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ABSTRACT
For COVID-19, the need for robust, inexpensive, and accessible screening becomes
critical. Even though symptoms present differently, cough is still taken as one of the
primary symptoms in severe and non-severe infections alike. For mass screening in
resource-constrained regions, artificial intelligence (AI)-guided tools have
progressively contributed to detect/screen COVID-19 infections using cough sounds.
Therefore, in this article, we review state-of-the-art works in both years 2020 and
2021 by considering AI-guided tools to analyze cough sound for COVID-19
screening primarily based on machine learning algorithms. In our study, we used
PubMed central repository and Web of Science with key words: (Cough OR Cough
Sounds OR Speech) AND (Machine learning OR Deep learning OR Artificial
intelligence) AND (COVID-19 OR Coronavirus). For better meta-analysis, we
screened for appropriate dataset (size and source), algorithmic factors (both shallow
learning and deep learning models) and corresponding performance scores. Further,
in order not to miss up-to-date experimental research-based articles, we also
included articles outside of PubMed and Web of Science, but pre-print articles were
strictly avoided as they are not peer-reviewed.

Subjects Bioinformatics, Artificial Intelligence, Data Mining and Machine Learning
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INTRODUCTION
COVID-19 has ravaged the world since theWorld Health Organization (WHO) declared it
a global health emergency on January 30, 2020. There are 446,511,318 total confirmed
cases and 6,004,421 deaths worldwide as of March 8, 2022 (see Fig. 1) (WHO coronavirus
(COVID-19) dashboard. https://covid19.who.int/). Despite all our best efforts, the human
cost in terms of person-hours spent and lives lost to this virus is extensive. Although
there are multiple ways to fight the virus, the greatest hope for ending the pandemic is
vaccines, of which 10,704,043,684 vaccine doses (as of March 6, 2022) have been
distributed globally (Ahmed et al., 2020). However, if we rely on vaccines alone, there will
be many more deaths before humanity can put this pandemic behind it. Therefore, how
else can we fight this virus other than the suggested preventative measures, like washing
our hands and wearing masks? Other than diagnosis, screening tests will be one of the
most integral parts of containing this virus completely, especially in resource-constrained
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regions across the world, where vaccines are unavailable or untrusted because of general
vaccine skepticism within a community.

Cough is used to diagnose and predict many diseases to help clinicians better serve
patients; some of these diseases include but are not limited to pneumonia and asthma.
Multiple studies have recently used artificial intelligence (AI)-guided tools to help classify
different coughs and help diagnose or predict certain diseases. For example, Nemati et al.
(2020) conducted a study to help classify the severity of chronic obstructive pulmonary
disease by measuring the airflow and volume of patients breathing with spirometry tests.
Nakamori et al. (2020) showed that using a simplified cough test, they can predict the risk
of patients with acute stroke getting pneumonia. Another study conducted by Nemati et al.
(2020) used AI-guided tools to detect whether a specific cough was ‘dry’ or ‘wet,’ which
would help establish the presence of sputum. In Rudraraju et al. (2020), a study also found
that AI-guided tools can classify obstructive vs restrictive lung problems. Lastly, Han et al.
(2020) used cough and other types of valuable data to estimate the severity level of illness.
These previous five examples show that different cough metrics can get leveraged in
multiple ways, with and without AI-guided tools, to help diagnose and predict diseases in
humans. However, because cough has helped diagnose many other diseases, AI-guided

Figure 1 Globally, as of 4:31pm CET, 8 March 2022, there have been 446,511,318 confirmedcases of COVID-19, including 6,004,421 deaths
(source: https://covid19.who.int). Full-size DOI: 10.7717/peerj-cs.958/fig-1

Santosh et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.958 2/20

https://covid19.who.int
http://dx.doi.org/10.7717/peerj-cs.958/fig-1
http://dx.doi.org/10.7717/peerj-cs.958
https://peerj.com/computer-science/


tools that leverage cough sound samples must also take into consideration the works
involved with diagnosing other diseases to more accurately screen COVID-19 (Imran
et al., 2020). Furthermore, mel-frequency cepstral coefficients (MFCCs) processing helps
COVID-19 screening because authors found high similarity in MFCCs between different
COVID-19 cough and breathing sounds (Alsabek, Shahin & Hassan, 2020). Although
this is only one cough feature that most robust AI-powered algorithms use, it is a good
case-in-point for the research that we will explore in this article. Based on the features like
MFCCs extracted from the audio recording, AI-guided tools can help detect a cough and
use this process to screen COVID-19 patients (Chen et al., 2021; Miranda, Diacon &
Niesler, 2019; Chuma & Iano, 2021). More often, accuracy for basic cough detectors is
generally greater than 95%. While reviewing state-of-the-art works, we consider whether
AI-guided tools are reproducible (with external validation) for COVID-19 diagnosis—‘is
my cough COVID-19?’ (Topol, 2020).

A brief clinical analysis of the symptom cough in COVID-19 patients reveals many
factors to consider related to AI-guided tools. The first factor to consider is that there is no
international definition of the symptom of cough (Morice, 2007). This fact shows that
diagnosis of the symptom cough is subjective, and clinician reporting of cough can be
inaccurate, and it is even more inaccurate in the general population (Donnelly & Everard,
2019; Morice, 2007). The following factors should also be get considered: socio-
demographics, the severity of the illness, the patient’s age, and temporal considerations.
Multiple socio-demographic studies on COVID-19 show that cough is ubiquitous in terms
of the presentation rate of the symptom between different populations such as African-
Americans and Latinos (Gayam et al., 2020;Weng et al., 2020). Furthermore, these studies
show that there are differences in the presentation of other symptoms regarding race. Next,
multiple studies regarding the severity level of the illness show little difference between
mild, moderate, severe, and critical infections (Lapostolle et al., 2020; Wang et al., 2020;
Vaughan et al., 2021; Matangila et al., 2020; Yang et al., 2020). However, there are a few
studies, out of many, that show a difference (Fontana, 2007). Moreover, patients in the
mild to moderate categories generalize well to the population at large because most
COVID-19 infections will fall into this category (Yang et al., 2020). Age category is also an
essential factor to consider and studies show there is little to no difference between age
groups for the presentation rate of the cough symptom (Brendish et al., 2020; Cattelan
et al., 2020; Guan et al., 2020; Morice, 2007). Lastly, considering the temporal aspects of
cough in COVID-19 infections, we see a critical aspect that shows that cough is a reliable
metric. That aspect is, the symptom of cough lasts longer and at a higher rate than all
other symptoms (Faezipour & Abuzneid, 2020). This study analyzed a relatively small
number of patients; however, if this study can be confirmed, it shows that cough as a
screening metric may help catch an infection in the later stages. Overall, based on these
studies, the cough presentation rate is high relative to all symptoms and can be considered
the second most common symptom after fever.

This paper systematically reviews AI-guided tools that are used to analyze cough sound
for COVID-19 screening. To avoid possible confusion between diagnostic tests and
screening tests, a diagnostic test aims to establish the presence/absence of the disease, while
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a screening test is to detect potential disease indicators. In short, we systematically review
screening tests with the use of AI-guided tools. AI-guided tools rely on fully observed
clinically diagnosed data (cough sounds, in our case) and are considered one of the fastest
and most accurate tools in classifying/screening COVID-19 (Imran et al., 2020; Ahmed
et al., 2020). Other data, such as respiratory and breathing sounds, can also be considered
for screening (Hassan, Shahin & Alsabek, 2020), but our study is limited to analyzing
cough sounds because it is one of the most widespread symptoms that can easily get
screened with low-cost equipment for many people in a short period of time.

The remainder of the paper is organized as follows. “Survey Methodology” presents our
review methodology (inclusion criteria of the published research articles). It mainly
includes AI-guided tools for COVID-19 screening using cough sounds in both crowd-
sourced and laboratory confirmed data (“AI-guided tools for COVID-19 screening using
cough sounds”). In addition, in “Research articles outside of PubMed andWeb of Science”,
we also review important findings outside PubMed and Web of Science. These sections get
followed by discussion in “Discussion”. “Conclusion” concludes our study.

SURVEY METHODOLOGY
An essential aspect of any review article is how the information was collected (McDonagh
et al., 2013). For our systematic review, we follow a workflow representing different phases
of systematic review, where it primarily includes identification, screening, eligibility and
included criteria as shown in Fig. 2. In our study, we used PubMed central repository and
Web of Science, and selected key words are (Cough OR Cough Sounds OR Speech)
AND (Machine learningOR Deep learningOR Artificial intelligence) AND (COVID-19OR
Coronavirus). In our screening, duplicate items were removed, and experiment-based
papers are included.

Figure 2 Workflow representing different phases of the systematic review (source: PRISMAcriteria
(Liberati et al., 2009)). Full-size DOI: 10.7717/peerj-cs.958/fig-2
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For better meta-analysis, we screened for appropriate dataset (size and source),
algorithmic factors (both, shallow learning and deep learning models), and corresponding
performance scores. For meta-analysis, we included experimental-based research articles.
Pre-print articles (e.g., ArXiv, medRxiv and TechRxiv) were strictly avoided as they are not
peer-reviewed.

AI-guided tools for COVID-19 screening using cough sounds
AI has contributed a lot in healthcare and integrating speech/audio processing tools is no
exception (Santosh, 2019; Mukherjee et al., 2021; Mukherjee, Salam & Santosh, 2021). We
review state-of-the-art works on COVID-19 screening through cough sounds. Not only
that, but we also address other data types such as sneezing, respiratory, speech, throat
clearing, wheezing, and breathing. For a better understanding, Fig. 3 provides a workflow
of how AI-guided tools are commonly employed. It takes cough sound data as an input,
extracts features and differentiates COVID-19 positive human subjects from non-COVID
ones.

It is possible to develop AI-guided audio/speech processing tools/techniques that extract
and leverage acoustic biomarker features to pre-screen COVID-19 recordings from cough.
Before developing detailed information, let us discuss a few cases where use of biomarkers
and smartphone-based tools/techniques can be seen. Experts proposed a speech and signal
processing approach to analyze COVID-19 (in both cases: asymptomatic and
symptomatic). A dataset with a complexity of neuromotor coordination across speech
subsystems that involve respiration, phonation, and articulation, encouraged by the
distinct nature of COVID-19’s lower vs upper respiratory tract inflammation, helps detect
COVID-19 in asymptomatic and symptomatic patients (Quatieri, Talkar & Palmer, 2020).
These biomarker features can get leveraged with AI-guided tools to have a significant effect
to increase forced cough COVID-19 detection accuracy (Laguarta, Hueto & Subirana,
2020). Similarly, smartphone-based self-testing of COVID-19 using breathing sounds and
their implications to find breathing complications by comparing specific acoustic signal
patterns has also been gotten observed in this review. In Faezipour & Abuzneid (2020), the
authors suggest their opinion for using advanced signal processing in tandem with new
deep machine learning and pattern recognition techniques on smartphone technology.

Figure 3 AI-guided tools for COVID-19 screening using cough sound. COVID-19 positive human
subjects are classified based on both, shallow and deep learning models. Even though multiple data types
can be considered, in this study, we are focusing on cough sound.

Full-size DOI: 10.7717/peerj-cs.958/fig-3

Santosh et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.958 5/20

http://dx.doi.org/10.7717/peerj-cs.958/fig-3
http://dx.doi.org/10.7717/peerj-cs.958
https://peerj.com/computer-science/


In Tables 1 and 2, we organize the results to contrast studies with and without
laboratory confirmation of their datasets for better understanding. Not limited to cough
sounds, other sources of data, such as speech, breathing and respiratory sounds, are
considered in some studies (see Fig. 3).

Studies on non laboratory confirmed datasets
In Table 1, we summarize work in accordance with how features were extracted (shallow
learning or deep learning). In other words, we consider handcrafted features (with typical
machine learning classifiers) and deep learning algorithms to detect cough sounds in
COVID-19 patients. Regardless of how samples were collected, we start with popular
features, such as MFCCs, typical machine learning classifiers, and end with deep features.
Table 1 follows the order of the description (provided below).

Table 1 Cough sounds (including other data type) for COVID-19 screening performance in terms of
Accuracy (ACC), Area Under the Curve (AUC), Sensitivity (SEN) and Specificity (SPEC) on ‘no
laboratory confirmed data’.

Performance

Authors (year) Data type (sample size) ACC AUC SEN SPEC

Dash et al. (2021) Cough sounds (5,130) 0.86 0.50 – –

Mouawad, Dubnov & Dubnov (2021) Cough sounds (1,927) 0.91 0.84 – –

Speech (1,488) 0.89 0.86 – –

Shimon et al. (2021) Cough sounds (1,296) 0.74 0.60 0.90 0.35

Despotovic et al. (2021) Cough sounds (496) 0.88 – 0.87 0.89

Melek (2021) Cough sounds (180) 0.98 0.98 0.97 1.00

Mohammed et al. (2021) Cough sounds (1,276) 0.77 0.77 0.71 –

Gokcen et al. (2021) Cough (822) 0.79 – 0.75 –

Feng et al. (2021) Cough sounds (1,440) 0.81 0.79 – –

Coppock et al. (2021) Cough sounds (517) – 0.84 – –

Lella & Pja (2021) Multiple data types* (6,000) 0.95 – – –

Pahar et al. (2021) Cough sounds (1,171) 0.95 – 0.93 0.98

Laguarta, Hueto & Subirana (2020) Cough Sounds (5,320) 0.97 0.97 0.98 0.94

Jayachitra et al. (2021) Cough Sounds (601) 0.97 – 0.94 –

Note:
* Multiple data types, including cough sound.

Table 2 Cough sounds (including other data type) for COVID-19 screening performance in terms of
Accuracy (ACC), Area Under the Curve (AUC), Sensitivity (SEN) and Specificity (SPEC) on
‘laboratory confirmed data’.

Performance

Authors (year) Data (sample size) ACC AUC SEN SPEC

Imran et al. (2020) Cough sounds (543) 0.93 – 0.94 0.91

Pinkas et al. (2020) Complete recordings* (292) 0.79 – 0.79 –

Lonini et al. (2021) Multiple data types* (288) – 0.94 – –

Note:
* Multiple data types, including cough sound.
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• Handcrafted features (shallow learning): MFCCs contributed a lot in audio/speech
processing. In Dash et al. (2021), the authors used the MFCCs of speech signals. From the
Coswara dataset, designated database-1, the authors used 570 participants, and each
participant contributed nine audio files to various categories of samples (3,470 are clean,
1,055 are noisy, and the rest are highly degraded sound samples). They did not, however,
mention if a laboratory has verified the data. Next, the authors used a crowdsourced
database designated database-2, with 6,631 users; 235 users were declared COVID-19
positive. The authors suitably optimized the frequency range and the conversion scale of
the recordings. The authors used adaptive synthetic sampling approach for imbalanced
learning to create synthetic data. In their experiments, they reported accuracy of 0.86
(0.74) for database-2 (database-1) cough sounds.

In a similar fashion,Mouawad, Dubnov & Dubnov (2021) analyzed symbolic recurrence
quantification measures derived from MFCC features to detect COVID-19 cases using
cough sounds and speech. They used recurrence dynamics and variable Markov model on
sustained vowel ‘ah’ recordings and showed that their model is robust for detecting the
disease in sustained vowel utterances. The dataset was composed of 1,927 cough sound
samples with only 32 sick patients and 1,488 speech records with only 20 sick patients.
The authors ensured that the classification model was not biased towards the majority class
and experimented with a wide range of data sampling techniques such as oversampling the
minority class or under-sampling the majority class. They reported the following test
results: an accuracy of 0.91 and an AUC of 0.84.

In addition to handcrafted features, other studies highlight the use of typical machine
learning classifiers, such as Neural Networks (NNs), Support Vector Machine (SVM),
Random Forest (RF), and Logistic Regression (LR). In Shimon et al. (2021), the authors
used multiple different shallow learning techniques like SVM and RF. Their dataset was
from non-publicly available crowdsourced data that took multiple types of recordings from
people over multiple days. The type of recording used in this article was both cough sounds
and the vowel ‘a’. In total, 1,296 cough recordings were used, and 428 “a” recordings were
used. The experimenters used multiple different techniques to extract the audio feature,
including the openSMILE toolkit and Librosa. After the classifiers classified each audio
sample, the experimenters used simple majority voting to classify the patient as COVID-19
infected or non-COVID-19 infected. SVM showed the best result of the different classifiers
with an accuracy of 0.78 and 0.74, an AUC of 0.64 and 0.60, a sensitivity of 0.95 and 0.90,
and a specificity of 0.36 and 0.35 for ‘a’ and cough, respectively.

In Despotovic et al. (2021), the authors used wavelet scattering features and deep audio
embeddings with multiple different shallow learning techniques. Their dataset used
crowdsourced data with 1,103 participants where each produced two to five samples each.
From these samples, the authors created a balanced dataset with a total of 496 cough
samples. They used five-fold leave one out cross-validation for their experimental set-up.
Boosting with the wavelet scattering features seemed to have the best overall performance
with a 0.88 accuracy, a 0.87 sensitivity, and a 0.89 specificity. In Melek (2021), the authors
used multiple different shallow learning architectures to classify cough as COVID-19
Positive or Negative. Among the different architectures are Polynomial-SVM, Linear-
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LDA, and Euclidean-kNN. They used a composition of two different datasets, 121 from
Virufy and 59 from NoCoCoDa. Once combined, the dataset consisted of 107 positive
samples and 73 negative samples. Unfortunately, the paper did not specify how they split
their data, which limits the reproducibility of this model and limits interpretation of the
results. Euclidean-kNN achieved their best results on a single cough with a 0.98 accuracy,
1.0 Specificity, 0.97 Sensitivity, and 0.99 AUC.

• Deep features (deep learning):
The authors also introduced a Deep Neural Network (DNN) to analyze cough sounds.

In Nessiem et al. (2021), the authors explore the usage of deep learning models as a
ubiquitous, low-cost, pre-testing method for detecting COVID-19 from audio recordings
of breathing or coughing taken with mobile devices or via the web. First, they collected
1,427 audio files from a crowdsourced database. Then, they adapted an ensemble of three
Convolutional Neural Networks that utilize breathing and coughing raw audio,
spectrograms, and Mel-spectrograms to analyze if a speaker is infected with COVID-19 or
not. In their experiments, they reported an unweighted average recall/sensitivity of 0.75,
AUC of 0.81, and accuracy of 0.73 by ensembling NNs.

In Gokcen et al. (2021), the authors used a “Deep neural network” for the classification
of COVID-19 infected individuals. However, the paper did not give an excellent
description of their neural network, and from what was gathered, they used some dense net
with neurons. However, it is clear that the paper had a sample size of 822 coughs from
the MIT open dataset. This seemingly small neural network produced the following results:
an accuracy of 0.79 and a recall of 0.75.

In Feng et al. (2021), the authors used an rNN to classify COVID-19 infected individuals
from non-infected individuals. They used two different datasets, Coswara for the one they
split into validation and training sets, the next is a small Virufy dataset for its final test set.
Coswara consisted of 1,433 participants, which they used a 0.80, 0.20 split. The small
Virufy test set consisted of 16 recordings from seven patients. Their model had an
encouraging result for the training and validation set; however, when they tried it on the
Virufy dataset, they could only get around a 0.81 accuracy with an AUC of 0.79.

In Coppock et al. (2021), the authors used a deep neural network on a crowdsourced
dataset. This study used a “CIdeR” Convolutional Neural Network (CNN) which is based
on the ResNet architecture to help classify in four tasks: (a) COVID positive and stratum
healthy-no-symptoms (62 vs 245 subjects); (b) COVID-positive with COVID cough
and stratum healthy-with-cough (23 vs 30 subjects); (c) COVID-positive with COVID
cough and stratum asthma-with-cough (23 vs 19 subjects); and (d) COVID positive and
COVID negative (62 vs 293 subjects). In total, this dataset consisted of 517 samples from
355 participants, and each sample was chopped up into segments, then used a voting
mechanism with a mean average across the segments to break ties. Their respective AUCs
are: (a) 0.83, (b) 0.57, (c) 0.91, and (d) 0.85.

In Lella & Pja (2021), the authors extended the work of Brown et al. (2020) (using
the exact same dataset) using a Deep CNN with multi-feature channels and data
augmentation. In contrast to previous work, their results were improved. It was, however,
not mentioned whether the improvement was due to data augmentation, the use of the
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DCNN classifier, or the increase in the dataset’s size. These authors are also ambiguous in
declaring whether their data is entirely non-laboratory confirmed, as they mention that
users have been admitted ‘into the clinic.’ To classify between COVID-19 positive and
negative cases, an accuracy of 0.95 was reported. No other metrics such as sensitivity and
specificity were used. In Pahar et al. (2021), they used multiple different machine learning
techniques on a crowdsourced publicly available dataset called the ‘Coswara’ dataset.
It was composed of 92 (1,079) COVID-19 positive samples (negative samples).
The authors generated synthetic COVID-19 samples to build dataset balanced. Of many
classifiers (e.g., LR, LSTM, CNN and ResNet50), ResNet50 achieved the best-reported
accuracy (0.95). However, throughout the entire reported results, sensitivity remained
in the lower nineties (percentage-wise). Later, the researchers also tested their model on a
clinically validated dataset called Sarcos after training on the Coswara dataset. Their best
performing model was a combination of LTSM + SFS which had an accuracy of 0.9291,
AUC of 0.938, sensitivity of 0.91, and a specificity of 0.96.

In addition, the authors have found that biomarkers are important features. In
Laguarta, Hueto & Subirana (2020), their tool helped extract and leverage acoustic
biomarker features to help pre-screen COVID-19 recordings. The dataset was composed of
475 laboratory-confirmed COVID-19 infected patients, 962 doctor assessments, and 1,223
personal assessments. This study used under-sampling to pull coughs from a group of
‘hundreds of thousands’ of non-infected COVID-19 people to balance the dataset with 224
official tests, 523 personal assessments, and 1,913 personal assessments. However, this
study does not thoroughly explain what a ‘personal assessment’ is. However, this study
does explain that a diagnostic test must have been complete within seven days of of
collection of the sample, with symptom onset no later than 20 days. In total, 4,256 cough
samples were used for training and 1,064 for validation. The CNN incorporates multiple
biomarker feature models. These biomarkers included muscular degradation, vocal cords,
sentiment, and lung and respiratory tract. They achieved a forced cough COVID-19
screening accuracy of 0.97, an AUC of 0.97, a sensitivity of 0.98, and a specificity of 0.94.
Furthermore, asymptomatic patients achieved a sensitivity of 1.0 with 0.83 specificity. This
work admits that both the inclusion of doctor assessments and personal assessments hurts
the generalizability of their model, and are conducting future tests. Since the results are
high, their methods of biomarker use should be further explored. In Jayachitra et al.
(2021), the authors used a deep neural network architecture. The paper proposed a RNN
that would fuse each mode of input’s predictions and add the symptoms to the mix of
fusions. The dataset used a mixture of audio and radiological pictures to get a yes or no for
COVID-19 infection. After gathering many datasets, their cough sample size consisted of
153 positive samples and 348 negative samples. Again, artificial data was used in their
sample size. Their testing procedure did not include a separate test set, so there is a
potential bias toward the dataset with the .80 .20 split. However, they report that their
multi-modal dataset scored 1.0 across the board on all metrics with just cough at 0.97
accuracy, 0.97 precision, and 0.94 recall. As the model is still progress, it may not be
generalized well to the population.
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Studies on laboratory confirmed datasets
In Table 2, we observe the use of CNN and/or DNN as well as ensemble learning to
detect COVID-19 in the cough sounds of human subjects. Based on the authors’ reports,
we categorize their studies with laboratory confirmed datasets. In what follows, we discuss
CNN-based works as well as a new paradigm of physiological impact.

CNN has been popularly used to develop AI-guided tools across many different
computer vision tasks, and COVID-19 screening using cough sounds is no exception. In
Imran et al. (2020), the app called ‘AI4COVID-19’ recorded three seconds of sound
and provided results in less than 2 min. This app used a CNN to identify cough sounds. In
their first test, they employed Deep Transfer Learning-based Multi-Class classifier
(DTL-MC) CNN with multiple output classifiers for COVID-19 and three other diseases.
The second used a Classical Machine Learning-based Multi-Class classifier (CML-MC) to
judge whether the first one suffered from over-fitting issue. The last test employed a
Deep Transfer Learning-based Binary Class classifier (DTL-BC) (similar to the first one),
but it was limited to a binary output (yes/no) for a possible COVID-19 infection. For
training, they used 1,838 cough sounds and 3,597 non-cough environmental sounds, and
for testing, they used 96 bronchitis, 130 pertusses, 70 COVID-19, and 247 normal cough
samples. The authors did not mention whether they were laboratory-confirmed, but
they referred to the people that provided the samples as “patients,” so we assume these
samples were collected in a hospital/clinical environment, and thus are laboratory
confirmed. The DTL-BC classifier in this study provided the best overall accuracy at 0.93 in
differentiating COVID-19 from non-COVID-19 cough sounds and had a sensitivity of
0.96, and specificity of 0.91.

Another form of NN called Recurrent Neural Network (RNN) was used in the literature.
In Pinkas et al. (2020), the authors collected self-recordings from phones (vocal utterances,
speech and cough sound), and used RNN to produce specialized sub-models for the
SARS-CoV-2 classification. From 29 laboratory-confirmed COVID-19 patients and 59
negative control subjects, 235 samples were used for training the model and 57 samples for
testing. An ensemble stacking fused the predictions of the sub-models and pre-training,
bootstrapping and regularization techniques were used to prevent over-fitting. They
reported an accuracy of 0.79 (with a corresponding sensitivity of 0.79) based on leave-one-
out validation protocol.

Cough sounds may not be sufficient to completely analyze COVID-19 positive cases,
and physiological impact is another important data type that could help better analyze.
In Lonini et al. (2021), the authors introduced a novel paradigm based on recording
the physiological responses elicited by a short sequence of 2-min activities (physical
activity, cardio-respiratory function and cough sounds). While validating the data, they
employed a novel body-conforming soft wearable sensor placed on the suprasternal
notch to capture physical activity data and cardio-respiratory function. Combining these
features on snapshots from 19 COVID-19 positive and 14 healthy cases provided an AUC
of 0.94 as compared to 0.64 (with only forced cough sounds).
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Research articles outside of PubMed and Web of Science
In order not to miss up-to-date experimental-based research works, we used the exact
same keywords in search engines: ACM, IEEE, Springer, and Elsevier. Using the exact
same inclusion criteria, these articles are summarized in Table 3, and their respective
results on laboratory confirmed data.

Han et al. (2021) proposed a voice-based framework to automatically detect COVID-19
positive cases and evaluated the performance on a subset of data crowdsourced from
the ‘COVID-19 Sound App’. The authors used InterSpeech 09 Computational
Paralinguistics Challenge (COMPARE) set, openSMILE toolkit, MFCCs features, and used
SVM with linear kernel as the classifier. While using the app, users got asked to record
information in the app by submitting their breathing, coughing, and voice samples along
with reported symptoms, if any, and provide some basic demographic and medical
information. On 828 samples (326 COVID-19 positives and 502 COVID-19 negatives), the
authors reported an AUC of 0.79 with a sensitivity of 0.68 and a specificity of 0.74.

In Brown et al. (2020), the authors used data analysis over a large-scale crowdsourced
dataset, however some of their data seems to be laboratory confirmed as they asked
their patients whether or not they were in a hospital. Furthermore, the dataset consists of
154 cough and breathing sounds from self-reported COVID-19 infected users, of which 54
report a dry cough. Also, the control groups of the experiment consisted of 298 non-
COVID-19 users, 32 non-COVID-19 users with a cough, and 20 non-COVID-19 users
with asthma and cough. In all cases, they used an 80/20 split for training and analysis and
under-sampled the majority for training. They tested classifiers, such as LR, Gradient

Table 3 Cough sounds (including other data type) for COVID-19 screening performance in terms of
Accuracy (ACC), Area Under the Curve (AUC), Sensitivity (SEN) and Specificity (SPEC).

Performance

Authors (year) Data type (sample size) ACC AUC SEN SPEC

Han et al. (2021) Multiple data types* (828) – 0.79 0.62 0.74

Brown et al. (2020) Multiple data types* (430) – 0.80 0.69 –

Vrindavanam et al. (2021) Cough sounds (150) 0.84 0.88 0.81 –

Anupam et al. (2021) Cough sounds (640) 0.97 0.98 0.97 –

Bansal, Pahwa & Kannan (2020) Cough sounds (500) 0.70 – 0.81 –

Grant, McLane & West (2021) Multiple data types* (2,239) – 0.68 – –

Nessiem et al. (2021) Multiple data types* (1,427) 0.73 0.81 0.75 –

Khriji et al. (2021) Multiple data types* (3,718) 0.80 – 0.78 –

Pal & Sankarasubbu (2021) Multiple data types* (328) 0.95 – 0.90 0.97

Wei et al. (2020) Cough sounds (1,283) 0.76 – 0.99 0.95

Hassan, Shahin & Alsabek (2020) Cough sounds (80) 0.97 0.97 0.96 –

Breathing sounds (80) 0.98 0.98 0.98 –

Voice sounds (80) 0.88 0.84 0.91 –

Andreu-Perez et al. (2021) Cough sounds (8,380) – 0.99 0.96 0.96

Note:
* Multiple data types, including cough sound.
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Boosting Trees, SVM (with a radial basis function kernel). They reported binary
classification tasks for: (a) differentiating COVID-19 users from non-COVID-19 users; (b)
differentiating COVID-19 users with a cough from non-COVID-19 users with a cough;
and (c) differentiating COVID-19 users with cough from non-COVID-19 user with
asthma and cough. In their results, the authors found an AUC of 0.80 across all tasks and a
sensitivity of 0.69.

Similarly, in Vrindavanam et al. (2021), the authors presented an approach to classify
audio samples between COVID-19 patient and a healthy person by taking LR, SVM and
RF classifiers into account. Their dataset was composed of 150 cough audio samples, of
which 54 were COVID-19 positive, and the study did not state whether they were
laboratory confirmed. In their test, SVM performed better than LR and RF on all
performance metrics and reported an accuracy of 0.84 (with AUC of 0.88). As the dataset
size was small, the results could possibly be biased, which was not mentioned in their
article.

In Anupam et al. (2021), the authors analyzed COVID-19 cough sounds to detect
COVID-19. The dataset is composed of 640 cough samples (source: Coswara database):
160 infected and 480 healthy cases. Interestingly, other papers written around this paper
had almost double the number of cough samples. However, the paper did not specify
what technique they used for eliminating assumingly half of the dataset, along with any
other pre-processing techniques they may have used. For classification, the authors used
shallow-based machine learning classifiers such as LR, KNN, SVM, and decision tree
algorithms. The SVM classifier performed the best of all: AUC of 0.98, accuracy of 0.99,
sensitivity of 0.97, precision of 0.99, and F1 score of 0.98.

In Mohammed et al. (2021), the authors developed a robust classifier for a COVID-19
pre-screening model from crowdsourced cough sound data. While detecting COVID-19
from sound datasets, the authors faced two main challenges. The first challenge being a
variable number of coughs in each recording, and the second is the low number of
COVID-19 positive cases compared to healthy coughs in the data. In total, they were
able to obtain 8,886 cough samples which they then used under-sampling the majority to
create a balanced dataset of 1,276 cough samples. After obtaining their balanced dataset,
they used a VGG16 to extract the audio features such as Mel-spectrograms, MFCCs,
spectrograms, and even used the raw audio data to obtain 25,088 feature vectors per audio
input. Afterward, they used two separate training pipelines with ensemble learning, one
with shallow-based learning such as LR, SVM, and K-Nearest Neighbor, and the second
with ensemble learning of three different CNNs, one CNN built from scratch along with
two pre-trained VGGmodels. Their method illustrated a respectable performance using an
ensemble model on the testing dataset with AUC of 0.77, precision of 0.80, recall of 0.71,
F1 score of 0.75, Kappa of 0.53, and an accuracy of 0.77.

In Bansal, Pahwa & Kannan (2020), the authors proposed a CNN-based audio classifier
using an open cough dataset. They used a manually labeled dataset that was composed of
two categories: COVID-19 and non-COVID. They proposed two different approaches:
one is based on MFCC features and another used spectrogram images for CNN network.
First, they took a dataset of 911 cough sounds, where 871 are from YouTube videos and
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40 are from audio files. Afterward, they pared that down to 500 audio samples after
labeling. The authors found that the MFCC approach produced 0.71 test accuracy,
0.81 sensitivity, 0.61 precision, and 0.69 F1 score. These results were better than the
spectrogram-based approach. It would be interesting to see the results of this paper’s
methods along with mel-spectrograms as well.

Grant, McLane & West (2021) developed a method that can be applied to analyze
sounds to detect COVID-19 on a crowd-sourced data with sound recordings and these
were self-identified. They took a total of 1,040 (78 COVID-19 positive) cough samples and
1,199 (81 COVID-19 positive) speech and breathing samples. MFCCs and relative spectra
perceptual linear prediction features were evaluated independently with two different
classifiers: DNN and RF. The following AUCs were reported: 0.6836 from cough sounds
(DNN classifier), 0.79 from speech sound (RF classifier), and 0.76 from breathing sound
(DNN classifier).

Khriji et al. (2021) proposed a deep Long Term Short (LSTM) technique to detect
COVID-19 infections from cough, breath and sneeze signals via smartphones or wearable
sensors. The dataset was composed of audio signals like cough, sneeze and breath.
Furthermore, this dataset was partitioned further into three subsets, including a training
set (sick (1,435) + not sick (2,283)), a validation set (sick (468) + not sick (753)), and a
test set (sick (642) + not sick (1,012)). The authors, however, did not mention whether
dataset was laboratory confirmed. The authors reported an accuracy of 0.80 and a
sensitivity of 0.78.

In Pal & Sankarasubbu (2021), the authors evaluated their model using a medical
dataset containing symptoms and demographic data of 30,000 audio segments. They
extracted 328 cough sounds from 150 patients with four cough classes (COVID-19,
Asthma, Bronchitis and Healthy). They used a CNN to classify cough sounds, and the
study showed that their model captured many robust features of cough sounds to
distinguish between COVID-19 coughs and several types of non-COVID-19 coughs. The
authors reported an accuracy of 0.95, a sensitivity of 0.90, a specificity of 0.97, F1 score of
0.90, and precision of 0.91.

In Wei et al. (2020), the authors analyzed a real-time robot-based tool to evaluate risk
level due to COVID-19 infection. They used real-time speech analysis, temperature,
keyword, cough, and other functions to convert live audio into structured data.
The authors collected a dataset of 1,283 speech recordings via human-robot conversations
from 184 people for the test evaluation. Of all, 392 segments from 64 people were
laboratory-confirmed COVID-19 infected. The remainder of the samples were healthy
individuals with a history of smoking, acute bronchitis, chronic pharyngitis, children with
pertussis and healthy people with no smoking history. For cough detection, using a CNN,
they reported an accuracy of 0.76, while their sensitivity was high (0.99).

Similarly, Hassan, Shahin & Alsabek (2020) studied early screening and diagnoses of
COVID-19 patients by using RNN and leveraged its significant architecture to discover
the acoustic features of cough, breathing and voice of the patients. In their study,
60 healthy and 20 COVID-19 infected patients were asked to record three separate
samples: cough, breath and voice sounds. The COVID-19 infected patient samples got
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collected from hospitals in the UAE. With data split, 70/30 (train/test), they achieved the
following accuracies: 0.97 for cough sounds, 0.98 for breathing sounds, and 0.88 for voice
sounds.

DNN is no exception in cough sound analysis in detecting COVID-19. In Andreu-Perez
et al. (2021), the authors used empirical mode decomposition with the tensor of speech
features and a Deep Artificial Neural Network (ANN) to detect cough of COVID-19
patients. Of all, 8,380 samples of cough sounds were collected via a web app called ‘Cough
Detect’ to record the coughs anonymously; 2,339 of the samples are from patients with
confirmed qRT-PCR laboratory tests for the COVID-19 infection. The authors reported
promising results: AUC of 0.99, sensitivity of 0.96, and specificity of 0.96.

DISCUSSION
In this section, we summarize our observations based on the current state-of-the-art works
by considering cough sound as primary data. Our discussion is based on cough sound
analysis via AI-guided tools for COVID-19 screening (ref. “AI-guided tools for COVID-19
screening using cough sounds”).

(a) Cough symptoms present themselves at a high rate relative to other symptoms in
the vast majority of studies (ref. “Introduction”). It stands to reason that this will also
translate well into the population at large, and the majority of the general population
would present a cough if infected by COVID-19. In addition to other clinical tests, cough
tests could potentially help build clinical decisions for COVID-19 positive. In other words,
cough is not the only reliable metric, it is however comparable to others, such as fever.
AI-guided tools (ref. “AI-guided tools for COVID-19 screening using cough sounds”) can
analyze cough sounds and help detect COVID-19 at a very high rate regardless of
cough diagnosis. This fact, along with affordability and accessibility, could make AI-guided
cough screening a first-line defense against COVID-19 and similar infectious outbreaks,
especially in resource-constrained regions.

(b) Following the state-of-the-art methods for screening COVID-19 infections
(ref. “AI-guided tools for COVID-19 screening using cough sounds”), we observed a clear
distinction between two types of datasets: with and without laboratory confirmation
(see Tables 1 and 2).

On laboratory confirmed datasets, AI-guided tools performed better as compared to
non-laboratory confirmed data in the vast majority of reviewed articles. Also, the
laboratory confirmed data could potentially provide convincing results, as they were
annotated by experts. Machine learning algorithms require enough training data (with all
possible positive cases). Moreover, AI-guided tools trained with fairly large amounts of
data can be accurately used to screen COVID-19 human subjects from a forced cough
regardless of the dataset, even if performance degrades slightly on non-laboratory
confirmed data. In all cases, importantly, the authors did not mention whether their AI-
guided tools are externally validated and reproducible (Topol, 2020). Moreover, most
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studies with high metrics in the non-laboratory confirmed sections have serious
deficiencies in the reporting of their methods, or their model is admittedly biased.

(c) Integrating other data types such as sneezing, respiration, speech, throat clearing,
wheezing, and breathing can help build a better decision-making process (see Tables 1
and 2).

(d) After reviewing the use of shallow learning and deep learning (ref. “AI-guided tools for
COVID-19 screening using cough sounds”), we observed that the use of deep features
could open the genericity of the model rather than relying on prior knowledge.

(e) In designing AI-guided tools, we observed the use of additional features, such as
biomarkers and clinical data (Laguarta, Hueto & Subirana, 2020). These features get
ensembled into the CNN that utilizes the standard features extracted from audio
recordings. Such a feature integration could potentially drive future works. Introducing
new paradigms (e.g., biomarkers) could help better analyze COVID-19.

CONCLUSION
In this article, we have systematically reviewed state-of-the-art works in both years 2020
and 2021 by taking into account AI-guided tools to analyze cough sounds for COVID-19
screening. Clinically, we have found that cough (via the use of cough presentation rate
in ref. “Introduction”) is considered as one of the primary symptoms in severe and non-
severe infections alike. COVID-19 screening (ref. “AI-guided tools for COVID-19
screening using cough sounds”) using cough sounds is found to be potentially a cheap,
effective, and available alternative to help people decide to quarantine or get tested. In
other words, as cough is ubiquitously presented among varying populations, it is possible
to develop AI-guided tools with high accuracy to do mass screening using cough sounds.
This method of screening deserves to get more thoroughly investigated and developed
into production via a mobile app.

Integrating other data types, such as sneezing, respiration, speech, throat clearing,
wheezing, breathing, biomarkers and clinical data, can help build a better decision-making
process; we will extend our work by implementing ensemble DNNs within a multimodal
learning mechanism.
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