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ABSTRACT
The discovery of a new form of corona-viruses in December 2019, SARS-CoV-2,
commonly namedCOVID-19, has reshaped theworld.With health and economic issues
at stake, scientists have been focusing on understanding the dynamics of the disease, in
order to provide the governments with the best policies and strategies allowing them to
reduce the span of the virus. The world has been waiting for the vaccine for more than
one year. TheWorldHealthOrganization (WHO) is advertising the vaccine as a safe and
effective measure to fight off the virus. Saudi Arabia was the fourth country in the world
to start to vaccinate its population. Even with the new simplified COVID-19 rules, the
third dose is still mandatory. COVID-19 vaccines have raisedmany questions regarding
in its efficiency and its role to reduce the number of infections. In this work, we try to
answer these question and propose a newmathematical model with five compartments,
including susceptible, vaccinated, infectious, asymptotic and recovered individuals. We
provide theoretical results regarding the effective reproduction number, the stability of
endemic equilibrium and disease free equilibrium.We provide numerical analysis of the
model based on the Saudi case. Our developed model shows that the vaccine reduces
the transmission rate and provides an explanation to the rise in the number of new
infections immediately after the start of the vaccination campaign in Saudi Arabia.

Subjects Bioinformatics, Algorithms and Analysis of Algorithms, Scientific Computing and
Simulation
Keywords Mathematical model, Vaccination, Stability, COVID-19

INTRODUCTION
The outbreak of several pandemics such as COVID-19 requires the development of
mathematical models in order to exhibit key epidemiological features, investigate
transmission dynamics, and develop adequate control policies. Mathematical modelling
when dealing with infectious diseases allows revealing inherent patterns and underlying
structures that govern outbreaks. Simple models that contain the essential components
and interactions are powerful tools to test different hypotheses and understand disease
control for both short and long time. The stability analysis near the free disease equilibrium
will show if the apparition of new infection cases will yield to disease outbreak. Some
countries such Tunisia and Jordan registered zero cases for days in Summer 2020 but the
introduction of new cases resulted in critical endemic situation by Autumn.
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The complex spreading patterns of COVID-19 and the various spread speed of its
variants make its containing and mitigating real challenges. The existing models vary in
form and complexity, but the common objective is to provide important information
for global health decision makers about the disease dynamics. The first control measure
was lockdown and then health authorities imposed mask wearing and social distancing.
Khajanchi et al. (2021) showed, by extending the classical SEIR model, that social distance
is an important factor to reduce the reproduction number and this to reduce the virus
spread. Despite the herd immunity acquired via vaccine or infection, the social distancing
is still recommended as a public health measure. Driven by the observed characteristics of
COVID-19, we propose a mathematical model with two infectious states. It was reported
by World Health Organization that one in three people who get COVID-19 do not show
any symptoms. This is a challenging problem for health authorities as the asymptotic
individuals carry the virus and may infect other people without knowing it. Moreover,
consequent efforts were made worldwide since the authorisation of new vaccines by the
end of 2020. By the end of November 2021, more than 50% of the world population has
first dose administered and only 40% has second dose administered. In order to study
the efficacy of vaccination to contain the virus spread and its negative consequences, our
model include vaccinated state. The objective is to provide efficient public health policies in
determining optimal vaccination strategies. Some questions have raised since the beginning
of vaccination campaigns: how many individuals should be vaccinated? Is the vaccine a
solution to get rid of the disease permanently? These questions are related to financial and
moral costs associated with the chosen governmental policy. This paper gives theoretical
and numerical analysis associated with COVID-19 epidemic dynamics in order to answer
these critical questions. Although we focus mainly on the Saudi case, the model structure
is general and numerically adapted to any specific context without loss of validity of the
qualitative results here shown. The main contributions of this research are given as follows:

• Developing a novel mathematical model to predict the spread of COVID-19, with the
presence of vaccinated and asymptotic compartments
• Analyzing the existence of endemic equilibrium point and the stability of disease-free
equilibrium
• Investigating a real case study in Saudi Arabia, discussing the impact of vaccination on
disease dynamics

In ‘Related Works’, we present the related works regarding epidemic modeling
with a focus on COVID-19 control strategies and particularly population vaccination.
‘Proposed Model and Effective Reproduction Number’ and ‘Model Analysis’ include
model description and analysis, respectively. The numerical results are given in ‘Numerical
Simulations’ and ‘Conclusion’ concludes this paper.

RELATED WORKS
The mathematical modeling in epidemiology started in England, in the 18th century, when
Bernoulli analyzed the mortality of smallpox. Since then, a large variety of epidemiological
models have been developed (Gumel et al., 2021; Mandal et al., 2020; Batistela et al., 2021;
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Samui, Mondal & Khajanchi, 2020). In this section, we present recent works proposed in
this century, impacted by several outbreaks such as Ebola, Zika, and the swine flu (Bekiros
& Kouloumpou, 2020). Alexander & Moghadas (2005) developed a Susceptible-Infected-
Recovered-Susceptible (SIRS) epidemic model. The authors considered that the immunity
acquired by the population after infection decreases over time. The dynamical behavior of
the model is investigated using different types of bifurcation, including saddle–node, Hopf,
and Bogdanov-Takens. The stability analysis based on the basic reproductive number and
the rate of loss of natural immunity demonstrated the coexistence of two concentric limit
cycles. These theoretical results have epidemiological implications such the determination
of epidemic outbreak and the control the disease spread.

Yi, Zhao & Zhang (2009) investigated the Susceptible, Exposed, Infectious, Quarantine,
Susceptible (SEIQS) epidemicmodel, with a nonlinear incidence rate. This model takes into
consideration the communal sanitation measure of quarantine, aiming at avoiding broad
infection. The authors provided a stability analysis using codimension-1 (transcritical,
saddle–node, and Hopf) and codimension-2 bifurcations (Bogdanov-Takens).

Recently, Lu et al. (2019) studied the the SIRS epidemic model, the same considered
in Alexander & Moghadas (2005) but with a generalized non-monotone incidence rate. The
incidence rate is a function of the infection force of a disease and the number of susceptible
individuals. The given formula for the incidence rate models the psychological pressure of
some epidemic disease. The government is, in general, led to take some protective measures
like lockdown when the infection number becomes very high. The authors showed that the
model has both repelling and attracting Bogdanov-Takens bifurcations. Moreover, from
the super-critical Hopf bifurcation, the authors concluded that a disease following this
model presents periodic outbreak, which is very important to understand its dynamics, in
the real world.

The impact of treatment function was investigated in Xiao et al. (2015) using the SIS
model, where recovered individuals become again susceptible and the incidence rate is
bi-linear. In the considered model, the treatment function is saturated, which results in the
existence of backward bifurcation. Thus, the eradication of the disease is not only related to
the reproduction number but also to other biological or epidemiological mechanisms, such
as imperfect vaccine. The bifurcation analysis outlines the necessary conditions to eliminate
the disease. Zhang, Ge & Lin (2020) discussed the impact of the number of hospital beds
on SIS epidemic model, by considering a nonlinear recovery rate. The authors calculated
the basic reproduction number corresponding to their model. This number determines
the condition for the disease-free equilibrium to be globally asymptotically stable.

The limitations of medical resources, mainly the availability of vaccinations, is modeled
using a piecewise-defined function for patient treatment in Wang, Xiao & Smith (2019).
This function admits a backward bifurcation with limited available medical resources. The
variation of vaccination threshold affects the existence of multiple steady states,crossing
cycle, and generalized endemic equilibria. Similarly, Perez, Avila-Vales & Garcia-Almeida
(2019) considered nonlinear incidence rate for a generalized SIRmodel. Besides, the authors
assumed that the model has saturated Holling type II treatment rate and logistic growth.
Non linear and saturated functions allows to represent more accurately the dynamics
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epidemic diseases. Similar to previous stated works, the authors revealed the importance
of the basic reproduction number R0, whose value determines the existence of endemic
equilibrium and the stability of the disease-free equilibrium. Under some conditions
related to the disease transmission rate and the treatment rate, the model may undertake
a backward bifurcation and a Hopf bifurcation. The above-mentioned articles considered
general diseasemodels. In the literature, we can also find specificmodels targeting particular
disease such as avian influenza (Jiang et al., 2020) and bacterial meningitis (Asamoah et al.,
2020). Since the declaration of World Health Organization (WHO) of the Severe Acute
Respiratory Syndrome Coronavirus (SARS-CoV-2) as a pandemic on March 2020, the
scientific community has been trying to understand the dynamics of this virus.

One of the measures to control the virus spread in to declare total or partial lockdown,
forcing social distancing. The scientific community believes that themain cause of infection
is the inhalation of virus droplets (Jayaweera et al., 2020). Gevertz et al. (2021) modeled
social distancing as a flow rate between susceptible and asymptomatic individuals. The
model reveals the existence of of a critical implementation delay, when implementing
social distancing mandates. A delay of two weeks is the critical threshold between infection
containment and infection expansion.

Nadim & Chattopadhyay (2020) investigated the effect of imperfect lockdown. In the
adoptedmodel, when the basic reproduction number,R0 is less than unity, the stable disease
free equilibrium coexists with a stable endemic equilibrium. This means that COVID-19
undergoes backward bifurcation. This phenomenon was observed in the Kingdom of Saudi
Arabia where the new cases were decreasing to reach 97 in 06, January 2021. Unfortunately,
this rate reached 386 new cases, after one month, which obliged the Ministry of Health to
declare partial lockdown for 10 days. The infection force is so high that the disease cannot
be totally eradicated. The authors showed that under perfect lockdown, this backward
bifurcation does not exist, but such condition is not possible in the real world. In Di
Giamberardino & Iacoviello (2021), the authors included in their mathematical model,
based on the classical SEIR, several prevention actions such as test campaign on the
population and quarantining infected persons. The model took in consideration infection
treatment efforts, such as vaccination and the therapy of induced cardio-respiratory
complications. Besides the usual classes of the population, the authors considered two new
classes, driven by specific characteristics of the virus: infected but asymptomatic patients
and suspected infected individuals. The theoretical results, tuned using the Chinese case,
were compared to United Kingdom case and the Italian case, showing the similarity
between the model dynamics and the real epidemic behaviour. Lü et al. (2021) proposed an
epidemic model that distinguishes between the first and the second waves od COVID-19
in China. The two-stage model includes a Contacts compartment, besides the usual
Susceptible, Infectious and Recovered compartments. The authors of Khajanchi, Sarkar &
Banerjee (2022) raised the issue of undetected symptomatic and asymptomatic individuals.
They also investigated the effect of two control strategies that include the improvement of
treatment for infected and isolated individuals. Another scientific aspect of COVID-19 is
the possible transmission of the virus through contaminated surfaces. It is believed that the
virus can survive several days on the surfaces depending on the material (wood, glass or
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plastic). Another issue faced by the governments is the awareness level of the population.
Some individuals, deliberately, decide not to apply the precautionary measures, mainly
wearing mask and respecting social distancing (Kassa, Njagarah & Terefe, 2020).

The issue of the efficiency of social distancing and rapid testing strategies against the
pandemic was examined in Aldila et al. (2020), where the authors extended the standard
SEIR model. The authors considered also the problem of undetected asymptomatic
individuals, who have no symptoms but participate actively to virus spread. Furthermore,
the limitation of medical resources was incorporated to the model. The theoretical findings
emphasized the role of the basic reproduction number R0 in the existence of stable COVID-
19 free and COVID-endemic equilibrium points. This conclusion is contested by Mohd &
Sulayman (2020), who studied the SIRS model with limited medical resources and false
detection issues. The authors showed that the condition of reducing the basic reproduction
number under the unity value is necessary to eliminate the disease but not sufficient. Since
the authorization COVID-19 vaccines, several research works focused on giving insight
to mathematical characteristic of virus spread after population vaccination. Algehyne
& Ibrahim (2021) used nonlinear functional analysis and fractal fractional derivative to
model the evolution over time of four compartments: susceptible, infected, infected positive
tested, and recovered. The Spanish case was investigated in Kumar, Erturk & Murillo-Arcila
(2021) using also fractional derivatives. It is important to highlight that these works
do not consider vaccinated state as a separate compartment. They rather consider that
the vaccinated individuals are moved from susceptible to recovered compartment. The
vaccinated individuals are considered to move also from exposed state in Wintachai &
Prathom (2021).

Different mathematical tools are used by Rajaei et al. (2021) to compare the effect of
vaccination with social distancing and hospitalization. The extended Kalman filter (EKF)
is used for state estimation under uncertainty.

Most of the existing research works developing a relationship between infectious
and asymptotic individuals focus on estimating the model parameters using actual
data (Asamoah et al., 2021; Gevertz et al., 2021; Sasmita et al., 2020; Giordano et al., 2020).
To the best of our knowledge, our work is the first to provide to studymathematical stability
of endemic and disease free equilibrium. Most relevant works in COVID-19 mathematical
modeling are compared in Table 1, in terms of disease control strategy, considered model
and country of the case study.

PROPOSED MODEL AND EFFECTIVE REPRODUCTION
NUMBER
Our objective is to derive the mathematical equations that better present the dynamics
of COVID-19 virus. The population is divided into five compartments: susceptible,
vaccinated, infectious, asymptotic, and recovered; the numbers in these states are denoted
by S(t), V(t), I(t), A(t), and R(t), respectively. Figure 1 depicted the flow diagram of the
disease spread.

Table 2 and Table 3 summarize the different model parameters and variables.
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Table 1 Most relevant studies in the field of COVID-19 prediction trend.

Ref. Control Measure Model Country of case study

Nadim & Chattopadhyay (2020) lockdown SEIR+Hospitalized+Lockdown India, Mexico, South
Africa and Argentina

Di Giamberardino & Iacoviello (2021) test campaign and quarantine SEIR+ Quarantined UK, China, Italy
Gevertz et al. (2021) social distancing SAIR –
Kassa, Njagarah & Terefe (2020) social distancing and mask SEIR+ Asymptotic WHO

wearing
Aldila et al. (2020) social distancing and rapid SEIR+ Asymptotic Indonesia

testing
Asamoah et al. (2021) social distancing SEIR+Quarantined+Hospitalized Egypt and Ghana
Gevertz et al. (2021) social distancing SAIR WHO
Algehyne & Ibrahim (2021) vaccination SIR Brasil
Kumar, Erturk & Murillo-Arcila (2021) vaccination SEIRS+Death Spain
Rajaei et al. (2021) vaccination SEIR+Quarantined+Hospitalized Canada
Our research Vaccination SAIR+Vaccinated Saudi Arabia

All newborns are assumed to be susceptible. The natural recruitment and the natural
death are denoted by 3 and µ, respectively. The disease-induced death rate is ignored.
Susceptible individuals are vaccinated at rate constant ψ . The parameters α and β are the
infecting rates of asymptotic and infectious individuals, respectively. γ1 and γ2 are the rates
that the infectious and asymptotic individuals become recovered and acquire temporary
immunity, respectively. The vaccinated individuals need a period of time to develop their
immunity against the virus, represented by 1

η
.

The virus may infect vaccinated individuals but at a lower rate than susceptible
individuals who are not unvaccinated. Thus in this case, the transmission rates β and
α are multiplied by a scaling factor ε1 and ε2 (0 ≤ ε1, ε2≤1).

Based on the above assumptions and Fig. 1, we formulate the following model of
differential equations.

dS
dt
=3−µS−ψS−βIS−αAS (1a)

dV
dt
=−µV +ψS−ηV −ε1βIV −ε2αAV (1b)

dI
dt
=−µI+βIS+ε1βIV +σA−γ1I (1c)

dA
dt
=−µA+αAS−σA+ε2αAV −γ2A (1d)

dR
dt
=−µR+ηV +γ1I+γ2A (1e)

Algarni et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.959 6/20

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.959


I A

R

S V

Figure 1 The proposed model.
Full-size DOI: 10.7717/peerjcs.959/fig-1

The basic reproduction number is defined as the number of secondary infections
produced by a single infectious individual during his or her entire infectious period.
Since we introduce a vaccination program in our model, it is called the effective
reproduction number. The system (1) has always a disease-free equilibrium, which
is obtained by setting all the derivatives to zero with I = A = 0, that yields to:
P0= (S0,I0,A0,R0,V0)= ( 3

µ+ψ
,0,0, ηψ3

µ(µ+ψ)(µ+η) ,
ψ3

(µ+ψ)(µ+η))

Let x = (I ,A,V ,R,S)T . System (1) can be rewritten as x ′=F(x)−N (x),, where F be
the rate of appearance of new infections in each compartment. The progression from A to
I is not considered to be new infection, but rather the progression of an infected individual
through various infectious compartments.

Algarni et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.959 7/20

https://peerj.com
https://doi.org/10.7717/peerjcs.959/fig-1
http://dx.doi.org/10.7717/peerj-cs.959


Table 2 Model parameters and description.

Parameter Description

3 Recruitment rate of susceptible humans
µ Natural mortality rate
1/η Immunity development period
γ1 Recovery rate Infectious
γ2 Recovery rate Asymptotic
1/ σ Period for asymptotic individuals to develop symptoms

Table 3 Model variables and description.

Variable Description

β Transmission rate for Infectious
α Transmission rate for Asymptotic
ψ Vaccination coverage rate

F(x)=

 βIS+ε1βIV
αAS+ε2αAV

0
0
0

, N (x)=

 (µ+γ1)I−σA
(µ+σ +γ2)A

(µ+η)V −ψS+ε1βIV +ε2αAV
µR−ηV −γ1I−γ2A

−3+ (µ+ψ)S+βIS+αAS

.
The infected compartments are A and I, giving m= 2. With A =I =0, the Jacobian

matrices of F(x) and N (x) at the disease-free equilibrium P0 are, respectively,

DF(P0)=

(
F 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

)
, DN (P0)=

(
N 0 0 0

ε1βV0 ε2αV0 µ+η 0 −ψ

−γ1 −γ2 −η µ 0
βS0 αS0 0 0 µ+ψ

)
,

F =
(
βS0+ε1βV0 0

0 αS0+ε2αV0

)
, N =

(
µ+γ1 −σ

0 µ+σ +γ2

)
.

Our developed model is similar to the two-strain model in Van den Driessche &
Watmough (2002) with two infectious compartments. FN−1, the next generation matrix of
system (1) has the two eigenvalues.

R1=
β(S0+ε1V0)
µ+γ1

=
β3( 1

µ+ψ
+ε1

ψ
(µ+ψ)(µ+η) )

µ+γ1
=

β3(1+ε1
ψ
µ+η

)
(µ+γ1)(µ+ψ)

R2=
α(S0+ε2V0)
µ+γ2+σ

=
α3(1+ε2

ψ
µ+η

)
(µ+γ2+σ )(µ+ψ)

=
α3(µ+η+ε2ψ)

(µ+γ2+σ )(µ+ψ)(µ+η)

The effective reproduction number for the system is the maximum of the two.

MODEL ANALYSIS
Existence of endemic equilibrium point
In this section, we investigate the conditions for the existence of endemic equilibria of
system (1). Any equilibrium satisfies the following equations:

3−µS−ψS−βIS−αAS= 0 (2a)

−µV +ψS−ηV −ε1βIV −ε2αAV = 0 (2b)
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−µI+βIS+ε1βIV +σA−γ1I = 0 (2c)

−µA+αAS−σA+ε2αAV −γ2A= 0 (2d)

−µR+ηV +γ1I+γ2A= 0 (2e)

Eq. (2d) gives the following expression:

S= µ+σ+γ2
α
−ε2V .

Eq. (2b) gives the following expression:

V = ψ(µ+σ+γ2)
α(µ+η+ε1βI+ε2αA+ψε2)

.

From Eq. (2c) and assuming ε1−ε2= 0, we deduce the following expressions:

A= (µ+γ1
σ
−
β(µ+σ+γ2)

ασ
)I =DI

S= µ+σ+γ2
α

(µ+η+ε1βI+ε2αA)
(µ+η+ε1βI+ε2αA+ψε2)

Eq. (2a) gives the following expression:

µ+σ+γ2
α

(µ+η+ε1βI+ε2αDI )
(µ+η+ε1βI+ε2αDI+ψε2)

[µ+ψ+ (β+αD)I ] =3

We arrange the previous expression to get the following:

(ε1β+ε2αD)(β+αD)I 2+[(µ+η)(β+αD)+(µ+ψ)(ε1β+ε2αD)−3α
ε1β+ε2αD
µ+σ+γ2

]I+

(µ+η)(µ+ψ)−3αµ+η+ψε2
µ+σ+γ2

We denote by:
a = (ε1β+ε2α(

µ+γ1
σ
−
β(µ+σ+γ2)

ασ
))(β+α(µ+γ1

σ
−
β(µ+σ+γ2)

ασ
))

b = [(µ+η)(β+α(µ+γ1
σ
−

β(µ+σ+γ2)
ασ

))+ (µ+ψ)(ε1β+ ε2α(
µ+γ1
σ
−

β(µ+σ+γ2)
ασ

))−

3α
ε1β+ε2α(

µ+γ1
σ
−
β(µ+σ+γ2)

ασ
)

µ+σ+γ2
]

c = (µ+η)(µ+ψ)−3αµ+η+ψε2
µ+σ+γ2

= (µ+η)(µ+ψ)(1−R2)

The existence of endemic equilibrium is determined by the existence of positive solutions
of the quadratic equation

P(I )= aI 2+bI+ c = 0. (3)
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The number of endemic equilibria of the considered system depends on parameter
values a, b, and c . This equation may have zero, one or two solutions. We denote
R20=

α3
(µ+γ2+σ )(µ+η)

then R2=R20
µ+η+ε2ψ
µ+ψ

We denote by ψcrit =
def (R20−1)µ+R20η

1−ε2R20
., where R2(ψcrit )= 1,

Since the model parameters A and I are positive, it follows that D> 0 and a> 0.

Furthermore, if R2 > 1, then c < 0. Since
dR2

dψ
=−R20

η+ (1−ε2)µ
(µ+ψ)2

< 0 Thus, R2 is

decreasing function of ψ and if ψ <ψcrit , then R2> 1. We deduce that for R2> 1, P(I)
has a unique positive root.

If R2 < 1, we have c > 0 and ψ ≥ψcrit . Since b(ψ) is an increasing function of ψ , if
b(ψcrit )≥ 0, then b(ψ)> 0 for ψ >ψcrit . In this case, P(I) has no positive real root and the
system have no endemic equilibrium.

We consider now the case where b(ψcrit )< 0. We denote by1(ψ)=def b2(ψ)−4ac(ψ).
If c(ψcrit )= 0, 1(ψcrit )> 0. Since b(ψ) is an increasing linear function of ψ , there is a
unique ¯̄ψ >ψcrit such that b( ¯̄ψ)= 0. and 1(ψ) has a unique root ψ̄ in [ψcrit ,

¯̄ψ].
P(I) has two roots and the system (1) has two endemic equilibria for ψcrit <ψ <ψ̄ . and

P(I) ha no real positive root and the system (1) has no endemic equilibria for ψ > ψ̄ .
If R2 = 1, we have c = 0. In this case, system has a unique endemic equilibrium for

b(ψ)< 0 and no endemic equilibrium for b(ψ)> 0.

Stability of disease-free equilibrium
The Jacobian matrix with respect to the system (1) is given by:

J0(P0)=

−(µ+γ1)+β(S0+ε1V0) σ 0 0 0
0 −(µ+σ +γ2)+α(S0+ε2V0) 0 0 0

−ε1βV0 −ε2αV0 −(µ+η) 0 ψ

γ1 γ2 η −µ 0
−βS0 −αS0 0 0 −(µ+ψ)

.
∣∣∣λ− J0(P0)∣∣∣= 0.

The characteristic polynomial of the Jacobian matrix at DFE is given by det (J0−λI )= 0,
where λ is the eigenvalue and I is 5×5 identity matrix. Thus, J0 has eigenvalues given by:

λ1=−µ

λ2=−(µ+η)
λ3=−(µ+ψ)
λ4=−(µ+γ1)+β(S0+ε1V0)= (µ+γ1)(R1−1)
λ5=−(µ+σ +γ2)+α(S0+ε2V0)= (µ+σ +γ2)(R2−1)

All the eigenvalues are strictly negative except for λ4 and λ5. These eigenvalues depend
the sign of (R2−1) and (R1−1). The stability of the DFE represents the dynamics of disease
free population when a small number of infected individuals introduced. Did the system
stay disease free or an endemic state may appear?
Theorem 1 Based on the Theorem of Van den Driessche & Watmough (2002), we have the
following results. If R1> 1 or/and R2> 1, then λ4 or/and λ5 is/are strictly positive. In this
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case the DFE is unstable. If R1 < 1 and R2 < 1, then λ4 and λ5 are strictly negative. The
system is locally asymptotically stable.

NUMERICAL SIMULATIONS
In this paper, we focus on vaccination analysis in Saudi Arabia. The presented numerical
simulations provide also general results that can be applied to any region. The data set
is provided by King Abdullah Petroleum Studies and Research Center (KAPSARC). It
includes five classes: Tested, Cases, Recoveries, Critical, Mortalities and Active and it spans
the period from 04/03/2020 to 08/11/2021. It includes also important events and measures
such as international flights suspension and lockdown.We used the Simulink Tool in order
to simulate different scenarios.

The death and birth rate for Saudi Arabia are estimated to be equal to 3.39 and 14.56
for 1,000 per year, respectively. The vaccination campaign started on 18/12/2020 with a
vaccination coverage of the total population of 0.02% to reach about 65% of the adult
population fully vaccinated in November 2021. The vaccination rate is considered a the
percentage of the total population that get vaccinated per day. With approximately 45,000
administrated doses per day and a total population of 35339000 in 2021, this rate is about
0.00 127. Is this rate enough to eradicate the disease? This what we are trying to answer is
this work.

The estimation ofmodel parameters is very important to have accurate numerical results.
One approach consists in calibrating the model by fitting it with reported data using, for
example, least square method (Rai et al., 2022). In our paper, we used scientific reported
facts about COVID-19 transmission mechanisms. The research report (Nogrady, 2020)
provides information about asymptotic individuals for COVID-19. Most people, with no
symptoms at the beginning, develop symptoms in 7–13 days, which corresponds to the
σ−1. Recall that γ1 is the recovery rate of infectious individuals. Interpreted as the expected
value of a Poisson process, γ1 can be related to the needed time from the beginning of the
infection till recovery (Gevertz et al., 2021). With average recovery duration equal to 10
days (Chae et al., 2020), the recovery rate of infectious individuals is γ1= 0.1.

Let ω denote the fraction of asymptotic individuals among positive cases. According
to Nogrady (2020), and based on 13 studies involving 21,708 people in 2020, ω= 0.17.
Using the same methodology as in Gevertz et al. (2021) γ2= ω

1−ωσ ≈ 0.2σ . The asymptotic
people are estimated to be 42% less contagious than symptomatic individuals (Nogrady,
2020). Thus, α= 0.42β. Table 4 summarizes selected values for the model parameters.

By 18/12/2020, considered as time 0 in this model, the number of recoveries is equal to
351722, the number of active cases is equal to 3,014. Assuming that ω= 0.17, the number
of initial infectious with and without symptoms is equal to 2,501 and 513, respectively.

First, we investigate the effect of the vaccination rate on the effective reproduction
number defined as the maximum of the two entities R1 and R2. According to Chae et al.
(2020), COVID-19 transmission rate β ranges between 0.233 and 0.462. Figures 2A and
2B show the evolution of both R1 and R2 as a function of the vaccination rate ψ with virus
transmission rate equal to 0.233 and 0.462, respectively. In both cases, R1 corresponding
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Table 4 Model parameters and values.

Parameter Range

3 14.56 per 1,000 per year
β [0.233, 0.462] Chae et al. (2020)
α 0.42 β
ψ model parameter
µ 3.39 per 1,000 per year
1/η 14 days
γ1 0.1
γ2 0.2 σ
1/σ [7,13] days

Figure 2 Varying R1 and R2 as a function of vaccination rate for two virus transmission rates, β =

0.233 and β = 0.462. (A) Varying R1 and R2 as a function of ψ , β = 0.233 (B) Varying R1 and R2 as a
function of ψ , β = 0.462

Full-size DOI: 10.7717/peerjcs.959/fig-2

to the strain of infectious individuals with symptoms is greater than R2, corresponding
to the strain of asymptotic individuals. Thus the number of individuals infected by one
person currying the virus is mainly affected by individuals showing usual symptoms.
Mathematical theoretical result confirms that the vaccine reduces the spread of the virus
among the population. We would like to highlight the fact in our model that a vaccinated
individual may be infectious with or without symptoms. This result is very important as, till
the end of 2021, an important portion of worldwide population is still opposed to vaccine.
In the case of high transmission rate and low vaccination rate, R1 is higher than 1. The
disease free equilibrium is consequently unstable according to theorem 1. For the Saudi
case, when beta is equal to 0.233, R1 and R2 are equal to 0.0797 and 0.0195, respectively.
When beta is equal to 0.462, R1 and R2 are equal to 0.1580 and 0.0387, respectively. For
Saudi Arabia, the effective reproduction number is less than 1, even for high transmission
rate. This result is explained by the high vaccination rate.

Figure 3 shows the weekly number of new active cases and recovered after infection
in KSA, starting from 18/12/2020, the date when the vaccination starts. We can see that
after 12 weeks, the number of cases raises. This behaviour was surprising for a population
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Figure 3 Number of active cases and recovered after infection in KSA, starting from 18/12/2020.
Full-size DOI: 10.7717/peerjcs.959/fig-3

waiting to see the effect of vaccination. It’s only after 31 weeks that the number of new
cases start to decrease. The same phenomena was observed in both Figs. 4C and 5C. The
theatrical results is conform to actual statistics. The effect of vaccination is not immediate;
it needs several weeks to observe a decrease in the number of new infectious cases.

We compare the evolution in time of the five compartments (S, V, I, A, and R) presented
in our model, for two different transmission rate and with the Saudi vaccination rate. With
different dynamics at the beginning, both scenarios show a convergence to a stable state.
We observe almost similar patterns for S, V. I and R. The number of susceptible individuals
S decreases slowly at the beginning and then, we observe a drastic decline. Obviously, the
number of recovered follows the same slow and then fast pace but in decrease. The number
of vaccinated individuals V increases gradually at the beginning and then it begins to fall
down. The number of infectious individuals I remain stable for a short period to witness
an expansion followed by a decline. The number of asymptotic individuals show different
evolution patterns for two considered scenarios. When we set a low value for the virus
transmission rate, this number immediately shrinks. However, when we set a high value
for the virus transmission rate, this number increases before shrinking.

The effect of the transmission rate can also be observed in the amplitude of each category
of individuals. When the models converge, the number of infectious and asymptotic
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Figure 4 Percentage of susceptible (A), vaccinated (B), infectious (C), asymptomatic (D), and recov-
ered (E) individuals. β= 0.233,ψ= 0.0012.

Full-size DOI: 10.7717/peerjcs.959/fig-4

individuals are zero. We emphasize here our theoretical result, mentioned in Theorem 1,
that states that if both R1 and R2 are less than one, the disease free equilibrium is stable. This
result is consistent with the simulation results. The difference between the two considered
scenarios lies in the percentage of susceptible and vaccinated individuals in the equilibrium.
This percentage is very low when the transmission rate is high. Although the percentages
of vaccinated individuals are close, we observe a remarkable difference in the number of
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Figure 5 Percentage of susceptible (A), vaccinated (B), infectious (C), asymptomatic (D), and recov-
ered (E) individuals. β= 0.462,ψ= 0.0012.

Full-size DOI: 10.7717/peerjcs.959/fig-5

infectious individuals. When the transmission rate is high, almost 40% of the population
is infected, which rises public health issues.

Managerial insights and practical implications
By March 2022, several countries, including Saudi Arabia, have simplified COVID-19 rules
by relaxing some safe management measures such as social distancing and mask wearing.
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However, the Saudi ministry of health kept the condition of three vaccine doses. This
decision is part of a public health strategy that continues to monitor virus variants, mainly
Omicron and its sublineages BA.1 and BA.2. WHO’s Technical Advisory Group requests
countries to continue to be vigilant because of potential significant rise in the number of
infections. Although these variants might resist neutralizing antibodies in the blood, the
vaccine allows preventing severe illness and death. Unlike several countries, Saudi Arabia
was spared from the lack of oxygen generators, the most important medical equipment for
hospitalized patients. The main concern is, however, regulations regarding vaccination.
The vaccine was made mandatory for individuals over 12 years old. The open question is
the need for vaccine for children aged from 5 to 11 years. Therefore, managers need to
simulate the effect of vaccination and make predictions of the virus spread. This work tries
to provide them with an efficient tool that captures the specificity of the Saudi case.

CONCLUSION
In this article, we present a mathematical model for COVID-19, based on the virus
behaviour. Our main target is to evaluate the effect of vaccination on the population.
The presence of individuals presenting no symptoms and the immunity loss are the main
characteristics that make this virus different from other known and already modeled
diseases. We provide analytical expression of the effective reproduction number with is a
key factor to determine necessary conditions for endemic and disease free equilibrium. We
supported our theoretical findings with the numerical analysis applied to the Saudi case.
The main findings of this work are as follows.

• People can observe that the vaccine helps to reduce the severity of symptoms. We gave
a mathematical proof that the vaccine reduces the transmission rate.
• The vaccination campaign in Saudi Arabia was immediately followed by the rise in the
number of infections. We have showed that this observation is mathematically justified
and this rise is a necessary transition before the increase of new infections.
• By adjusting the model parameters based on collected data, we provide the decision-
makers with the vaccination rate necessary for virus spread control.

Recently, the scientific community is observing the new variants that show each time
different patterns. We aim, in the future, to develop a new model with the new observed
characteristics of variants such as beta and omicron. As discussed in the previous section,
several countries including Saudi Arabia did not face medical resource shortages. However,
as highlighted by Lotfi et al., (2021), the management of medical waste is critical during
COVID-19 pandemic. Moreover, the number of asymptomatic and untested symptomatic
infections is uncertain. As future work, we propose to capture disease dynamic uncertainty
and incorporate risk assessment, to alleviate the impacts of pandemic peak. Hybrid fuzzy,
data-driven, robust optimization, and stochastics (Lotfi et al., 2022a; Lotfi et al., 2022b)
are examples of uncertainty analysis methods. Conditional value at risk (CVaR), which is
the average shortfall beyond the VaR point, is a consistent and coherent risk assessment
measure.
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