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Abstract4

The discovery of a new form of corona-viruses in December 2019, SARS-CoV-2, commonly5

named covid-19, has transformed the world. With health and economy issues, scientists have been6

focusing on understanding the dynamics of the disease, in order to provide the governments with7

the best policies and strategies allowing them to reduce the span of the virus. The world has been8

waiting for the vaccine for almost one year. In this work, we propose a new mathematical model9

with five compartments, including susceptible, vaccinated, infectious, asymptotic and recovered10

individuals. We provide theoretical results regarding the effective reproduction number, the sta-11

bility of endemic equilibrium and disease free equilibrium. We provide a numerical analysis of the12

model based on the Saudi case.13

keywords: COVID-19; mathematical model; vaccination; stability14

1 Introduction15

The outbreak of several pandemics such as COVID-19, requires the development of mathematical16

models in order to exhibit key epidemiological features, investigate transmission dynamics, and develop17

adequate control policies. Mathematical modelling, when dealing with infectious diseases, allows18

revealing inherent patterns and underlying structures that govern outbreaks. Simple models that19

contain the essential components and interactions are powerful tools to test different hypotheses and20

understand disease control for both short and long time. The stability analysis near the free disease21

equilibrium will show if the apparition of new infection cases will yield to disease outbreak. Some22

countries such Tunisia and Jordan registered zero cases for days in Summer 2020 but the introduction23

of new cases resulted in critical endemic situation by Autumn.24

The complex spreading patterns of COVID-19 and the various spread speed of its variants make25

its containing and mitigating real challenges. The existing models vary in form and complexity, but26

the common objective is to provide important information for global health decision makers about the27

disease dynamics. Driven by the observed characteristics of COVID-19, we propose a mathematical28

model with two infectious states. It was reported by World Health Organization that one in three29

people who get COVID-19 do not show any symptoms. This is a challenging problem for health30

authorities as the asymptotic individuals carry the virus and may infect other people without knowing31

it. Moreover, consequent efforts were made worldwide since the authorisation of new vaccines by the32

end of 2020. By the end of November 2021, more than 50% of the world population has first dose33

administered and only 40% has second dose administered. In order to study the efficacy of vaccination34

to contain the virus spread and its negative consequences, our model include vaccinated state. The35

objective is to provide efficient public health policies in determining optimal vaccination strategies.36

Some questions have raised since the beginning of vaccination campaigns: how many individuals should37
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be vaccinated? Is the vaccine a solution to get rid of the disease permanently? These questions are38

related to financial and moral costs associated with the chosen governmental policy. This paper gives39

theoretical and numerical analysis associated with COVID-19 epidemic dynamics in order to answer40

these critical questions. Although we focus mainly on the Saudi case, the model structure is general41

and numerically adapted to any specific context without loss of validity of the qualitative results here42

shown.43

In Section 2, we present the related works regarding epidemic modeling with a focus on COVID-1944

control strategies and particularly population vaccination. Sections 3 and 4 include model description45

and analysis, respectively. The numerical results are given in Section 5 and Section 6 concludes this46

paper.47

2 Related Works48

The mathematical modeling in epidemiology started in England, in the 18th century, when Bernoulli49

analyzed the mortality of smallpox. Since then, a large variety of epidemiological models have been50

developed [13] [19][6] [25]. In this section, we present recent works proposed in this century, impacted51

by several outbreaks such as Ebola, Zika, and the swine flu [7].52

Alexander and Moghadas [2] developed a Susceptible-Infected-Recovered-Susceptible (SIRS) epi-53

demic model. The authors considered that the immunity acquired by the population after infection54

decreases over time. The dynamical behavior of the model is investigated using different types of55

bifurcation, including saddle-node, Hopf, and Bogdanov-Takens. The stability analysis based on the56

basic reproductive number and the rate of loss of natural immunity demonstrated the coexistence57

of two concentric limit cycles. These theoretical results have epidemiological implications such the58

determination of epidemic outbreak and the control the disease spread.59

The authors of [30] investigated the Susceptible, Exposed, Infectious, Quarantine, Susceptible60

(SEIQS) epidemic model, with a nonlinear incidence rate. This model takes into consideration the61

communal sanitation measure of quarantine, aiming at avoiding broad infection. The authors pro-62

vided a stability analysis using codimension-1 (transcritical,saddle-node, and Hopf) and codimension-263

bifurcations (Bogdanov-Takens).64

Recently, Lu et. al [18] studied the the SIRS epidemic model, the same considered in [2] but with65

a generalized non-monotone incidence rate. The incidence rate is a function of the infection force of66

a disease and the number of susceptible individuals. The given formula for the incidence rate models67

the psychological pressure of some epidemic disease. The government is, in general, lead to take some68

protective measures like lockdown when the infection number becomes very high. The authors showed69

that the model has both repelling and attracting Bogdanov-Takens bifurcations. Moreover, from the70

super-critical Hopf bifurcation, the authors concluded that a disease following this model presents71

periodic outbreak, which is very important to understand its dynamics, in the real world.72

The impact of treatment function was investigated in [10] using SIS model, where recovered in-73

dividuals become again susceptible and the incidence rate is supposed bi-linear. In the considered74

model, the treatment function is saturated, which results in the existence of backward bifurcation.75

Thus, the eradication of the disease is not only related to the reproduction number but also to other76

biological or epidemiological mechanisms, such as imperfect vaccine. The bifurcation analysis outlines77

the necessary conditions to eliminate the disease. Zhang et. al [31] discussed the impact of the num-78

ber of hospital beds on SIS epidemic model, by considering a nonlinear recovery rate. The authors79

calculated the basic reproduction number corresponding to their model. This number determines the80

condition for the disease-free equilibrium to be globally asymptotically stable.81

The limitations of medical resources, mainly the availability of vaccinations, is modeled using a82

piecewise-defined function for patient treatment in [28]. This function admits a backward bifurcation83
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with limited available medical resources. The variation of vaccination threshold affects the existence84

of multiple steady states,crossing cycle, and generalized endemic equilibria. Similarly, Perez et al.85

[23] considered nonlinear incidence rate for a generalized SIR model. Besides, the authors assumed86

that the model has saturated Holling type II treatment rate and logistic growth. Non linear and87

saturated functions allows to represent more accurately the dynamics epidemic diseases. Similar to88

previous stated works, the authors revealed the importance of the basic reproduction number R0,89

whose value determines the existence of endemic equilibrium and the stability of the disease-free90

equilibrium. Under some conditions related to the disease transmission rate and the treatment rate,91

the model may undertake a backward bifurcation and a Hopf bifurcation. The above-mentioned92

articles considered general disease models. In the literature, we can also find specific models targeting93

particular disease such as avian influenza [15] and bacterial meningitis [5]. Since the declaration of94

World Health Organization (WHO) of the Severe Acute Respiratory Syndrome Coronavirus (SARS-95

CoV-2) as a pandemic on March 2020, the scientific community has been trying to understand the96

dynamics of this virus.97

One of the measures to control the virus spread in to declare total or partial lockdown, forcing98

social distancing. The scientific community believes that the main cause of infection is the inhalation99

of virus droplets [14]. Gevertz et al. [11] modeled social distancing as a flow rate between susceptible100

and asymptomatic individuals. The model reveals the existence of of a critical implementation delay,101

when implementing social distancing mandates. A delay of two weeks is the critical threshold between102

infection containment and infection expansion.103

Nadim and Chattopadhyay [21] investigated the effect of imperfect lockdown. In the adopted104

model, when the basic reproduction number, R0 is less than unity, the stable disease free equilibrium105

coexists with a stable endemic equilibrium. This means that COVID-19 undergoes backward bifur-106

cation. This phenomena was observed in the Kingdom of Saudi Arabia where the new cases were107

decreasing to reach 97 in 06, January 2021. Unfortunately, this rate reached 386 new cases, after one108

month, which obliged the Ministry of Health to declare partial lockdown for 10 days. The infection109

force is so high that the disease cannot be totally eradicated. The authors showed that under perfect110

lockdown, this backward bifurcation does not exist, but such condition is not possible in the real111

world. In [9], the authors included in their mathematical model, based on the classical SEIR, several112

prevention actions such as test campaign on the population and quarantining infected persons. The113

model took in consideration infection treatment efforts, such as vaccination and the therapy of induced114

cardio-respiratory complications. Besides the usual classes of the population, the authors considered115

two new classes, driven by specific characteristics of the virus: infected but asymptomatic patients and116

suspected infected individuals. The theoretical results, tuned using the Chinese case, were compared117

to United Kingdom case and the Italian case, showing the similarity between the model dynamics118

and the real epidemic behaviour. Another scientific aspect of COVID-19 is the possible transmission119

of the virus through contaminated surfaces. It is believed that the virus can survive several days on120

the surfaces depending on the material (wood, glass or plastic). Another issue faced by the govern-121

ments is the awareness level of the population. Some individuals, deliberately, decide not to apply the122

precautionary measures, mainly wearing mask and respecting social distancing [16].123

The issue of the efficiency of social distancing and rapid testing strategies against the pandemic was124

examined in [1], where the authors extended the standard SEIR model. The authors considered also125

the problem of undetected asymptomatic individuals, who have no symptoms but participate actively126

to virus spread. Furthermore, the limitation of medical resources was incorporated to the model. The127

theoretical findings emphasized the role of the basic reproduction number R0 in the existence of stable128

COVID-19 free and COVID-endemic equilibrium points. This conclusion is contested by Mohd and129

Sulaiman [20], who studied the SIRS model with limited medical resources and false detection issues.130

The authors showed that the condition of reducing the basic reproduction number under the unity131
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value is necessary to eliminate the disease but not sufficient.132

Since the authorization COVID-19 vaccines, several research works focused on giving insight to133

mathematical characteristic of virus spread after population vaccination. Algehyne et al. [3] used134

nonlinear functional analysis and fractal fractional derivative to model the evolution over time of four135

compartments: susceptible, infected, infected positive tested, and recovered. The Spanish case was136

investigated in [17] using also fractional derivatives. It is important to highlight that these works137

do not consider vaccinated state as a separate compartment. They rather consider that the vacci-138

nated individuals are moved from susceptible to recovered compartment.The vaccinated individuals139

are considered to move also from exposed state in [29].140

Different mathematical tools are used by Rajaei et al. [24] to compare the effect of vaccination141

with social distancing and hospitalization. Extended Kalman filter (EKF) is used for state estimation142

under uncertainty.143

Most of the existing research works developing a relationship between infectious and asymptotic144

individuals focus on estimating the model parameters using actual data [4] [11] [26] [12]. To the best145

of our knowledge, our work is the first to provide to study mathematical stability of endemic and146

disease free equilibrium.147

3 Proposed model and effective reproduction number148

Our objective is to derive the mathematical equations that better present the dynamics of covid-19149

virus. The population is divided into five compartments: susceptible, vaccinated, infectious, asymp-150

totic,and recovered; the numbers in these states are denoted by S(t), V(t), I(t), A(t), and R(t),151

respectively. Fig. 1 depicted the flow diagram of the disease spread.

I A

R

S V

Figure 1: Proposed model.

152
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All newborns are assumed to be susceptible.The natural recruitment and the natural death are153

denoted by Λ and µ, respectively. The disease-induced death rate is ignored. Susceptible individuals154

are vaccinated at rate constant ψ. The parameters α and β are the infecting rates of asymptotic and155

infectious individuals, respectively. γ1 and γ2 are the rates that the infectious and asymptotic indi-156

viduals become recovered and acquire temporary immunity, respectively. The vaccinated individuals157

need a period of time to develop their immunity against the virus, represented by 1
η
.158

The virus may infect vaccinated individuals but at a lower rate than susceptible individuals who159

are not unvaccinated. Thus in this case, the transmission rates β and α are multiplied by a scaling160

factor ϵ1 and ϵ2 (0≤ ϵ1, ϵ2 ≤1). Table 1 summarizes the different model parameters.161

Parameter Description

Λ Recruitment rate of susceptible humans
µ Natural mortality rate
β Transmission rate for Infectious
α Transmission rate for Asymptotic
ψ Vaccination coverage rate
1/η Immunity development period
γ1 Recovery rate Infectious
γ2 Recovery rate Asymptotic
1/ σ Period for asymptotic individuals to develop symptoms

Table 1: Model parameters and decription.

Based on the above assumptions and Fig. 1, we formulate the following model of differential162

equations.163

dS

dt
= Λ− µS − ψS − βIS − αAS (3.1a)

dV

dt
= −µV + ψS − ηV − ϵ1βIV − ϵ2αAV (3.1b)

dI

dt
= −µI + βIS + ϵ1βIV + σA− γ1I (3.1c)

dA

dt
= −µA+ αAS − σA+ ϵ2αAV − γ2A (3.1d)

dR

dt
= −µR+ ηV + γ1I + γ2A (3.1e)

The basic reproduction number is defined as the number of secondary infections produced by a164

single infectious individual during his or her entire infectious period. Since we introduce a vaccination165

program in our model, it is called the effective reproduction number. The system (3.1) has always a166

disease-free equilibrium, which is obtained by setting all the derivatives to zero with I = A = 0, that167

yields to: P0 = (S0, I0, A0, R0, V0) = ( Λ
µ+ψ , 0, 0,

ηψΛ
µ(µ+ψ)(µ+η) ,

ψΛ
(µ+ψ)(µ+η))168

Let x = (I, A, V,R, S)T . System (3.1) can be rewritten as x′ = F(x)−N (x),, where F be the rate169

of appearance of new infections in each compartment. The progression from A to I is not considered170

to be new infection, but rather the progression of an infected individual through various infectious171

compartments.172
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F(x) =













βIS + ϵ1βIV
αAS + ϵ2αAV

0
0
0













, N (x) =













(µ+ γ1)I − σA
(µ+ σ + γ2)A

(µ+ η)V − ψS + ϵ1βIV + ϵ2αAV
µR− ηV − γ1I − γ2A

−Λ + (µ+ ψ)S + βIS + αAS













.173

The infected compartments are A and I, giving m=2. With A=I=0, the Jacobian matrices of F(x)174

and N (x) at the disease-free equilibrium P0 are, respectively,175

DF(P0) =









F 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0









, DN (P0) =









N 0 0 0
ϵ1βV0 ϵ2αV0 µ+ η 0 − ψ
−γ1 − γ2 − η µ 0

βS0 αS0 0 0 µ+ ψ









,176

F =

(

βS0 + ϵ1βV0 0
0 αS0 + ϵ2αV0

)

, N =

(

µ+ γ1 − σ
0 µ+ σ + γ2

)

.177

Our developed model is similar to the two-strain model in [27] with two infectious compartments.178

FN−1, the next generation matrix of system (3.1) has the two eigenvalues.179

R1 =
β(S0+ϵ1V0)

µ+γ1
=

βΛ( 1
µ+ψ

+ϵ1
ψ

(µ+ψ)(µ+η)
)

µ+γ1
=

βΛ(1+ϵ1
ψ
µ+η

)

(µ+γ1)(µ+ψ)
180

R2 =
α(S0+ϵ2V0)
µ+γ2+σ

=
αΛ(1+ϵ2

ψ
µ+η

)

(µ+γ2+σ)(µ+ψ)
= αΛ(µ+η+ϵ2ψ)

(µ+γ2+σ)(µ+ψ)(µ+η)
181

The effective reproduction number for the system is the maximum of the two.182

4 Model analysis183

4.1 Existence of endemic equilibrium point184

In this section, we investigate the conditions for the existence of endemic equilibria of system (3.1).
Any equilibrium satisfies the following equations:

Λ− µS − ψS − βIS − αAS = 0 (4.1a)

−µV + ψS − ηV − ϵ1βIV − ϵ2αAV = 0 (4.1b)

−µI + βIS + ϵ1βIV + σA− γ1I = 0 (4.1c)

−µA+ αAS − σA+ ϵ2αAV − γ2A = 0 (4.1d)

−µR+ ηV + γ1I + γ2A = 0 (4.1e)

The equation (4.1d) gives the following expression:185

S = µ+σ+γ2
α

− ϵ2V .186

187

The equation (4.1b) gives the following expression:188

V = ψ(µ+σ+γ2)
α(µ+η+ϵ1βI+ϵ2αA+ψϵ2)

.189

190

From Eq. (4.1c) and assuming ϵ1 − ϵ2 = 0, we deduce the following expressions:191

A = (µ+γ1
σ

−
β(µ+σ+γ2)

ασ
)I = D I192

S = µ+σ+γ2
α

(µ+η+ϵ1βI+ϵ2αA)
(µ+η+ϵ1βI+ϵ2αA+ψϵ2)

193

194

The equation (4.1a) gives the following expression:195

µ+σ+γ2
α

(µ+η+ϵ1βI+ϵ2αD I)
(µ+η+ϵ1βI+ϵ2αD I+ψϵ2)

[µ+ ψ + (β + αD)I] = Λ196

We arrange the previous expression to get the following:197

(ϵ1β+ ϵ2αD)(β+αD)I2 + [(µ+ η)(β+αD) + (µ+ψ)(ϵ1β+ ϵ2αD)−Λα ϵ1β+ϵ2αD
µ+σ+γ2

]I + (µ+ η)(µ+198

ψ)− Λαµ+η+ψϵ2
µ+σ+γ2

199
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We denote by:200

a=(ϵ1β + ϵ2α(
µ+γ1
σ

−
β(µ+σ+γ2)

ασ
))(β + α(µ+γ1

σ
−

β(µ+σ+γ2)
ασ

))201

b=[(µ+η)(β+α(µ+γ1
σ

−
β(µ+σ+γ2)

ασ
))+(µ+ψ)(ϵ1β+ϵ2α(

µ+γ1
σ

−
β(µ+σ+γ2)

ασ
))−Λα

ϵ1β+ϵ2α(
µ+γ1
σ

−
β(µ+σ+γ2)

ασ
)

µ+σ+γ2
]202

c=(µ+ η)(µ+ ψ)− Λαµ+η+ψϵ2
µ+σ+γ2

= (µ+ η)(µ+ ψ)(1−R2)203

The existence of endemic equilibrium is determined by the existence of positive solutions of the204

quadratic equation205

P (I) = aI2 + bI + c = 0 (4.2)

.206

The number of endemic equilibria of the considered system depends on parameter values a, b,207

and c. This equation may have zero, one or two solutions. We denote R20 = αΛ
(µ+γ2+σ)(µ+η)

then208

R2 = R20
µ+η+ϵ2ψ
µ+ψ209

We denote by ψcrit
def
=

(R20 − 1)µ+R20η

1− ϵ2R20
., where R2(ψcrit) = 1,210

Since the model parameters A and I are positive, it follows that D >0 and a > 0. Furthermore, if211

R2 > 1, then c < 0. Since
dR2

dψ
= −R20

η + (1− ϵ2)µ

(µ+ ψ)2
< 0 Thus, R2 is decreasing function of ψ and if212

ψ < ψcrit , then R2>1. We deduce that for R2 > 1, P(I) has a unique positive root.213

If R2 < 1, we have c>0 and ψ ≥ ψcrit. Since b(ψ) is an increasing function of ψ, if b(ψcrit) ≥ 0,214

then b(ψ) > 0 for ψ > ψcrit. In this case, P(I) has no positive real root and the system have no215

endemic equilibrium.216

We consider now the case where b(ψcrit) < 0. We denote by ∆(ψ)
def
= b2(ψ)−4ac(ψ). If c(ψcrit) = 0,217

∆(ψcrit) > 0. Since b(ψ) is an increasing linear function of ψ, there is a unique ¯̄ψ > ψcrit such that218

b( ¯̄ψ) = 0. and ∆(ψ) has a unique root ψ̄ in [ψcrit,
¯̄ψ].219

P(I) has two roots and the system 3.1 has two endemic equilibria for ψcrit < ψ < ψ̄. and P(I) ha220

no real positive root and the system (3.1) has no endemic equilibria for ψ > ψ̄.221

If R2 = 1, we have c=0. In this case, system has a unique endemic equilibrium for b(ψ) < 0 and222

no endemic equilibrium for b(ψ) > 0.223

4.2 Stability of disease-free equilibrium224

The Jacobian matrix with respect to the system (3.1) is given by:225

J0(P0) =













−(µ+ γ1) + β(S0 + ϵ1V0) σ 0 0 0
0 − (µ+ σ + γ2) + α(S0 + ϵ2V0) 0 0 0

−ϵ1βV0 − ϵ2αV0 − (µ+ η) 0 ψ
γ1 γ2 η − µ 0

−βS0 − αS0 0 0 − (µ+ ψ)













.226

∣

∣

∣
λ− J0(P0)

∣

∣

∣
= 0.227

The characteristic polynomial of the Jacobian matrix at DFE is given by det(J0 − λI) = 0, where228

λ is the eigenvalue and I is 5× 5 identity matrix. Thus, J0 has eigenvalues given by:229

λ1 = −µ230

λ2 = −(µ+ η)231

λ3 = −(µ+ ψ)232

λ4 = −(µ+ γ1) + β(S0 + ϵ1V0) = (µ+ γ1)(R1 − 1)233

λ5 = −(µ+ σ + γ2) + α(S0 + ϵ2V0) = (µ+ σ + γ2)(R2 − 1)234

All the eigenvalues are strictly negative except for λ4 and λ5. These eigenvalues depend the sign235

of (R2− 1) and (R1− 1). The stability of the DFE represents the dynamics of disease free population236
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when a small number of infected individuals introduced. Did the system stay disease free or an endemic237

state may appear?238

Theorem 1 Based on the Theorem of [27], we have the following results. If R1 > 1 or/and R2 > 1,239

then λ4 or/and λ5 is/are strictly positive. In this case the DFE is unstable. If R1 < 1 and R2 < 1,240

then λ4 and λ5 are strictly negative. The system is locally asymptotically stable.241

5 Numerical simulations242

In this paper, we focus on vaccination analysis in Saudi Arabia. The presented numerical simulations243

provide also general results that can be applied to any region. The data set is provided by King244

Abdullah Petroleum Studies and Research Center (KAPSARC). It includes five classes: Tested, Cases,245

Recoveries, Critical, Mortalities and Active and it spans the period from 04/03/2020 to 08/11/2021.246

It includes also important events and measures such as international flights suspension and lockdown.247

We use Simulink Tool in order to simulate different scenarios.248

The death and birth rate for Saudi Arabia are estimated to be equal to 3.39 and 14.56 for 1000 per249

year, respectively. The vaccination campaign started on 18/12/2020 with a vaccination coverage of the250

total population of 0.02% to reach about 65% of the adult population fully vaccinated in November251

2021. The vaccination rate is considered a the percentage of the total population that get vaccinated252

per day. With approximately 45000 administrated doses per day and a total population of 35339000253

in 2021, this rate is about 0.00 127. Is this rate enough to eradicate the disease? This what we are254

trying to answer is this work.255

The research report [22] provides information about asymptotic individuals for COVID-19. Most256

people, with no symptoms at the beginning, develop symptoms in 7-13 days, which corresponds to257

the σ−1. Recall that γ1 is the recovery rate of infectious individuals. Interpreted as the expected258

value of a Poisson process, γ1 can be related to the needed time from the beginning of the infection259

till recovery [11]. With average recovery duration equal to 10 days [8], the recovery rate of infectious260

individuals is γ1 = 0.1 =.261

Let ω denote the fraction of asymptotic individuals among positive cases. According to [22], and262

based on 13 studies involving 21,708 people in 2020, ω = 0.17. Using the same methodology as in [11]263

γ2 =
ω

1−ωσ ≈ 0.2σ. The asymptotic people are estimated to be 42% less contagious than symptomatic264

individuals [22]. Thus, α = 0.42 β265

Parameter Range

Λ 14.56 per 1000 per year
β [0.233, 0.462] [8]
α 0.42 β
ψ model parameter
µ 3.39 per 1000 per year
1/η 14 days
γ1 0.1
γ2 0.2 σ
1/σ [7,13] days

Table 2: Model parameters and values.

By 18/12/2020, considered as time 0 in this model, the number of recoveries is equal to 351722 ,266

the number of active cases is equal to 3014. Assuming that ω = 0.17, the number of initial infectious267

with and without symptoms is equal to 2501 and 513, respectively.268
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First, we investigate the effect of the vaccination rate on the effective reproduction number defined269

as the maximum of the two entities R1 and R2. According to [8], covid-19 transmission rate β ranges270

between 0.233 and 0.462. Fig 2a and Fig 2b show the evolution of both R1 and R2 as a function of271

the vaccination rate ψ with virus transmission rate equal to 0.233 and 0.462, respectively. In both272

cases, R1 corresponding to the strain of infectious individuals with symptoms is greater than R2,273

corresponding to the strain of asymptotic individuals. Thus the number of individuals infected by one274

person currying the virus is mainly affected by individuals showing usual symptoms. Mathematical275

theoretical result confirms that the vaccine reduces the spread of the virus among the population.276

We would like to highlight the fact in our model that a vaccinated individual may be infectious with277

or without symptoms. This result is very important as, till the end of 2021, an important portion278

of worldwide population is still opposed to vaccine. In the case of high transmission rate and low279

vaccination rate, R1 is higher than 1. The disease free equilibrium is consequently unstable according280

to theorem 1. For the Saudi case, when beta is equal to 0.233, R1 and R2 are equal to 0.0797 and 0.0195,281

respectively. When beta is equal to 0.462, R1 and R2 are equal to 0.1580 and 0.0387, respectively. For282

the Saudi Arabia, the effective reproduction number is less than 1, even for high transmission rate.283

This result is explained by the high vaccination rate.284
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(a) Varying R1 and R2 as a function of ψ,
β = 0.233.
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(b) Varying R1 and R2 as a function of ψ, β = 0.462.

Figure 2: Varying R1 and R2 as a function of vaccination rate for two virus transmission rates,
β = 0.233 and β = 0.462.

Fig. 3 shows the weekly number of new active cases and recovered after infection in KSA, starting285

from 18/12/2020, the date when the vaccination starts. We can see that after 12 weeks, the number286

of cases raises. This behaviour was surprising for a population waiting to see the effect of vaccination.287

It’s only after 31 weeks that the number of new cases start to decrease. The same phenomena was288

observed in both Fig. 4c and Fig. 5c. The theatrical results is conform to actual statistics. The effect289

of vaccination is not immediate; it needs several weeks to observe a decrease in the number of new290

infectious cases.291

We compare the evolution in time of the five compartments (S, V, I, A ,and R) presented in292

our model, for two different transmission rate and with the Saudi vaccination rate. With different293

dynamics at the beginning, both scenarios show a convergence to a stable state. We observe almost294

similar patterns for S, V. I and R. The number of susceptible individuals S decreases slowly at the295
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beginning and then, we observe a drastic decline. Obviously, the number of recovered follows the same296

slow and then fast pace but in decrease. The number of vaccinated individuals V increases gradually297

at the beginning and then it begins to fall down. The number of infectious individuals I remain stable298

for a short period to witness an expansion followed by a decline. The number of asymptotic individuals299

show different evolution patterns for two considered scenarios. When we set a low value for the virus300

transmission rate, this number immediately shrinks. However, when we set a high value for the virus301

transmission rate, this number increases before shrinking.302

The effect of the transmission rate can also be observed in the amplitude of each category of303

individuals. When the models converge, the number of infectious and asymptotic individuals are zero.304

We emphasize here our theoretical result, mentioned in Theorem 1, that states that if both R1 and R2305

are less than one, the disease free equilibrium is stable. This result is consistent with the simulation306

results. The difference between the two considered scenarios lies in the percentage of susceptible307

and vaccinated individuals in the equilibrium. This percentage is very low when the transmission308

rate is high. Although the percentages of vaccinated individuals are close, we observe a remarkable309

difference in the number of infectious individuals. When the transmission rate is high, almost 40% of310

the population is infected, which rises public health issues.311
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Figure 3: Number of active cases and recovered after infection in KSA. Starting from 18/12/2020.
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(a) Susceptible (b) Vaccinated

(c) Infectious (d) Asymptotic

(e) Recovered

Figure 4: Percentage of susceptible, vaccinated, infectious. asymptotic and recovered individuals,
β = 0.233, ψ = 0.0012.
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(a) Susceptible (b) Vaccinated

(c) Infectious (d) Asymptotic

(e) Recovered

Figure 5: Percentage of susceptible, vaccinated, infectious. asymptotic and recovered individuals,
β = 0.462, ψ = 0.0012.
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6 Conclusion312

In this paper, we present a mathematical model for covid-19, based on the virus behaviour. Our313

main target is to evaluate the effect of vaccination on the population. The presence of individuals314

presenting no symptoms and the immunity loss are the main characteristics that make this virus315

different from other known and already modeled diseases. We provide analytical expression of the316

effective reproduction number with is a key factor to determine necessary conditions for endemic and317

disease free equilibrium. We supported our theoretical findings with the numerical analysis applied to318

the Saudi case. Recently, the scientific community is observing the new variants that show each time319

different patterns. We aim in the future, to develop a new model with the new observed characteristics320

of variants such as beta and omicron.321
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