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This paper provides a new tool for examining the efficiency and robustness of derivative-
free optimization algorithms based on high-dimensional normalized data profiles that test
a variety of performance metrics. Unlike the traditional data profiles that examine a single
dimension, the proposed data profiles require several dimensions in order to analyze the
relative performance of different optimization solutions. To design a used case, we utilize
five sequences (solvers) of trigonometric simplex designs that extract different features of
non-isometric reflections, as an example to show how various metrics (dimensions) are
essential to provide a comprehensive evaluation about a particular solver relative to
others. In addition, each designed sequence can rotate the starting simplex through an
angle to designate the direction of the simplex. This type of features extraction is applied
to each sequence of the triangular simplexes to determine a global minimum for a
mathematical problem. To allocate an optimal sequence of trigonometric simplex designs,
a linear model is used with the proposed data profiles to examine the convergence rate of
the five simplexes. Furthermore, we compare the proposed five simplexes to an optimized
version of the Nelder-Mead algorithm known as the Genetic Nelder-Mead algorithm
(Fajfaret al., 2017). The experimental results demonstrate that the proposed data profiles
lead to a better examination of the reliability and robustness for the considered solvers
from a more comprehensive perspective than the existing data profiles. Finally, the high-
dimensional data profiles reveal that the proposed solvers outperform the genetic solvers
for all accuracy tests.
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ABSTRACT12

This paper provides a new tool for examining the efficiency and robustness of derivative-free optimization

algorithms based on high-dimensional normalized data profiles that test a variety of performance metrics.

Unlike the traditional data profiles that examine a single dimension, the proposed data profiles require

several dimensions in order to analyze the relative performance of different optimization solutions. To

design a used case, we utilize five sequences (solvers) of trigonometric simplex designs that extract

different features of non-isometric reflections, as an example to show how various metrics (dimensions)

are essential to provide a comprehensive evaluation about a particular solver relative to others. In

addition, each designed sequence can rotate the starting simplex through an angle to designate the

direction of the simplex. This type of features extraction is applied to each sequence of the triangular

simplexes to determine a global minimum for a mathematical problem. To allocate an optimal sequence

of trigonometric simplex designs, a linear model is used with the proposed data profiles to examine the

convergence rate of the five simplexes. Furthermore, we compare the proposed five simplexes to an

optimized version of the Nelder-Mead algorithm known as the Genetic Nelder-Mead algorithm (Fajfar

et al., 2017). The experimental results demonstrate that the proposed data profiles lead to a better

examination of the reliability and robustness for the considered solvers from a more comprehensive

perspective than the existing data profiles. Finally, the high-dimensional data profiles reveal that the

proposed solvers outperform the genetic solvers for all accuracy tests.
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INTRODUCTION30

The growing success in developing derivative-free optimization (DFO) algorithms and applications has31

also motivated researchers over the past decades to provide new tools for DFO performance analysis.32

The purpose of these tools is that when a new DFO algorithm/solver is presented into the optimization33

literature, it is expected to comprehensively evaluate its performance against other similar algorithms.34

This is required to secure a fair comparison as a basis to evaluate the relative performance of different35

solvers. In addition, the developed measurement scheme for comparison between similar algorithms36

needs to examine the level of complexity in the algorithm design, and computes the computational budget37

required by the algorithm compared to others (Vince and Earnshaw, 2012).38

We are motivated by the observation that most algorithm developers are interested in testing one39

performance measure (one dimension). For example, some data profiles are designed to provide for users40

with information about the percentage of solved problems as a function of simplex gradient estimates41

(Moré and Wild, 2009). However, if the evaluation is expensive, one dimension may not provide useful42

information to capture how reliable a solver performs relative to the other solvers, as we will demonstrate43

later. In order to provide a comprehensive evaluation for the relative performance of multiple solvers, we44

introduce a collection of performance metrics to evaluate new algorithms and improve the existing data45
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profiles. Numerical results indicate that the proposed high-dimensional data profiles are more compact46

and effective in allocating a computational budget for different levels of accuracy.47

The focus of our work is exclusively on minimization problems. Such problems arise naturally in48

almost every branch of modern science and engineering. For example, pediatric cardiologists seek to49

delay the next operation as much as possible to identify the best shape of a surgical graft (Audet and Hare,50

2017). In this particular example, a number of variables can affect the objective function to treat and51

manage heart problems in children. Some are structural differences they are born with, such as holes52

between chambers of the heart, valve problems, and abnormal blood vessels. Others involve abnormal53

heart rhythms caused by the electrical system that controls the heart beat. Technically, we can write the54

minimum function value of f over the constraint set Ω in the form.55

min
x
{ f (x) : x ∈ Ω} (1)

Note that, the minimum function value could be:56

i. −∞: such as

min
x
{x1 : x ∈ R

3}

ii. A well-defined real number: such as

min
x
{‖x‖2 : x ∈ R

2
, x1 ∈ [−1,2], x2 ∈ [0,3]}

However, there are other equivalent forms. Suppose that a researcher is interested in obtaining an57

estimate of the point or set of points that determine the minimum function value z (Audet and Hare, 2017).58

We might instead seek the argument of the minimum:59

Argmin
x

{ f (x) : x ∈ Ω} : = {x ∈ Ω : f (x) = z} (2)

In particular, the argmin set can be:60

i. A singleton: such as

argmin
x

{‖x‖2 : x ∈ R
2
, x1 ∈ [−1,2], x2 ∈ [0,3]}= {[0,0]T}

ii. A set of points: such as

argmin
x

{sin(x) : x ∈ R, x1 ∈ [0,7]}= {0,π,2π}

One of the most common examples of derivative-free optimization algorithms is the Nelder Mead61

simplex gradient algorithm (1965) (NMa), which is one of the widely used algorithms for minimization62

problems (Barton and Ivey Jr, 1996; Lewis et al., 2000; Wright et al., 2010; Lagarias et al., 1998; Wouk63

et al., 1987). The notion of the NMa is based on creating a geometrical object, called simplex, in the64

hyperplanes of n-parameters. Then, this simplex performs reflections over the changing solution space of65

a mathematical problem until the coordinates of the minimum point can be obtained by one of its vertices66

(Spendley et al., 1962; Kolda et al., 2003).67

The contribution of the NMa is to incorporate the simplex search with non-isometric reflections,68

designed to accelerate the search (Lewis et al., 2000; Conn et al., 2009; Han and Neumann, 2006). It69

was well-understood that the non-isometric reflections of NMa were designed to deform the simplex70

in a better way to explore the solution space of mathematical functions (Lewis et al., 2000; Baudin,71

2009). Nevertheless, when the number of parameters under investigation increases, the simplex becomes72

increasingly distorted with each iteration, generating different geometrical formations that are less effective73

than the initial simplex design (Baudin, 2009; Torczon, 1989). In addition, McKinnon (1998) analyzed74
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the original NMa for strictly convex functions with up to three continuous derivatives. In all the objective75

functions, the NMa causes the sequence of the generated simplexes to converge to a non-stationary point.76

The NMa repeats inside construction steps with the best vertex remaining fixed; until the diameter of the77

simplex approximately shrinks to 0.78

A recent contribution to the NMa is the Genetic Nelder Mead algorithm (GNMa) that hybridizes NMa79

with genetic programming (Fajfar et al., 2017). The GNMa evolves improved vertices using cross-over80

and mutation operations to initialize new simplex designs better than the traditional method for initializing81

a simplex. Thus, the new algorithm generates many population-based simplexes with different shapes82

and keeps the best designs that have better features to locate an optimal solution. The authors have83

only one issue with the original NMa, which is the reduction step. They claim that this operation is84

inconsistent because it does not return a single vertex. They suggested that the reduction step should85

include exclusively the worst vertex and that, basically, the inner contraction can perform the job. The86

new implementation of the GNMa performs four operations: reflection, expansion, inner contraction, and87

outer contraction. In addition to the three basic vertices of the original NM, the authors add one more88

vertex, defined as the second best. The new vertex joins the other basic vertices to constitute a centroid89

different than the one that was defined by Nelder and Mead (1965). The GNMa forms the next simplex by90

reflecting the vertex that is associated with the highest value of the cost function (CF), in the hyperplane91

spread over the remaining vertices.92

The main aim of this research is to improve the existing data profiles by adding a variety of metric93

measures for testing DFO algorithms. In addition, we propose five sequences of trigonometric simplex94

designs that work separately to optimize the individual components of mathematical functions. To allocate95

the optimal sequence of the triangular simplex designs, a linear model with a window of 10 samples is96

proposed for evaluating the multiple simplexes (solvers) in the neighborhood of the minimum. The rest of97

this paper is organized as follows: The next section presents the theory of the sequential design of the98

trigonometric Nelder-Mead algorithm, and demonstrates a compact mathematical way of implementing99

the algorithm based on vector theory. Section 3 describes the importance of the initial simplex design,100

and presents the multidirectional trigonometric Nelder Mead algorithm (MTNMa). Section 4 presents101

data profiles and statistical experiments to compare the reliability and robustness of the MTNMa to that102

of the GNMa (Fajfar et al., 2017) on standard test functions (Moré et al., 1981). Finally, the conclusions103

are provided in section 5.104

HASSAN NELDER MEAD ALGORITHM105

We present in this section the theory of Hassan Nelder Mead algorithm (HNMa) (Musafer and Mahmood,106

2018; Musafer et al., 2020), and describe the importance of the dynamic properties of the algorithm107

that make it appropriate solution for unconstrained optimization problems. The sequential trigonometric108

simplex design of the HNMa allows components of the reflected vertex to adapt to different operations; by109

breaking down the complex structure of the simplex into multiple triangular simplexes. This is different110

from the original NMa that forces all components of the simplex to execute a single operation such111

as expansion. When different reflections characterize the next simplex, the HNMa performs similar112

reflections to that of the original simplex of the NMa and others with different orientations determined113

by the collection of non-isometric features. As a consequence, the generated sequence of triangular114

simplexes is guaranteed to search a higher proportion of the solution space and performs better than the115

original simplex of the NMa (Nelder and Mead, 1965).116

We now present a mathematical way of analyzing the HNMa using vector theory, and explain why117

the original NMa fails in some instances to find a minimal point or converges to a non-stationary point.118

For example, suppose that we want to determine the minimum of a function f . The function f (x,y) is119

calculated at vertices that are subsequently arranged in ascending order with respect to the CF values, such120

that: A(x1,y1)< B(x2,y2)<C(x3,y3)< T h(x4,y4), where A,B, and C are the vertices of the triangular121

simplex with respect to the lowest, 2nd lowest, and 2nd highest CF values, and T h is a threshold that has122

the highest CF value. The need for the T h is when the HNMa performs a reflection in a dimension (such123

as x) of the solution space of the f (x,y), the computed value in that dimension replaces the axial value124

of (x) in the T h. Once the axial values of the T h(x,y) are updated, and the position of the T h leads to125

lower CF value than the previous CF value of the T h, then the HNMa moves to upgrade the T h. After126

upgrading the T h point with a variety of non-isometric reflections, the HNMa examines the T h to validate127

if the resulted T h has a lower CF value than C to be replaced with C or the HNMa needs to upgrade the128

3/26PeerJ Comput. Sci. reviewing PDF | (CS-2021:01:57359:2:0:NEW 12 Mar 2022)

Manuscript to be reviewedComputer Science



T h only. This technique of exploring the neighborhood of a minimum is to search the optimal pattern that129

can be followed and result in a better approach to the minimum.130

Figure 1. I − the geometrical analysis of an HNMa based on vector theory (Musafer and Mahmood,

2018), II − the basic six operations of an HNMa (Musafer et al., 2020).

To construct a triangular simplex of the HNMa, we need to find three key midpoints: H, I, and G,131

as seen in Figure 1 part−I. They are found by calculating the average coordinates of the connected line132

segments (A and B), (A and C), and (C and H) respectively. Hence to simplify the problem, our analysis133

depends on the combinations of x−components and y−components (if there are more components, then134

we append the following equations with the additional axial components), to satisfy,135

H(x5,y5) =
A+B

2
=

(

x5 =
x1 + x2

2
,y5 =

y1 + y2

2

)

(3)

I(x6,y6) =
A+C

2
=

(

x6 =
x1 + x3

2
,y6 =

y1 + y3

2

)

(4)

G(x7,y7) =
H +C

2
=

(

x7 =
x5 + x3

2
,y7 =

y5 + y3

2

)

(5)

Note that to find the reflected point D, we add the vectors H and d, as shown in Figure 1 part-I, where d136

is the vector that can be represented by subtracting any of the vectors (H and C),(D and H),(E and D) or137

(F and G). The coordinates of D are obtained by adding the vectors (H and d). The vector formula is138

given below.139
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D = H +d = H +(H −C) = 2H −C = (2x5 − x3,2y5 − y3) (6)

A similar process could be used to find the coordinates of E and F . The formulas are stated below.140

E = H +2d = H +2(H −C) = 3H −2C = (3x5 −2x3,3y5 −2y3) (7)

F = H +d1 = H +(H −G) = 2H −G = (2x5 − x7,2y5 − y7) (8)

where d1 can be found by subtracting any of the vectors (G and C),(H and G),(F and H) or141

(D and F). Hence, the HNMa does not have a shrinkage step; instead, two operations are added to the142

algorithm: shrink from worse to best I(x6,y6) and shrink from good to best H(x5,y5). The basic six143

reflections of the HNMa are shown in Figure 1 part-II.144

It is noteworthy to mention that a combination of x−components of the HNMa results in the extraction145

one of the six non-isometric reflections. Now, if we consider two combinations (such as x and y) or146

more, then the simplex as in the case of the HNMa performs two reflections or more. Thus, the multiple147

components of the triangular simplex adapt to extract various non-isometric features of the HNMa.148

Therefore, the optimization solution of the HNMa reflects the opposite side of the simplex through the149

worse vertex and leads to the implementation of reflections determined by the collection of extracted150

features. For example, suppose we need to find the minimum of a function f (x,y). A solution of the NMa151

may come out to be reflection in x and y directions, whereas a solution of the HNMa may come out to be152

reflection in x but expansion in y. It can be a combination of any two reflections of the HNMa. In fact,153

the HNMa is designed to deform its simplex in a way that is more adaptive to tackle the optimization154

problems than the original simplex of the NMa. The triangular simplexes of the HNMa extract different155

non-isometric reflections from different dimensions; therefore, the reflected vertex is rotated through an156

angle to produce simplexes that lead to faster convergence rates than the original triangular simplex of the157

NMa.158

MULTIDIRECTIONAL TRIGONOMETRIC NELDER MEAD159

The Nelder and Mead algorithm is particularly sensitive to the position of the initial simplex design,160

where the variable-shape simplex is modified at each iteration using one of four linear operations:161

reflection, expansion, contraction, and shrinkage. The geometrical shape of the simplex subsequently162

becomes distorted as the algorithm moves towards a minimal point by generating different geometrical163

configurations that are less effective than the initial simplex design. To address this need, one of the164

preferred designs is to build the initial simplex with equal length edges (Martins and Lambe, 2013). In165

this way, the unit simplex of dimension n is shifted from the origin to the initial guess. Suppose that the166

length of all sides of the simplex is required to be l. The given starting point x0 of dimension n, is the167

initial vertex v1 = x0. We define the parameters a,b > 0 as follows:168

b =
l

n
√

2
(
√

n+1−1) (9)

a = b+
l√
2

(10)

The remaining vertices are computed by adding a vector to x0; whose components are all (b) values169

except for the jth component that is assigned to (a), where j = 1,2, ...,n, and i = 2,3, ...,n+1, as follows.170

vi, j =

{

x0, j +a if j = i−1

x0, j +b if j 6= i−1
(11)

The risk is that if the coordinate’s direction of the constructed initial simplex is perpendicular to171

the direction towards the minimal point, then the algorithm performs a large number of reflections or172
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converges to a non-stationary point (McKinnon, 1998). The practical problem of designing such an initial173

simplex lies in two parameters: the initial length and the orientation of the simplex. As a result, this174

simplex is not very effective, especially for problems that involve more than 10 variables (Martins and175

Lambe, 2013).176

Alternatively, the most popular way of initializing a simplex is Pfefferś method, which is due to L.177

Pfeffer at Stanford (Baudin, 2009). The method is heuristic and builds the initial simplex with respect to178

the characteristics of the starting point x0. The method adjusts the orientation and size of a simplex by179

modifying the values of usual delta (δu) and zero term delta (δz) elements. Pfefferś method is presented180

in (Fan, 2002) and used in the ”fminsearch” function from the ”neldermead package” (Bihorel et al.,181

2018). To build a simplex as suggested by L.Pfeffer, the initial vertex is set to v1 = x0, and the remaining182

vertices are obtained as follows,183

vi, j =







x0, j +δu ∗ x0, j ∗ i if j = i−1 and x0, j 6= 0

δz if j = i−1 and x0, j = 0

x0, j if j 6= i−1

(12)

The positive constant coefficients of δz and δu are selected to scale the initial simplex with the184

characteristic length and orientation of the x0. The vertices are i = 2,3, ...,n+1, and the parameters of the185

vertices are j = 1,2, ...,n. If the constructed simplex is flat or is not in the same direction as an optimal186

solution, then this initial simplex may fail to drive the process towards an optimum or require to perform187

a large number of simplex evaluations. Therefore, the selection of a good starting vertex can greatly188

improve the performance of the NMa.189

On the contrary, our strategy is to allow the components of the reflected vertex to perform different190

reflections of the HNMa. This means that each triangular simplex performs one type of reflections191

regardless of the reflections implemented by the other triangular simplexes. Therefore, we form the initial192

triangular simplexes with similar scaling characteristics and with respect to the features of the starting193

point. In addition, we reinforce the traditional simplex design of the HNMa with four additional simplex194

designs. The five simplexes are multidirectional and designed to explore the solution space and allocate195

distinct non-isometric reflections and phase rotations for approaching a global minimal value.196

To initialize a simplex of the HNMa (Musafer and Mahmood, 2018), Equation (12) is modified to be197

consistent with the new requirements of the HNMa, as follows.198

vi, j (Solver1) =

{

x0, j +δu ∗ x0, j ∗ i if x0, j 6= 0

x0, j +δz ∗ i if x0, j = 0
(13)

According to Gao and Han (2012), the default parameter values for δu and δz are 0.05 and 0.00025199

respectively. The indices of the HNMa simplex used are i = 2, ...,5, and j = 1,2, ...,n (Musafer and200

Mahmood, 2018).201

In this test, we are more interested in launching multiple sequences of trigonometric simplex designs202

that extract various non-isometric reflections and perform different phase rotations. Each sequence is203

designed to rotate the starting simplex through an angle that designates the direction of the simplex.204

The proposed MTNMa enhances the standard HNMa of constructing a simplex by adding other designs205

for high performing optimization algorithm. We will demonstrate how solvers of the MTNMa extract206

different features of non-isometric reflections and converge to a minimum with a smaller computational207

budget as compared to the previously discussed methods of simplex designs. Key to this outcome is208

the mathematical model of the MTNMa designed to determine the optimal features of non-isometric209

reflections that result in better approximate solutions as compared to optimized versions of simplex210

designs.211

One of the potential simplex designs is to multiply the odd-indexed variables of odd-indexed vertices212

by (-1); the values of δz and δu are modified to perform a reflection in the y-components of the triangular213

simplexes of Solver1. The formula is as follows:214

vi, j (Solver2) =











x0, j +(−1) j ∗δu ∗ x0, j ∗ i∗ mod (
i+ j

2
) if x0, j 6= 0 and mod (

i+ j

2
) = 1

x0, j +(−1) j ∗δz ∗ i∗ mod (
i+ j

2
) if x0, j = 0 and mod (

i+ j

2
) = 1

(14)
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Similarly, we can obtain a mirror image of the above formula if we apply the transformation on the215

even components of x0 to generate new vertices. Solver4 performs a reflection in the x-components of the216

triangular simplexes of Solver1. The corresponding equation is as follows.217

vi, j (Solver4) =











x0, j +(−1) j+1 ∗δu ∗ x0, j ∗ i∗ mod (
i+ j

2
) if x0, j 6= 0 and mod (

i+ j

2
) = 0

x0, j +(−1) j+1 ∗δz ∗ i∗ mod (
i+ j

2
) if x0, j = 0 and mod (

i+ j

2
) = 0

(15)

A different way to create a simplex design that differs from Solver1, Solver2, and Solver4, is to push218

some or all the points of the Solver1 towards the negative (x and y) axes to constitute Solver3 or towards219

the positive axes to constitute Solver5. Hence, Solver3 rotates the triangular simplexes of Solver1 by 180220

degrees about the origin, which is obtained by multiplying the odd and even components of (x and y) by221

(-1). Similarly, Solver5 is designed to adjust the simplexes of Solver1 to perform a reflection in x-axis,222

y-axis, or origin, which is obtained by taking the absolute value of the triangular simplexes of Solver1.223

The corresponding formulas are as follows:224

vi, j (Solver3) =

{

x0, j −δu ∗ x0, j ∗ i if x0, j 6= 0

x0, j −δz ∗ i if x0, j = 0
(16)

vi, j (Solver5) =

{

x0, j +δu ∗‖x0, j‖∗ i if x0, j 6= 0

x0, j +δz ∗ i if x0, j = 0
(17)

To monitor and evaluate a sequence of trigonometric simplex design, we need to know two points225

that the simplex has passed through as well as the slope with respect to their CF values. Therefore,226

a window of size 10 points is used to examine the simplex performance. The window size is derived227

from our practical experience. One of the proposed solvers manages to locate the exact minimum for228

(Jennrich-Sampson) function within 22 simplex evaluations. Based on the evaluation of the direction229

vector, the simplex is either allowed to continue exploring the solution space or aborted. Consider a230

simplex that has passed through a window of 10-points, we need to know the first point P1(x1,y1) and the231

last point P10(x10,y10) of the window as well as the direction of the simplex. We can write this as a line in232

the parametric form by using vector notation.233

〈x,y〉= 〈x1,y1〉+ t〈mx,my〉 (18)

For the particular case, we can select 〈x1,y1〉= P1〈x1,y1〉, so the direction vector is found as follows:234

〈mx,my〉= P10〈x10,y10〉−P1〈x1,y1〉 (19)

If the coordinates of the direction vector equal zero, this indicates that all best points that the simplex235

(solver) has passed through had equal coordinates, then the simplex is aborted unless it satisfies a236

convergence test based on the resolution of the simulator. The observing process continues for all the237

sequences of triangular simplexes on the coordinate plane until the coordinates of the minimal point238

are found by one of the simplex designs that needs less computational budget than the others. Another239

advantage of using Equation (19), when combined with data profiles later to evaluate several solvers, this240

formula can be used as a criteria to stop a solver that cannot satisfy the convergence test within the given241

computational budget.242

COMPUTATIONAL EXPERIMENTS243

In this section, we present the test procedures that provide a comprehensive performance evaluation of244

the proposed algorithm. We follow two stages to carry out the experiments. In the first stage, we define245

the metrics that differentiate between the considered algorithms, which are summarized as follows: the246

accuracy of the algorithm compared to the actual minima, the wall-time to convergence (in seconds),247
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the number of function evaluations, the number of simplex evaluations, and identification of the best248

sequence of trigonometric simplex designs. In addition, we adopt the guidelines designed by Moré et al.249

(1981), to evaluate the reliability and robustness of unconstrained optimization software. These guidelines250

utilize a set of functions exposed to an optimization algorithm to observe weather the algorithm is tuned251

to particular functions that belong to one type of optimization class or not. For this purpose, Moré et al.252

(1981) introduced a large collection of different optimization functions for evaluating the reliability and253

robustness of unconstrained optimization software. The features of the test functions cover three classes:254

nonlinear least squares, unconstrained minimization, and systems of nonlinear equations.255

The second stage involves normalized data profiles suggested by Moré and Wild (2009) with a256

convergence test given by the formula (20). The function of data profiles is to provide an accurate view of257

the relative performance of multiple solvers belonging to different algorithms when there are constraints258

on the computational budget.259

f (x0)− f (x)≥ (1− τ)( f (x0)− fL) (20)

where x0 is the starting point for the solution of a particular problem p, p ∈ P (P is a set of benchmark260

problems), fL is the smallest CF value obtained for the problem by any solver within a given number of261

simplex gradient evaluations, and τ = 10−k is the tolerance with k ∈ {3,5,7} for short-term outcomes.262

These include changes in adaptation, behavior, and skills of derivative-free algorithms that are closely263

related to examining the efficiency and robustness of optimization solvers at different levels of accuracy.264

In this research, however, the MTNMa launches multiple solvers that compute a set of approximate265

solutions. The definition of the convergence test (20) is independent of determining the different opti-266

mization solvers that satisfy a certain accuracy, as in the case of algorithms that generate multiple solvers.267

This is not realistic, solvers mostly cannot approximate to an optimal solution in a similar number of268

evaluations, thereby some solvers may push the process faster towards the optima than others. Therefore,269

we use a linear model that has already been defined as the criteria for stopping the algorithm if one of the270

solvers satisfies a convergence test within a limited computational budget. Assume that we have a set271

of optimization solvers S converging to best possible solution fL obtained by any solver within a given272

number of simplex evaluations. The convergence test used for measuring several relative distances to273

optimality can be defined with respect to s, (s ∈ S), we might instead write the convergence test in the274

following form:275

f (x0)− f s(x)≥ (1− τ)( f (x0)− fL) (21)

The previous work with data profiles has assumed that the number of simplex evaluations (one276

dimension) is the dominant performance measure for testing how well a solver performs relative to277

the other solvers (Moré and Wild, 2009; Audet and Hare, 2017). However, they did not investigate278

the performance of derivative free optimization solvers if a variety of metrics were used to evaluate279

the performance. If the cost unit is evaluated only using simplex evaluations, then this assumption is280

unlikely to hold, when the evaluation is expensive, as we will demonstrate later. In this case, we might281

instead define the performance measures to be the amount of computational time and number of simplex282

evaluations. Specifically, we define data profiles in terms of a variety of performance metrics, summarized:283

the amount of computational time T , the number of simplex evaluations W , the number of function284

evaluations Y , and the number of CPU cores Z required to satisfy the convergence test (21). We thus285

define the data profile of a solver s by the formula.286

ds(T,W,Z) =
1

‖P‖ size

{

p ∈ P :
ts(p)

np +1
≤ T,

ws(p)

np +1
≤W,

ys(p)

np +1
≤ Y,

zs(p)

np +1
≤ Z

}

(22)

where ‖P‖ denotes the cardinality of P, np is the number of variables p∈P, and ts(p),ws(p),ys(p) and287

zs(p) are the performance metrics for timing the algorithm, counting number of simplex evaluations,288

counting number of function evaluations, and counting number of CPU cores respectively.289

Altogether, the computational experiments are conducted to evaluate the MTNMa on a computer that290

has 1.8 GHz core i5 CPU and 4 GB RAM. Finally, C# language is used to implement the MTNMa and291

the experiments.292
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Discussion293

The HNMa generates a sequence of triangular simplexes that extract a collection of non-isometric294

reflections to calculate the next vertex. Each simplex crawls independently to adapt its shape to the295

solution space of unconstrained optimization problems. Therefore, the convergence speed per simplex296

varies from one iteration to another. A simplex in some cases explores the neighborhood to update297

its threshold, but moves only if the threshold is good enough to replace the worst point. However, in298

other cases the simplex continues to generate different triangular shapes and orientations. Therefore, the299

generated simplexes of the HNMa extract different features of non-isometric reflections to update the300

simplexes with optimal triangular shapes and rotations. In this way, the HNMa mimics an amoeba style301

of maneuvering from one point to another when approaching a target (minimal point). On the contrary,302

the NMa (Nelder and Mead, 1965) forces components of the reflected vertex to follow one of four linear303

operations (reflection, expansion, contraction, and shrinkage). When the next vertex is characterized by304

one operation (one type of reflections), some dimensions of the reflected vertex depart for less optimal305

values. This problem obviously appears in high-dimensional applications. Consequently, the simplex306

shapes of the NMa becomes less effective in high dimensions and tends to deteriorate rapidly with each307

iteration. The HNMa (Musafer and Mahmood, 2018) has proven to deliver a better performance than the308

traditional NMa, represented by a famous Matlab function, known as ”fminsearch”.309

To promote the traditional simplex design of the HNMa, MTNMa generates five sequences of310

trigonometric simplex designs. Some points in the initial sequence of triangular simplexes of HNMa311

(Equation 13) are perturbed and used as starting points to launch other simplex designs with different312

reflections. For example, (Equation 14) the triangular simplexes of Solver2 are obtained by reflecting the313

y-components of the triangular simplexes of Solver1, which is performed by multiplying the x-components314

of Solver1 by (-1). Similarly, (Equation 16) the triangular simplexes of Solver1 are rotated 180 degrees315

to constitute the triangular simplexes of Solver3 (same as reflection in origin), which is obtained by316

multiplying the (x and y) components of Solver1 by (-1). (Equation 15) the triangular simplexes of317

Solver4 are initialized by reflecting the x-components of the triangular simplexes of Solver1, which318

is achieved by multiplying the y-components of Solver1 by (-1). Finally, (Equation 17) the triangular319

simplexes of Solver5 are obtained by taking the absolute value of the triangular simplexes of Solver1.320

Solver5 can generate triangular simplexes by reflection in the x-coordinate, y-coordinate, or origin, or321

initialize triangular simplexes that are similar to that of the simplexes of Solver1. Figure 2 shows all the322

transformations on the (x and y) components of the traditional vertices of Solver1 to generate new vertices323

for Solver2, Solver3, Solver4, and Solver5. We assume that 3 arbitrary vertices of the triangular simplex324

(Solver1) shown in Figure 2 have component values (1, 2), (2, 1), and (3, 3).325

Figure 2. An example of different formations of Solver1.
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Numerical experiments in Table 1 are performed to test the efficiency and robustness of the MTNMa.326

The purpose of the computational study is to show that the definition of normalized data profiles for testing327

one dimension (such as simplex evaluations) in some cases is not an accurate measure for comparison328

between similar algorithms. Thus, one dimension may not reflect enough information to examine the329

efficiency and robustness of DFO solvers when similar algorithms generate multiple solvers and use330

the normalized data profiles to allocate the computational budget. For this reason, we propose high-331

dimensional normalized data profiles that serve as an accurate measure when comparing similar algorithms332

and help to allocate an accurate estimate of the computational budget for the compared algorithms. We333

choose to compare our proposed solution to GNMa (Fajfar et al., 2017) because GNMa is one of the334

best algorithms that utilizes the test functions of Moré et al. (1981) and utilizes normalized data profile335

that involves one dimension (simplex evaluations). The GNMa generates solvers in a tree-based genetic336

programming structure. The population size is initialized to 200 and evaluated recursively to produce337

the evolving simplexes. The GNMa is implemented using twenty 2.66 Ghz Core i5 (4 cores per CPU)338

machines (Fajfar et al., 2017). The authors assumed that a solution is acceptable if the fitness of the339

obtained solver is lower than 10−5. After running the computer simulation 20 times for 400 generations ,340

five genetically evolved solvers successfully satisfied the condition of the fitness. The optimal solver is341

determined to be (genetic solver1).342

Table 1. Summary of Experimental Results.

Test Function (n) GNMa MTNMa Actual Minima
(Acc.) (Best Solver)

(Function Ev.)

(Accuracy) (Best Solver)

(Function Ev.) (Simplex Ev.) (Time)

Rosenbrock (2) 0.0 (2) 0.0 (1) 0.0

(1516) (6963) (799) (0.0312)

Freudenstein−Roth (2) 48.9842 (1) 48.9842 (5) 48.9842

(425) (419) (47) (0.0200)

Powell badly scaled (2) 0.0 (1) 0.0 (1) 0.0

(1957) (9738) (694) (0.0156)

Brown badly scaled (2) 0.0 (1) 0.0 (2, 4, 5) 0.0

(1349) (1449, 1450, 1431) (196) (0.0155)

Beale (2) 0.0 (1) 0.0 (2, 4) 0.0

(683) (1935, 2029) (181) (0.0312)

Jennrich−Sampson (2) 124.362 (1) 124.362 (5) 124.362

(397) (212) (22) (0.0156)

Helical valley (3) 0.0 (2) 0.0 (3) 0.0

(7287) (22278) (1443) (0.1010)

Bard (3) 8.2148. . . 10-3 (2) 8.2148. . . 10-3 (4) 8.2148. . . 10−3

(1020) (1065) (72) (0.0156)

Gaussian (3) 1.1279. . . 10-8 (2) 1.1279. . . 10-8 (2, 4) 1.1279. . . 10−8

(567) (442, 467) (36) (0.0156)

Meyer (3) 87.9458 (1) 87.9483 (1) 87.9458

(4511) (3776182) (357780) (33.0791)

Box 3D (3) 0.0 (1) 2.7523. . . 10−29 (1) 0.0

(2430) (517602) (51060) (60.7032)

Gulf research (3) 2.4074. . . 10-35 (2) 1.5242. . . 10−26 (4) 0.0

(16186) (252305) (24600) (33.8493)

Powell singular (4) 1.9509. . . 10−61 (1) 0.0 (2) 0.0

(4871) (56958) (3878) (0.2031)

Wood (4) 0.0 (3) 3.9936. . . 10−30 (3) 0.0

(4648) (9871) (500) (0.0468)

Kowalik−Osborne (4) 3.0750. . . 10-4 (1) 3.0750. . . 10-4 (4) 3.0750. . . 10−4

(1206) (6224) (423) (0.0900)

Brown−Dennis (4) 85822.2 (1) 85822.2 (5) 85822.2

(1288) (1322) (76) (0.0781)

Quadratic (4) 0.0 (2) 0.0 (5) 0.0

(13253) (19403) (1384) (0.0468)
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Penalty I (4) 2.2499. . . 10-5 (5) 2.2499. . . 10-5 (4) 2.2499. . . 10−5

(7854) (293609) (19379) (0.7656)

Penalty II (4) 9.3762. . . 10-6 (1) 9.3762. . . 10-6 (2) 9.3762. . . 10−6

(5322) (11056770) (710865) (65.8583)

Osborne 1 (5) 5.4648. . . 10-5 (1) 5.6507. . . 10−5 (4) 5.4648. . . 10−5

(2790) (2434886) (134400) (56.4898)

Brown−linear (5) 0.0 (1) 1.1044. . . 10−28 (5) 0.0

(2788) (18023) (920) (0.1093)

Extended Rosenbrock (6) 3.9443. . . 10−31 (1) 0.0 (2) 0.0

(7494) (7742) (210) (0.0468)

Watson (6) 2.2876. . . 10-3 (1) 2.2887. . . 10−3 (1) 2.2876. . . 10−3

(5151) (2831174) (123040) (150.0159)

Brown almost linear (7) 4.4373. . . 10-31 (3) 3.1000. . . 10−26 (4) 0.0

(11638) (124461) (4520) (0.5203)

Brown almost linear (7) ∗ 1.0000 (2) 1.0000

∗ (152257) (5177) (0.5203)

Quadratic (8) 0.0 (1) 3.0913. . . 10−320 (1) 0.0

(39785) (39149) (1410) (0.1240)

Extended Rosenbrock (8) 2.7523. . . 10−29 (1) 0.0 (2) 0.0

(19164) (10144) (210) (0.0680)

Variably dimensioned (8) 8.0365. . . 10−30 (2) 0.0 (5) 0.0

(9336) (5158) (164) (0.0468)

Extended Powell singular (8) 9.7234. . . 10−61 (1) 4.9406. . . 10-324 (4) 0.0

(20353) (168349) (5190) (1.2031)

Extended Rosenbrock (10) 9.0484. . . 10−29 (1) 0.0 (2) 0.0

(36268) (12546) (210) (0.0937)

Penalty I (10) 7.0876. . . 10-5 (2) 7.6334. . . 10−5 (1) 7.0876. . . 10−5

(25735) (1987) (40) (0.0468)

Penalty II (10) 2.9411. . . 10−4 (2) 2.9404. . . 10-4 (1) 2.9366. . . 10−4

(51485) (26235588) (526010) (142.4195)

Trigonometric (10) 4.4735. . . 10−7 (2) 0.0 (5) 0.0

(7253) (13565) (320) (0.4218)

Osborne 2 (11) 4.0137. . . 10-2 (1) 4.0137. . . 10-2 (5) 4.0137. . . 10−2

(7381) (16271) (391) (2.3126)

Extended Powell singular (12) 5.7700. . . 10−58 (1) 6.4228. . . 10-323 (2) 0.0

(50117) (283723) (5770) (1.6563)

Quadratic (16) 0.0 (1) 0.0 (2, 4) 0.0

(112564) (9420, 9398) (140) (0.0780)

Quadratic (24) 8.0493. . . 10−173 (1) 5.0049. . . 10-280 (2, 4) 0.0

(158849) (105086) (1240) (0.7158)

Variably dimensioned (36) ∗ 1.3353. . . 10-15 (2) 0.0

∗ (34042) (160) (0.9626)

Extended Rosenbrock (36) ∗ 4.9895. . . 10-29 (1) 0.0

∗ (132771) (750) (3.1718)

Discrete integral (50) ∗ 1.9158. . . 10-26 (1) 0.0

∗ (40595) (200) (29.2100)

Trigonometric (60) ∗ 2.8095. . . 10-18 (2) 0.0

∗ (16471) (350) (51.1432)

Extended Powell singular (60) ∗ 4.2421. . . 10-201 (4) 0.0

∗ (1052158) (4290) (22.3512)

Broyden tridiagonal (60) ∗ 3.7846. . . 10-27 (3) 0.0

∗ (209538) (920) (5.7183)

Broyden banded (60) ∗ 1.0733. . . 10-29 (1) 0.0

∗ (95712) (390) (6.3707)

Extended Powell singular (100) ∗ 6.7816. . . 10-315 (1) 0.0

∗ (2753696) (6680) (109.2287)
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Table 1 illustrates the produced results by MTNMa to cover the procedures for testing the reliability343

and robustness of the MTNMa. The results in this research are compared to the best-known relevant344

results from the literature presented by Fajfar et al. (2017). According to the definition of the normalized345

data profile (Equation 21), fL is required to be determined, which is the best obtained results by any346

of the individual solvers of the algorithms (GNMa and MTNMa). Therefore, Table 1 includes the best347

results of the GNMa obtained by any of the five genetic evolved solvers (the optimal genetic solver1348

and the other four genetic solvers reported by Fajfar et al. (2017)) to secure a fair comparison between349

GNMa and MTNMa. The GNMa is not an ensemble of the five evolved solvers and for this reason we350

utilize the high dimensional normalized data profiles to compare the MTNMa to the individual evolved351

solvers of the GNMa. Moreover, we compare the MTNMa to the one based on our previous publication352

in (Musafer and Mahmood, 2018). The traditional triangular simplex of HNMa generates a simplex with353

specified edge length and direction that depends on the standard parameter values of δz and δu, which is354

similar to solver 1. Table 1 also shows the dimensions of the test functions n, the number of simplex and355

function evaluations, and the actual minima known for the functions. In addition, the starting points for356

the test functions of Moré et al. (1981) are specified as part of the testing procedure so that the relevant357

algorithms can easily be examined and observed to validate whether the considered algorithms are tuned358

to a particular category of optimization problems or not. The other vertices can be either randomly359

generated (Fajfar et al., 2017) or produced using a specific formula like Pfefferś method (Baudin, 2009).360

From the results given in Table 1, it can be seen that the proposed sequences of trigonometric simplex361

designs, in some cases, achieve a higher degree of accuracy for high dimensions than for less. For362

example, MTNMa performs better when optimizing Quadratic (16) as compared to Quadratic (8) in Table363

1. While in other cases, the MTNMa generates fewer simplexes to approximate a particular solution for364

high dimensions than for lower dimensions. For example, observe the number of simplex evaluations365

generated for Rosenbrock (6) compared to Rosenbrock (2) in Table 1. The behavior of the MTNMa in366

these problems is that when the dimensionality increases, the MTNMa manages to observe more patterns367

and find more combinations of the non-isometric features to form the reflected vertex. On the contrary,368

this is not the behavior of the GNMa, where the accuracy drops down and the algorithm performs a large369

number of simplex evaluations as it moves to higher dimensions. It can be observed also from Table 1370

that the MTNMa was successful in following curved valleys functions such as Rosenbrock function. In371

addition, the test shows that the MTNMa is able to generate the same number of simplexes to reach the372

exact minimum for Rosenbrock (6, 8, and 10).373

Thus testing MTNMa on much more complicated function such as Trigonometric (10) is useful374

because this function has approximately 120 sine and cosine functions added to each other. Even with375

the power of genetic programming, it is hard for the simplexes of the GNMa to progress in such an376

environment. However, since the proposed simplexes of the MTNMa have the angular rotation capability,377

they are capable of converging to minimums where amplitudes and angles are involved. Finally, we can378

see from Table 1 that the MTNMa can detect functions with multiple minimal values such as the Brown379

Almost Linear (7) function. In addition, the results indicate that the MTNMa outperforms the GNMa in380

terms of the accuracy tests for almost all high dimensional problems (more than or equal to 8).381

Figure 3 contains four data profiles with different dimensions of performance metrics. One of the382

aims of utilizing various performance measures is to provide complementary information for the relevant383

solvers as the function of the computational budget. This is required to secure a fair comparison between384

the MTNMa and GNMa. As shown in Figure 3−I, 3−II, and 3−IV the MTNMa needs to create 199385

simplexes and 4200 function evaluations to solve 100% of the problems at the level of accuracy 10−3.386

While the GNMa (genetic Solver1) needs to produce 2700 simplexes to solve approximately 100% of387

the problems at this level of accuracy based on the reported results in (Fajfar et al., 2017). Figure 3−III388

illustrates that the computational time takes about 1.3 sec for the MHNMa to generate 199 simplex389

evaluations.390

As it can be seen in Figure 4−I, 4−II and 4−IV, solvers of the MTNMa require fewer number of391

simplex and function evaluations than solvers of the GNMa to solve roughly 100% of the problems. For392

example, with a budget of 200 simplex gradients, 10225 function evaluations, and 2 sec. Solvers of393

the MTNMa solve 100% of the problems at accuracy (10−3), and solve almost 90% of the problems at394

accuracy (10−5). This is a significant difference in performance. In addition, the computational complexity395

of the MTNMa solvers is not expensive as compared as the computational time and complexity required396

to evolve the GNMa solvers. The GNMa involves high computational overhead that comes from exchange397
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Figure 3. Data profiles for the MTNMa shown for (τ = 10−3). I − Percentage of solved problems with

respect to the number of simplex gradients (W), II − Percentage of solved problems with respect to the

number of function evaluations (Y), III − Percentage of solved problems with respect to the number of

simplex gradients (W) and the computer time (T), IV − Percentage of solved problems with respect to the

number of simplex gradients (W) and the number of function evaluations (Y).

Figure 4. Data profiles for the MTNMa shown for (τ = 10−5). I − Percentage of solved problems with

respect to the number of simplex gradients (W), II − Percentage of solved problems with respect to the

number of function evaluations (Y), III − Percentage of solved problems with respect to the number of

simplex gradients (W) and the computer time (T), IV − Percentage of solved problems with respect to the

number of simplex gradients (W) and the number of function evaluations (Y).

vertices and features among the genetic simplexes and modernizing the current population with better398

offspring. The last major difference is that the optimization solutions of GNMa solvers in some functions399
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Figure 5. Data profiles for the MTNMa shown for (τ = 10−7). I − Percentage of solved problems with

respect to the number of simplex gradients (W), II − Percentage of solved problems with respect to the

number of function evaluations (Y), III − Percentage of solved problems with respect to the number of

simplex gradients (W) and the amount of computer time (T), IV − Percentage of solved problems with

respect to the number of simplex gradients (W) and the number of function evaluations (Y).

are not able to satisfy Equation (21) for this level of accuracy. For example, Trigonometric function (10)400

requires that the best possible reduction has to equal (10−8), which is beyond the skills of any of the401

genetic solvers of GNMa.402

From the sub-figures I, II and III given in Figure 5, it can be seen that the MTNMa solves roughly 91%403

of the problems with a computational budget of 605 simplex gradients , 16271 function estimates, and404

3.4 sec. for the accuracy level of (10−7). Another interesting observation on the data profiles shown in405

Figures 4 and 5, is that the proposed algorithm tends to provide similar performance, as well as generate a406

moderate number of simplex and function evaluations to approximate solutions for the levels of accuracy407

(10−5) and (10−7). As a result, the use of data profiles that incorporate several performance metrics is408

essential to differentiate between similar algorithms, and provide an accurate estimate for allocating a409

computational budget that does not rely on a single dimension such as simplex gradients.410

Detailed Analysis of the Five Solvers411

We have conducted further tests by analyzing the five multi-directional trigonometric simplex solver412

designs. These reveal that higher dimensional data profiles are essential to deciding which solver should413

be used with a limited computational budget.414

As shown in Figure 6−part I, the dominant solver is 2 and tends to be faster than others for the first415

400 simplex evaluations, solving almost 95% of the problems. In contrast, solvers (1 and 5) catch up416

after approximately 400 simplex evaluations, and outperform the others. The data profile of Figure 6−I417

shows also that solvers (1 and 5) require significantly fewer number of simplex gradients than solver2 to418

solve 100% of the problems. Nevertheless, this significant difference in performance is not true when two419

performance metrics or more are used to examine the reliability of the solvers.420

Figure 6−III illustrates, the cost unit per iteration (simplex evaluations (W) and time (T)) for solver 2421

is less expensive than the other solvers. This forms a strong argument as to how a solver, in some cases,422

may require a larger number of simplex gradients but may have the potential to take less time to solve423

100% of the test problems. Additional tests and analyzes shown in Figure 6−II and 6−III, indicate the424

strength of combining metric measures in data profiles, forming a clear view that the cost unit (function425

evaluations (Y) and T) for solver 2 is much less expensive than the other solvers. Even if solver 2 requires426

more simplex gradient evaluations, it is still more reliable than the others. The results shown in Figure427
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Figure 6. Data profiles for the five solvers shown for (τ = 10−3). I − Percentage of solved problems

with respect to the number of simplex gradients (W), II − Percentage of solved problems with respect to

the number of function evaluations (Y), III − Percentage of solved problems with respect to the number

of simplex gradients (W) and the amount of computer time (T), IV − Percentage of solved problems with

respect to the number of simplex gradients (W) and the number of function evaluations (Y).

6−IV are fully consistent with the data profiles of Figures 6−II and 6−III. Solver 2 stands out as being428

the best of the five solvers.429

In this particular case, comparison of dimensions (W and Y) is useful for exploring how the number430

of active simplexes of solvers (1, 2 and 5) changes with respect to the number of objective function431

evaluations. It is not obvious whether the overall performance of the solvers (1, 2, and 5) is almost432

entirely dependent on the number of objective function evaluations alone or not. If the number of function433

evaluations is the dominant dimension to achieve the presented results for Solver2, then the parameters (T434

and W) do not present independent dimensions and therefore T is dependent of Y in this particular case.435

This means that if the dimension T is removed from the profile, then remaining dimensions will show436

enough evidence to evaluate the five solvers.437

To examine the parameters (T and W), we consider the observation of the relative performance of438

Solver3 and Solver4. The data profile as shown in Figure 6−I indicates that Solver3 tends to produce less439

simplex evaluations than Solver4 to successfully solve the test problems. In contrast, the data profile in440

Figure 6−II reveals that Solver4 needs to perform significantly less function evaluations than Solver3 to441

successfully solve the test problems. This can be seen in Figure 6−III, where the data profile for the two442

dimensions (W for Y) is less computationally expensive for Solver4 than for Solver3. If we assume that443

the parameter T is dependent of Y, then the data profile shown in Figure 6−IV should confirm that the cost444

unit (W and T) is less computationally expensive for Solver4 than for Solver3. Whereas, the data profile445

shows that the cost unit per iteration (W and T) for Solver3 is slightly less than the cost unit for Solver4.446

Therefore, T is independent of Y because there is an additional (non-constant) overhead associated with447

the relative complexity of the 5 MTNMa solvers that is independent of the number of function evaluations.448

The additional overhead comes from the exploration process around the neighborhood of the best result,449

which depends on how efficient a solver to move in a direction towards the optimum.450

Solver3 requires higher function evaluations than Solver4, but takes less computational time to451

successfully solve the test problems. In this situation, Solver2 stands out as being the best of the five452

solvers because it requires fewer function evaluations and less computational time than the other solvers.453

This proves that the parameters (W, Y, and T) present independent dimensions for data profiling.454

The number of CPUs (Z) was not examined in our evaluation of the MTNMa and is included in455
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formula (22) for completeness. This dimension is significant if an optimiser is deployed in a distributed456

environment such as Amazon Web Services (AWS). In such a case, the number of nodes in the virtual457

cluster is an important aspect of the computational budget and the inclusion of Z assists in the allocation458

of optimal numbers of CPUs for different solvers and for specific levels of accuracy.459

On a final note, the additional tests for examining data profiles on the 5 solvers of the MTNMa have460

confirmed that we need to define the normalized data profiles on the basis of a collection of performance461

measures. If the data profiles are defined for one dimension, then the accuracy of the profiles can be462

strongly biased when the numbers of function evaluations are independent of the other dimensions463

(simplex evaluations and computational time).464

CONCLUSION465

In this work, we proposed five sequences of trigonometric simplex designs for high dimensional un-466

constrained optimization problems. In addition, each design extracts different non-isometric reflections467

and performs a rotation determined by the collection of the non-isometric reflections. When executing468

multiple solvers simultaneously, a linear model with a window of size 10 samples is suggested as the469

criteria by which a solver is aborted or continued based on the direction vector of the window. We also470

showed in this research that using a data profile based only on the number of simplex gradients (one471

dimension) for allocation of the computational budget and examination of the relative performance of472

multiple solvers is not appropriate when simplex (W), function (Y), and time (T) evaluations present473

independent dimensions for data profile. Therefore, the definition of the suggested data profile has to474

involve different performance metrics. Then, the normalized data profile can be used not only to examine475

the efficiency and robustness of derivative free optimization algorithms but also to measure the relative476

computational time and complexity among the algorithms. Finally, the experimental results demonstrate477

that the MTNMa solvers outperform the GNMa solvers in terms of such data profiles that depend on478

different performance metrics for all levels of accuracy. In the future work, we will examine how reliable479

and robust MTNMa to the state-of-the-art DFO algorithms, such as the NOMAD software that is designed480

for difficult blackbox optimization problems (Le Digabel, 2011).481
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APPENDIX586

This section summarizes some of the common test functions designed for testing unconstrained opti-587

mization algorithms. The test functions are grouped according to their artificial landscapes into three588

classes: systems of nonlinear equations, nonlinear least squares, and unconstrained minimization. Let589

f (x) be a nonlinear least squares problem whose terms exist in f1, f2, ..., fK , then f (x) is an unconstrained590

minimization problem such that591

f (x) =
K

∑
k=1

f 2
k (x) (23)

If K = n, then the problem is a system of nonlinear equations and can be summarised in the next592

equation.593

fk(x) = 0, 1 ≤ k ≤ n (24)

And if K > n, then the optimal conditions for Equation (23) are defined as a system of nonlinear594

equations such that595

K

∑
k=1

(

∂ fk(x)

∂xq

)

, 1 ≤ q ≤ n (25)

We follow a general format in the definition of the test functions to include the following elements596

such as name of function, description, standard starting point, and global minimum.597

1. Rosenbrock function (Rosenbrock, 1960)598

f1(x) = 10(x2 − x2
1), f2(x) = (1− x1)599

Description: The function is continuous, differentiable, non-separable, scalable, non-convex, and600

unimodal and has a long valley with very steep walls and almost flat bottom (Moré et al., 1981).601
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Dimensions: n = 2, K = 2.602

Standard starting point: x0 = (−1.2, 1).603

Global minimum: f (x) = 0 at (1, 1).604

2. Freudenstein and Roth function (Freudenstein and Roth, 1963)605

f1(x) =−13+ x1 +((5− x2)x2 −2)x2, f2(x) =−29+ x1 +((1+ x2)x2 −14)x2606

Description: The function is continuous, differentiable, non-separable, non-scalable, and multi-607

modal, and contains a long shaped-valley, and is designed to have different sensitivities of the608

different variables.609

Dimensions: n = 2, K = 2.610

Standard starting point: x0 = (0.5, −2).611

Global minimum: f (x) = 0 at (4, 5), and f (x) = 48.9842... at (= 11.4125..., −0.8968...).612

3. Powell badly scaled function (Powell, 1970)613

f1(x) = 104 · x1x2 −1, f2(x) = e−x1 + e−x2 −1.001614

Description: The function is continuous, differentiable, non-separable, non-scalable, and very flat615

near the global minimum point, and is used to test the optimization algorithm whether or not it can616

provide a sufficiently accurate estimate for the minimizer.617

Dimensions: n = 2, K = 2.618

Standard starting point: x0 = (0, 1).619

Global minimum: f (x) = 0 at (1.0981...10−5, 9.1061).620

4. Brown badly scaled function (Moré et al., 1981)621

f1(x) = x1 −106, f2(x) = x2 −2 ·10−6, f3(x) = x1x2 −2622

Description: The function is continuous, non-convex, differentiable, and non-separable, and623

classified under valley-shaped optimization problems.624

Dimensions: n = 2, K = 3.625

Standard starting point: x0 = (1, 1).626

Global minimum: f (x) = 0 at (106, 2 ·10−6).627

5. Beale function (Jamil and Yang, 2013)628

f1(x) = 1.5− x1(1− x2), f2(x) = 2.25− x1(1− x2), f3(x) = 2.625− x1(1− x2)629

Description: The function is continuous, differentiable, non-separable, non-scalable, and unimodal,630

and has sharp peaks at the corners.631

Dimensions: n = 2, K = 3.632

Standard starting point: x0 = (1, 1).633

Global minimum: f (x) = 0 at (3, 0.5).634

6. Jennrich and Sampson function (Jennrich and Sampson, 1968)635

f1(x), ..., fk(x) = 2+2− (ex1 + ex2), ...,2+2k− (ekx1 + ekx2)636

Description: The function is continuous, differentiable, non-separable, non-scalable, and multi-637

modal.638

Dimensions: n = 2, K = 10.639

Standard starting point: x0 = (0.3, 0.4).640

Global minimum: f (x) = 124.362... at (0.2578..., 0.2578...).641

7. Helical valley function (Fletcher and Powell, 1963)

f1(x) = 10(x3 −10 ·θ(x1,x2)), f2(x) = 10
(
√

x2
1 + x2

2 −1
)

, f3(x) = x3

θ(x1,x2) =







1
2π tan−1

(

x2
x1

)

, if x1 > 0

1
2π tan−1

(

x2
x1

)

+0.5, if x1 < 0
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Description: The function is continuous, differentiable, non-separable, scalable, and multimodal,642

and has a steep-sided helical valley in the direction of x3 (Figueroa and Schlick, 1992).643

Dimensions: n = 2, K = 3.644

Standard starting point: x0 = (−1, 0, 0).645

Global minimum: f (x) = 0 at (1, 0, 0).646

8. Bard function (Bard, 1970)647

f1(x), ..., fk(x) = ϑ1 −
(

x1 +
1

ϕ1·x2+ρ1·x3

)

, ...,ϑk −
(

x1 +
k

ϕk·x2+ρk·x3

)

648

where 1≤ k≤K, ϕk = 16−k, ρk =min(k,ϕk), and ϑk =(0.14, 0.18, 0.22, 0.25, 0.29, 0.32, 0.35,649

0.39, 0.37,0.58,0.73, 0.96, 1.34, 2.10, and 4.39).650

Description: The function is continuous, differentiable, non-separable, non-scalable, and multi-651

modal, and becomes flatter in the direction of x1 when the other two parameters x2 and x3 decrease.652

Dimensions: n = 3, K = 15.653

Standard starting point: x0 = (1, 1, 1).654

Global minimum: f (x) = 8.2148...10−3 at (0.0824..., 1.1332..., 2.3434...).655

9. Gaussian function (Moré et al., 1981)656

f1(x), ..., fk(x) = x1 · e(
−x2(ϕ1−x3)

2

2 )−ϑ1, ..., x1 · e(
−x2(ϕk−x3)

2

2 )−ϑk657

where 1≤ k ≤K, ϕk =
8−k

2
, and ϑk = (0.0009, 0.0044, 0.0175, 0.0540, 0.1295, 0.2420, 0.3521,658

0.3989, 0.3521,0.2420,0.1295, 0.0540, 0.0175, 0.0044, and 0.0009).659

Description: The function is continuous, differentiable, non-separable, non-scalable, and multi-660

modal.661

Dimensions: n = 3, K = 15.662

Standard starting point: x0 = (0.4, 1, 0).663

Global minimum: f (x) = 1.1279...10−8 at (0.3989..., 1.0000..., 0).664

10. Meyer function (Meyer, 1970)665

f1(x), ..., fk(x) = x1 · e(
x2

ϕ1+x3
)−ϑ1, ..., x1 · e(

x2
ϕk+x3

)−ϑk666

where 1 ≤ k ≤ K, ϕk = 45+5k, and ϑk = (34780, 28610, 23650, 19630, 16370, 13720, 11540,667

9744, 8261,7030,6005, 5147, 4427, 3820, 3307, and 2872).668

Description: The function is continuous, differentiable, non-separable, and non-scalable, and669

represents a thermistor problem. The values of ϑk represent the resistance of a thermistor as a670

function of temperature ϕk.671

Dimensions: n = 3, K = 16.672

Standard starting point: x0 = (0.02, 4000, 250).673

Global minimum: f (x) = 87.9458... at (0.005609..., 6181, 345.2).674

11. Gulf research and development function (Cox, 1969)675

f1(x), ..., fk(x) = e
(− |ϑ1 |

x3

x1
)−ϕ1, ..., e

(− |ϑk |
x3

x1
)−ϕk676

where 1 ≤ k ≤ K, ϕk =
k

100
, and ϑk = 25+(−50 · ln(ϕk))

2
3 − x2.677

Description: The function is continuous, differentiable, non-separable, non-scalable, and multi-678

modal, and has a very flat local minimum surrounded by a plateau, where the gradient is zero679

everywhere and the function equals 0.0385. This function is also known as Weibull function.680

Dimensions: n = 3, K = 100.681

Standard starting point: x0 = (5, 2.5, 0.15).682

Global minimum: f (x) = 0 at (50, 25, 1.5).683
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12. Box three-dimensional function (Box, 1966)684

f1(x), ..., fk(x) = e−ρ1·x1 − e−ρ1·x2 − x3

(

e−ρ1 − e−10·ρ1
)

, ..., e−ρk·x1 − e−ρk·x2 − x3

(

e−ρk − e−10·ρk
)

685

where 1 ≤ k ≤ K, and ρk = 0.1 · k.686

Description: The function is continuous, differentiable, non-separable, and multimodal, and pos-687

sesses an asymmetric curved valley.688

Dimensions: n = 3, K ≥ n.689

Standard starting point: x0 = (0, 10, 20).690

Global minimum: f (x) = 0 when K = 3, (1, 10, 1), (10, 1, −1), and (x1 = u, x2 = u, 0) where691

u ∈ R.692

13. Powell singular function (Powell, 1962)693

f1(x) = x1 +10x2, f2(x) =
√

5(x3 − x4), f3(x) = (x2 −2x3)
2, f4(x) =

√
10(x1 − x4)

2
694

Description: The function is continuous, differentiable, non-separable, scalable, convex, and695

unimodal, and also known as Powell quartic function (Steihaug and Suleiman, 2013). The function696

is difficult to minimize because the Hessian matrix at f (x) = 0 is doubly singular (Brent, 2013).697

Dimensions: n = 4, K = 4.698

Standard starting point: x0 = (3, −1, 0, 1).699

Global minimum: f (x) = 0 at (0, 0, 0, 0).700

14. Wood function (Colville, 2015)701

f1(x)= 10(x2−x2
1), f2(x)= 1−x1, f3(x)=

√
90(x4−x2

3), f4(x)= 1−x3, f5(x)=
√

10(x2+x4−2),702

f6(x) =
x2−x4√

10
703

Description: The function is continuous, differentiable, non-separable, and multimodal, and is704

rather like Rosenbrock but with four variables and a quartic objective function. Many nonlinear705

programming codes fail to find the global minimum (Brent, 2013).706

Dimensions: n = 4, K = 6.707

Standard starting point: x0 = (−3, −1, −3, −1).708

Global minimum: f (x) = 0 at (1, 1, 1, 1).709

15. Kowalik and Osborne function (KOWALIK and Osborne, 1968)710

f1(x), ..., fk(x) = ϑ1 − x1(ϕ
2
1+ϕ1·x2)

(ϕ2
1+ϕ1·x3+x4)

, ..., ϑk − x1(ϕ
2
k +ϕk·x2)

(ϕ2
k
+ϕk·x3+x4)

711

where 1≤ k≤K, ϑk =(0.1957, 0.1947, 0.1735, 0.1600, 0.0844, 0.0627, 0.0456, 0.0342, 0.0323,712

0.0235, and 0.0246), and ϕk =(4.0000, 2.0000, 1.0000,0.5000, 0.2500, 0.1670, 0.1250, 0.1000,713

0.0833, 0.0714, and 0.0625).714

Description: The function is continuous, differentiable, non-separable, non-scalable, and multi-715

modal, and arises from least squares fit of experimental data (Winfield, 1973).716

Dimensions: n = 4, K = 11.717

Standard starting point: x0 = (0.25, 0.39, 0.415, 0.39).718

Global minimum: f (x) = 3.0750...10−4 at (0.1928..., 0.1912..., 0.1230..., 0.1360...).719

16. Brown and Dennis function (Brown and Dennis, 1971)720

f1(x), ..., fk(x) = (x1 +ρ1 · x2 − eρ1)2 + (x3 + x4 · sin(ρ1)− cos(ρ1))
2, ..., (x1 +ρk · x2 − eρk)2 +721

(x3 + x4 · sin(ρk)− cos(ρk))
2

722

where 1 ≤ k ≤ K, and ρk =
k
5
.723

Description: The function is continuous, differentiable, non-separable, non-scalable, and unimodal,724

and resembles a convex quadratic (Yang et al., 2007).725

Dimensions: n = 4, K ≥ n.726
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Standard starting point: x0 = (25, 5, −5, −1).727

Global minimum: f (x) = 85822.2... when (K = 20), and x = (−11.594..., 13.203..., −0.403...,728

0.236...).729

17. Osborne 1 function (Osborne, 1972)730

f1(x), ..., fk(x) = ϑ1 − (x1 + x2 · e−ρ1·x4 + x3 · e−ρ1·x5) , ..., ϑk − (x1 + x2 · e−ρk·x4 + x3 · e−ρk·x5)731

where 1 ≤ k ≤ K, ρk = 10 · (k−1), and ϑk = (0.844, 0.908, 0.932, 0.936, 0.925, 0.908, 0.881,732

0.850, 0.818, 0.784, 0.751, 0.718, 0.685, 0.658, 0.628, 0.603, 0.580, 0.558, 0.538, 0.522,733

0.506, 0.490, 0.478, 0.467, 0.457, 0.448, 0.438, 0.431, 0.424, 0.420, 0.414, 0.411, and 0.406).734

Description: The function is continuous, differentiable, non-separable, non-scalable, and multi-735

modal, and has a very flat local minimum surrounded by a plateau, where the gradient is zero736

everywhere and the function equals 1.1060.737

Dimensions: n = 5, K = 33.738

Standard starting point: x0 = (0.5, 1.5, −1, 0.01, 0.02).739

Global minimum: f (x) = 5.4648...10−5 at x = (0.3754..., 1.9358..., −1.4647..., 0.01287...,740

0.02212...).741

18. Biggs EXP6 function (Biggs, 1971)742

f1(x), ..., fk(x) = x3 · e−ρ1·x1 − x4 · e−ρ1·x2 + x6 · e−ρ1·x5 − e−ρ1 + 5 · e−10·ρ1 − 3 · e−4·ρ1 , ..., x3 ·743

e−ρk·x1 − x4 · e−ρk·x2 + x6 · e−ρk·x5 − e−ρk +5 · e−10·ρk −3 · e−4·ρk744

where 1 ≤ k ≤ K, and ρk = 0.1 · k.745

Description: The function is continuous, differentiable, non-separable, non-scalable, and multi-746

modal, and involves K exponential functions that all have steep valleys (Figueroa and Schlick,747

1992).748

Dimensions: n = 6, K ≥ n.749

Standard starting point: x0 = (1, 2, 1, 1, 1, 1).750

Global minimum: f (x) = 0 at K = 13, x = (1, 10, 1, 5, 4, 3).751

19. Osborne 2 function (Osborne, 1972)752

f1(x), ..., fk(x) = ϑ1 −
(

x1 · e−ρ1·x5 + x2 · e−(ρ1−x9)
2x6 + x3 · e−(ρ1−x10)

2x7 + x4 · e−(ρ1−x11)
2x8

)

, ...,753

ϑk −
(

x1 · e−ρk·x5 + x2 · e−(ρk−x9)
2x6 + x3 · e−(ρk−x10)

2x7 + x4 · e−(ρk−x11)
2x8

)

754

where 1 ≤ k ≤ K, ρk =
(k−1)

10
, and ρk = (1.366, 1.191, 1.112, 1.013, 0.991, 0.885, 0.831, 0.847,755

0.786, 0.725, 0.746, 0.679, 0.608, 0.655, 0.616, 0.606, 0.602, 0.626, 0.651, 0.724, 0.649, 0.649,756

0.694, 0.644, 0.624, 0.661, 0.612, 0.558, 0.533, 0.495, 0.500, 0.423, 0.395, 0.375, 0.372, 0.391,757

0.396, 0.405, 0.428, 0.429, 0.523, 0.562, 0.607, 0.653, 0.672, 0.708, 0.633, 0.668, 0.645, 0.632,758

0.591, 0.559, 0.597, 0.625, 0.739, 0.710, 0.729, 0.720, 0.636, 0.581, 0.428, 0.292, 0.162, 0.098,759

and 0.054).760

Description: The function is continuous, differentiable, non-separable, non-scalable, and multi-761

modal.762

Dimensions: n = 11, K = 65.763

Standard starting point: x0 = (1.3, 0.65, 0.65, 0.7, 0.6, 3, 5, 7, 2, 4.5, 5.5).764

Global minimum: f (x) = 4.01377...10−2 at x = (1.3097..., 0.4312..., 0.6335..., 0.5993...,765

0.7532..., 0.9064..., 1.3654..., 4.8241..., 2.3989..., 4.5687..., 5.6753...).766
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20. Watson function (KOWALIK and Osborne, 1968)767

f1(x), ..., fk(x)=
n

∑
j=2

( j−1)x jϑ
j−2

1 −
(

n

∑
j=1

x jϑ
j−1

1

)2

−1, ...,
n

∑
j=2

( j−1)x jϑ
j−2

k −
(

n

∑
j=1

x jϑ
j−1

k

)2

−768

1, i f 1 ≤ k ≤ 29769

fk(x) = x1, i f k = 30, and fk(x) = (x2 − x2
1 −1), i f k = 31770

where 1 ≤ k ≤ K, and ϑk =
k

29
.771

Description: The function is continuous, differentiable, non-separable, scalable, and unimodal.772

This minimization problem is ill-conditioned and difficult to solve (Brent, 2013).773

Dimensions: 2 ≤ n ≤ 31, K = 31.774

Standard starting point: x0 = (0, ..., 0).775

Global minimum: f (x) = 2.2876...10−3 when (n = 6) and x = (−0.015725..., 1.012435...,776

−0.232992..., 1.260430..., −1.513729..., 0.992996...).777

f (x)= 1.39976...10−6 when (n= 9) and x=(−0.000015..., 0.999790..., 0.014764..., 0.146342...,778

1.000821..., −2.617731..., 4.104403..., −3.143612...,1.052627).779

f (x) = 4.72238...10−10 at (n = 12).780

21. Extended Rosenbrock function (Shang and Qiu, 2006)781

f 1
k (x) = 10(xk+1 − x2

k) i f (k mod 2) = 1782

f 2
k (x) = (1− xk−1) i f (k mod 2) = 0783

where 1 ≤ k ≤ K.784

Description: The function is continuous, differentiable, non-separable, scalable, multimodal, and785

non-convex (Shang and Qiu, 2006).786

Dimensions: n variable but even, K = n.787

Standard starting point: x0 = (−1.2, 1, ...,−1.2, 1).788

Global minimum: f (x) = 0 at x = (1, 1, ..., 1, 1).789

22. Extended Powell singular function (Steihaug and Suleiman, 2013)790

f 1
k (x) = (xk +10x2

k+1) i f (k mod 4) = 1791

f 2
k (x) =

√
5(xk+1 − xk+2) i f (k mod 4) = 2792

f 3
k (x) = (xk−1 −2xk)

2 i f (k mod 4) = 3793

f 4
k (x) =

√
10(xk−3 − xk)

2 i f (k mod 4) = 0794

where 1 ≤ k ≤ K.795

Description: The function is continuous, differentiable, non-separable, scalable, unimodal, and796

convex (Steihaug and Suleiman, 2013).797

Dimensions: n variable but a multiple o f 4, K = n.798

Standard starting point: x0 = (3, −1, 0, 1, ...,3, −1, 0, 1).799

Global minimum: f (x) = 0 at x = (0, 0, 0, 0, ..., 0, 0, 0, 0).800

23. Penalty I function (Moré et al., 1981)801

f1(x), ..., fk(x) =
√

10−5(x1 −1), ...,
√

10−5(xk −1), i f (1 ≤ k ≤ K −1)802

fk(x) =

(

n

∑
j=1

x2
j

)

− 1
4
, i f (k = K)803

where 1 ≤ k ≤ K.804

Description: The function is continuous, differentiable, non-separable, ill-conditioned, and difficult805

to solve.806

23/26PeerJ Comput. Sci. reviewing PDF | (CS-2021:01:57359:2:0:NEW 12 Mar 2022)

Manuscript to be reviewedComputer Science



Dimensions: n variable, K = n+1.807

Standard starting point: x0 = (1, 2, 3, 4) when n = 4, x0 = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10) when808

n = 10.809

Global minimum: f (x) = 2.2499...10−5 when (n = 4).810

f (x) = 7.0876...10−5 when (n = 10).811

24. Penalty II function (Moré et al., 1981)812

fk(x) = (xk −0.2), i f (k = 1)813

fk(x) =
√

10−5
(

e
xk
10 + e

xk−1
10 − e

k
10 − e

k−1
10

)

, i f (2 ≤ k ≤ K
2
)814

fk(x) =
√

10−5
(

e
xk−n+1

10 − e
1
10

)

, i f (K
2
< k ≤ K −1)815

fk(x) =

(

n

∑
j=1

(n− j+1)x2
j

)

−1, i f (k = K)816

where 1 ≤ k ≤ K.817

Description: The function is continuous, differentiable, non-separable, ill-conditioned, and difficult818

to solve.819

Dimensions: n variable, K = 2n.820

Standard starting point: x0 = (0.5, ...,0.5)821

Global minimum: f (x) = 9.3762...10−6 when (n = 4).822

f (x) = 2.9366...10−4 when (n = 10).823

25. Variably dimensioned function (Moré et al., 1981)824

fk(x) = (xk −1), i f (1 ≤ k ≤ K −2)825

fk(x) =
n

∑
j=1

j(x j −1), i f (k = K −1)826

fk(x) =

(

n

∑
j=1

j(x j −1)

)2

, i f (k = K)827

where 1 ≤ k ≤ K.828

Description: The function is continuous, differentiable, non-separable, and multimodel. The829

solution space is crossed flat area like U-curve (Tippayawannakorn and Pichitlamken, 2013).830

Dimensions: n variable, K = n+2.831

Standard starting point: x0 = (1− i
n
, ...), where (1 ≤ i ≤ n).832

Global minimum: f (x) = 0 at x = (1, ..., 1).833

26. Trigonometric function (Moré et al., 1981)834

fk(x) = n−
n

∑
j=1

cos(x j)+ k(1− cos(xk))− sin(xk)835

where 1 ≤ k ≤ K.836

Description: The function is continuous, differentiable, non-separable, scalable, and multimodel,837

and difficult to converge to the global minimum (Tippayawannakorn and Pichitlamken, 2013).838

Dimensions: n variable, K = n.839

Standard starting point: x0 = ( 1
n
, ...,

1
n
).840

Global minimum: f (x) = 0.841

24/26PeerJ Comput. Sci. reviewing PDF | (CS-2021:01:57359:2:0:NEW 12 Mar 2022)

Manuscript to be reviewedComputer Science



27. Brown almost linear function (Brown, 1969)842

fk(x) = xk +
n

∑
j=1

x j − (n+1), i f (1 ≤ k ≤ K −1)843

fk(x) =

(

n

∏
j=1

x j

)

−1, i f (k = K)844

where 1 ≤ k ≤ K.845

Description: The function is continuous, differentiable, non-separable, scalable, and unimodel.846

Dimensions: n variable, K = n.847

Standard starting point: x0 = (0.5, ..., 0.5).848

Global minimum: f (x) = 0 at x0 = (ρ, ..., ρ, ρ1−n), where ρ satis f ies (nρn − (n+1)ρn−1).849

f (x) = 1 at x0 = (0, ..., 0, n+1).850

28. Discrete boundary value function (More and Cosnard, 1976)851

fk(x) = 2x1 − x0 − x2 +
ρ2

1
2
(x1 +1 ·ρ1 +1)3

, ..., 2xk − xk−1 − xk+1 +
ρ2

k
2
(xk + k ·ρk +1)3

852

where 1 ≤ k ≤ K, ρk =
(

1
n+1

)

, and x0 = xK+1 = 0.853

Description: The function is continuous, differentiable, non-separable, non-scalable, and unimodel.854

Dimensions: n variable, K = n.855

Standard starting point: x0 = (1 ·ρ1(1 ·ρ1 −1), ... , k ·ρk(k ·ρk −1)).856

Global minimum: f (x) = 0.857

29. Discrete integral function (More and Cosnard, 1976)858

fk(x) = x1+
ρ1
2

(

(1−1 ·ρ1)
n

∑
j=1

1 ·ρ1(x j + j ·ρ1 +1)3 +1 ·ρ1

n

∑
j=1+1

(1− j ·ρ1)(x j + j ·ρ1 +1)3

)

,859

..., xk +
ρk
2

(

(1− k ·ρk)
n

∑
j=k

k ·ρk(x j + j ·ρ j +1)3 + k ·ρk

n

∑
j=k+1

(1− j ·ρ j)(x j + j ·ρ j +1)3

)

860

where 1 ≤ k ≤ K, ρk =
(

1
n+1

)

, and x0 = xK+1 = 0.861

Description: The function is continuous, differentiable, non-separable, non-scalable, and unimodel.862

Dimensions: n variable, K = n.863

Standard starting point: x0 = (1 ·ρ1(1 ·ρ1 −1), ... , k ·ρk(k ·ρk −1)).864

Global minimum: f (x) = 0.865

30. Broyden tridiagonal function (Broyden, 1965)866

fk(x) = x0 − (3−0.5x1)x1 +2x2 −1, ..., xk−1 − (3−0.5xk)xk +2xk+1 −1867

where 1 ≤ k ≤ K, and x0 = xK+1 = 0.868

Description: The function is continuous, differentiable, separable, scalable, and multimodel.869

Dimensions: n variable, K = n.870

Standard starting point: x0 = (−1, ..., −1).871

Global minimum: f (x) = 0.872

31. Broyden banded function (Broyden, 1971)873

fk(x) = (1+ x2
1)x1 +1−

2

∑
j=−4; j 6=1

(1+ x j)x j, ..., (1+ x2
k)xk +1−

k+1

∑
j=k−5; j 6=k

(1+ x j)x j874

where 1 ≤ k ≤ K, and (xk = 0), i f k ≤ 0, or k > K.875

Description: The function is continuous, differentiable, separable, scalable, and multimodel.876

Dimensions: n variable, K = n.877
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Standard starting point: x0 = (−1, ..., −1).878

Global minimum: f (x) = 0.879
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