions is

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 11/42

https://peerj.com
http://www.qualtrics.com
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

significantly lower than the number of respondents to first set of 38 questions. This
discrepancy in the number of respondents is reflected in the data presented below.

In writing the questions, where possible, we replicated the wording of questions from
the previous surveys about research software (described in the Background Section). In
addition, because we assumed that respondents would be familiar with the terms used in
the survey and to simplify the text, we did not provide definitions of terms in the survey
itself.

Survey participants
We distributed the survey to potential respondents through two primary venues:

1. Email Lists: To gather a broad range of perspectives, we distributed the survey to 33,293
United States NSF and 39,917 United States NIH PIs whose projects were funded for
more than $200K in the five years prior to the survey distribution and involve research
software and to mailing lists of research software developers and research software
projects.

2. Snowball Sampling: We also used snowballing by asking people on the email lists to
forward the survey to others who might be interested. We also advertised the survey
via Twitter.

The approach we used to recruit participants makes it impossible to calculate a response
rate. We do not know how many times people forwarded the survey invitation or the
number of potential participants reached by the survey.

Research ethics

We received approval for the survey instruments and protocols used in this study from
the University of Notre Dame Committee Institutional Review Board for Social and
Behavioral Responsible Conduct of Research (protocol ID 18-08-4802). Prior to taking
the survey, respondents had to read and consent to participate. If a potential respondent
did not consent, the survey terminated. To support open science, we provide the following
information: (1) the full text of the survey and (2) a sanitized version of the data (Carver
etal., 2021). We also provide a link to the scripts used to generate the figures that follow
(Carver et al., 2022). Qualtrics collected the IP address and geo location from survey
respondents. We removed these columns from the published dataset. However, we did
not remove all comments that might lead people to make educated guesses about the
respondents.

ANALYSIS

After providing an overview of the participant demographics, we describe the survey results
relative to each of the research questions defined in the Background section. Because many
of the survey questions were optional and because the follow-up questions only went to a
subset of respondents, we report the number of respondents for each question along with
the results below. To clarify which respondents received each question, we provide some
text around each result. In addition, when reporting results from a follow-up question, the
text specifically indicates that it is a follow-up question and the number of respondents
will be much smaller.

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 12/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

Participant demographics

We use each of the key demographics gathered on the survey to characterize the respondents
(e.g., the demographics of the sample). Note that because some questions were optional,
the number of respondents differs across the demographics.

Respondent type
We asked each respondent to characterize their relationship with research software as one
of the following:

e Researcher - someone who only uses software
e Developer - someone who only develops software
e Combination - both of the above roles

The respondents were fairly evenly split between Researchers at 43% (473/1109) and
Combination at 49% (544/1109), with the remaining 8% (92/1109) falling into the Developer
category. Note that depending on how the respondent answered this question, they received
different survey questions. If a respondent indicated they were a Researcher, they did not
receive the more development-oriented questions. For the remainder of this analysis, we
use these subsets to analyze the data. If the result does not indicate that it is describing
results from a subset of the data, then it should be interpreted as being a result from
everyone who answered the question.

Organization type

Next, respondents indicated the type of organization for which they worked. The vast
majority 86% (898/1048) worked for Educational Institutions. That percentage increased
to 93% (417/447) for Researcher type respondents

Geographic location

Because the focus of the URSSI project is the United States, we targeted our survey to
US-based lists. As a result, the vast majority of responses (990/1038) came from the United
States. We received responses from 49 states (missing only Alaska), plus Washington, DC,
and Puerto Rico.

Job title

People involved in developing and using research software have various job titles. For our
respondents, Faculty was the most common, given by 63% (668/1046) of the respondents
and 79% (354/447) of the Researcher type respondents. No other title was given by more
then 6% of the respondents.

Respondent age

Overall, 77% (801/1035) of the respondents are between 35 and 64 years of age. The
percentage is slightly higher for Researcher type respondents (370/441-84%) and slightly
lower for Combination type respondents (378/514-74%).

Respondent experience
The respondent pool is highly experienced overall, with 77% (797/1040) working in
research for more than 10 years and 39% (409/1040) for more than 20 years. For the

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 13/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

Table 2 Disciplines of respondents.

Discipline Total Researchers Developers Combination
Biological sciences 325 149 20 156
Mathematical and physical sciences 480 174 36 269
Engineering 207 74 18 115
Computer & information science 268 61 33 174
Medicine 105 49 5 51
Dentistry and health 17 8 1 8
Social sciences 98 55 2 41
Humanities and language based studies 24 4 1 18
Administrative & business studies 12 10 0 2
Agricultural 23 10 0 13
Forestry and veterinary science 11 5 1 5
Education 61 29 2 30
Architecture and planning 7 1 5
Design 12 1 7
Creative & performing arts 7 0 7

Researcher type respondents, those numbers increase to 84% (373/444) with more than 10
years and 44% (197/444) with more than 20 years.

Gender

In terms of self-reported gender, 70% (732/1039) were Male, 26% (268/1039) were Female,
with the remainder reporting Other or Prefer not to say. For Researcher respondents, the
percentage of Females is higher (151/443—-34%).

Discipline

The survey provided a set of choices for the respondents to choose their discipline(s).
Respondents could choose more than one discipline. Table 2 shows the distribution
of respondents by discipline. Though the respondents represent a number of research
disciplines, our use of NSF and NIH mailing lists likely skewed the results towards
participants from science and engineering fields.

Software engineering practices

This section focuses on answering RQ1: What activities do research software developers spend
their time on, and how does this impact the perceived quality and long-term accessibility of
research software?

Where respondents spend software time

We asked respondents what percentage of their time they currently spend on a number of
software activities and what percentage of time they would ideally like to spend on those
activities. The box and whisker plots in Fig. 1 shows there is a mismatch between these two
distributions, SpentTime and IdealSpentTime, respectively. Overall, respondents would like
to spend more time in design and coding and less time in testing and debugging. However,
the differences are relatively small in most cases.

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 14/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

Requirements Design Coding Testing

SEPURPAIERy T} AR

Debugging Maintenance Documentation Meetings

Percent of time

" 2 3 5 5 o . 5 . 5 5 5 .
Training Other Combination Developers Combination Developers
100- . . .

—F——|—F—

Combins P Combinaton ~ Developer s

W easponTine B3 sponimme

Figure 1 Where respondents spend software time. The dots represent outliers.
Full-size G4l DOI: 10.7717/peerjcs.963/fig-1

Which aspects of the software development process are more difficult than
they should be?

Figure 2 illustrates the results for this follow-up question. This question was multi-select
where respondents could choose as many answers as were appropriate. Interestingly,
the aspects most commonly reported are those that are more related to people issues
rather than to technical issues (e.g., finding personnel/turnover, communication, use of best
practices, project management, and keeping up with modern tools). The only ones that were
technical were testing and porting.

Use of testing

Focusing on one of the technical aspect that respondents perceived to be more difficult
than it should be, we asked the respondents how frequently they employ various types of
testing, including: Unit, Integration, System, User, and Regression. The respondents could
choose from frequently, somewhat, rarely, and never. Figure 3 shows the results from this
question. The only type of testing more than 50% of respondents used frequently was Unit
testing (231/453-51%). On the other extreme only about 25% reported using System
(118/441-27%) or Regression testing (106/440-24%) frequently.

Use of open-source licensing

Overall 74% (349/470) of the respondents indicated they used an open-source license.
This percentage was consistent across both combination and developer respondents.
However, this result still leaves 26% of respondents who do not release their code under
an open-source license.

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 15/42

https://peerj.com
https://doi.org/10.7717/peerjcs.963/fig-1
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

40-

N
S

Frequency

°

|mu ‘ |uID|D| .

\ G Y \5 g ?}
‘0\\\& eﬁ\é\ v'=°‘\“ '\02‘\\ 'AC‘\ <o 0@ «e%\\ gg\‘\ of
< O ¢ o A ©¢ éeﬁ\ 0
\ oo™ P RS
Il cororaton [] oeveopers

Figure 2 Aspects of software development that are more difficult than they should be.
Full-size &l DOI: 10.7717/peerjcs.963/fig-2

Combination Developers

150 -

Never

Rarely

Frequency
3
8

Somewhat

Frequently

m PP

X & \\ . (\ «\ e,\
\\0 o o S N 3 (& <
S8 P N & @ &P N

R @
W Qe & o

N A <\
O 65\0

Figure 3 Use of testing.
Full-size Gl DOI: 10.7717/peerjcs.963/fig-3

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 16/42

https://peerj.com
https://doi.org/10.7717/peerjcs.963/fig-2
https://doi.org/10.7717/peerjcs.963/fig-3
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

Frequency of using *best* practices

As a follow-up question, we asked the respondents how frequently they used a number of
standard software engineering practices. The response options were Never, Sometimes, Half
of the time, Most of the time, Always. The following list reports those who responded Most

of the time or Always for the most commonly used practices (in decreasing order):

Continuous Integration — 54% (54/100)
Use of coding standards — 54% (54/100)
Architecture or Design — 51% (52/101)
Requirements — 43% (43/101)

e Peer code review — 34% (34/99)

Documentation

As a follow-up question, in terms of what information respondents document, only 55%
(56/101) develop User manuals or online help either Most of the time or Always. However,
86% (87/101) Comment code and 95% (96/101) Use descriptive variable/method names
either Most of the time or Always. Interestingly, even though a very large percentage of
respondents indicated that they comment their code, when we look in more detail at the
other types of information documented, we see a different story. The following list reports
those who responded Most of the time or Always for each type of documentation:

e Requirements — 49% (49/100)

e Software architecture or design — 34% (34/100)
e Test plans or goals — 25% (25/100)

e User stories/use cases — 24% (24/100)

Tools
This section focuses on answering RQ2: What tools do research software developers use and
what additional tools are needed to support sustainable development practices?

Tools support for development activities

The results in Fig. 4 indicate that a large majority of respondents (340/441-77%) believe
Coding is Extremely supported or Very supported by existing tools. Slightly less than
half of the respondents find Testing (196/441-44%) and Debugging (188/441-43%) to
be Extremely supported or Well supported. Less than 30% of the respondents reported
Requirements, Architecture/design, Maintenance, and Documentation as being well-
supported. Because coding is the only practice where more than half of the respondents
indicate Extremely supported or Very supported, these responses indicate a clear opportunity
for additional (or better) tool support in a number of areas.

Version control and continuous integration

In a follow-up question, almost all of those who responded (83/87) indicated they do use
version control. In addition, a slightly lower but still very large percentage of respondents
(74/83) indicated they used Git either Always or Most of the time. Git was by far the most
commonly used version control system. Finally, almost all respondents (76/83) check

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 17/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

200~

Frequency

. Not supported at all . Slightly supported - Moderately supported

. Very supported |:| Extremely supported

Figure 4 Availability of tool support.
Full-size &l DOI: 10.7717/peerjcs.963/fig-4

their code into the version control system either after every change or after a small group
of changes. However, when we investigate further about the version control practices, we
find 29% of the Combination type respondents (26/56) indicated they use copying files to
another location and 10% (6/56) used zip file backups as their method of version control
either Always or Most of the time. While many respondents do use a standard version
control system, the large number of Combination respondents who rely on zip file backups
suggests the use of standard version control methods is an area where additional training
could help. Regarding continuous integration, less than half of the respondents (39/84)
indicated they used it either Always or Most of the time. This result suggests another area
where additional training could help.

Training
This section focuses on answering RQ3: What training is available to research software
developers and does this training meet their needs?

Have you received training?

The percentage of respondents answering yes depends upon the type of respondent:
Developers - 64% (39/61), Combination - 44% (170/384), and Researchers - 22% (93/421).
When we examine the responses to this question by gender we also see a difference: 30%
(69/229) of the Female respondents received training compared with 37% (220/601) of the
Male respondents.

Carver et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.963 18/42

https://peerj.com
https://doi.org/10.7717/peerjcs.963/fig-4
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

200~

Frequency

Don't know
No
Yes

S
00!
W\“a\
o©

S 5
oo 5
o &

&

Figure 5 Sufficient opportunities for training.
Full-size Gal DOI: 10.7717/peerjcs.963/fig-5

Where have you received training?

Of those who reported receiving training, 82% had received this training from a Class/School
and 48% received it Online/Self-directed. (Note that respondents could report more than
one source of training.) Interestingly, only 10% of the respondents had Software Carpentry
training. When we examine these responses by gender, we find approximately the same
percentage of Male and Female responds received training in a Class/School or Online/Self-
directed. However, the percentage of Female respondents who reported Software Carpentry
or Other training was lower than for Male respondents.

Are there sufficient opportunities for training?

When we turn to the availability of relevant training opportunities, an interesting picture
emerges. As Fig. 5 shows, slightly more than half of the respondents indicate there is
sufficient training available for obtaining new software skills. However, when looking

at the response based upon gender, there is a difference with 56% of male respondents
answering positively but only 43% of the female respondents answering positively. But,
as Fig. 6 indicates, approximately 75% of the respondents indicated they do not have
sufficient time to take advantage of these opportunities. These results are slightly higher
for female respondents (79%) compared with male respondents (73%). So, while training
may be available, respondents do not have adequate time to take advantage of it.

Preferred modes for delivery of training
The results showed that there is not a dominant approach preferred for training.
Carpentries, Workshops, MOOCs, and On-site custom training all had approximately

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 19/42

https://peerj.com
https://doi.org/10.7717/peerjcs.963/fig-5
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

300~

Frequency

No
Yes

100 -

-

o o)
2 R N
W o ,a(
N 12
& =
G

N
o) X

Figure 6 Sufficient time for training.
Full-size &l DOI: 10.7717/peerjcs.963/fig-6

the same preference across all three topic ares (Development Techniques, Languages, and
Project Management). This result suggests that there is benefit to developing different
modes of training about important topics, because different people prefer to learn in
different ways.

Funding
This section uses the relevant survey questions to answer the two research questions related
to funding:

e RQ4a: What is the available institutional support for research software development?
e RQ4b: What sources of institutional funding are available to research software developers?

First, 54% (450/834) of the respondents reported they have included funding for software
in their proposals. However, that percentage drops to 30% (124/408) for respondents who
identify primarily as Researchers.

When looking at the specific types of costs respondents include in their proposals, 48%
(342/710) include costs for developing new software, 22% (159/710) for reusing existing
software and 29% (209/710) for maintaining/sustaining software. (Note that respondents
could provide more than one response.) It is somewhat surprising to see such a large
number of respondents who include funding for maintaining and sustaining software.

In examining the source of funding for the projects represented by the survey
respondents, the largest funder is NSF, at 36%. But, as Fig. 7 shows, a significant portion
of funding comes from the researchers’ own institutions. While other funding agencies
provide funding for the represented projects and may be very important for individual

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 20/42

https://peerj.com
https://doi.org/10.7717/peerjcs.963/fig-6
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

100 -

75-

Bl Combination

E3 Developers

50-

% Funding

25-
o . — . _ ol o |j

Ooe

< 3 > . N o <
W W ©° R G o o
o

o
O
S
T

Middle line indicates mean.

Figure 7 Sources of funding. Except for NSF and “Your own institution”, the minimum, Q1, median,
and Q3 are all zero. The dashed line is the mean for these categories. The dots are all outliers.
Full-size G DOI: 10.7717/peerjcs.963/fig-7

respondents, overall, they have little impact. This result could have been impacted by the
fact that we used a mailing list of NSF projects as one means of distributing the survey.
However, we also used a list of NIH PIs who led projects funded at least at $200K, so it is
interesting that NSF is still the largest source.

In terms of the necessary support, Fig. 8 indicates that, while institutions do provide
some RSE, financial, and infrastructure support, it is inadequate to meet the respondents’
needs, overall. In addition, when asked in a follow-up question whether the respondents
have sufficient funding to support software development activities for their research the
overwhelming answer is no (Fig. 9).

When asked about whether current funding adequately supports some key phases of
the software lifecycle, the results were mixed. Respondents answered on a scale of 1-5
from insufficient to sufficient. For Developing new software and Modifying or reusing existing
software there is an relatively uniform distribution of responses across the five answer
choices. However, for Maintaining software, the responses skew towards the insufficient
end of the scale.

For respondents who develop new software, we asked (on a 5-point scale) whether
their funding supports various important activities, including refactoring, responding to
bugs, testing, developing new features, and documentation. In all cases less than 35% of the
respondents answered 4 or 5 (sufficient) on the scale.

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 21/42

https://peerj.com
https://doi.org/10.7717/peerjcs.963/fig-7
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

250~

200~

Frequency
g

3
3

\ 8 a.\ é e;
6\)\\‘(\Q@\ .\‘\a“c’\ o o
oo‘(:/ 5099 <

A
< R
&

. No . Yes, but inadequate level of support

|:| Yes, adequate level of support

Figure 8 Sufficiency of institutional support.
Full-size &l DOI: 10.7717/peerjcs.963/fig-8

Frequency

N
S

A I: l: B

o &
K SIS
NS A

0% OO
RO
A

TN
Wt
& ‘06\

- Combination |:| Developers

Figure 9 Necessary funding to support software development activities.
Full-size Gl DOI: 10.7717/peerjcs.963/fig-9

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 22/42

https://peerj.com
https://doi.org/10.7717/peerjcs.963/fig-8
https://doi.org/10.7717/peerjcs.963/fig-9
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

200~

150 -

Frequency
g

|

‘e
o
o

©
«&°

o
o
o
Goﬁ\\)\ &=

. Don't know . No - | would have to move to another institution D Yes - in my current institution

Figure 10 Opportunities for career advancement for software developers.
Full-size & DOI: 10.7717/peerjcs.963/fig-10

Career paths
This section focuses on answering RQ5: What factors impact career advancement and hiring
in research software?

Institutions have a number of different job titles for people who develop software. The
most frequently reported title is postdoc (411), with other titles including Research Software
Engineers (223), Research Programmers (251), Software Developer (253), and Programmer
(253). There were also a good number of respondents who were Faculty (215) or Research
Faculty (242). Note that people could provide more than one answer, so the total exceeds
the number of respondents.

While there are a number of job titles that research software developers can fill,
unfortunately, as Fig. 10 shows, the respondents saw little chance for career advancement for
those whose primary role is software development. Only 21% (153/724) of the Combination
and Researcher respondents saw opportunity for advancement. The numbers were slightly
better at 42% (24/57) for those who viewed themselves as Developers. When we look at
the result by gender, only 16% (32/202) of the female respondents see an opportunity for
advancement compared with 24% (139/548) for the male respondents.

We asked respondents who have the responsibility for hiring people into software
development roles to indicate the importance of the following concerns:

e Identifying a pipeline for future staft

e Attracting staff from underrepresented groups
e Ability of staff to work across disciplines

e Competing with industry for high performers

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 23/42

https://peerj.com
https://doi.org/10.7717/peerjcs.963/fig-10
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

Future staff Underrepresented groups Across disciplines
150 -
100~
50- I
g o-
c
o)
g. Competing with industry Viable career path Outsource
:‘_i 150 -
100~
50- I J:|
0-
oM S 2O S o S
&° & & & & &
N\ o . o O o
o @ «® @ « 2
o @e® o' e o' e®

. Not at all important . Slightly important . Moderately important

. Very important D Extremely important

Figure 11 Concerns when trying to hire software development staff.
Full-size G4l DOI: 10.7717/peerjcs.963/fig-11

e Offering a viable career path
e Opportunities to outsource skilled work

As Fig. 11 shows, most factors were at least moderately important, with the exception of
opportunities to outsource work.

When examining the perceptions of those that have been hired into a software
development role, we asked a similar question. We asked respondents the importance
of the following concerns when they were hired into their current role:

e Diversity in the organization
e Your experience as a programmer or software engineer

Your background in science
Your knowledge of programming languages
Your knowledge and capabilities across disciplines

Your potential for growth

As Fig. 12 shows, for job seekers, their background in science, ability to work across
disciplines, and opportunities for growth were the most important factors. Interestingly,

Carver et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.963 24/42

https://peerj.com
https://doi.org/10.7717/peerjcs.963/fig-11
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

Diversity Experience Background

200~

150

h:lh_ h]__ﬂlil —

Diverse languages Across disciplines Growth

o
=}

o

Frequency

N
=1
S

150

. Not at all important . Slightly important . Moderately important

. Very important D Extremely important

Figure 12 Concerns when being hired as software development staff.
Full-size G4l DOI: 10.7717/peerjcs.963/fig-12

the respondents saw less importance in their experience as a programmer or software
engineering or their knowledge of programming languages.
Besides these factors, we asked a follow-up question about the importance of the

following factors when deciding on whether to accept a new job or a promotion:

e Title of the position

e Salary raise

e Responsibilities for a project or part of a project

e Leading a team

e Available resources such as travel money

As Fig. 13 shows Salary, Responsibility, Leadership, and Resources are the most important
factors respondents consider when taking a job or a promotion.

Lastly, in terms of recognition within their organization, in a follow-up question, we
asked respondents to indicate whether other people in their organization use their software
and whether other people in their organization have contacted them about developing
software. Almost everyone (54/61) that responded to these follow-up questions indicated
that other people in the organization use their software. In addition just over half of the

Carver et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.963 25/42

https://peerj.com
https://doi.org/10.7717/peerjcs.963/fig-12
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

Responsibilities for a

Title of the position Salary raise project or parts of a
project
20-
15-
10~
! I L J
. =l =y ~. = HE-
Available resources such Other

Leading a team as travel money

Frequency

20~

N .-D -.ID III.EI -ll ..EI el

e o
Oe“ e\o\> Go&@(\ Oe“?‘\OQ o ‘(\‘5\‘\

o

o

. Extremely important . Very important . Moderately important

. Slightly important D Not at all important

Figure 13 Importance of factors when taking a job or promotion.
Full-size Gal DOI: 10.7717/peerjcs.963/fig-13

Combination respondents (27/51) and 72% (8/11) of the Developer respondents indicated
that people in their organization had contacted them about writing software for them.

Credit
This section uses the relevant survey questions to answer the two research questions related

to credit:

e RQ6a: What do research software projects require for crediting or attributing software use?
e RQ6b: How are individuals and groups given institutional credit for developing research

software?

When asked how respondents credit software they use in their research, as Fig. 14 shows,
the most common approaches are either to cite a paper about the software or to mention the
software by name. Interestingly, authors tended to cite the software archive itself, mention the
software URL, or cite the software URL much less frequently. Unfortunately, this practice
leads to fewer trackable citations of the software, making it more difficult to judge its

impact.

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 26/42

https://peerj.com
https://doi.org/10.7717/peerjcs.963/fig-13
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

Cite paper about the Cite the software user's Mention the name of the
software manual software
250- —
200~
150 -
100~
50~
N — S J] |
>
[3)
5 ' . Cite the
El Mentlor;gr;nganL of the Cite tgsﬂL‘i’zIFeofthe published/archived
Qo software itself
- 250-
200-
150 -
100~
i .:|
o [- = | .
& o o & o o & © o
< ﬁ\:ﬁ“ z@@ & ﬁ\o«ﬁ z&“ o Ae\o\’e z@@
o R o o & o o Ra o

. Never . Sometimes . Most of the time D Always

Figure 14 How authors credit software used in their research.
Full-size G4l DOI: 10.7717/peerjcs.963/fig-14

Following on this trend of software work not being properly credited, when asked how
they currently receive credit for their own software contributions, as Fig. 15 shows, none
of the standard practices appear to be used very often.

An additional topic related to credit is whether respondent’s contributions are valued
for performance reviews or promotion within their organization. As Fig. 16 shows,
approximately half of the respondents indicate that software contributions are considered.
Another large percentage say that it depends.

While it is encouraging that a relatively large percentage of respondents’ institutions
consider software during performance reviews and promotion some or all of the time,
the importance of those contributions is still rather low, especially for respondents who
identify as Researchers, as shown in Fig. 17.

Diversity

This section focuses on answering RQ7: How do current Research Software Projects

document diversity statements and what support is needed to further diversity initiatives?
When asked how well their projects recruit, retain, and include in governance

participants from underrepresented groups, only about 1/3 of the respondents thought

they did an “Excellent” or “Good” job. Interestingly, when asked how well they promote a

culture of inclusion, 68% of the respondents (390/572) indicated they did an “Excellent”

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 27/42

https://peerj.com
https://doi.org/10.7717/peerjcs.963/fig-14
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

N
=1
S

(Co)author on research (Co)author on software Acknowledgment in paper

200~

150 -

100 -

50~

o [mill_— m |
)
c
% Software cited in a Funded/hired to work on Other
g paper the software
<4
e

150 -

. Never . Sometimes . Most of the time D Always

Figure 15 How respondents currently receive credit for their software contributions.
Full-size Gal DOI: 10.7717/peerjcs.963/fig-15

or “Good” job. These two responses seem to be at odds with each other, suggesting that
perhaps projects are not doing as well as they think they are. Conversely, it could be that
projects do not do a good job of recruiting diverse participants, but do a good job of
supporting the ones they do recruit. Figure 18 shows the details of these responses.

We asked follow-up questions about whether the respondents’ projects have a
diversity/inclusion statement or a code of conduct. As Figs. 19 and 20 show, most projects
do not have either of these, nor do they plan to develop one. This answer again seems at
odds with the previous answer that most people thought their projects fostered a culture
of inclusions. However it is possible that projects fall under institutional codes of conduct
or have simply decided that a code of conduct is not the best way to encourage inclusion.

Lastly, in a follow-up question we asked respondents to indicate the aspects of diversity
or inclusion for which they could use help. As Fig. 21 shows, respondents indicated they
needed the most help with recruiting, retaining, and promoting diverse participants. They
also need help with developing diversity/inclusion statements and codes of conduct.

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 28/42

https://peerj.com
https://doi.org/10.7717/peerjcs.963/fig-15
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

150 -

100 -

Frequency

. No . Depends D Yes

Figure 16 Does institution consider software contributions in performance reviews or promotion

cases?
Full-size Gal DOI: 10.7717/peerjcs.963/fig-16

‘]_.-jL

Frequency
8

0

o™ o &
o " o
0 7O N
o e

oo‘“ O Qe

. Not at all important - Slightly important . Moderately important

. Very important |:| Extremely important

Figure 17 Importance of software contributions during performance review or promotion.
Full-size & DOI: 10.7717/peerjcs.963/fig-17

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963

29/42

https://peerj.com
https://doi.org/10.7717/peerjcs.963/fig-16
https://doi.org/10.7717/peerjcs.963/fig-17
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

Recruit participants from Retain participants from
underrepresented groups underrepresented groups
100 -
75-
50 -
25-
>
2
] Include participants from
g. underrepresented groups in governance Maintain a culture of inclusion
[and leadership positions
w

. Terrible . Poor . Average . Good |:| Excellent

Figure 18 How respondents think their project does with inclusion.
Full-size G4l DOI: 10.7717/peerjcs.963/fig-18

THREATS TO VALIDITY

To provide some context for these results and help readers properly interpret them, this
section describes the threats to validity and limits of the study. While there are multiple
ways to organize validity threats, we organize ours in the following three groups.

Internal validity threats
Internal validity threats are those conditions that reduce the confidence in the results that
researchers can draw from the analysis of the included data.

A common internal validity threat for surveys is that the data is self-reported. Many of
the questions in our survey rely upon the respondent accurately reporting their perception
of reality. While we have no information that suggests respondents were intentionally
deceptive, it is possible that their perception about some questions was not consistent with
their reality.

A second internal validity threat relates to how we structured the questions and which
questions each respondent saw. Due to the length of the survey and the potential that
some questions may not be relevant for all respondents, we did not require a response
to all questions. In addition, we filtered out questions based on the respondent type
(Researcher, Combination, or Developer) when those questions were not relevant. Last,

Carver et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.963 30/42

https://peerj.com
https://doi.org/10.7717/peerjcs.963/fig-18
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

Frequency

o

S
e ¢e“e\o‘) o oo
N
o

o
WO I\

WO

Il coraion [l Doveipors [] mososrcnrs

Figure 19 Whether the respondents’ projects have a diversity/inclusion statement.
Full-size &l DOI: 10.7717/peerjcs.963/fig-19

Frequency

9@ «® & e
O
oo 0"
& oV
0 4
N 3
Q 50
o G o
os W&
W 8
WO
Il cororaton [] oeveopers

Figure 20 Whether the respondents’ projects have a code of conduct.
Full-size G4l DOI: 10.7717/peerjcs.963/fig-20

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963

31/42

https://peerj.com
https://doi.org/10.7717/peerjcs.963/fig-19
https://doi.org/10.7717/peerjcs.963/fig-20
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

25-

20-

Frequency
=

=)

Y) o N\
) e R) S\
W 28 O ® St ey
o & AOF' Q’b‘\ 0‘5\\ 509 o0 2 <
2 2 PR o ¢ 509 i
o ? 3 WetT e 0 O
\,e‘e‘ \,e‘e g(\\ (\e(ﬁ IS
3 N WY, \e?
& & « 0\\@%(\6\6
6\")(\06

. Combination . Developers D Researchers

Figure 21 Type of support needed for inclusion and diversity.
Full-size & DOI: 10.7717/peerjcs.963/fig-21

for each topic area, we included a set of optional questions for those who wanted to
provide more information. These optional questions were answered by a much smaller
set of respondents. Taken together, these choices mean that the number of respondents to
each question varies. In the results reported above, we included the number of people who
answered each question.

Construct validity threats

Construct validity threats describe situations where there is doubt in the accuracy of the
measurements in the study. In these cases, the researchers may not be fully confident that
the data collected truly measures the construct of interest.

In our study, the primary threat to construct validity relates to the respondents’
understanding of key terminology. The survey used a number of terms related to the
research software process. It is possible that some of those terms may have been unfamiliar
to the respondents. Because of the length of the survey and the large number of terms
on the survey, we chose not to provide explicit definitions for each concepts. While we
have no evidence that raises concerns about this issue, it is possible that some respondents
interpreted questions in ways other than how we originally intended.

External validity threats

External validity threats are those conditions that decrease the generalizablity of the results
beyond the specific sample included in the study. We have identified two key external
validity threats.

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 32/42

https://peerj.com
https://doi.org/10.7717/peerjcs.963/fig-21
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

The first is general sampling bias. We used a convenience sample for recruiting our
survey participants. While we attempted to cast a very wide net using the sources described
in the Survey Participants section, we cannot be certain that the sample who responded to
the survey is representative of the overall population of research software developers in the
United States.

The second is the discrepancy among the number of respondents of each type
(Researcher, Combination, Developer). Because we did not know how many people
in the population would identify with each respondent type, we were not able to use this
factor in our recruitment strategy. As a result, the number of respondents from each type
differs. This discrepancy could be representative of the overall population or it could also
suggest a sampling bias.

Therefore, while we have confidence in the results described above, these results may
not be generalizable to the larger population.

DISCUSSION

We turn now to a discussion of the results of our survey, and the implied answers to our
research questions. In each subsection, we restate the original research question, highlight
important findings, and contextualize these findings in relation to software sustainability.

Software engineering practices

RQ1: What activities do research software developers spend their time on, and how
does this impact the perceived quality and long-term accessibility of research software?

Across a number of questions about software engineering practices, our respondents
report the aspects of the software development process that were more difficult than
expected were related to people, rather than mastering the use of a tool or technique.
Respondents reported they thought testing was important, but our results show only a
small percentage of respondents frequently use system testing (27% of respondents) and
regression testing (24% of respondents). This result suggests a targeted outreach on best
practices in testing, broadly, could be a valuable future direction for research software
trainers.

We also asked respondents about how they allocated time to software development
tasks. The respondents reported, overall, they spend their time efficiently - allocating as
much time as a task requires, but rarely more than they perceive necessary (see Fig. 2).

However, one notable exception regards debugging, where both developers and
researchers report an imbalance between time they would like to spend compared with the
time they actually spend. While we did not ask follow up questions about any specific task,
we can interpret this finding as the result of asking about an unpleasant task - debugging
is not an ideal use of time, even if it is necessary. However, there is an abundance of high
quality and openly accessible tools that help software engineers in debugging tasks. A future
research direction is to investigate types of code quality controls, testing, and the use of
tools to simplify debugging in research software.

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 33/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

Opverall, we observe research software developers do not commonly follow the best
software engineering practices. Of the practices we included in our survey (Continuous
Integration, Coding Standards, Architecture/Design, Requirements, and Peer Code
Review), none were used by more than 54% of the respondents. This result indicates a
need for additional work to gather information about how research software developers are
using these practices and to disseminate that information to the appropriate communities
to increase their usage.

Software tools

RQ2: What tools do research software developers use and what additional tools are
needed to support sustainable development practices?

Our respondents reported sufficient tool support only for the coding activity. This result
suggests the need for additional tools to support important activities like Requirements,
Design, Testing, Debugging, and Maintenance. The availability of useful tools that can fit
into developers current workflows can increase the use of these key practices for software
quality and sustainability.

Training

RQ3: What training is available to research software developers and does this training
meet their needs?

Across multiple questions, our findings suggest a need for greater opportunities to access
and participate in software training. Previous surveys found less than half (and sometimes
much less) of developers reported they had formal training in software development. Our
results support these rough estimates, with Developers reporting a slightly higher percentage
of both formal and informal software training than researchers. In our sample, including
both developers and researchers, approximately half of the people developing research
software have received no formal training. Consistent with this number, only about half
of the respondents reported sufficient opportunities for training. However, approximately
3/4 indicated they did not have sufficient time for training that was available. Together
these results suggest two conclusions: (1) there is a need for more training opportunities
(as described above) and (2) developers of research software need more time for training,
either by prioritizing in their own schedule or by being given it from their employers.

Funding

RQ4:

e RQ4a: What is the available institutional support for research software develop-
ment?

e RQ4b: What sources of institutional funding are available to research software
developers?

We provided a motivation for this research question by demonstrating, across a variety
of previous surveys and published reports, there has not been sufficient funding dedicated
to the development and maintenance of research software. The survey results support this

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 34/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

assertion with just under half of the respondents who develop software as part of their
research report including costs for developing software into research funding proposals,
with even less including costs for reusing or maintaining research software. A limitation of
our study is that we do not ask respondents why they choose not to include these costs. We
could interpret this result as a belief that such items would not be appropriate for a budget
or would not result in a competitive funding application. Future should investigate (1)
how and why software research funding is allocated, (2) how research software is budgeted
in preparing research grant proposals, and (3) what deters researchers from requesting
funding for software development, maintenance, or reuse.

From the perspective of software sustainability, these results are troubling. Without
support for maintaining and sustaining research software, at least some of the initial

investments made in software are lost over time.

Career paths
RQ5: What factors impact career advancement and hiring in research software?

Our results show a diversity of people and their titles who assume the role of research
software developer. However, few respondents were optimistic about their research software
contributions positively impacting their career (only 21% of faculty and 42% of developers
believed software contributions would be valuable for career advancement). This finding
was particularly pronounced for female identifying respondents, with only 16% (n =
32/202) believing software contributions could impact their career advancement.

When asked to evaluate prospective applicants to a research software position many
respondents valued potential and scientific domain knowledge (background) as important
factors. We optimistically believe this result indicates that while programming knowledge,
and experience are important criteria for job applicants, search committees are also keen
to find growth minded scientists to fill research software positions. We believe this result
could suggest an important line of future work - asking, for example, research software
engineering communities to consider more direct and transparent methods for eliciting
potential and scientific domain knowledge on job application materials.

Finally, we highlight the factors important to research software developers when
evaluating a prospective job for their own career. Respondents reported that they value
salary equally with leadership (of software at an institution) and access to software resources
(e.g., infrastructure). This suggests that while pay is important, the ability to work in a valued
environment with access to both mentorship and high quality computing resources can
play an important role in attracting and retaining talented research software professionals.

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 35/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

Credit

RQ6:

e RQ6a: What do research software projects require for crediting or attributing
software use?

e RQ6b: How are individuals and groups given institutional credit for developing
research software?

As described in the Background section, obtaining credit for research software work is
still emerging and is not consistently covered by tenure and promotion evaluations. The
survey results are consistent with this trend and show none of the traditional methods for
extending credit to a research contribution are followed for research software. Figure 15
makes this point clear - respondents most frequently mention software by name but less
frequently cite software papers or provide links to the software. According to these results,
research software projects require better guidance and infrastructure support for accurately
crediting software used in research, both at the individual and institutional level.

We also highlight the relationship between credit and career advancement. In the
previous section (Career Paths) we asked respondents how often they were consulted
about or asked to contribute to existing software projects at their institution. Among
the Developer respondents, 72% were consulted about developing and maintaining
software. However, unless this consultation, expertise, and labor is rewarded within a
formal academic system of credit, this work remains invisible to tenure and promotion
committees. Such invisible labor is typical within information technology professions, but
we argue that improving this formal credit system is critical to improving research software
sustainability.

Scholarly communications and research software engineers have been active in
promoting new ways to facilitate publishing, citing, using persistent identifiers, and
establishing authorship guidelines for research software. This effort includes work in
software citation aimed at changing publication practices (Katz et al., 2021), in software
repositories (Smith, 2021), and a proposed definition for FAIR software to add software to
funder requirements for FAIR research outputs (Chue Hong et al., 2021).

Diversity

RQ7: How do current Research Software Projects document diversity statements and
what support is needed to further diversity initiatives?

Previous studies of research software communities have not focused specifically on
diversity statements, DEI initiatives, or related documentation (e.g., code of conduct
documents). Our results showed about 2/3 of the respondents thought their organizations
promoted a “culture of inclusion” with respect to research software activities. Conversely,
only about 1/3 of respondents thought their organization did an above average job of
recruiting, retaining, or meaningfully including diverse groups (see Fig. 18).

We also asked participants whether their main software project (where they spent
most time) had, or planned to develop, a diversity and inclusion statement. Over half of

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 36/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

respondents indicated that their projects do not have a diversity/inclusion statement or a
code of conduct and have no plans to create one.

While these numbers paint a grim picture, we also believe that there is additional
research necessary to clarify the types of diversity, equity, and inclusion work, including
formal and informal initiatives, needed in research software development. This research
would provide needed clarity on the training, mentoring, and overall state of diversity
and inclusion initiatives in research software. Further, research needs to compare these
practices with broader software and research communities seeking to understand how, for
example, research software compares to open-source software.

ACKNOWLEDGEMENTS

We thank the survey participants for their time.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by a grant from the United States National Science Foundation
(1743188) ”’SI2-S212 Conceptualization: Conceptualizing a US Research Software
Sustainability Institute (URSSI).” The funders had no role in study design, data collection
and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The United States National Science Foundation: 1743188.

Competing Interests
Daniel S. Katz and Sandra Gesing are Academic Editors for PeerJ CS.

Author Contributions

e Jeffrey C. Carver conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

e Nic Weber conceived and designed the experiments, performed the experiments,
analyzed the data, authored or reviewed drafts of the paper, and approved the final draft.

e Karthik Ram conceived and designed the experiments, performed the computation
work, prepared figures and/or tables, authored or reviewed drafts of the paper, and
approved the final draft.

e Sandra Gesing conceived and designed the experiments, performed the experiments,
authored or reviewed drafts of the paper, and approved the final draft.

e Daniel S. Katz conceived and designed the experiments, authored or reviewed drafts of
the paper, and approved the final draft.

Carver et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.963 37/42

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

The University of Notre Dame granted ethical approval to carry out the study (18-08-
4802) (Sandra Gesing was at Notre Dame at the time of the survey).

Data Availability
The following information was supplied regarding data availability:

URSSI Survey Raw Data and Survey Questions are available at Zenodo: Jeffrey Carver,
Sandra Gesing, Daniel S. Katz, Karthik Ram, & Nic Weber. (2021). URSSI Community
Survey 2018 Raw Data. Zenodo. https:/doi.org/10.5281/zenodo.6338766.

REFERENCES

Albert T, Wager E. 2009. How to handle authorship disputes: a guide for new re-
searchers. Committee on Publication Ethics. Available at https://publicationethics.org/
node/19906.

Allen L, Scott J, Brand A, Hlava M, Altman M. 2014. Publishing: credit where credit is
due. Nature 508(7496):312-313 DOI 10.1038/508312a.

AlNoamany Y, Borghi JA. 2018. Towards computational reproducibility: researcher
perspectives on the use and sharing of software. Peer] Computer Science.

Anzt H, Bach F, Druskat S, Loffler F, Loewe A, Renard BY, Seemann G, Struck
A, Achhammer E, Aggarwal P. 2021. An environment for sustainable re-
search software in Germany and beyond: current state, open challenges, and
call for action [version 2; peer review: 2 approved]. F1000Research 9:295
DOI 10.12688/f1000research.23224.2.

Association for Computing Machinery. 2018. ACM Policy on Authorship, Peer Review,
Readership, and Conference Publication. New York: ACM. Available at hitps://www.
acm.org/publications/policies/roles-and-responsibilities.

Baker M. 2016. 1,500 scientists lift the lid on reproducibility. Nature 533(7604):452—454
DOI 10.1038/533452a.

Borgman C, Wallis J, Mayernik . 2012. Who’s got the data? Interdependencies in science
and technology collaborations. Computer Supported Cooperative Work 21:485523
DOI 10.1007/5s10606-012-9169-z.

Carver], Gesing S, Katz DS, Ram K, Weber N. 2021. URSSI Community Survey 2018
Raw Data. Zenodo DOI 10.5281/zenodo.5565029.

Carver J, Heaton D, Hochstein L, Bartlett R. 2013. Self-perceptions about software
engineering: a survey of scientists and engineers. Computing in Science & Engineering
15(1):7-11.

Carver J, Weber N, Ram K, Gesing S, Katz DS. 2022. A survey of the state of the practice
for research software in the united states. Zenodo DOI 10.5281/zenodo.6338040.

CASBS Group on Best Practices in Science. 2018. Issues related to authorship, co-
authorship, and collaboration. Available at https://bps.stanford.edu/?page_id=8617.

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 38/42

https://peerj.com
https://doi.org/10.5281/zenodo.6338766
https://publicationethics.org/node/19906
https://publicationethics.org/node/19906
http://dx.doi.org/10.1038/508312a
http://dx.doi.org/10.12688/f1000research.23224.2
https://www.acm.org/publications/policies/roles-and-responsibilities
https://www.acm.org/publications/policies/roles-and-responsibilities
http://dx.doi.org/10.1038/533452a
http://dx.doi.org/10.1007/s10606-012-9169-z
http://dx.doi.org/10.5281/zenodo.5565029
http://dx.doi.org/10.5281/zenodo.6338040
https://bps.stanford.edu/?page_id=8617
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

Chue Hong NP, Katz DS, Barker M, Lamprecht A-L, Martinez C, Psomopoulos FE,
Harrow J, Castro LJ, Gruenpeter M, Martinez PA, Honeyman T. 2021. FAIR
principles for research software (FAIR4RS Principles). Technical report. Research
Data Alliance DOI 10.15497/RDA00065.

Dance A. 2012. Authorship: who’s on first? Nature 489:591-593 DOI 10.1038/nj7417-591a.

Druskat S. 2020. Citation File Format (CFF). Available at https://citation-file-format.
github.io.

Foster I. 2006. 2020 Computing: a two-way street to science’s future. Nature
440(7083):419 DOI 10.1038/440419a.

Fritzsch B. 2019. Research software landscape and stakeholders. presented at GeoMiin-
ster 2019, “Earth! Past, Present, Future”. Available at htips://hdl. handle.net/10013/
epic.61c271f2-63a4-4d46-9011-c2bfb2b3159a.

Goble C. 2014. Better software, better research. IEEE Internet Computing 18(5):4-8.

Hannay JE, MacLeod C, Singer J, Langtangen HP, Pfahl D, Wilson G. 2009. How do
scientists develop and use scientific software? In: 2009 ICSE workshop on software
engineering for computational science and engineering. 1-8.

Hettrick S. 2014. It’s impossible to conduct research without software, say 7 out of 10 UK
researchers. Software Sustainability Institute Blog. Available at https://www.software.
ac.uk/blog/2014- 12-04-its-impossible- conduct-research-without-software-say-7-out-
10-uk-researchers#:~:text=Menu-, It’s%20impossible%20t0%20conduct%20research%
20without%20software%2C%20say, out%200f%2010%20UK %20researcherse
text=By%20Simon%20Hettrick%2C%20Deputy%20Director, disciplines%20and %
20seniorities%200f%20researchers.

Hettrick S. 2018. softwaresaved/software_in_research_survey_2014: Software in research
survey. Zenodo DOI 10.5281/zenodo.1183562.

Hocquet A, Wieber F. 2021. Epistemic issues in computational reproducibility: software
as the elephant in the room. European Journal for Philosophy of Science 11(2):1-20.

Howison J, Bullard J. 2016. Software in the scientific literature: problems with see-
ing, finding, and using software mentioned in the biology literature. Journal
of the Association for Information Science and Technology 67(9):2137-2155
DOI 10.1002/as1.23538.

Howison J, Deelman E, McLennan MJ, Ferreira da Silva R, Herbsleb JD. 2015. Un-
derstanding the scientific software ecosystem and its impact: current and future
measures. Research Evaluation 24(4):454 DOI 10.1093/reseval/rvv014.

Howison J, Herbsleb JD. 2011. Scientific software production: incentives and collabora-
tion, CSCW ’11. In: Proceedings of the ACM 2011 conference on computer supported
cooperative work. New York: Association for Computing Machinery, 513522
DOI 10.1145/1958824.1958904.

Howison J, Herbsleb JD. 2013. Incentives and integration in scientific software pro-
duction, CSCW ’13. In: Proceedings of the 2013 conference on computer supported
cooperative work. New York: Association for Computing Machinery, 459470
DOI 10.1145/2441776.2441828.

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 39/42

https://peerj.com
http://dx.doi.org/10.15497/RDA00065
http://dx.doi.org/10.1038/nj7417-591a
https://citation-file-format.github.io
https://citation-file-format.github.io
http://dx.doi.org/10.1038/440419a
https://hdl.handle.net/10013/epic.61c271f2-63a4-4d46-9011-c2bfb2b3159a
https://hdl.handle.net/10013/epic.61c271f2-63a4-4d46-9011-c2bfb2b3159a
https://www.software.ac.uk/blog/2014-12-04-its-impossible-conduct-research-without-software-say-7-out-10-uk-researchers#:~:text=Menu-,It's%20impossible%20to%20conduct%20research%20without%20software%2C%20say,out%20of%2010%20UK%20researchers&text=By%20Simon%20Hettrick%2C%20Deputy%20Director,disciplines%20and%20seniorities%20of%20researchers
https://www.software.ac.uk/blog/2014-12-04-its-impossible-conduct-research-without-software-say-7-out-10-uk-researchers#:~:text=Menu-,It's%20impossible%20to%20conduct%20research%20without%20software%2C%20say,out%20of%2010%20UK%20researchers&text=By%20Simon%20Hettrick%2C%20Deputy%20Director,disciplines%20and%20seniorities%20of%20researchers
https://www.software.ac.uk/blog/2014-12-04-its-impossible-conduct-research-without-software-say-7-out-10-uk-researchers#:~:text=Menu-,It's%20impossible%20to%20conduct%20research%20without%20software%2C%20say,out%20of%2010%20UK%20researchers&text=By%20Simon%20Hettrick%2C%20Deputy%20Director,disciplines%20and%20seniorities%20of%20researchers
https://www.software.ac.uk/blog/2014-12-04-its-impossible-conduct-research-without-software-say-7-out-10-uk-researchers#:~:text=Menu-,It's%20impossible%20to%20conduct%20research%20without%20software%2C%20say,out%20of%2010%20UK%20researchers&text=By%20Simon%20Hettrick%2C%20Deputy%20Director,disciplines%20and%20seniorities%20of%20researchers
https://www.software.ac.uk/blog/2014-12-04-its-impossible-conduct-research-without-software-say-7-out-10-uk-researchers#:~:text=Menu-,It's%20impossible%20to%20conduct%20research%20without%20software%2C%20say,out%20of%2010%20UK%20researchers&text=By%20Simon%20Hettrick%2C%20Deputy%20Director,disciplines%20and%20seniorities%20of%20researchers
https://www.software.ac.uk/blog/2014-12-04-its-impossible-conduct-research-without-software-say-7-out-10-uk-researchers#:~:text=Menu-,It's%20impossible%20to%20conduct%20research%20without%20software%2C%20say,out%20of%2010%20UK%20researchers&text=By%20Simon%20Hettrick%2C%20Deputy%20Director,disciplines%20and%20seniorities%20of%20researchers
http://dx.doi.org/10.5281/zenodo.1183562
http://dx.doi.org/10.1002/asi.23538
http://dx.doi.org/10.1093/reseval/rvv014
http://dx.doi.org/10.1145/1958824.1958904
http://dx.doi.org/10.1145/2441776.2441828
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

Jay C, Sanyour R, Haines R. 2016. “Not everyone can use Git”: recommendations for
scientist-centred software support (and what researchers really think of them). Uni-
versity of Manchester Technical Report. Available at hitps://www.research.manchester.
ac.uk/portal/en/publications/not-everyone-can- use- git-research-software- engineers-
recommendations-for-scientistcentred- software-support-and-what-researchers-really-
think- of-them(669fd8be-f87e-479f-8f8d-da9el af4f26¢). html%E2%809D.

Jones MB, Boettiger C, Mayes AC, Smith A, Slaughter P, Niemeyer K, Gil Y, Fenner
M, Nowak K, Hahnel M, Coy L, Allen A, Crosas M, Sands A, Chue Hong N, Cruse
P, Katz DS, Goble C. 2017. CodeMeta: an exchange schema for software metadata.
Version 2.0. KNB Data Repository. DOI 10.5063/schema/codemeta-2.0.

Joppa LN, McInerny G, Harper R, Salido L, Takeda K, O’Hara K, Gavaghan D, Emmott
S. 2013. Troubling trends in scientific software use. Science 340(6134):814-815.

Katerbow M, Feulner G, Bornschein M, Brembs B, Erben-Russ M, Forstner K,

Franke M, Fritzsch B, Fuhrmann J, Goedicke M. 2018. Recommendations on the
development, use and provision of research software. Zenodo. Available at https:
//zenodo.org/record/1172988.

Katz D, Chue Hong N, Clark T, Muench A, Stall S, Bouquin D, Cannon M, Ed-
munds S, Faez T, Feeney P, Fenner M, Friedman M, Grenier G, Harrison M,
Heber J, Leary A, MacCallum C, Murray H, Pastrana E, Perry K, Schuster D,
Stockhause M, Yeston J. 2021. Recognizing the value of software: a software
citation guide [version 2; peer review: 2 approved]. F1000Research 9:1257
DOI 10.12688/f1000research.26932.2.

Katz DS. 2014. Transitive credit as a means to address social and technological concerns
stemming from citation and attribution of digital products. Journal of Open Research
Software 2(1):e20 DOI 10.5334/jors.be.

Katz DS, Druskat S, Haines R, Jay C, Struck A. 2019. The state of sustainable research
software: learning from the workshop on sustainable software for science: prac-
tice and experiences (WSSSPES5.1). Journal of Open Research Software 7(1):11
DOI 10.5334/jors.242.

Milliken G, Nguyen S, Steeves V. 2021. A behavioral approach to understanding the
git experience. In: Proceedings of the 54th Hawaii international conference on system
sciences. 7239.

Muna D, Alexander M, Allen A, Ashley R, Asmus D, Azzollini R, Bannister M,

Beaton R, Benson A, Berriman GB. 2016. The astropy problem. ArXiv preprint.
arXiv:1610.03159.

Nafus D. 2012. Patches dont have gender: what is not open in open source software. New
Media & Society 14(4):669—-683 DOI 10.1177/1461444811422887.

Nangia U, Katz DS. 2017. Track 1 paper: surveying the U.S. National postdoc-
toral association regarding software use and training in research. In: Work-
shop on sustainable software for science: practice and experiences (WSSSPE5.1)

DOI 10.6084/m9.figshare.5328442.v3.

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 40/42

https://peerj.com
https://www.research.manchester.ac.uk/portal/en/publications/not-everyone-can-use-git-research-software-engineers-recommendations-for-scientistcentred-software-support-and-what-researchers-really-think-of-them(669fd8be-f87e-479f-8f8d-da9e1af4f26c).html%E2%809D
https://www.research.manchester.ac.uk/portal/en/publications/not-everyone-can-use-git-research-software-engineers-recommendations-for-scientistcentred-software-support-and-what-researchers-really-think-of-them(669fd8be-f87e-479f-8f8d-da9e1af4f26c).html%E2%809D
https://www.research.manchester.ac.uk/portal/en/publications/not-everyone-can-use-git-research-software-engineers-recommendations-for-scientistcentred-software-support-and-what-researchers-really-think-of-them(669fd8be-f87e-479f-8f8d-da9e1af4f26c).html%E2%809D
https://www.research.manchester.ac.uk/portal/en/publications/not-everyone-can-use-git-research-software-engineers-recommendations-for-scientistcentred-software-support-and-what-researchers-really-think-of-them(669fd8be-f87e-479f-8f8d-da9e1af4f26c).html%E2%809D
http://dx.doi.org/10.5063/schema/codemeta-2.0
https://zenodo.org/record/1172988
https://zenodo.org/record/1172988
http://dx.doi.org/10.12688/f1000research.26932.2
http://dx.doi.org/10.5334/jors.be
http://dx.doi.org/10.5334/jors.242
http://arXiv.org/abs/1610.03159
http://dx.doi.org/10.1177/1461444811422887
http://dx.doi.org/10.6084/m9.figshare.5328442.v3
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

Nguyen-Hoan L, Flint S, Sankaranarayana R.. 2010. A survey of scientific software
development, ESEM 10. In: Proceedings of the 2010 ACM-IEEE international sympo-
sium on empirical software engineering and measurement. New York: Association for
Computing Machinery DOT 10.1145/1852786.1852802.

Ortu M, Destefanis G, Counsell S, Swift S, Tonelli R, Marchesi M. 2017. How diverse is
your team? Investigating gender and nationality diversity in GitHub teams. Journal of
Software Engineering Research and Development 5(1):1-18.

Paine D, Lee CP. 2017. “Who Has Plots?”: contextualizing scientific software, practice,
and visualizations. In: Proceedings of the ACM on human-computer interaction
(CSCW). New York: ACM DOI 10.1145/3134720.

Philippe O, Hammitzsch M, Janosch S, van der Walt A, van Werkhoven B, Hettrick
S, Katz DS, Leinweber K, Gesing S, Druskat S, Henwood S, May NR, Lohani NP,
Sinha M. 2019. softwaresaved/international-survey: public release for 2018 results.
Zenodo DOI 10.5281/zenodo0.2585783.

Pinto G, Wiese I, Dias LF. 2018. How do scientists develop scientific software? An
external replication. In: 2018 IEEE 25th international conference on software analysis,
evolution and reengineering (SANER). Piscataway: IEEE, 582-591.

Prabhu P, Jablin TB, Raman A, Zhang Y, Huang J, Kim H, Johnson NP, Liu F, Ghosh S,
Beard S, Oh T, Zoufaly M, Walker D, August DI. 2011. A survey of the practice of
computational science, SC 11. In: State of the practice reports. New York: Association
for Computing Machinery DOI 10.1145/2063348.2063374.

Ram K, Katz DS, Carver J, Weber N, Gesing S. 2018. Report from the first URSSI
workshop. Available at https://urssi.us/blog/2018/08/23/report-from-the-first-urssi-
workshop/ .

Riesenberg D, Lundberg GD. 1990. The order of authorship: who’s on first? Journal of
the American Medical Association 264(14):1857-1857
DOI10.1001/jama.1990.03450140079039.

Shahin M, Babar MA, Zhu L. 2017. Continuous integration, delivery and deployment:

a systematic review on approaches, tools, challenges and practices. IEEE Access
5:3909-3943.

Smith A. 2021. Enhanced support for citations on GitHub. Available at https://github.
blog/2021-08-19-enhanced- support-citations- github/.

Smith AM, Katz DS, Niemeyer KE, FORCE11 Software Citation Principles Work-
ing Group. 2016. Software citation principles. Peer] Computer Science 2:¢86
DOI 10.7717/peerj-cs.86.

Smith AM, Niemeyer KE, Katz DS, Barba LA, Githinji G, Gymrek M, Huff KD, Madan
CR, Cabunoc Mayes A, Moerman KM, Prins P, Ram K, Rokem A, Teal TK,

Valls Guimera R, Vanderplas JT. 2018. Journal of Open Source Software (JOSS): de-
sign and first-year review. Peer] Computer Science 4:e147 DOI 10.7717/peerj-cs.147.

Task Group on Data Citation Standards and Practices. 2013. Out of cite, out of mind:
the current state of practice, policy, and technology for the citation of data. Data
Science Journal 12:CIDCR1-CIDCR?7.

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 41/42

https://peerj.com
http://dx.doi.org/10.1145/1852786.1852802
http://dx.doi.org/10.1145/3134720
http://dx.doi.org/10.5281/zenodo.2585783
http://dx.doi.org/10.1145/2063348.2063374
https://urssi.us/blog/2018/08/23/report-from-the-first-urssi-workshop/
https://urssi.us/blog/2018/08/23/report-from-the-first-urssi-workshop/
http://dx.doi.org/10.1001/jama.1990.03450140079039
https://github.blog/2021-08-19-enhanced-support-citations-github/
https://github.blog/2021-08-19-enhanced-support-citations-github/
http://dx.doi.org/10.7717/peerj-cs.86
http://dx.doi.org/10.7717/peerj-cs.147
http://dx.doi.org/10.7717/peerj-cs.963

PeerJ Computer Science

The OBO Foundry. 2020. Contributor Role Ontology. Available at http://purl.obolibrary.
org/obo/cro.owl.

Tourani P, Adams B, Serebrenik A. 2017. Code of conduct in open source projects.
In: 2017 IEEE 24th international conference on software analysis, evolution and
reengineering (SANER). Piscataway: IEEE, 24-33.

Vasilescu B, Posnett D, Ray B, van den Brand MG, Serebrenik A, Devanbu P, Filkov
V. 2015. Gender and tenure diversity in GitHub teams. In: Proceedings of the 33rd
annual ACM conference on human factors in computing systems. New York: ACM,
3789-3798.

Weber M. 2018. The effects of listing authors in alphabetical order: a review of the
empirical evidence. Research Evaluation 27(3):238-245 DOI 10.1093/reseval/rvy008.

Wiese I, Polato I, Pinto G. 2020. Naming the pain in developing scientific software. IEEE
Software 37(4):75-82 DOI 10.1109/MS.2019.2899838.

Wilson R. 2013. Encouraging citation of software introducing CITATION files. Software
Sustainability Institute. Available at https://www.software.ac.uk/blog/2016-10-06-
encouraging- citation-software-introducing-citation-files.

Carver et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.963 42/42

https://peerj.com
http://purl.obolibrary.org/obo/cro.owl
http://purl.obolibrary.org/obo/cro.owl
http://dx.doi.org/10.1093/reseval/rvy008
http://dx.doi.org/10.1109/MS.2019.2899838
https://www.software.ac.uk/blog/2016-10-06-encouraging-citation-software-introducing-citation-files
https://www.software.ac.uk/blog/2016-10-06-encouraging-citation-software-introducing-citation-files
http://dx.doi.org/10.7717/peerj-cs.963

