
Submitted 27 January 2021
Accepted 4 April 2022
Published 22 July 2022

Corresponding author
Hassan Musafer,
hmusafer@bridgeport.edu

Academic editor
Jingbo Wang

Additional Information and
Declarations can be found on
page 29

DOI 10.7717/peerj-cs.960

Copyright
2022 Musafer et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

High-dimensional normalized data
profiles for testing derivative-free
optimization algorithms
Hassan Musafer1, Emre Tokgoz2 and Ausif Mahmood1

1 School of Computer Science and Engineering, University of Bridgeport, Bridgeport, CT, United States of
America

2 School of Engineering, Quinnipiac University, Hamden, CT, United States of America

ABSTRACT
This article provides a new tool for examining the efficiency and robustness of
derivative-free optimization algorithms based on high-dimensional normalized data
profiles that test a variety of performance metrics. Unlike the traditional data profiles
that examine a single dimension, the proposed data profiles require several dimensions
in order to analyze the relative performance of different optimization solutions. To
design a use case, we utilize five sequences (solvers) of trigonometric simplex designs
that extract different features of non-isometric reflections, as an example to show how
variousmetrics (dimensions) are essential to provide a comprehensive evaluation about
a particular solver relative to others. In addition, each designed sequence can rotate the
starting simplex through an angle to designate the direction of the simplex. This type of
features extraction is applied to each sequence of the triangular simplexes to determine
a global minimum for a mathematical problem. To allocate an optimal sequence of
trigonometric simplex designs, a linear model is used with the proposed data profiles
to examine the convergence rate of the five simplexes. Furthermore, we compare the
proposed five simplexes to an optimized version of the Nelder–Mead algorithm known
as the Genetic Nelder–Mead algorithm. The experimental results demonstrate that the
proposed data profiles lead to a better examination of the reliability and robustness for
the considered solvers from a more comprehensive perspective than the existing data
profiles. Finally, the high-dimensional data profiles reveal that the proposed solvers
outperform the genetic solvers for all accuracy tests.

Subjects Algorithms and Analysis of Algorithms, Optimization Theory and Computation
Keywords Normalized Data Profiles, Derivative-Free Optimization Algorithms, Nelder–Mead
simplex algorithm (1965)

INTRODUCTION
The growing success in developing derivative-free optimization (DFO) algorithms
and applications has also motivated researchers over the past decades to provide new
tools for DFO performance analysis. The purpose of these tools is that when a new
DFO algorithm/solver is presented into the optimization literature, it is expected to
comprehensively evaluate its performance against other similar algorithms. This is
required to secure a fair comparison as a basis to evaluate the relative performance of
different solvers. In addition, the developed measurement scheme for comparison between

How to cite this article Musafer H, Tokgoz E, Mahmood A. 2022. High-dimensional normalized data profiles for testing derivative-free
optimization algorithms. PeerJ Comput. Sci. 8:e960 http://doi.org/10.7717/peerj-cs.960

https://peerj.com/computer-science
mailto:hmusafer@bridgeport.edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.960
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.960

similar algorithms needs to examine the level of complexity in the algorithm design, and
computes the computational budget required by the algorithm compared to others (Vince
& Earnshaw, 2012).

We are motivated by the observation that most algorithm developers are interested in
testing one performance measure (one dimension). For example, some data profiles are
designed to provide for users with information about the percentage of solved problems as
a function of simplex gradient estimates (More & Wild, 2009). However, if the evaluation
is expensive, one dimension may not provide useful information to capture how reliable
a solver performs relative to the other solvers, as we will demonstrate later. In order to
provide a comprehensive evaluation for the relative performance of multiple solvers, we
introduce a collection of performance metrics to evaluate new algorithms and improve the
existing data profiles. Numerical results indicate that the proposed high-dimensional data
profiles are more compact and effective in allocating a computational budget for different
levels of accuracy.

The focus of our work is exclusively on minimization problems. Such problems arise
naturally in almost every branch of modern science and engineering. For example, pediatric
cardiologists seek to delay the next operation as much as possible to identify the best shape
of a surgical graft (Audet & Hare, 2017). In this particular example, a number of variables
can affect the objective function to treat and manage heart problems in children. Some are
structural differences they are born with, such as holes between chambers of the heart, valve
problems, and abnormal blood vessels. Others involve abnormal heart rhythms caused by
the electrical system that controls the heart beat. Technically, we can write the minimum
function value of f over the constraint set � in the form.

min
x
{f (x) : x ∈�}. (1)

Note that, the minimum function value could be:

i. −∞: such as

min
x
{x1 : x ∈R3

}.

ii. A well-defined real number: such as

min
x
{‖x‖2 : x ∈R2, x1 ∈ [−1,2], x2 ∈ [0,3]}.

However, there are other equivalent forms. Suppose that a researcher is interested in
obtaining an estimate of the point or set of points that determine the minimum function
value z (Audet & Hare, 2017). We might instead seek the argument of the minimum:

Argmin
x
{f (x) : x ∈�} := {x ∈� : f (x)= z} (2)

In particular, the argmin set can be:

i. A singleton: such as

argmin
x
{‖x‖2 : x ∈R2, x1 ∈ [−1,2], x2 ∈ [0,3]}= {[0,0]T }.

Musafer et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.960 2/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.960

ii. A set of points: such as

argmin
x
{sin(x) : x ∈R, x1 ∈ [0,7]}= {0,π,2π}.

One of the most common examples of derivative-free optimization algorithms is the
Nelder Mead simplex gradient algorithm (1965) (NMa), which is one of the widely used
algorithms for minimization problems (Barton & Ivey Jr, 1996; Lewis, Torczon & Trosset,
2000;Wright et al., 2010; Lagarias et al., 1998;Wouk et al., 1987). The notion of the NMa is
based on creating a geometrical object, called simplex, in the hyperplanes of n-parameters.
Then, this simplex performs reflections over the changing solution space of a mathematical
problem until the coordinates of the minimum point can be obtained by one of its
vertices (Spendley, Hext & Himsworth, 1962; Kolda, Lewis & Torczon, 2003).

The contribution of the NMa is to incorporate the simplex search with non-isometric
reflections, designed to accelerate the search (Lewis, Torczon & Trosset, 2000; Conn,
Scheinberg & Vicente, 2009; Han & Neumann, 2006). It was well-understood that the
non-isometric reflections of NMa were designed to deform the simplex in a better way
to explore the solution space of mathematical functions (Lewis, Torczon & Trosset, 2000;
Baudin, 2009). Nevertheless, when the number of parameters under investigation increases,
the simplex becomes increasingly distorted with each iteration, generating different
geometrical formations that are less effective than the initial simplex design (Baudin, 2009;
Torczon, 1989). In addition,McKinnon (1998) analyzed the original NMa for strictly convex
functions with up to three continuous derivatives. In all the objective functions, the NMa
causes the sequence of the generated simplexes to converge to a non-stationary point.
The NMa repeats inside construction steps with the best vertex remaining fixed; until the
diameter of the simplex approximately shrinks to 0.

A recent contribution to the NMa is the Genetic Nelder Mead algorithm (GNMa) that
hybridizes NMa with genetic programming (Fajfar, Puhan & Burmen, 2017). The GNMa
evolves improved vertices using cross-over and mutation operations to initialize new
simplex designs better than the traditional method for initializing a simplex. Thus, the new
algorithm generates many population-based simplexes with different shapes and keeps the
best designs that have better features to locate an optimal solution. The authors have only
one issue with the original NMa, which is the reduction step. They claim that this operation
is inconsistent because it does not return a single vertex. They suggested that the reduction
step should include exclusively the worst vertex and that, basically, the inner contraction
can perform the job. The new implementation of the GNMa performs four operations:
reflection, expansion, inner contraction, and outer contraction. In addition to the three
basic vertices of the original NM, the authors add one more vertex, defined as the second
best. The new vertex joins the other basic vertices to constitute a centroid different than
the one that was defined by Nelder & Mead (1965). The GNMa forms the next simplex by
reflecting the vertex that is associated with the highest value of the cost function (CF), in
the hyperplane spread over the remaining vertices.

The main aim of this research is to improve the existing data profiles by adding a variety
of metric measures for testing DFO algorithms. In addition, we propose five sequences of
trigonometric simplex designs that work separately to optimize the individual components

Musafer et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.960 3/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.960

of mathematical functions. To allocate the optimal sequence of the triangular simplex
designs, a linear model with a window of 10 samples is proposed for evaluating the
multiple simplexes (solvers) in the neighborhood of the minimum. The rest of this article
is organized as follows: The next section presents the theory of the sequential design of the
trigonometric Nelder–Mead algorithm, and demonstrates a compact mathematical way
of implementing the algorithm based on vector theory. ‘Multidirectional trigonometric
Nelder Mead’ describes the importance of the initial simplex design, and presents the
multidirectional trigonometric Nelder Mead algorithm (MTNMa). ‘Computational
experiments’ presents data profiles and statistical experiments to compare the reliability
and robustness of the MTNMa to that of the GNMa (Fajfar, Puhan & Burmen, 2017) on
standard test functions (More, Garbow & Hillstrom, 1981). Finally, the conclusions are
provided in ‘Conclusion’.

HASSAN NELDER MEAD ALGORITHM
We present in this section the theory of the Hassan Nelder Mead algorithm
(HNMa) (Musafer & Mahmood, 2018;Musafer et al., 2020), and describe the importance of
the dynamic properties of the algorithm thatmake it appropriate solution for unconstrained
optimization problems. The sequential trigonometric simplex design of the HNMa allows
components of the reflected vertex to adapt to different operations; by breaking down
the complex structure of the simplex into multiple triangular simplexes. This is different
from the original NMa that forces all components of the simplex to execute a single
operation such as expansion. When different reflections characterize the next simplex,
the HNMa performs similar reflections to that of the original simplex of the NMa and
others with different orientations determined by the collection of non-isometric features.
As a consequence, the generated sequence of triangular simplexes is guaranteed to search
a higher proportion of the solution space and performs better than the original simplex of
the NMa (Nelder & Mead, 1965).

We now present a mathematical way of analyzing the HNMa using vector theory,
and explain why the original NMa fails in some instances to find a minimal point or
converges to a non-stationary point. For example, suppose that we want to determine
the minimum of a function f . The function f (x,y) is calculated at vertices that are
subsequently arranged in ascending order with respect to the CF values, such that:
A(x1,y1)< B(x2,y2)< C(x3,y3)< Th(x4,y4), where A,B, and C are the vertices of the
triangular simplex with respect to the lowest, 2nd lowest, and 2nd highest CF values, and
Th is a threshold that has the highest CF value. The need for the Th is when the HNMa
performs a reflection in a dimension (such as x) of the solution space of the f (x,y), the
computed value in that dimension replaces the axial value of (x) in the Th. Once the axial
values of the Th(x,y) are updated, and the position of the Th leads to lower CF value
than the previous CF value of the Th, then the HNMa moves to upgrade the Th. After
upgrading the Th point with a variety of non-isometric reflections, the HNMa examines
the Th to validate if the resulted Th has a lower CF value than C to be replaced with C or
the HNMa needs to upgrade the Th only. This technique of exploring the neighborhood

Musafer et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.960 4/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.960

of a minimum is to search the optimal pattern that can be followed and result in a better
approach to the minimum.

To construct a triangular simplex of the HNMa, we need to find three key midpoints:
H ,I , and G, as seen in Fig. 1 part–I. They are found by calculating the average coordinates
of the connected line segments (A and B), (A and C), and (C and H) respectively. Hence
to simplify the problem, our analysis depends on the combinations of x–components and
y–components (if there are more components, then we append the following equations
with the additional axial components), to satisfy,

H (x5,y5)=
A+B
2
=

(
x5=

x1+x2
2

,y5=
y1+y2

2

)
(3)

I (x6,y6)=
A+C
2
=

(
x6=

x1+x3
2

,y6=
y1+y3

2

)
(4)

G(x7,y7)=
H+C

2
=

(
x7=

x5+x3
2

,y7=
y5+y3

2

)
(5)

Note that to find the reflected point D, we add the vectors H and d , as shown in Fig. 1
part-I, where d is the vector that can be represented by subtracting any of the vectors
(H and C),(D and H),(E and D) or (F and G). The coordinates of D are obtained by
adding the vectors (H) and (d). The vector formula is given below.

D=H+d =H+ (H−C)= 2H−C = (2x5−x3,2y5−y3) (6)

A similar process could be used to find the coordinates of E and F . The formulas are
stated below.

E =H+2d =H+2(H−C)= 3H−2C = (3x5−2x3,3y5−2y3) (7)

F =H+d1=H+ (H−G)= 2H−G= (2x5−x7,2y5−y7) (8)

where d1 can be found by subtracting any of the vectors (G and C),(H and G),(F and H)
or (D and F). Hence, the HNMa does not have a shrinkage step; instead, two operations
are added to the algorithm: shrink from worse to best I (x6,y6) and shrink from good to
best H (x5,y5). The basic six reflections of the HNMa are shown in Fig. 1 part-II.

It is noteworthy to mention that a combination of x–components of the HNMa
results in the extraction one of the six non-isometric reflections. Now, if we consider two
combinations (such as x and y) or more, then the simplex as in the case of the HNMa
performs two reflections or more. Thus, the multiple components of the triangular simplex
adapt to extract various non-isometric features of the HNMa. Therefore, the optimization
solution of the HNMa reflects the opposite side of the simplex through the worse vertex
and leads to the implementation of reflections determined by the collection of extracted

Musafer et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.960 5/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.960

Figure 1 I–The geometrical analysis of an HNMa based on vector theory (Musafer & Mahmood, 2018),
II–the basic six operations of an HNMa (Musafer et al., 2020).

Full-size DOI: 10.7717/peerjcs.960/fig-1

features. For example, suppose we need to find the minimum of a function f (x,y). A
solution of the NMa may come out to be reflection in x and y directions, whereas a
solution of the HNMa may come out to be reflection in x but expansion in y . It can be
a combination of any two reflections of the HNMa. In fact, the HNMa is designed to
deform its simplex in a way that is more adaptive to tackle the optimization problems than
the original simplex of the NMa. The triangular simplexes of the HNMa extract different
non-isometric reflections from different dimensions; therefore, the reflected vertex is
rotated through an angle to produce simplexes that lead to faster convergence rates than
the original triangular simplex of the NMa.

MULTIDIRECTIONAL TRIGONOMETRIC NELDER MEAD
The Nelder and Mead algorithm is particularly sensitive to the position of the initial
simplex design, where the variable-shape simplex is modified at each iteration using one of
four linear operations: reflection, expansion, contraction, and shrinkage. The geometrical
shape of the simplex subsequently becomes distorted as the algorithm moves towards a
minimal point by generating different geometrical configurations that are less effective
than the initial simplex design. To address this need, one of the preferred designs is to
build the initial simplex with equal length edges (Martins & Lambe, 2013). In this way, the

Musafer et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.960 6/32

https://peerj.com
https://doi.org/10.7717/peerjcs.960/fig-1
http://dx.doi.org/10.7717/peerj-cs.960

unit simplex of dimension n is shifted from the origin to the initial guess. Suppose that the
length of all sides of the simplex is required to be l . The given starting point x0 of dimension
n, is the initial vertex v1= x0. We define the parameters a,b> 0 as follows:

b=
l

n
√
2
(
√
n+1−1) (9)

a= b+
l
√
2

(10)

The remaining vertices are computed by adding a vector to x0; whose components are
all (b) values except for the jth component that is assigned to (a), where j = 1,2,...,n, and
i= 2,3,...,n+1, as follows.

vi,j =

{
x0,j+a if j = i−1
x0,j+b if j 6= i−1

(11)

The risk is that if the coordinate’s direction of the constructed initial simplex is
perpendicular to the direction towards the minimal point, then the algorithm performs a
large number of reflections or converges to a non-stationary point (McKinnon, 1998). The
practical problem of designing such an initial simplex lies in two parameters: the initial
length and the orientation of the simplex. As a result, this simplex is not very effective,
especially for problems that involve more than 10 variables (Martins & Lambe, 2013).

Alternatively, the most popular way of initializing a simplex is Pfefferś method, which
is due to L. Pfeffer at Stanford (Baudin, 2009). The method is heuristic and builds the
initial simplex with respect to the characteristics of the starting point x0. The method
adjusts the orientation and size of a simplex by modifying the values of usual delta (δu)
and zero term delta (δz) elements. Pfeffer’s method is presented in Fan (2002) and used
in the ‘‘fminsearch’’ function from the ‘‘neldermead package’’ (Bihorel, Baudin & Bihorel,
2018). To build a simplex as suggested by L.Pfeffer, the initial vertex is set to v1= x0, and
the remaining vertices are obtained as follows,

vi,j =

x0,j+δu ∗x0,j ∗ i if j = i−1 and x0,j 6= 0
δz if j = i−1 and x0,j = 0
x0,j if j 6= i−1

(12)

The positive constant coefficients of δz and δu are selected to scale the initial simplex with
the characteristic length and orientation of the x0. The vertices are i= 2,3,...,n+1, and
the parameters of the vertices are j = 1,2,...,n. If the constructed simplex is flat or is not
in the same direction as an optimal solution, then this initial simplex may fail to drive the
process towards an optimum or require to perform a large number of simplex evaluations.
Therefore, the selection of a good starting vertex can greatly improve the performance of
the NMa.

On the contrary, our strategy is to allow the components of the reflected vertex to
perform different reflections of the HNMa. This means that each triangular simplex
performs one type of reflections regardless of the reflections implemented by the other

Musafer et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.960 7/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.960

triangular simplexes. Therefore, we form the initial triangular simplexes with similar
scaling characteristics and with respect to the features of the starting point. In addition, we
reinforce the traditional simplex design of the HNMa with four additional simplex designs.
The five simplexes are multidirectional and designed to explore the solution space and
allocate distinct non-isometric reflections and phase rotations for approaching a global
minimal value.

To initialize a simplex of the HNMa (Musafer & Mahmood, 2018), Eq. (12) is modified
to be consistent with the new requirements of the HNMa, as follows.

vi,j (Solver1)=

{
x0,j+δu ∗x0,j ∗ i if x0,j 6= 0
x0,j+δz ∗ i if x0,j = 0

(13)

According to Gao & Han (2012), the default parameter values for δu and δz are 0.05
and 0.00025 respectively. The indices of the HNMa simplex used are i= 2,...,5, and
j = 1,2,...,n (Musafer & Mahmood, 2018).

In this test, we are more interested in launching multiple sequences of trigonometric
simplex designs that extract various non-isometric reflections and perform different phase
rotations. Each sequence is designed to rotate the starting simplex through an angle
that designates the direction of the simplex. The proposed MTNMa enhances the standard
HNMa of constructing a simplex by adding other designs for high performing optimization
algorithm. We will demonstrate how solvers of the MTNMa extract different features of
non-isometric reflections and converge to aminimumwith a smaller computational budget
as compared to the previously discussed methods of simplex designs. Key to this outcome
is the mathematical model of the MTNMa designed to determine the optimal features
of non-isometric reflections that result in better approximate solutions as compared to
optimized versions of simplex designs.

One of the potential simplex designs is to multiply the odd-indexed variables of odd-
indexed vertices by (-1); the values of δz and δu are modified to perform a reflection in the
y-components of the triangular simplexes of Solver1. The formula is as follows:

vi,j (Solver2)=

x0,j+ (−1)j ∗δu ∗x0,j ∗ i∗ mod (

i+ j
2

) if x0,j 6= 0 and mod (
i+ j
2

)= 1

x0,j+ (−1)j ∗δz ∗ i∗ mod (
i+ j
2

) if x0,j = 0 and mod (
i+ j
2

)= 1
(14)

Similarly, we can obtain a mirror image of the above formula if we apply the
transformation on the even components of x0 to generate new vertices. Solver4 performs a
reflection in the x-components of the triangular simplexes of Solver1. The corresponding
equation is as follows.

vi,j (Solver4)=

x0,j+ (−1)j+1 ∗δu ∗x0,j ∗ i∗ mod (

i+ j
2

) if x0,j 6= 0 and mod (
i+ j
2

)= 0

x0,j+ (−1)j+1 ∗δz ∗ i∗ mod (
i+ j
2

) if x0,j = 0 and mod (
i+ j
2

)= 0
(15)

A different way to create a simplex design that differs from Solver1, Solver2, and
Solver4, is to push some or all the points of the Solver1 towards the negative (x and
y) axes to constitute Solver3 or towards the positive axes to constitute Solver5. Hence,

Musafer et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.960 8/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.960

Solver3 rotates the triangular simplexes of Solver1 by 180 degrees about the origin, which
is obtained by multiplying the odd and even components of (x and y) by (−1). Similarly,
Solver5 is designed to adjust the simplexes of Solver1 to perform a reflection in x-axis,
y-axis, or origin, which is obtained by taking the absolute value of the triangular simplexes
of Solver1. The corresponding formulas are as follows:

vi,j (Solver3)=

{
x0,j−δu ∗x0,j ∗ i if x0,j 6= 0
x0,j−δz ∗ i if x0,j = 0

(16)

vi,j (Solver5)=

{
x0,j+δu ∗‖x0,j‖∗ i if x0,j 6= 0
x0,j+δz ∗ i if x0,j = 0

(17)

To monitor and evaluate a sequence of trigonometric simplex design, we need to know
two points that the simplex has passed through as well as the slope with respect to their CF
values. Therefore, a window of size 10 points is used to examine the simplex performance.
The window size is derived from our practical experience. One of the proposed solvers
manages to locate the exact minimum for (Jennrich-Sampson) function within 22 simplex
evaluations. Based on the evaluation of the direction vector, the simplex is either allowed
to continue exploring the solution space or aborted. Consider a simplex that has passed
through a window of 10-points, we need to know the first point P1(x1,y1) and the last
point P10(x10,y10) of the window as well as the direction of the simplex. We can write this
as a line in the parametric form by using vector notation.

〈x,y〉= 〈x1,y1〉+ t 〈mx ,my〉 (18)

For the particular case, we can select 〈x1,y1〉= P1〈x1,y1〉, so the direction vector is found
as follows:

〈mx ,my〉= P10〈x10,y10〉−P1〈x1,y1〉 (19)

If the coordinates of the direction vector equal zero, this indicates that all best points
that the simplex (solver) has passed through had equal coordinates, then the simplex is
aborted unless it satisfies a convergence test based on the resolution of the simulator. The
observing process continues for all the sequences of triangular simplexes on the coordinate
plane until the coordinates of the minimal point are found by one of the simplex designs
that needs less computational budget than the others. Another advantage of using Eq. (19),
when combined with data profiles later to evaluate several solvers, this formula can be
used as a criteria to stop a solver that cannot satisfy the convergence test within the given
computational budget.

COMPUTATIONAL EXPERIMENTS
In this section, we present the test procedures that provide a comprehensive performance
evaluation of the proposed algorithm.We follow two stages to carry out the experiments. In
the first stage, we define the metrics that differentiate between the considered algorithms,

Musafer et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.960 9/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.960

which are summarized as follows: the accuracy of the algorithm compared to the actual
minima, the wall-time to convergence (in seconds), the number of function evaluations,
the number of simplex evaluations, and identification of the best sequence of trigonometric
simplex designs. In addition, we adopt the guidelines designed by More, Garbow &
Hillstrom (1981), to evaluate the reliability and robustness of unconstrained optimization
software. These guidelines utilize a set of functions exposed to an optimization algorithm
to observe weather the algorithm is tuned to particular functions that belong to one type of
optimization class or not. For this purpose, More, Garbow & Hillstrom (1981) introduced
a large collection of different optimization functions for evaluating the reliability and
robustness of unconstrained optimization software. The features of the test functions
cover three classes: nonlinear least squares, unconstrained minimization, and systems of
nonlinear equations.

The second stage involves normalized data profiles suggested by More & Wild (2009)
with a convergence test given by the formula (??). The function of data profiles is to
provide an accurate view of the relative performance of multiple solvers belonging to
different algorithms when there are constraints on the computational budget.

f (x0)− f (x)≥ (1−τ)(f (x0)− fL) (20)

where x0 is the starting point for the solution of a particular problem p,p∈ P (P) is a set of
benchmark problems), fL is the smallest CF value obtained for the problem by any solver
within a given number of simplex gradient evaluations, and τ = 10−k is the tolerance with
k ∈ {3,5,7} for short-term outcomes. These include changes in adaptation, behavior, and
skills of derivative-free algorithms that are closely related to examining the efficiency and
robustness of optimization solvers at different levels of accuracy.

In this research, however, the MTNMa launches multiple solvers that compute a set
of approximate solutions. The definition of the convergence test (??) is independent of
determining the different optimization solvers that satisfy a certain accuracy, as in the case
of algorithms that generate multiple solvers. This is not realistic, solvers mostly cannot
approximate to an optimal solution in a similar number of evaluations, thereby some
solvers may push the process faster towards the optima than others. Therefore, we use a
linear model that has already been defined as the criteria for stopping the algorithm if one
of the solvers satisfies a convergence test within a limited computational budget. Assume
that we have a set of optimization solvers S converging to best possible solution fL obtained
by any solver within a given number of simplex evaluations. The convergence test used for
measuring several relative distances to optimality can be defined with respect to s, (s∈ S),
we might instead write the convergence test in the following form:

f (x0)− f s(x)≥ (1−τ)(f (x0)− fL) (21)

The previousworkwith data profiles has assumed that the number of simplex evaluations
(one dimension) is the dominant performance measure for testing how well a solver
performs relative to the other solvers (More & Wild, 2009; Audet & Hare, 2017). However,
they did not investigate the performance of derivative free optimization solvers if a variety
of metrics were used to evaluate the performance. If the cost unit is evaluated only

Musafer et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.960 10/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.960

using simplex evaluations, then this assumption is unlikely to hold, when the evaluation
is expensive, as we will demonstrate later. In this case, we might instead define the
performance measures to be the amount of computational time and number of simplex
evaluations. Specifically, we define data profiles in terms of a variety of performancemetrics,
summarized: the amount of computational time T , the number of simplex evaluationsW ,
the number of function evaluations Y , and the number of CPU cores Z required to satisfy
the convergence test (??). We thus define the data profile of a solver s by the formula.

d s(T ,W ,Z)=
1
‖P‖

size
{
p∈ P :

t s(p)
np+1

≤T ,
w s(p)
np+1

≤W ,
y s(p)
np+1

≤Y ,
z s(p)
np+1

≤Z
}

(22)

where ‖P‖ denotes the cardinality of P , np is the number of variables p ∈ P , and
t s(p),w s(p),y s(p) and z s(p) are the performance metrics for timing the algorithm, counting
number of simplex evaluations, counting number of function evaluations, and counting
number of CPU cores respectively.

Altogether, the computational experiments are conducted to evaluate the MTNMa on
a computer that has 1.8 GHz core i5 CPU and 4 GB RAM. Finally, C# language is used to
implement the MTNMa and the experiments.

Discussion
The HNMa generates a sequence of triangular simplexes that extract a collection of
non-isometric reflections to calculate the next vertex. Each simplex crawls independently
to adapt its shape to the solution space of unconstrained optimization problems. Therefore,
the convergence speed per simplex varies from one iteration to another. A simplex in some
cases explores the neighborhood to update its threshold, but moves only if the threshold is
good enough to replace the worst point. However, in other cases the simplex continues to
generate different triangular shapes and orientations. Therefore, the generated simplexes
of the HNMa extract different features of non-isometric reflections to update the simplexes
with optimal triangular shapes and rotations. In this way, the HNMa mimics an amoeba
style of maneuvering from one point to another when approaching a target (minimal
point). On the contrary, the NMa (Nelder & Mead, 1965) forces components of the
reflected vertex to follow one of four linear operations (reflection, expansion, contraction,
and shrinkage). When the next vertex is characterized by one operation (one type of
reflections), some dimensions of the reflected vertex depart for less optimal values. This
problem obviously appears in high-dimensional applications. Consequently, the simplex
shapes of the NMa becomes less effective in high dimensions and tends to deteriorate
rapidly with each iteration. The HNMa (Musafer & Mahmood, 2018) has proven to deliver
a better performance than the traditional NMa, represented by a famous Matlab function,
known as ‘‘fminsearch’’.

To promote the traditional simplex design of the HNMa, MTNMa generates five
sequences of trigonometric simplex designs. Some points in the initial sequence of
triangular simplexes of HNMa (Eq. (13)) are perturbed and used as starting points to
launch other simplex designs with different reflections. For example, (Eq. (14)) the
triangular simplexes of Solver2 are obtained by reflecting the y-components of the

Musafer et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.960 11/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.960

Figure 2 An example of different formations of Solver1.
Full-size DOI: 10.7717/peerjcs.960/fig-2

triangular simplexes of Solver1, which is performed by multiplying the x-components
of Solver1 by (−1). Similarly, (Eq. (16)) the triangular simplexes of Solver1 are rotated
180 degrees to constitute the triangular simplexes of Solver3 (same as reflection in origin),
which is obtained by multiplying the (x and y) components of Solver1 by (−1). (Eq. (15))
the triangular simplexes of Solver4 are initialized by reflecting the x-components of the
triangular simplexes of Solver1, which is achieved by multiplying the y-components of
Solver1 by (−1). Finally, (Eq. (17)) the triangular simplexes of Solver5 are obtained by
taking the absolute value of the triangular simplexes of Solver1. Solver5 can generate
triangular simplexes by reflection in the x-coordinate, y-coordinate, or origin, or initialize
triangular simplexes that are similar to that of the simplexes of Solver1. Figure 2 shows all
the transformations on the (x and y) components of the traditional vertices of Solver1 to
generate new vertices for Solver2, Solver3, Solver4, and Solver5. We assume that 3 arbitrary
vertices of the triangular simplex (Solver1) shown in Fig. 2 have component values (1, 2),
(2, 1), and (3, 3).

Numerical experiments in Table 1 are performed to test the efficiency and robustness
of the MTNMa. The purpose of the computational study is to show that the definition of
normalized data profiles for testing one dimension (such as simplex evaluations) in some
cases is not an accurate measure for comparison between similar algorithms. Thus, one
dimension may not reflect enough information to examine the efficiency and robustness
of DFO solvers when similar algorithms generate multiple solvers and use the normalized
data profiles to allocate the computational budget. For this reason, we propose high-
dimensional normalized data profiles that serve as an accurate measure when comparing

Musafer et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.960 12/32

https://peerj.com
https://doi.org/10.7717/peerjcs.960/fig-2
http://dx.doi.org/10.7717/peerj-cs.960

Table 1 Summary of experimental results.

Test Function (n) GNMa MTNMa Actual Minima
(Acc.)(BestSolver)
(FunctionEv.)

(Accuracy)(BestSolver)
(FunctionEv.)(SimplexEv.)(Time)

Rosenbrock (2) 0.0 (2) 0.0 (1) 0.0
(1516) (6963) (799) (0.0312)

Freudenstein-Roth (2) 48.9842 (1) 48.9842 (5) 48.9842
(425) (419) (47) (0.0200)

Powell badly scaled (2) 0.0 (1) 0.0 (1) 0.0
(1957) (9738) (694) (0.0156)

Brown badly scaled (2) 0.0 (1) 0.0 (2, 4, 5) 0.0
(1349) (1449, 1450, 1431) (196) (0.0155)

Beale (2) 0.0 (1) 0.0 (2, 4) 0.0
(683) (1935, 2029) (181) (0.0312)

Jennrich-Sampson (2) 124.362 (1) 124.362 (5) 124.362
(397) (212) (22) (0.0156)

Helical valley (3) 0.0 (2) 0.0 (3) 0.0
(7287) (22278) (1443) (0.1010)

Bard (3) 8.2148. . . 10−3 (2) 8.2148. . . 10−3 (4) 8.2148. . . 10−3

(1020) (1065) (72) (0.0156)
Gaussian (3) 1.1279. . . 10−8 (2) 1.1279. . . 10−8 (2, 4) 1.1279. . . 10−8

(567) (442, 467) (36) (0.0156)
Meyer (3) 87.9458 (1) 87.9483 (1) 87.9458

(4511) (3776182) (357780) (33.0791)
Box 3D (3) 0.0 (1) 2.7523. . . 10−29 (1) 0.0

(2430) (517602) (51060) (60.7032)
Gulf research (3) 2.4074. . . 10−35 (2) 1.5242. . . 10−26 (4) 0.0

(16186) (252305) (24600) (33.8493)
Powell singular (4) 1.9509. . . 10−61 (1) 0.0 (2) 0.0

(4871) (56958) (3878) (0.2031)
Wood (4) 0.0 (3) 3.9936. . . 10−30 (3) 0.0

(4648) (9871) (500) (0.0468)
Kowalik−Osborne (4) 3.0750. . . 10−4 (1) 3.0750. . . 10−4 (4) 3.0750. . . 10−4

(1206) (6224) (423) (0.0900)
Brown−Dennis (4) 85822.2 (1) 85822.2 (5) 85822.2

(1288) (1322) (76) (0.0781)
Quadratic (4) 0.0 (2) 0.0 (5) 0.0

(13253) (19403) (1384) (0.0468)
Penalty I (4) 2.2499. . . 10−5 (5) 2.2499. . . 10−5 (4) 2.2499. . . 10−5

(7854) (293609) (19379) (0.7656)
Penalty II (4) 9.3762. . . 10−6 (1) 9.3762. . . 10−6 (2) 9.3762. . . 10−6

(5322) (11056770) (710865) (65.8583)
Osborne 1 (5) 5.4648. . . 10−5 (1) 5.6507. . . 10−5 (4) 5.4648. . . 10−5

(2790) (2434886) (134400) (56.4898)

(continued on next page)

Musafer et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.960 13/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.960

Table 1 (continued)

Test Function (n) GNMa MTNMa Actual Minima
(Acc.)(BestSolver)
(FunctionEv.)

(Accuracy)(BestSolver)
(FunctionEv.)(SimplexEv.)(Time)

Brown−linear (5) 0.0 (1) 1.1044. . . 10−28 (5) 0.0
(2788) (18023) (920) (0.1093)

Extended Rosenbrock (6) 3.9443. . . 10−31 (1) 0.0 (2) 0.0
(7494) (7742) (210) (0.0468)

Watson (6) 2.2876. . . 10−3 (1) 2.2887. . . 10−3 (1) 2.2876. . . 10−3

(5151) (2831174) (123040) (150.0159)
Brown almost linear (7) 4.4373. . . 10−31 (3) 3.1000. . . 10−26 (4) 0.0

(11638) (124461) (4520) (0.5203)
Brown almost linear (7) ∗ 1.0000 (2) 1.0000

∗ (152257) (5177) (0.5203)
Quadratic (8) 0.0 (1) 3.0913. . . 10−320 (1) 0.0

(39785) (39149) (1410) (0.1240)
Extended Rosenbrock (8) 2.7523. . . 10−29 (1) 0.0 (2) 0.0

(19164) (10144) (210) (0.0680)
Variably dimensioned (8) 8.0365. . . 10−30 (2) 0.0 (5) 0.0

(9336) (5158) (164) (0.0468)
Extended Powell singular (8) 9.7234. . . 10−61 (1) 4.9406. . . 10−324 (4) 0.0

(20353) (168349) (5190) (1.2031)
Extended Rosenbrock (10) 9.0484. . . 10−29 (1) 0.0 (2) 0.0

(36268) (12546) (210) (0.0937)
Penalty I (10) 7.0876. . . 10−5 (2) 7.6334. . . 10−5 (1) 7.0876. . . 10−5

(25735) (1987) (40) (0.0468)
Penalty II (10) 2.9411. . . 10−4 (2) 2.9404. . . 10−4 (1) 2.9366. . . 10−4

(51485) (26235588) (526010) (142.4195)
Trigonometric (10) 4.4735. . . 10−7 (2) 0.0 (5) 0.0

(7253) (13565) (320) (0.4218)
Osborne 2 (11) 4.0137. . . 10−2 (1) 4.0137. . . 10−2 (5) 4.0137. . . 10−2

(7381) (16271) (391) (2.3126)
Extended Powell singular (12) 5.7700. . . 10−58 (1) 6.4228. . . 10−323 (2) 0.0

(50117) (283723) (5770) (1.6563)
Quadratic (16) 0.0 (1) 0.0 (2, 4) 0.0

(112564) (9420, 9398) (140) (0.0780)
Quadratic (24) 8.0493. . . 10−173 (1) 5.0049. . . 10−280 (2, 4) 0.0

(158849) (105086) (1240) (0.7158)
Variably dimensioned (36) ∗ 1.3353. . . 10−15 (2) 0.0

∗ (34042) (160) (0.9626)
Extended Rosenbrock (36) ∗ 4.9895. . . 10−29 (1) 0.0

∗ (132771) (750) (3.1718)
Discrete integral (50) ∗ 1.9158. . . 10−26 (1) 0.0

∗ (40595) (200) (29.2100)

(continued on next page)

Musafer et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.960 14/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.960

Table 1 (continued)

Test Function (n) GNMa MTNMa Actual Minima
(Acc.)(BestSolver)
(FunctionEv.)

(Accuracy)(BestSolver)
(FunctionEv.)(SimplexEv.)(Time)

Trigonometric (60) ∗ 2.8095. . . 10−18 (2) 0.0
∗ (16471) (350) (51.1432)

Extended Powell singular (60) ∗ 4.2421. . . 10−201 (4) 0.0
∗ (1052158) (4290) (22.3512)

Broyden tridiagonal (60) ∗ 3.7846. . . 10−27 (3) 0.0
∗ (209538) (920) (5.7183)

Broyden banded (60) ∗ 1.0733. . . 10−29 (1) 0.0
∗ (95712) (390) (6.3707)

Extended Powell singular (100) ∗ 6.7816. . . 10−315 (1) 0.0
∗ (2753696) (6680) (109.2287)

Notes.
An asterisk (*) indicates that the GNMa has not been examined on particular test functions.

similar algorithms and help to allocate an accurate estimate of the computational budget
for the compared algorithms. We choose to compare our proposed solution to GNMa
(Fajfar, Puhan & Burmen, 2017) because GNMa is one of the best algorithms that utilizes
the test functions ofMore, Garbow & Hillstrom (1981) and utilizes normalized data profile
that involves one dimension (simplex evaluations). The GNMa generates solvers in a
tree-based genetic programming structure. The population size is initialized to 200 and
evaluated recursively to produce the evolving simplexes. The GNMa is implemented using
twenty 2.66 Ghz Core i5 (four cores per CPU) machines (Fajfar, Puhan & Burmen, 2017).
The authors assumed that a solution is acceptable if the fitness of the obtained solver is
lower than 10−5. After running the computer simulation 20 times for 400 generations, five
genetically evolved solvers successfully satisfied the condition of the fitness. The optimal
solver is determined to be (genetic solver1).

Table 1 illustrates the produced results by MTNMa to cover the procedures for testing
the reliability and robustness of the MTNMa. The results in this research are compared to
the best-known relevant results from the literature presented by Fajfar, Puhan & Burmen
(2017). According to the definition of the normalized data profile (Eq. (21)), fL is required
to be determined, which is the best obtained results by any of the individual solvers of
the algorithms (GNMa and MTNMa). Therefore, Table 1 includes the best results of the
GNMa obtained by any of the five genetic evolved solvers (the optimal genetic solver1
and the other four genetic solvers reported by Fajfar, Puhan & Burmen (2017)) to secure
a fair comparison between GNMa and MTNMa. The GNMa is not an ensemble of the
five evolved solvers and for this reason we utilize the high dimensional normalized data
profiles to compare the MTNMa to the individual evolved solvers of the GNMa. Moreover,
we compare the MTNMa to the one based on our previous publication in Musafer &
Mahmood (2018). The traditional triangular simplex of HNMa generates a simplex with
specified edge length and direction that depends on the standard parameter values of δz
and δu, which is similar to solver 1. Table 1 also shows the dimensions of the test functions
n, the number of simplex and function evaluations, and the actual minima known for
the functions. In addition, the starting points for the test functions of More, Garbow &

Musafer et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.960 15/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.960

Hillstrom (1981) are specified as part of the testing procedure so that the relevant algorithms
can easily be examined and observed to validate whether the considered algorithms are
tuned to a particular category of optimization problems or not. The other vertices can be
either randomly generated (Fajfar, Puhan & Burmen, 2017) or produced using a specific
formula such as the Pfefferś method (Baudin, 2009).

From the results given in Table 1, it can be seen that the proposed sequences of
trigonometric simplex designs, in some cases, achieve a higher degree of accuracy for
high dimensions than for less. For example, MTNMa performs better when optimizing
Quadratic (16) as compared to Quadratic (8) in Table 1. In other cases, the MTNMa
generates fewer simplexes to approximate a particular solution for high dimensions than
for lower dimensions. For example, observe the number of simplex evaluations generated
for Rosenbrock (6) compared to Rosenbrock (2) in Table 1. The behavior of the MTNMa
in these problems is that when the dimensionality increases, the MTNMa manages to
observe more patterns and find more combinations of the non-isometric features to form
the reflected vertex. On the contrary, this is not the behavior of the GNMa, where the
accuracy drops down and the algorithm performs a large number of simplex evaluations as
it moves to higher dimensions. It can be observed also from Table 1 that the MTNMa was
successful in following curved valleys functions such as Rosenbrock function. In addition,
the test shows that the MTNMa is able to generate the same number of simplexes to reach
the exact minimum for Rosenbrock (6, 8, and 10).

Thus testing MTNMa on much more complicated function such as Trigonometric (10)
is useful because this function has approximately 120 sine and cosine functions added to
each other. Even with the power of genetic programming, it is hard for the simplexes of
the GNMa to progress in such an environment. However, since the proposed simplexes
of the MTNMa have the angular rotation capability, they are capable of converging to
minimums where amplitudes and angles are involved. Finally, we can see from Table 1
that the MTNMa can detect functions with multiple minimal values such as the Brown
Almost Linear (7) function. In addition, the results indicate that the MTNMa outperforms
the GNMa in terms of the accuracy tests for almost all high dimensional problems (more
than or equal to 8).

Figure 3 contains four data profiles with different dimensions of performance metrics.
One of the aims of utilizing various performance measures is to provide complementary
information for the relevant solvers as the function of the computational budget. This
is required to secure a fair comparison between the MTNMa and GNMa. As shown in
Fig. 3–I, Fig. 3–II, and Fig. 3–IV the MTNMa needs to create 199 simplexes and 4,200
function evaluations to solve 100% of the problems at the level of accuracy 10−3. While the
GNMa (genetic Solver1) needs to produce 2,700 simplexes to solve approximately 100%
of the problems at this level of accuracy based on the reported results in Fajfar, Puhan &
Burmen (2017). Figure 3–III illustrates that the computational time takes about 1.3 s for
the MHNMa to generate 199 simplex evaluations.

As it can be seen in Fig. 4–I, Fig. 4–II and Fig. 4–IV, solvers of the MTNMa require fewer
number of simplex and function evaluations than solvers of the GNMa to solve roughly
100%of the problems. For example, with a budget of 200 simplex gradients, 10,225 function

Musafer et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.960 16/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.960

Figure 3 Data profiles for the MTNMa shown for (τ = 10−3). I–Percentage of solved problems with re-
spect to the number of simplex gradients (W), II–Percentage of solved problems with respect to the num-
ber of function evaluations (Y), III–Percentage of solved problems with respect to the number of simplex
gradients (W) and the computer time (T), IV–Percentage of solved problems with respect to the number
of simplex gradients (W) and the number of function evaluations (Y).

Full-size DOI: 10.7717/peerjcs.960/fig-3

evaluations, and 2 s. Solvers of theMTNMa solve 100% of the problems at accuracy (10−3),
and solve almost 90% of the problems at accuracy (10−5). This is a significant difference
in performance. In addition, the computational complexity of the MTNMa solvers is
not expensive as compared as the computational time and complexity required to evolve
the GNMa solvers. The GNMa involves high computational overhead that comes from
exchange vertices and features among the genetic simplexes and modernizing the current
populationwith better offspring. The lastmajor difference is that the optimization solutions
of GNMa solvers in some functions are not able to satisfy Eq. (21) for this level of accuracy.
For example, Trigonometric function (10) requires that the best possible reduction has to
equal (10−8), which is beyond the skills of any of the genetic solvers of GNMa.

From the sub-fig I, II and III given in Fig. 5, it can be seen that the MTNMa solves
roughly 91% of the problems with a computational budget of 605 simplex gradients ,
16271 function estimates, and 3.4 s. for the accuracy level of (10−7). Another interesting
observation on the data profiles shown in Figs. 4 and 5, is that the proposed algorithm
tends to provide similar performance, as well as generate a moderate number of simplex
and function evaluations to approximate solutions for the levels of accuracy (10−5) and
(10−7). As a result, the use of data profiles that incorporate several performance metrics is
essential to differentiate between similar algorithms, and provide an accurate estimate for
allocating a computational budget that does not rely on a single dimension such as simplex
gradients.

Musafer et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.960 17/32

https://peerj.com
https://doi.org/10.7717/peerjcs.960/fig-3
http://dx.doi.org/10.7717/peerj-cs.960

Figure 4 Data profiles for the MTNMa shown for (τ = 10−5). I–Percentage of solved problems with re-
spect to the number of simplex gradients (W), II–Percentage of solved problems with respect to the num-
ber of function evaluations (Y), III–Percentage of solved problems with respect to the number of simplex
gradients (W) and the computer time (T), IV–Percentage of solved problems with respect to the number
of simplex gradients (W) and the number of function evaluations (Y).

Full-size DOI: 10.7717/peerjcs.960/fig-4

Figure 5 Data profiles for the MTNMa shown for (τ = 10−7). I–Percentage of solved problems with re-
spect to the number of simplex gradients (W), II–Percentage of solved problems with respect to the num-
ber of function evaluations (Y), III–Percentage of solved problems with respect to the number of simplex
gradients (W) and the amount of computer time (T), IV–Percentage of solved problems with respect to
the number of simplex gradients (W) and the number of function evaluations (Y).

Full-size DOI: 10.7717/peerjcs.960/fig-5

Musafer et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.960 18/32

https://peerj.com
https://doi.org/10.7717/peerjcs.960/fig-4
https://doi.org/10.7717/peerjcs.960/fig-5
http://dx.doi.org/10.7717/peerj-cs.960

Figure 6 Data profiles for the five solvers shown for (τ = 10−3). I–Percentage of solved problems with
respect to the number of simplex gradients (W), II–Percentage of solved problems with respect to the
number of function evaluations (Y), III–Percentage of solved problems with respect to the number of sim-
plex gradients (W) and the amount of computer time (T), IV–Percentage of solved problems with respect
to the number of simplex gradients (W) and the number of function evaluations (Y).

Full-size DOI: 10.7717/peerjcs.960/fig-6

Detailed analysis of the five solvers
We have conducted further tests by analyzing the five multi-directional trigonometric
simplex solver designs. These reveal that higher dimensional data profiles are essential to
deciding which solver should be used with a limited computational budget.

As shown in Fig. 6–part I, the dominant solver is 2 and tends to be faster than others for
the first 400 simplex evaluations, solving almost 95% of the problems. In contrast, solvers
(1 and 5) catch up after approximately 400 simplex evaluations, and outperform the others.
The data profile of Fig. 6–I shows also that solvers (1 and 5) require significantly fewer
number of simplex gradients than solver2 to solve 100% of the problems. Nevertheless,
this significant difference in performance is not true when two performance metrics or
more are used to examine the reliability of the solvers.

Figure 6–III illustrates, the cost unit per iteration (simplex evaluations (W) and time
(T)) for solver 2 is less expensive than the other solvers. This forms a strong argument as
to how a solver, in some cases, may require a larger number of simplex gradients but may
have the potential to take less time to solve 100% of the test problems. Additional tests
and analyzes shown in Fig. 6–II and Fig. 6–III, indicate the strength of combining metric
measures in data profiles, forming a clear view that the cost unit (function evaluations (Y)
and T) for solver 2 is much less expensive than the other solvers. Even if solver 2 requires
more simplex gradient evaluations, it is still more reliable than the others. The results
shown in Fig. 6–IV are fully consistent with the data profiles of Fig. 6–II and Fig. 6–III.
Solver 2 stands out as being the best of the five solvers.

In this particular case, comparison of dimensions (W and Y) is useful for exploring how
the number of active simplexes of solvers (1, 2 and 5) changes with respect to the number

Musafer et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.960 19/32

https://peerj.com
https://doi.org/10.7717/peerjcs.960/fig-6
http://dx.doi.org/10.7717/peerj-cs.960

of objective function evaluations. It is not obvious whether the overall performance of
the solvers (1, 2, and 5) is almost entirely dependent on the number of objective function
evaluations alone or not. If the number of function evaluations is the dominant dimension
to achieve the presented results for Solver2, then the parameters (T and W) do not present
independent dimensions and therefore T is dependent of Y in this particular case. This
means that if the dimension T is removed from the profile, then remaining dimensions
will show enough evidence to evaluate the five solvers.

To examine the parameters (T and W), we consider the observation of the relative
performance of Solver3 and Solver4. The data profile as shown in Fig. 6–I indicates that
Solver3 tends to produce less simplex evaluations than Solver4 to successfully solve the test
problems. In contrast, the data profile in Fig. 6–II reveals that Solver4 needs to perform
significantly less function evaluations than Solver3 to successfully solve the test problems.
This can be seen in Fig. 6–III, where the data profile for the two dimensions (W for Y) is less
computationally expensive for Solver4 than for Solver3. If we assume that the parameter T
is dependent of Y, then the data profile shown in Fig. 6–IV should confirm that the cost
unit (W and T) is less computationally expensive for Solver4 than for Solver3. Whereas, the
data profile shows that the cost unit per iteration (W and T) for Solver3 is slightly less than
the cost unit for Solver4. Therefore, T is independent of Y because there is an additional
(non-constant) overhead associated with the relative complexity of the 5 MTNMa solvers
that is independent of the number of function evaluations. The additional overhead comes
from the exploration process around the neighborhood of the best result, which depends
on how efficient a solver to move in a direction towards the optimum.

Solver3 requires higher function evaluations than Solver4, but takes less computational
time to successfully solve the test problems. In this situation, Solver2 stands out as
being the best of the five solvers because it requires fewer function evaluations and less
computational time than the other solvers. This proves that the parameters (W, Y, and T)
present independent dimensions for data profiling.

The number of CPUs (Z) was not examined in our evaluation of the MTNMa and is
included in formula (22) for completeness. This dimension is significant if an optimiser
is deployed in a distributed environment such as Amazon Web Services (AWS). In such a
case, the number of nodes in the virtual cluster is an important aspect of the computational
budget and the inclusion of Z assists in the allocation of optimal numbers of CPUs for
different solvers and for specific levels of accuracy.

On a final note, the additional tests for examining data profiles on the five solvers of
the MTNMa have confirmed that we need to define the normalized data profiles on the
basis of a collection of performance measures. If the data profiles are defined for one
dimension, then the accuracy of the profiles can be strongly biased when the numbers of
function evaluations are independent of the other dimensions (simplex evaluations and
computational time).

CONCLUSION
In this work, we proposed five sequences of trigonometric simplex designs for high
dimensional unconstrained optimization problems. In addition, each design extracts

Musafer et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.960 20/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.960

different non-isometric reflections and performs a rotation determined by the collection
of the non-isometric reflections. When executing multiple solvers simultaneously, a linear
model with a window of size 10 samples is suggested as the criteria by which a solver is
aborted or continued based on the direction vector of the window. We also showed in
this research that using a data profile based only on the number of simplex gradients (one
dimension) for allocation of the computational budget and examination of the relative
performance of multiple solvers is not appropriate when simplex (W), function (Y), and
time (T) evaluations present independent dimensions for data profile. Therefore, the
definition of the suggested data profile has to involve different performance metrics. Then,
the normalized data profile can be used not only to examine the efficiency and robustness
of derivative free optimization algorithms but also to measure the relative computational
time and complexity among the algorithms. Finally, the experimental results demonstrate
that the MTNMa solvers outperform the GNMa solvers in terms of such data profiles that
depend on different performance metrics for all levels of accuracy. In the future work, we
will examine how reliable and robust MTNMa to the state-of-the-art DFO algorithms, such
as the NOMAD software that is designed for difficult blackbox optimization problems (Le
Digabel, 2011).

APPENDIX
This section summarizes some of the common test functions designed for testing
unconstrained optimization algorithms. The test functions are grouped according to
their artificial landscapes into three classes: systems of nonlinear equations, nonlinear least
squares, and unconstrained minimization. Let f (x) be a nonlinear least squares problem
whose terms exist in f1,f2,...,fK , then f (x) is an unconstrained minimization problem
such that

f (x)=
K∑
k=1

f 2k (x) (23)

If K = n, then the problem is a system of nonlinear equations and can be summarised
in the next equation.

fk(x)= 0, 1≤ k ≤ n (24)

And if K > n, then the optimal conditions for Eq. (23) are defined as a system of
nonlinear equations such that

K∑
k=1

(
∂fk(x)
∂xq

)
, 1≤ q≤ n (25)

We follow a general format in the definition of the test functions to include the
following elements such as name of function, description, standard starting point, and
global minimum.
1. Rosenbrock function (Rosenbrock, 1960) f1(x) = 10(x2− x21), f2(x) = (1− x1)

Description: The function is continuous, differentiable, non-separable, scalable,

Musafer et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.960 21/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.960

non-convex, and unimodal and has a long valley with very steep walls and almost
flat bottom (More, Garbow & Hillstrom, 1981).
Dimensions: n= 2, K = 2.
Standard starting point: x0= (−1.2, 1).
Global minimum: f (x)= 0 at (1, 1).

2. Freudenstein and Roth function (Freudenstein & Roth, 1963)
f1(x)=−13+x1+ ((5−x2)x2−2)x2, f2(x)=−29+x1+ ((1+x2)x2−14)x2
Description: The function is continuous, differentiable, non-separable, non-scalable,
and multimodal, and contains a long shaped-valley, and is designed to have different
sensitivities of the different variables.
Dimensions: n= 2, K = 2.
Standard starting point: x0= (0.5, −2).
Globalminimum: f (x)= 0 at (4, 5), and f (x)= 48.9842... at (= 11.4125...,−0.8968...).

3. Powell badly scaled function (Powell, 1970)
f1(x)= 104 ·x1x2−1, f2(x)= e−x1+e−x2−1.001
Description: The function is continuous, differentiable, non-separable, non-scalable,
and very flat near the global minimum point, and is used to test the optimization
algorithm whether or not it can provide a sufficiently accurate estimate for the
minimizer.
Dimensions: n= 2, K = 2.
Standard starting point: x0= (0, 1).
Global minimum: f (x)= 0 at (1.0981...10−5, 9.1061).

4. Brown badly scaled function (More, Garbow & Hillstrom, 1981)
f1(x)= x1−106, f2(x)= x2−2 ·10−6, f3(x)= x1x2−2
Description: The function is continuous, non-convex, differentiable, and non-
separable, and classified under valley-shaped optimization problems.
Dimensions: n= 2, K = 3.
Standard starting point: x0= (1, 1).
Global minimum: f (x)= 0 at (106, 2 ·10−6).

5. Beale function (Jamil & Yang, 2013)
f1(x)= 1.5−x1(1−x2), f2(x)= 2.25−x1(1−x2), f3(x)= 2.625−x1(1−x2)
Description: The function is continuous, differentiable, non-separable, non-scalable,
and unimodal, and has sharp peaks at the corners.
Dimensions: n= 2, K = 3.
Standard starting point: x0= (1, 1).
Global minimum: f (x)= 0 at (3, 0.5).

6. Jennrich and Sampson function (Jennrich & Sampson, 1968)
f1(x),...,fk(x)= 2+2− (ex1+ex2),...,2+2k− (ekx1+ekx2)
Description: The function is continuous, differentiable, non-separable, non-scalable,
and multimodal.
Dimensions: n= 2, K = 10.
Standard starting point: x0= (0.3, 0.4).
Global minimum: f (x)= 124.362... at (0.2578..., 0.2578...).

Musafer et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.960 22/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.960

7. Helical valley function (Fletcher & Powell, 1963)

f1(x)= 10(x3−10 ·θ(x1,x2)), f2(x)= 10
(√

x21+x
2
2−1

)
, f3(x)= x3

θ(x1,x2)=

1
2π

tan−1
(
x2
x1

)
, if x1> 0

1
2π

tan−1
(
x2
x1

)
+0.5, if x1< 0

Description: The function is continuous, differentiable, non-separable, scalable, and
multimodal, and has a steep-sided helical valley in the direction of x3 (Figueroa &
Schlick, 1992).
Dimensions: n= 2, K = 3.
Standard starting point: x0= (−1, 0, 0).
Global minimum: f (x)= 0 at (1, 0, 0).

8. Bard function (Bard, 1970)
f1(x),...,fk(x)= ϑ1−

(
x1+ 1

ϕ1·x2+%1·x3

)
,...,ϑk−

(
x1+ k

ϕk ·x2+%k ·x3

)
where 1≤ k ≤K ,

ϕk = 16− k, %k =min(k,ϕk), and ϑk = 0.14, 0.18, 0.22, 0.25, 0.29, 0.32, 0.35,
0.39, 0.37,0.58,0.73, 0.96, 1.34, 2.10, and 4.39.
Description: The function is continuous, differentiable, non-separable, non-scalable,
and multimodal, and becomes flatter in the direction of x1 when the other two
parameters x2 and x3 decrease.
Dimensions: n= 3, K = 15.
Standard starting point: x0= (1, 1, 1).
Global minimum: f (x)= 8.2148...10−3 at (0.0824..., 1.1332..., 2.3434...).

9. Gaussian function (More, Garbow & Hillstrom, 1981)

f1(x),...,fk(x)= x1 · e(
−x2(ϕ1−x3)

2

2)
−ϑ1,..., x1 · e(

−x2(ϕk−x3)
2

2)
−ϑk where 1≤ k ≤ K ,

ϕk =
8−k
2 , and ϑk = 0.0009, 0.0044, 0.0175, 0.0540, 0.1295, 0.2420, 0.3521,

0.3989, 0.3521,0.2420,0.1295, 0.0540, 0.0175, 0.0044, and 0.0009.
Description: The function is continuous, differentiable, non-separable, non-scalable,
and multimodal. Dimensions: n= 3, K = 15.
Standard starting point: x0= (0.4, 1, 0).
Global minimum: f (x)= 1.1279...10−8 at (0.3989..., 1.0000..., 0).

10. Meyer function (Meyer, 1970)
f1(x),...,fk(x) = x1 · e

(x2
ϕ1+x3

)
− ϑ1,..., x1 · e

(x2
ϕk+x3

)
− ϑk where 1 ≤ k ≤ K ,

ϕk = 45+ 5k, and ϑk = 34780, 28610, 23650, 19630, 16370, 13720, 11540,
9744, 8261,7030,6005, 5147, 4427, 3820, 3307, and 2872.
Description: The function is continuous, differentiable, non-separable, and non-
scalable, and represents a thermistor problem. The values of ϑk represent the resistance
of a thermistor as a function of temperature ϕk .
Dimensions: n= 3, K = 16.
Standard starting point: x0= (0.02, 4000, 250).
Global minimum: f (x)= 87.9458... at (0.005609..., 6181, 345.2).

11. Gulf research and development function (Cox, 1969)

Musafer et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.960 23/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.960

f1(x),...,fk(x)= e(−
|ϑ1|x3
x1

)
−ϕ1,..., e

(− |ϑk |x3x1
)
−ϕk where 1≤ k ≤ K , ϕk = k

100 , and
ϑk = 25+ (−50 · ln(ϕk))

2
3 −x2.

Description: The function is continuous, differentiable, non-separable, non-scalable,
and multimodal, and has a very flat local minimum surrounded by a plateau, where
the gradient is zero everywhere and the function equals 0.0385. This function is also
known as the Weibull function.
Dimensions: n= 3, K = 100.
Standard starting point: x0= (5, 2.5, 0.15).
Global minimum: f (x)= 0 at (50, 25, 1.5).

12. Box three-dimensional function (Box, 1966)
f1(x),...,fk(x) = e−%1·x1 − e−%1·x2 − x3

(
e−%1−e−10·%1

)
,..., e−%k ·x1 − e−%k ·x2 −

x3
(
e−%k −e−10·%k

)
where 1≤ k ≤K , and %k = 0.1 ·k.

Description: The function is continuous, differentiable, non-separable, and
multimodal, and possesses an asymmetric curved valley.
Dimensions: n= 3, K ≥ n.
Standard starting point: x0= (0, 10, 20).
Global minimum: f (x)= 0 when K = 3, (1, 10, 1), (10, 1, −1), and (x1= u, x2=
u, 0) where u∈R.

13. Powell singular function (Powell, 1962)
f1(x)= x1+10x2, f2(x)=

√
5(x3−x4), f3(x)= (x2−2x3)2, f4(x)=

√
10(x1−x4)2

Description: The function is continuous, differentiable, non-separable, scalable, convex,
and unimodal, and also known as a Powell quartic function (Steihaug & Suleiman,
2013). The function is difficult to minimize because the Hessian matrix at f (x)= 0 is
doubly singular (Brent, 2013).
Dimensions: n= 4, K = 4.
Standard starting point: x0= (3, −1, 0, 1).
Global minimum: f (x)= 0 at (0, 0, 0, 0).

14. Wood function (Colville, 2015)
f1(x)= 10(x2− x21), f2(x)= 1− x1, f3(x)=

√
90(x4− x23), f4(x)= 1− x3, f5(x)=

√
10(x2+x4−2), f6(x)= x2−x4√

10
Description: The function is continuous, differentiable, non-separable, and
multimodal, and is rather like Rosenbrock butwith four variables and a quartic objective
function. Many nonlinear programming codes fail to find the global minimum (Brent,
2013).
Dimensions: n= 4, K = 6.
Standard starting point: x0= (−3, −1, −3, −1).
Global minimum: f (x)= 0 at (1, 1, 1, 1).

15. Kowalik and Osborne function (Kowalik & Osborne, 1968)
f1(x),...,fk(x)= ϑ1−

x1(ϕ21+ϕ1·x2)
(ϕ21+ϕ1·x3+x4)

, ..., ϑk −
x1(ϕ2k+ϕk ·x2)
(ϕ2k+ϕk ·x3+x4)

where 1≤ k ≤ K , ϑk =
(0.1957, 0.1947, 0.1735, 0.1600, 0.0844, 0.0627, 0.0456, 0.0342, 0.0323,) 0.0235,
and 0.0246, and ϕk = 4.0000, 2.0000, 1.0000,0.5000, 0.2500, 0.1670, 0.1250, 0.1000,
(0.0833, 0.0714, and 0.0625).

Musafer et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.960 24/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.960

Description: The function is continuous, differentiable, non-separable, non-scalable,
and multimodal, and arises from least squares fit of experimental data (Winfield, 1973).
Dimensions: n= 4, K = 11.
Standard starting point: x0= (0.25, 0.39, 0.415, 0.39).
Global minimum: f (x)= 3.0750...10−4 at (0.1928..., 0.1912..., 0.1230..., 0.1360...).

16. Brown and Dennis function (Brown & Dennis, 1971)
f1(x),...,fk(x) = (x1+%1 ·x2−e%1)2 + (x3 + x4 · sin(%1) − cos(%1))2, ...,
(x1+%k ·x2−e%k)2+ (x3+x4 · sin(%k)− cos(%k))2 where 1≤ k ≤K , and %k = k

5 .
Description: The function is continuous, differentiable, non-separable, non-scalable,
and unimodal, and resembles a convex quadratic (Yang, Ong & Jin, 2007).
Dimensions: n= 4, K ≥ n.
Standard starting point: x0= (25, 5, −5, −1).
Global minimum: f (x)= 85822.2... when (K = 20), and x =−11.594..., 13.203..., −
0.403..., (0.236...).

17. Osborne 1 function (Osborne, 1972)
f1(x),...,fk(x) = ϑ1 −

(
x1+x2 ·e−%1·x4+x3 ·e−%1·x5

)
, ...,

ϑk −
(
x1+x2 ·e−%k ·x4+x3 ·e−%k ·x5

)
where 1≤ k ≤ K , %k = 10 · (k− 1), and ϑk =

0.844, 0.908, 0.932, 0.936, 0.925, 0.908, 0.881, 0.850, 0.818, 0.784, 0.751, 0.718,
0.685, 0.658, 0.628, 0.603, 0.580, 0.558, 0.538, 0.522, 0.506, 0.490, 0.478, 0.467,
0.457, 0.448, 0.438, 0.431, 0.424, 0.420, 0.414, 0.411, and 0.406.
Description: The function is continuous, differentiable, non-separable, non-scalable,
and multimodal, and has a very flat local minimum surrounded by a plateau, where
the gradient is zero everywhere and the function equals 1.1060.
Dimensions: n= 5, K = 33.
Standard starting point: x0= (0.5, 1.5, −1, 0.01, 0.02).
Global minimum: f (x) = 5.4648...10−5 at x =(0.3754..., 1.9358..., −1.4647...,
0.01287...,0.02212...).

18. Biggs EXP6 function (Biggs, 1971)
f1(x),...,fk(x) = x3 · e−%1·x1 − x4 · e−%1·x2 + x6 · e−%1·x5 − e−%1 + 5 · e−10·%1 − 3 ·
e−4·%1, ..., x3 · e−%k ·x1− x4 · e−%k ·x2+ x6 · e−%k ·x5− e−%k +5 · e−10·%k −3 · e−4·%k where
1≤ k ≤K , and %k = 0.1 ·k.
Description: The function is continuous, differentiable, non-separable, non-scalable,
and multimodal, and involves K exponential functions that all have steep valleys
(Figueroa & Schlick, 1992).
Dimensions: n= 6, K ≥ n.
Standard starting point: x0= (1, 2, 1, 1, 1, 1).
Global minimum: f (x)= 0 at K = 13, x = (1, 10, 1, 5, 4, 3).

19. Osborne 2 function (Osborne, 1972)
f1(x),...,fk(x)=ϑ1−

(
x1 ·e−%1·x5+x2 ·e−(%1−x9)

2x6+x3 ·e−(%1−x10)
2x7+x4 ·e−(%1−x11)

2x8
)
,

..., ϑk −
(
x1 ·e−%k ·x5+x2 ·e−(%k−x9)

2x6+x3 ·e−(%k−x10)
2x7+x4 ·e−(%k−x11)

2x8
)

where 1≤ k ≤K , %k = (k−1)
10 , and %k = 1.366, 1.191, 1.112, 1.013, 0.991, 0.885, 0.831,

0.847, 0.786, 0.725, 0.746, 0.679, 0.608, 0.655, 0.616, 0.606, 0.602, 0.626, 0.651,

Musafer et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.960 25/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.960

0.724, 0.649, 0.649, 0.694, 0.644, 0.624, 0.661, 0.612, 0.558, 0.533, 0.495, 0.500,
0.423, 0.395, 0.375, 0.372, 0.391, 0.396, 0.405, 0.428, 0.429, 0.523, 0.562, 0.607,
0.653, 0.672, 0.708, 0.633, 0.668, 0.645, 0.632, 0.591, 0.559, 0.597, 0.625, 0.739,
0.710, 0.729, 0.720, 0.636, 0.581, 0.428, 0.292, 0.162, 0.098, and 0.054.
Description: The function is continuous, differentiable, non-separable, non-scalable,
and multimodal.
Dimensions: n= 11, K = 65. Standard starting point: x0= (1.3, 0.65, 0.65, 0.7, 0.6, 3,
5, 7, 2, 4.5, 5.5).
Globalminimum: f (x)= 4.01377...10−2 at x = 1.3097..., 0.4312..., 0.6335..., 0.5993...,
0.7532..., 0.9064..., 1.3654..., 4.8241..., 2.3989..., 4.5687..., 5.6753....

20. Watson function (Kowalik & Osborne, 1968)

f1(x),...,fk(x)=
∑n

j=2(j− 1)xjϑ
j−2
1 −

(∑n
j=1xjϑ

j−1
1

)2
− 1,...,

∑n
j=2(j− 1)xjϑ

j−2
k −(∑n

j=1xjϑ
j−1
k

)2
−1, if 1≤ k ≤ 29 fk(x)= x1, if k = 30, and fk(x)= (x2− x21 −

1), if k= 31 where 1≤ k ≤K , and ϑk = k
29 .

Description: The function is continuous, differentiable, non-separable, scalable, and
unimodal. This minimization problem is ill-conditioned and difficult to solve (Brent,
2013).
Dimensions: 2≤ n≤ 31, K = 31.
Standard starting point: x0= (0,..., 0).
Globalminimum: f (x)= 2.2876...10−3when (n= 6) and x =−0.015725..., 1.012435...,
−0.232992..., 1.260430..., −1.513729..., 0.992996.... f (x)= 1.39976...10−6 when
(n= 9) and x =−0.000015..., 0.999790..., 0.014764..., 0.146342..., 1.000821..., −
2.617731..., 4.104403..., −3.143612...,1.052627. f (x)= 4.72238...10−10 at (n= 12).

21. Extended Rosenbrock function (Shang & Qiu, 2006)
f 1k (x)= 10(xk+1−x2k) if (k mod 2) = 1 f 2k (x)= (1−xk−1) if (k mod 2) = 0 where
1≤ k ≤K .
Description: The function is continuous, differentiable, non-separable, scalable,
multimodal, and non-convex (Shang & Qiu, 2006).
Dimensions: n variable but even, K = n.
Standard starting point: x0= (−1.2, 1, ...,−1.2, 1).
Global minimum: f (x)= 0 at x = (1, 1, ..., 1, 1).

22. Extended Powell singular function (Steihaug & Suleiman, 2013)
f 1k (x)= (xk+10x2k+1) if (k mod 4) = 1
f 2k (x)=

√
5(xk+1−xk+2) if (k mod 4) = 2

f 3k (x)= (xk−1−2xk)2 if (k mod 4) = 3
f 4k (x)=

√
10(xk−3−xk)2 if (k mod 4) = 0

where 1≤ k ≤K .
Description: The function is continuous, differentiable, non-separable, scalable,
unimodal, and convex (Steihaug & Suleiman, 2013).
Dimensions: n variable but a multiple of 4, K = n.
Standard starting point: x0= (3, −1, 0, 1, ...,3, −1, 0, 1).
Global minimum: f (x)= 0 at x = (0, 0, 0, 0, ..., 0, 0, 0, 0).

Musafer et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.960 26/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.960

23. Penalty I function (More, Garbow & Hillstrom, 1981)
f1(x),...,fk(x)=

√
10−5(x1−1),...,

√
10−5(xk−1), if (1≤ k ≤K −1)

fk(x)=
(∑n

j=1x
2
j

)
−

1
4 , if (k=K)

where 1≤ k ≤K .
Description: The function is continuous, differentiable, non-separable, ill-conditioned,
and difficult to solve.
Dimensions: n variable, K = n+1.
Standard starting point: x0= (1, 2, 3, 4) when n= 4, x0= (1, 2, 3, 4, 5, 6, 7, 8, 9, 10)
when n= 10.
Global minimum: f (x)= 2.2499...10−5 when (n= 4).
f (x)= 7.0876...10−5 when (n= 10).

24. Penalty II function (More, Garbow & Hillstrom, 1981)
fk(x)= (xk−0.2), if (k= 1)
fk(x)=

√
10−5

(
e

xk
10 +e

xk−1
10 −e

k
10 −e

k−1
10

)
, if (2≤ k ≤ K

2)

fk(x)=
√
10−5

(
e

xk−n+1
10 −e

1
10

)
, if (K2 < k ≤K −1)

fk(x)=
(∑n

j=1(n− j+1)x
2
j

)
−1, if (k=K)

where 1≤ k ≤K .
Description: The function is continuous, differentiable, non-separable, ill-conditioned,
and difficult to solve.
Dimensions: n variable, K = 2n.
Standard starting point: x0= (0.5, ...,0.5)
Global minimum: f (x)= 9.3762...10−6 when (n= 4).
f (x)= 2.9366...10−4 when (n= 10).

25. Variably dimensioned function (More, Garbow & Hillstrom, 1981)
fk(x)= (xk−1), if (1≤ k ≤K −2)
fk(x)=

∑n
j=1 j(xj−1), if (k=K −1)

fk(x)=
(∑n

j=1 j(xj−1)
)2
, if (k=K)

where 1≤ k ≤K .
Description: The function is continuous, differentiable, non-separable, and
multimodel. The solution space is crossed flat area like U-curve (Tippayawannakorn &
Pichitlamken, 2013).
Dimensions: n variable, K = n+2.
Standard starting point: x0= (1− i

n ,...), where (1≤ i≤ n).
Global minimum: f (x)= 0 at x = (1, ..., 1).

26. Trigonometric function (More, Garbow & Hillstrom, 1981)
fk(x)= n−

∑n
j=1cos(xj)+k(1− cos(xk))− sin(xk)

where 1≤ k ≤K .
Description: The function is continuous, differentiable, non-separable, scalable, and
multimodel, and difficult to converge to the global minimum (Tippayawannakorn &
Pichitlamken, 2013).
Dimensions: n variable, K = n. Standard starting point: x0= (1n ,...,

1
n).

Musafer et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.960 27/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.960

Global minimum: f (x)= 0.
27. Brown almost linear function (Brown, 1969)

fk(x)= xk+
∑n

j=1xj− (n+1), if (1≤ k ≤K −1)

fk(x)=
(∏n

j=1xj
)
−1, if (k=K)

where 1≤ k ≤K .
Description: The function is continuous, differentiable, non-separable, scalable, and
unimodel.
Dimensions: n variable, K = n. Standard starting point: x0= (0.5,..., 0.5).
Global minimum: f (x)= 0 at x0 = (%,..., %, %1−n), where % satisfies (n%n− (n+
1)%n−1). f (x)= 1 at x0= (0,..., 0, n+1).

28. Discrete boundary value function (More & Cosnard, 1976)
fk(x)= 2x1−x0−x2+

%21
2 (x1+1 ·%1+1)

3,..., 2xk−xk−1−xk+1+
%2k
2 (xk+k ·%k+1)

3

where 1≤ k ≤K , %k =
(1
n+1

)
, and x0= xK+1= 0.

Description: The function is continuous, differentiable, non-separable, non-scalable,
and unimodel.
Dimensions: n variable, K = n.
Standard starting point: x0= (1 ·%1(1 ·%1−1),... , k ·%k(k ·%k−1)).
Global minimum: f (x)= 0.

29. Discrete integral function (More & Cosnard, 1976)
fk(x) =
x1+

%1
2

(
(1−1 ·%1)

∑n
j=11 ·%1(xj+ j ·%1+1)

3
+1 ·%1

∑n
j=1+1(1− j ·%1)(xj+ j ·%1+1)

3
)
,

..., xk+
%k
2

(
(1−k ·%k)

∑n
j=k k ·%k(xj+ j ·%j+1)

3
+k ·%k

∑n
j=k+1(1− j ·%j)(xj+ j ·%j+1)

3
)

where 1≤ k ≤K , %k =
(1
n+1

)
, and x0= xK+1= 0.

Description: The function is continuous, differentiable, non-separable, non-scalable,
and unimodel.
Dimensions: n variable, K = n.
Standard starting point: x0= (1 ·%1(1 ·%1−1),... , k ·%k(k ·%k−1)).
Global minimum: f (x)= 0.

30. Broyden tridiagonal function (Broyden, 1965)
fk(x)= x0− (3−0.5x1)x1+2x2−1,..., xk−1− (3−0.5xk)xk+2xk+1−1
where 1≤ k ≤K , and x0= xK+1= 0.
Description: The function is continuous, differentiable, separable, scalable, and
multimodel.
Dimensions: n variable, K = n.
Standard starting point: x0= (−1,..., −1).
Global minimum: f (x)= 0.

31. Broyden banded function (Broyden, 1971)
fk(x)= (1+x21)x1+1−

∑2
j=−4; j 6=1(1+xj)xj,..., (1+x

2
k)xk+1−

∑k+1
j=k−5; j 6=k(1+xj)xj

where 1≤ k ≤K , and (xk = 0), if k ≤ 0, or k > K .
Description: The function is continuous, differentiable, separable, scalable, and
multimodel.
Dimensions: n variable, K = n.

Musafer et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.960 28/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.960

Standard starting point: x0= (−1,..., −1).
Global minimum: f (x)= 0.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
Hassan Musafer is employed by CDPHP.

Author Contributions
• Hassan Musafer conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the article, and approved the final draft.
• Emre Tokgoz conceived and designed the experiments, analyzed the data, authored or
reviewed drafts of the article, and approved the final draft.
• Ausif Mahmood conceived and designed the experiments, analyzed the data, authored
or reviewed drafts of the article, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The scripts are written in C# and are available in the Supplemental Information.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.960#supplemental-information.

REFERENCES
Audet C, HareW. 2017.Derivative-free and blackbox optimization. Cham: Springer.
Bard Y. 1970. Comparison of gradient methods for the solution of nonlinear param-

eter estimation problems. SIAM Journal on Numerical Analysis 7(1):157–186
DOI 10.1137/0707011.

Barton RR, Ivey Jr JS. 1996. Nelder–Mead simplex modifications for simulation
optimization.Management Science 42(7):954–973 DOI 10.1287/mnsc.42.7.954.

BaudinM. 2009.Nelder mead user’s manual. Digiteo.
Biggs M. 1971.Minimization algorithms making use of non-quadratic properties

of the objective function. IMA Journal of Applied Mathematics 8(3):315–327
DOI 10.1093/imamat/8.3.315.

Bihorel S, BaudinM, Bihorel MS. 2018. Package neldermead. Vienna: WU Vienna
University of Economics and Business. Available at https://cran.r-project.org/web/
packages/neldermead/index.html .

Musafer et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.960 29/32

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.960#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.960#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.960#supplemental-information
http://dx.doi.org/10.1137/0707011
http://dx.doi.org/10.1287/mnsc.42.7.954
http://dx.doi.org/10.1093/imamat/8.3.315
https://cran.r-project.org/web/packages/neldermead/index.html
https://cran.r-project.org/web/packages/neldermead/index.html
http://dx.doi.org/10.7717/peerj-cs.960

BoxM. 1966. A comparison of several current optimization methods, and the use
of transformations in constrained problems. The Computer Journal 9(1):67–77
DOI 10.1093/comjnl/9.1.67.

Brent RP. 2013. Algorithms for minimization without derivatives. Mineola: Courier
Corporation.

Brown KM. 1969. A quadratically convergent Newton-like method based upon
Gaussian elimination. SIAM Journal on Numerical Analysis 6(4):560–569
DOI 10.1137/0706051.

Brown KM, Dennis JE. 1971.New computational algorithms for minimizing a sum of
squares of nonlinear functions. New Haven: Department of Computer Science, Yale
University.

Broyden C. 1971. The convergence of an algorithm for solving sparse nonlinear systems.
Mathematics of Computation 25(114):285–294
DOI 10.1090/S0025-5718-1971-0297122-5.

Broyden CG. 1965. A class of methods for solving nonlinear simultaneous equations.
Mathematics of Computation 19(92):577–593
DOI 10.1090/S0025-5718-1965-0198670-6.

Colville A. 2015. A comparative study of nonlinear programming codes. In: Proceedings
of the Princeton symposium on mathematical programming. 487–502.

Conn AR, Scheinberg K, Vicente LN. 2009. Introduction to derivative-free optimization.
vol. 8. Philadelphia: Siam.

Cox R. 1969. Comparison of the performance of seven optimization algorithms on twelve
unconstrained minimization problems,’’. In: Ref. 1335CNO4, Gulf Research and
Development Company, Pittsburg.

Fajfar I, Puhan J, Bűrmen Á. 2017. Evolving a Nelder–Mead algorithm for opti-
mization with genetic programming. Evolutionary Computation 25(3):351–373
DOI 10.1162/evco_a_00174.

Fan E. 2002. Global optimization of Lennard-Jones atomic clusters. Master of Science,
McMaster University, Computing & Software, Hamilton, Ontario.

Figueroa S, Schlick T. 1992. Hesfcn—a fortran package of hessian subroutines for testing
nonlinear optimization software. Technical report, Technical Report 610. Courant
Institute of Math. Sciences, New York University, New York, NY, USA.

Fletcher R, Powell MJ. 1963. A rapidly convergent descent method for minimization. The
Computer Journal 6(2):163–168 DOI 10.1093/comjnl/6.2.163.

Freudenstein F, Roth B. 1963. Numerical solution of systems of nonlinear equations.
Journal of the ACM (JACM) 10(4):550–556 DOI 10.1145/321186.321200.

Gao F, Han L. 2012. Implementing the Nelder–Mead simplex algorithm with adap-
tive parameters. Computational Optimization and Applications 51(1):259–277
DOI 10.1007/s10589-010-9329-3.

Han L, NeumannM. 2006. Effect of dimensionality on the Nelder–Mead simplex
method. Optimization Methods and Software 21(1):1–16
DOI 10.1080/10556780512331318290.

Musafer et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.960 30/32

https://peerj.com
http://dx.doi.org/10.1093/comjnl/9.1.67
http://dx.doi.org/10.1137/0706051
http://dx.doi.org/10.1090/S0025-5718-1971-0297122-5
http://dx.doi.org/10.1090/S0025-5718-1965-0198670-6
http://dx.doi.org/10.1162/evco_a_00174
http://dx.doi.org/10.1093/comjnl/6.2.163
http://dx.doi.org/10.1145/321186.321200
http://dx.doi.org/10.1007/s10589-010-9329-3
http://dx.doi.org/10.1080/10556780512331318290
http://dx.doi.org/10.7717/peerj-cs.960

Jamil M, Yang X-S. 2013. A literature survey of benchmark functions for global opti-
misation problems. International Journal of Mathematical Modelling and Numerical
Optimisation 4(2):150–194 DOI 10.1504/IJMMNO.2013.055204.

Jennrich R, Sampson P. 1968. Application of stepwise regression to non-linear estima-
tion. Technometrics 10(1):63–72 DOI 10.1080/00401706.1968.10490535.

Kolda TG, Lewis RM, Torczon V. 2003. Optimization by direct search: new per-
spectives on some classical and modern methods. SIAM Review 45(3):385–482
DOI 10.1137/S003614450242889.

Kowalik J, OsborneM. 1968.Methods for unconstrained optimization problems. New
York: American Elsevier Publishing Company, Inc.

Lagarias JC, Reeds JA,Wright MH,Wright PE. 1998. Convergence properties of the
Nelder–Mead simplex method in low dimensions. SIAM Journal on Optimization
9(1):112–147 DOI 10.1137/S1052623496303470.

Le Digabel S. 2011. Algorithm 909: NOMAD: nonlinear optimization with the MADS
algorithm. ACM Transactions on Mathematical Software (TOMS) 37(4):1–15.

Lewis RM, Torczon V, Trosset MW. 2000. Direct search methods: then and now. Journal
of Computational and Applied Mathematics 124(1–2):191–207
DOI 10.1016/S0377-0427(00)00423-4.

Martins JR, Lambe AB. 2013.Multidisciplinary design optimization: a survey of
architectures. AIAA Journal 51(9):2049–2075 DOI 10.2514/1.J051895.

McKinnon KI. 1998. Convergence of the Nelder–Mead simplex method to a nonstation-
ary point. SIAM Journal on Optimization 9(1):148–158
DOI 10.1137/S1052623496303482.

Meyer R. 1970. Theoretical and computational aspects of nonlinear regression. In: Pro-
ceedings of a symposium conducted by the mathematics research center, the University of
Wisconsin–Madison, May 4–6, 1970. 465–486.

More JJ, CosnardMY. 1976. Numerical comparison of three nonlinear equation
solvers.[BRENTM, in FORTRAN for IBM computers]. Technical report. Argonne
National Laboratory, IL, USA.

Moré JJ, Garbow BS, Hillstrom KE. 1981. Testing unconstrained optimization
software. ACM Transactions on Mathematical Software (TOMS) 7(1):17–41
DOI 10.1145/355934.355936.

Moré JJ, Wild SM. 2009. Benchmarking derivative-free optimization algorithms. SIAM
Journal on Optimization 20(1):172–191 DOI 10.1137/080724083.

Musafer H, Abuzneid A, FaezipourM,Mahmood A. 2020. An enhanced design
of sparse autoencoder for latent features extraction based on trigonomet-
ric simplexes for network intrusion detection systems. Electronics 9(2):259
DOI 10.3390/electronics9020259.

Musafer HA, Mahmood A. 2018. Dynamic Hassan Nelder mead with simplex
free selectivity for unconstrained optimization. IEEE Access 6:39015–39026
DOI 10.1109/ACCESS.2018.2855079.

Nelder JA, Mead R. 1965. A simplex method for function minimization. The Computer
Journal 7(4):308–313 DOI 10.1093/comjnl/7.4.308.

Musafer et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.960 31/32

https://peerj.com
http://dx.doi.org/10.1504/IJMMNO.2013.055204
http://dx.doi.org/10.1080/00401706.1968.10490535
http://dx.doi.org/10.1137/S003614450242889
http://dx.doi.org/10.1137/S1052623496303470
http://dx.doi.org/10.1016/S0377-0427(00)00423-4
http://dx.doi.org/10.2514/1.J051895
http://dx.doi.org/10.1137/S1052623496303482
http://dx.doi.org/10.1145/355934.355936
http://dx.doi.org/10.1137/080724083
http://dx.doi.org/10.3390/electronics9020259
http://dx.doi.org/10.1109/ACCESS.2018.2855079
http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.7717/peerj-cs.960

OsborneM. 1972. Some aspects of nonlinear least squares calculations. In: Lootsma,
ed. Numerical methods for nonlinear optimization. New York, NY: Academic Press,
171–189.

Powell MJ. 1962. An iterative method for finding stationary values of a function of
several variables. The Computer Journal 5(2):147–151 DOI 10.1093/comjnl/5.2.147.

Powell MJ. 1970. A hybrid method for nonlinear equations. In: Rabinowitz P, ed.
Numerical methods for nonlinear algebraic equations. London: Gordon and Breach,
87–114.

Rosenbrock H. 1960. An automatic method for finding the greatest or least value of a
function. The Computer Journal 3(3):175–184 DOI 10.1093/comjnl/3.3.175.

Shang Y-W, Qiu Y-H. 2006. A note on the extended Rosenbrock function. Evolutionary
Computation 14(1):119–126 DOI 10.1162/evco.2006.14.1.119.

SpendleyW, Hext GR, Himsworth FR. 1962. Sequential application of simplex de-
signs in optimisation and evolutionary operation. Technometrics 4(4):441–461
DOI 10.1080/00401706.1962.10490033.

Steihaug T, Suleiman S. 2013. Global convergence and the Powell singular function.
Journal of Global Optimization 56(3):845–853 DOI 10.1007/s10898-012-9898-z.

Tippayawannakorn N, Pichitlamken J. 2013. Nelder-Mead method with local selection
using neighborhood and memory for stochastic optimization. Journal of Computa-
tional Science 9(4):463–476 DOI 10.3844/jcssp.2013.463.476.

Torczon VJ. 1989.Multidirectional search: a direct search algorithm for parallel
machines. PhD thesis, Rice University, Houston, TX, USA.

Vince J, Earnshaw R. 2012. Advances in modelling, animation and rendering. London:
Springer Science & Business Media.

Winfield D. 1973. Function minimization by interpolation in a data table. IMA Journal of
Applied Mathematics 12(3):339–347 DOI 10.1093/imamat/12.3.339.

Wouk A. 1987. New computing environments: microcomputers in large-scale comput-
ing. vol. 27. Philadelphia: Siam.

Wright MH. 2010. Nelder, Mead, and the other simplex method. Documenta Mathemat-
ica 7:271–276.

Yang S, Ong Y-S, Jin Y. 2007. Evolutionary computation in dynamic and uncertain
environments. vol. 51. London: Springer Science & Business Media.

Musafer et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.960 32/32

https://peerj.com
http://dx.doi.org/10.1093/comjnl/5.2.147
http://dx.doi.org/10.1093/comjnl/3.3.175
http://dx.doi.org/10.1162/evco.2006.14.1.119
http://dx.doi.org/10.1080/00401706.1962.10490033
http://dx.doi.org/10.1007/s10898-012-9898-z
http://dx.doi.org/10.3844/jcssp.2013.463.476
http://dx.doi.org/10.1093/imamat/12.3.339
http://dx.doi.org/10.7717/peerj-cs.960

