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ABSTRACT

The research proposed in this article presents a novel improved version of the widely
adopted firefly algorithm and its application for tuning and optimising XGBoost
classifier hyper-parameters for network intrusion detection. One of the greatest
issues in the domain of network intrusion detection systems are relatively high false
positives and false negatives rates. In the proposed study, by using XGBoost classifier
optimised with improved firefly algorithm, this challenge is addressed. Based on
the established practice from the modern literature, the proposed improved firefly
algorithm was first validated on 28 well-known CEC2013 benchmark instances a
comparative analysis with the original firefly algorithm and other state-of-the-art
metaheuristics was conducted. Afterwards, the devised method was adopted and
tested for XGBoost hyper-parameters optimisation and the tuned classifier was tested
on the widely used benchmarking NSL-KDD dataset and more recent USNW-NB15
dataset for network intrusion detection. Obtained experimental results prove that
the proposed metaheuristics has significant potential in tackling machine learning
hyper-parameters optimisation challenge and that it can be used for improving
classification accuracy and average precision of network intrusion detection systems.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Autonomous Systems,
Computational Linguistics, Data Mining and Machine Learning
Keywords Firefly algorithm, Machine learning, Benchmark, Intrusion detection, Optimisation

INTRODUCTION

The firefly algorithm (FA), proposed by Yang (2009), is a swarm intelligence algorithm
designed for exploration, exploitation, and local search of solutions, inspired by social
behaviour and flashing activities exhibited by the fireflies. The original FA algorithm is
tested against the updated CEC2013 benchmark function set in this article. Also, this
article presents the performance of a well-known XGBoost classifier, whose parameters
have been optimised using the FA algorithm for the problem of Network Intrusion
Detection (NIDS) optimisation. Different NIDS have a simple purpose: to monitor
network traffic and detect malicious user activities. They are usually implemented as nodes
on strategic points in the network.
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According to Hodo et al. (2016), NIDS are reliable when dealing with outside threats but
are inefficient for determining the extent of damage from an attack. Core issues with these
systems are rates of false positives (FP) and false negatives (FN). FPs occur when the
system wrongly classifies regular activities as malicious, and FNs occur when the system
fails to properly classify malicious activities as such. Different approaches are used to
attempt to solve these issues. Machine learning (ML) algorithms present one possible type
of solution. ML solutions attempt to find optimal hyper-parameters to optimise classifiers
for different network activity datasets to increase detection efficiency.

Among ML algorithms, there are different approaches for optimising the ML model
(Ikram et al., 2021; Thaseen ¢ Kumar, 2017). Swarm intelligence (SI) algorithms usually
have good performance (Bergstra et al., 2011; Jiang et al., 2020; Bacanin et al., 2020).
This study tests the performance of a well-known XGBoost classifier for classifying NIDS
events from the NSL-KDD (Network Security Laboratory - Knowledge Discovery and
Data Mining) dataset (Dhanabal ¢» Shantharajah, 2015), which are, according to Proti¢
(2018), effective in evaluating intrusion detection systems. The second experiment test the
performance of the XGBoost classifier on a more recent NIDS UNSW-NB15 dataset
(Moustafa & Slay, 2015). The hyper-parameters of the classifier are optimised using a
proposed improved FA algorithm.

The motivation behind the approach suggested in this research was to enhance the basic
implementation of FA further and improve the classification capabilities of XGBoost
classifier. According to the no free lunch theorem, an universal optimisation algorithm
that can solve all optimisation problems does not exist. Additionally, it is always possible to
improve the existing optimisation algorithms. In this context, the research proposed in this
paper is focused on improving the solving of the very important challenge in intrusion
detection systems by using the XGBoost classifier, and in order to do so, a new, improved
FA algorithm has been developed. The most important contributions of this paper are
three-fold:

« A novel enhanced FA metaheuristics has been developed by specifically targeting the
well-known deficiencies of the original FA implementation;

« The developed method was later used to help establish the proper hyper-parameters
values and improve the XGBoost classifier accuracy for the intrusion detection
classification problem;

o The proposed method results were compared with other notable swarm intelligence
algorithms, which were further investigated for the XGBoost optimisation problem.

The rest of the paper is structured as follows. The following section introduces the
problem of optimisation and various types of optimisation algorithms, focusing on related
work in machine learning algorithms. The paper presents the proposed model, describes
the set of CEC2013 functions, the firefly algorithm’s performance assessed by this
benchmark, gives an overview of the experimental setup for the second part of the paper.
Results, comparative analysis and result discussion section, follow the materials and
methods section. Finally, the conclusion of this paper is given with suggested future work
propositions.
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BACKGROUND

This section introduces NIDS, the problem of optimisation, in general, and concerning
NIDS, and different algorithmic approaches to optimising NIDS network event
classification methods. Different machine learning approaches are presented towards the
end of the section, leading up to the overview of works related to this problem.

The problem of network intrusion detection

In the last two decades, the web has become the centre stage for many businesses, social,
political and other activities and transactions that all happen on the global network.
Endpoints of those network transactions are users, usually located within smaller
computer networks, such as companies, small Internet provider sub-networks etc.
Therefore, security has become an important issue for the contemporary Internet user,
even though different intrusion detection solutions have been around for almost 40 years
(Neupane, Haddad ¢» Chen, 2018). There are many solutions created to protect users from
malicious activities and attacks (Patel, Qassim & Wills, 2010; Mugunthan, 2019).

According to Neupane, Haddad ¢ Chen (2018), traditional NIDS come in the forms of
firewalls, and statistical detection approaches usually applied either on the transport or
the application layers, which require extensive setup, policy configurations etc. More
modern systems use sophisticated approaches. According to Sathesh (2019), ML is used to
solve the problem of intrusion detection, even though these approaches have different
challenges, as reported by Jordan ¢ Mitchell (2015). Regardless, ML approaches are
efficient in finding optimal solutions for time-consuming problems, such as training
efficient NIDS network event classifiers. Different solutions are based on various types of
ML methods, such as artificial neural networks (ANN), evolutionary algorithms (EA), and
other supervised and unsupervised learning methods, according to Verwoerd ¢ Hunt
(2002).

When creating and evaluating a NIDS, it is important to measure its performance
accurately. For this reason, previously mentioned false positives (FP) and false negative
(FN) measurements are used together with true positive (TP) and true negative (TN)
measurements to correctly evaluate the classification accuracy of a NIDS, according to the
general formula shown in Eq. (1).

ACC = (TP + TN) /(TP + FP + TN + EN) (1)

From values TP, TN, FP and FN, it is possible to also determine the system’s sensitivity,
specificity, fallout, miss rate, and prevision through methods presented in Eqgs. (2)-(6):

Sensitivity = TP/(TP + FN) (2)
Specificity = TN /(TN + FP) (3)
Fallout = FP/(TN + FP) 4)
Missrate = FN /(TP + FN) (5)
Precision = TP /(TP + FP) (6)
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Optimisation and optimisation algorithms

Optimisation aims to find an optimal or near-optimal solution for a certain problem
within the given set of constraints. Many population-based stochastic meta-heuristics were
developed for solving the problem of optimisation, according to Beheshti ¢ Shamsuddin
(2013).

Non-deterministic polynomial-time-hard problems are hard to solve with traditional
deterministic algorithms. They can take a long time to complete on commonly available
hardware. Therefore, these solutions are usually impractical.

On the other hand, optimal solutions to these types of problems can be found using
stochastic meta-heuristics, which do not guarantee an optimal solution, but acceptable
sub-optimal ones in reasonable time-frames, according to Spall (2011). Commonly, these
algorithms are labelled as Machine Learning Algorithms (MLA).

Swarm intelligence algorithms

A special type of nature-inspired stochastic meta-heuristic MLA are population-based
algorithms, among which are swarm intelligence algorithms (SIA). These algorithms
inspire different naturally occurring systems, where individual self-organising agents
interact with each other and their environment without a centralised governing
component. These systems give an impression of globally coordinated behaviour and have
inexpensive abilities in solving very demanding optimisation problems (Mavrovouniotis,
Li & Yang, 2017).

The most notable and popular methods that have proven themselves as powerful
optimiser with respectable performances include the ant colony optimisation (ACO)
introduced by Dorigo, Birattari ¢ Stutzle (2006), artificial bee colony (ABC) proposed by
Karaboga ¢ Basturk (2007), particle swarm optimisation (PSO) developed by Kennedy ¢
Eberhart (1995), as well as the FA, introduced by Yang (2009) and used as a foundation
for the algorithm proposed in this paper. More recent algorithms that have shown
good results include the grey wolf optimiser (GWO) (Mirjalili, Mirjalili &> Lewis, 2014),
moth search (MS) (Wang, 2018), monarch butterfly algorithm (MBA) (Wang, Deb ¢ Cui,
2019), whale optimisation algorithm (WOA) (Mirjalili & Lewis, 2016), and the Harris
hawk’s optimisation (HHO) (Heidari et al., 2019). Additionally, the differential evolution
algorithm (Karaboga & Okdem, 2004) and the co-variance matrix adaptation (Igel, Hansen
¢» Roth, 2007) approaches have also recently exhibited outstanding performances.
Recently, algorithms inspired by the properties of the mathematical functions gained
popularity among scientific circles, and the most notable algorithm is the sine-cosine
algorithm (SCA), which was proposed by Mirjalili (2016). SCA was also utilised in this
research to hybridise the basic FA search.

The application of the metaheuristics discussed take on a wide spectrum of different
problems with NP-hardness in the information technologies field. Some of the such
applications are with the problem of global numerical optimisation (Bezdan et al., 2021b),
scheduling of tasks in the cloud reliant systems (Bezdan et al., 2020b; Bacanin et al.,
2019a; Zivkovic et al., 2021b), the problems of wireless sensors networks such as
localisation of nodes and the network lifetime prolonging (Zivkovic et al., 2020a; Bacanin
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et al., 2019b; Zivkovic et al., 2020b; Bacanin et al., 2022b; Zivkovic et al., 2021d), artificial
neural networks optimisation (Strumberger et al., 2019; Milosevic et al., 2021; Bezdan

et al., 2021c; Cuk et al., 2021; Stoean, 2018; Bacanin et al., 2022¢; Gajic et al., 2021; Bacanin
et al., 2022a; Jnr, Ziggah & Relvas, 2021; Bacanin et al., 2021a, 2022d, 2021b, 2021c),
histological slides or MRI classifier optimisation (Bezdan et al., 2020a, 2021a, Lichtblau ¢
Stoean, 2019; Postavaru et al., 2017; Basha et al., 2021), and last but not least the
COVID-19 case prediction (Zivkovic et al., 2021a, 2021c).

These algorithms, on their own, have strengths and weaknesses when applied to
different problems, and often, they are used to optimise different higher-level models and
their hyper-parameters instead of being used to perform classification on their own. This
article presents this synthesis of an optimisation algorithm used for hyper-parameter
tuning and optimising a higher-order classification system.

Related work

Applications of ML algorithms have been reported in many scientific and practical fields in
the industry, as well as for NIDS, as reported by Tama ¢ Lim (2021) and Ahmed ¢
Hamad (2021). Specifically for the problem of NIDS optimisation, solutions exist that are
based on particle swarm optimisation (PSO) (Jiang et al., 2020), artificial neural networks
(ANN) and support vector machines (SVM) (Mukkamala, Janoski & Sung, 2002),

naive Bayesian (NB) (Mukherjee ¢ Sharma, 2012), K-nearest neighbour (KNN)
(Govindarajan ¢ Chandrasekaran, 2009), and in combination with other classifiers, as
presented by Dhaliwal, Nahid & Abbas (2018), Ajdani ¢ Ghaffary (2021) and Bhati et al.
(2021).

METHODS

The original implementation of the FA is shown in this section, followed by the
descriptions of known and observed flaws of the original FA. The section suggests
improvements to the original algorithm to address the described flaws.

The original version of the firefly algorithm
Yang (2009) has suggested a swarm intelligence system that was inspired by the fireflies’
lighting phenomenon and social behaviour. Because the behaviour of actual fireflies is
complicated, the FA metaheuristics model, with certain approximations, was proposed.
The fitness functions are modelled using the firefly’s brightness and attraction. In most
FA implementations, attractiveness depends on the brightness, determined by the
objective function’s value. In the case of minimisation problems, it is written as Yang
(2009):

_ | Vfx), if f(x)>0
I(x)—{1+[f(x)|, if f(x) <0 @)

where I(x) is the attractiveness and f(x) represents the objective function’s value at x, which
is the location.
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Therefore, the attractiveness of a firefly is indirectly proportional to the distance from
the source of light (Yang, 2009):

I

e 8
14y xr? (8)

I(r)

When modelling systems where the environment absorbs the light, the FA uses the
light absorption coefficient parameter y. I(r) and I, are the intensities of the light at the
distance of r and the source. Most FA implementations combine effects of the inverse
square law for distance and y to approximate the following Gaussian form Yang (2009):

I(r)=1Ip-e 7" (9)

As indicated in Eq. (10), each firefly employs 8 (representing attractiveness), which is
proportionate to the intensity of the firefly’s light, which is reliant on distance.

B(r) = By - e " (10)

where f3, represents the attractiveness at r = 0. However, Eq. (10) is commonly swapped for
Eq. (11) (Yang, 2009):

B(r) = Po/ (1 +7 x7?) (11)

Based on Eq. (11), the equation for a random firefly i, moving in iteration ¢ + 1 to a new
location x; in the direction of another firefly j, which has a greater fitness value, according
to the original FA, is (Yang, 2009):

=l By - e*“/”fzd‘(x]? —x!) + o' (k= 0.5) (12)

where « is the randomisation parameter, x is the random uniformly distributed number,
and r;; is the distance between fireflies i and j. Values that often give good results for
most problems for 8, and a are 1 and [0, 1]. The 7;; is calculated as follows, and represents
the Cartesian distance:

r,»J- = ||x,- — X]|| = \/Zf] (xi,k — xj7k)2 (13)

where D is the number of parameters of a specific problem.

Reasons for improvements

The original FA has performed exceptionally for many benchmarks (Yang ¢ He, 2013)
and practical problems (Strumberger et al., 2019). Past research suggests that the original
FA has several flaws regarding exploration and an inappropriate intensification-
diversification balance (Strumberger, Bacanin ¢ Tuba, 2017; Xu, Zhang ¢ Lai, 2021;
Bacanin & Tuba, 2014). The lack of diversity is noticeable in early iterations, when the
algorithm cannot converge to optimum search space areas in certain runs, resulting in low
mean values. In such cases, the original FA search technique (Eq. (12)), which mostly
performs exploitation, is incapable of directing the search to optimal domains.
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In contrast, the FA achieves satisfactory results when random solutions are created
randomly in optimal or near-optimal areas during the initialisation phase.

An examination of the original FA search equation (Eq. (12)) reveals that it lacks
an explicit exploration technique. Some FA implementations employ the dynamic
randomisation parameter «, which is continuously reduced from its starting value « to the
specified threshold «,,,;,,, as shown in Eq. (14). As a result, at the start of a run, exploration
is prioritised, whereas subsequent iterations shift the balance between intensity and
diversification toward exploitation (Wang et al., 2017). However, based on simulations, it
is concluded that the use of dynamic « is insufficient to improve FA exploration skills, and
the suggested technique only somewhat alleviates this problem.

Wt =o' (1—1t/T), (14)

where f and ¢ + 1 are current and next iterations, and T is the maximum iteration count in a
single run.

Past research has shown that FA exploitation abilities are effective in addressing a
variety of tasks, and FA is characterised as a metaheuristic with substantial exploitation
capabilities (Strumberger, Bacanin & Tuba, 2017; Xu, Zhang & Lai, 2021; Bacanin ¢ Tuba,
2014).

Novel FA metaheuristics
This work proposes an improved FA that tackles the original FA’s flaws by using the
following procedures:

o A technique for explicit exploration based on the exhaustiveness of the answer;

« gBest chaotic local search (CLS) approach.

« Hybridisation with SCA search by doing either FA or SCA search at random in each
cycle based on a produced pseudo-random value.

The FA’s intensification may be improved further by applying the CLS mechanism, as
demonstrated in the empirical portion of this work. A novel FA is dubbed chaotic FA with
improved exploration due to proposed modifications (CFAEE-SCA).

Explicit exploration mechanism

The purpose of this mechanism is to ensure the convergence to the best section of the
search space early on, while facilitating exploration around the parameter bounds of the
current best individual x* later on. Each solution is represented using an additional
attribute trial. It increases this attribute when it cannot further improve the solution with
the original FA search (Eq. (12)). When the trial parameter reaches a set limit, the
individual is swapped for a random one picked from the search space in the same way as in
the setup phase:

xij =1+ (= I;) - rand, (15)

where x;; is the j-th component of i-th individual, u; and /; are the upper and lower search
boundaries of the j-th parameter, and rand is a random number in range [0, 1], from a

uniform distribution.
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A complete solution is one for which trial exceeds the limit. This term was adapted from
the well-known ABC metaheuristics (Karaboga ¢» Basturk, 2008), which have efficient
exploration mechanisms (Moradi et al., 2018).

When the algorithm fails to find appropriate areas of the search space, replacing the
exhausted solution with a pseudo-random person improves search performance early on.
Later on, this type of substitution wastes functions evaluations. As a result, in subsequent
iterations, the random replacement technique is replaced by the directed replacement
mechanism around the bottom and higher parameter values of the population’s solutions:

xij = Pl + (Puj — Plj) - rand, (16)

where Pl; and Pu; are the lowest and highest values of the j-th component from the whole
population P.

The gBest CLS strategy
Chaos is responsive to the initial conditions of non-linear and deterministic systems
(Alatas, 2010). Chaotic search is more efficient than the ergodic (dos Santos Coelho ¢
Mariani, 2008) because many sequences can be created by modifying the initial values.
Literature reports many chaotic maps. After testing, it was determined that the logistic
map yields the most favourable results in the case of the suggested innovative FA. The
logistic map has been used in a variety of swarm intelligence methodologies so far (Li et al.,
2012; Chen et al., 2019; Liang et al., 2020). The logistic map used by the proposed method is
defined in K steps as:
af.‘jfl = uaﬁj(l — aiJ), k=1,2,...K, (17)
fj“ are chaotic variable for the i-th solution’s j-th component in steps k and
k + 1, and p is a control variable. 0;; #0.25,0.5 and 0.75, 0;; € (0, 1) and u is set to 4. This
value was determined empirically by Liang et al. (2020).

where o* jand o

The proposed method integrates the global best (gBest) CLS strategy. The chaotic search
is performed around the x* solution. Equations (18) and (19) show how a new x* (x'* ) is
created in each step k, for component j of x*:

e * L)
X, = (1—2)x; + 1S (18)

Sj =L+ of (u— 1) (19)

where Eq. (17) determines aJ’-‘, and A is the dynamic shrinkage parameter dependant on
FFE (current fitness function evaluation) and maxFFE (maximum number of fitness
function evaluations):

/. = (maxFFE — FFE + 1) /maxFFE (20)
Better exploitation-to-exploration equilibrium is formed around the x* by

employing dynamic lambda. Earlier in the execution, a larger search radius around
the x* was performed, whereas later, a fine-tuned exploitation commenced.
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When the maximum number of iterations is used as the termination condition, the FFE
and maxFFE can be substituted with ¢ and T.

The CLS strategy is used to enhance x* in K steps. If the x'* achieves greater fitness than
the x*, the CLS method is ended, and the x* is replaced with x"*. However, if the x* could
not be improved in K stages, it is maintained in the population.

SCA search
SCA proposes the use of the following updating Eq. (21) in both phases:

X = X! + 1y x sin(ry) x |rsPf — X{|

21
XU = X!+ 1y % cos(r2) x [raP! — X!| -

where X is the position of the current solution in the i-th dimension after the ¢-th iteration,
P; is the destination at the i-th dimension, and r;, r, and r; are random numbers.
A combination of Eq. (21) is show in Eq. (22):

, 11 <0.5

Jo Xt =X+ 1y x sin(ry) x ‘r3Pf - X; 22)
! , T4 2 0.5

X = X!+ 11 x cos(ry) x |rsPf — X!

where r, is a random value in range [0, 1].

The preceding equation demonstrates that the algorithm’s four main parameters are r;,
12, t 3, and ry. The r; parameter determines the region (movement direction) of the
next location; it might be inside or outside the area between the destination and solution.
The r, parameter specifies the amplitude and direction of the movement (towards the
destination or outwards). The r; parameter assigns a random weight to the destination in
order to reduce (r31) or accentuate (r; > 1) the impacts of the destination in the distance
definition. The r, parameter is used to alternate between sine and cosine components.

The SCA search algorithm is included in the proposed method in the following fashion.
Each cycle generates a pseudo-random number. If the resulting value is more than 0.5, the
FA search algorithm does. Otherwise, it executes the SCA search described in Eq. (22).

Chaotic FA with enhanced exploration and SCA search pseudo-code

A few factors should be examined to efficiently include the exploration mechanism and
gBest CLS approach into the original FA. First, as previously indicated, the random
replacement method should be used in the early stages of execution, while the guided one
would produce superior outcomes later on. Second, the gBest CLS technique would not
produce substantial gains in early iterations since the x* would still not converge to the
optimal area, wasting FFEs.

The extra control parameter v is introduced to govern the behaviour as mentioned
earlier. If t < y, the exhausted population solutions are replaced randomly Eq. (15) without
activating the gBest CLS. Otherwise, it executes the guided replacement mechanism
Eq. (16) and activates the gBest CLS.

The original FA search suggested approach uses dynamic alpha to fine-tune, according
to Eq. (14). Based on the pseudo-random value, the method alternates between FA and
SCA in each round.
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Algorithm 1 The CFAEE-SCA pseudo-code

Initialise control parameters N and T
Initialise search space parameters D, u; and ;
Initialise CFAEE-SCA parameters ¥, o, &, Qin» K and ¢
Initialise random population Py,;; = {x;j}, i=1,2,3 ---, N;j = 1, 2, -+, D using Eq. (15) in the search space
while t < T do
fori=1to N do
for z=1to i do
if I, < I; then
Generate pseudo-random value rnd
If rnd > 0.5 then
Perform FA search
Move solution z in the direction of individual i in D dimensions (Eq. (12))
Attractiveness changes with distance r as exp[—yr] (Eq. (10))
Evaluate new solution, swap the worse individual for a better one and update light intensity
else
Perform SCA search
Move solution z in D dimensions (Eq. (22))
end if
end if
end for
end for
it t < ¢ then
Swap solutions where trial = limit for random ones using Eq. (15)
Else
Swap solutions where trial = limit for others, using Eq. (16)
for k=1to K do
Perform gBest CLS around the x* using Eqgs. (17)-(19) and generate x"*
Retain better solution between x* and x"*
end for
end if
Update parameters « and A using Eqgs. (14) and (20)
end while
Return the best individual x* from the population

Post-process results and perform visualisation

Taking everything above into account, Algorithm 1 summarises the pseudo-code of the
proposed CFAEE-SCA.
The flowchart of the proposed CFAEE-SCA algorithm is given in the Fig. 1.
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Figure 1 Flowchart of the proposed CFAEE-SCA algorithm.
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The CFAEE-SCA complexity and drawbacks

Because the most computationally costly portion of the swarm intelligence algorithm is the
objective evaluation (Yang ¢ He, 2013), the number of FFEs may be used to assess the
complexity of the method.

The basic FA evaluates objective functions during the startup and solution update
stages. When updating solutions, the FA utilises one main loop for T iterations and two
inner loops that go through N solutions, according to the Eq. (12) (Yang ¢ He, 2013).

Basic FA metaheuristics have a worst-case complexity of O(N) + O(N?- 1), including
the initialisation phase. However, if N is large enough, one inner loop may be used to rate
the beauty or brightness of all fireflies using sorting algorithms. Complexity in this
situation is O(N) + O(N - T - log(N)) (Yang & He, 2013).

Because of the explicit exploration mechanism and the gBest CLS method, the suggested
CFAEE-SCA has a higher complexity than the original FA. In the worst-case situation, if
limit = 0, all solutions will be replaced in every iteration, and if ¢ = 0, the gBest CLS
approach will be activated during the whole run. Assuming that K is set to 4, the worst-case
CFAEE-SCA complexity is stated as: O(N) + O(T - N?) + O(T-N) + O (4 - T). In practice,
however, the complexity is substantially lower due to limit and y control parameter
modifications.

The CFAEE-SCA has certain drawbacks over the original design, including the use of
new control parameters limit and y. However, the values of these parameters may be easily
determined by performing empirical simulations. Furthermore, as proven in the next
sections, the CFAEE-SCA outperforms the original FA for benchmark tasks and the
XGBoost optimisation challenge from the machine learning domain.

RESULTS OF PROPOSED ALGORITHM AGAINST
STANDARD CEC2013 BENCHMARK FUNCTION SET

The CEC2013 benchmark functions suite consists of 28 challenging benchmark function
instances belonging to the different classes. Functions 1-5 belong to the group of uni-
modal instances, functions 6-20 are multi-modal instances, while functions 21-28 belong
to the composite functions family. The CEC2013 functions list is presented in Table 1.
The challenge is to minimise the functions. Each class of functions has its purpose - uni-
modal benchmarks test the exploitation, multi-modal benchmarks target exploration. In
contrast, the composite benchmarks are utilised to assess the algorithm’s performances
due to their complex nature.

The basic implementation of FA and the proposed CFAEE-SCA algorithms have been
validated against five recent cutting-edge metaheuristics tested on the same benchmark
function set. The competitor metaheuristics included practical genetic algorithm
(RGA) (Haupt & Haupt, 2004), gravitational search algorithm (GSA) (Rashedi ¢
Nezamabadi-pour, 2012), disruption gravitational search algorithm (D-GSA) (Sarafrazi,
Nezamabadi-pour & Saryazdi, 2011), clustered gravitational search algorithm (BH-GSA)
(Shams, Rashedi & Hakimi, 2015), and attractive repulsive gravitational search algorithm
(AR-GSA) (Zandevakili, Rashedi ¢ Mahani, 2019). The introduced CFAEE-SCA
method has been tested in the same way as proposed in Zandevakili, Rashedi ¢» Mahani
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Table 1 CEC2013 functions used in the benchmark experiments.

No Functions Initial range

Uni-modal Functions

1 Sphere function [-100, 100]"
2 Rotated High Conditioned Elliptic Function [-100, 100]”
3 Rotated Bent Cigar Function [-100, 100]"
4 Rotated Discus Function [-100, 100]”
5 Different Powers Function [-100, 100]”
Basic multi-modal Functions

6 Rotated Rosenbrock’s Function [-100, 100]"
7 Rotated Schaffer’s F7 Function [-100, 100]"
8 Rotated Ackley’s Function [-100, 100]”
9 Rotated Weierstrass Function [-100, 100]”
10 Rotated Griewank’s Function [-100, 100]"
11 Rastrigin’s Function [-100, 100]”
12 Rotated Rastrigin’s Function [-100, 100]”
13 Non-Continuous Rotated Rastrigin’s Function [-100, 100]°
14 Schwefel’s Function [-100, 100]”
15 Rotated Schwefel’s Function [-100, 100]”
16 Rotated Katsuura Function [-100, 100]”
17 Lunacek Bi_Rastrigin Function [-100, 100]"
18 Rotated Lunacek Bi_Rastrigin Function [-100, 100]"
19 Expanded Griewank’s plus Rosenbrock’s Function [-100, 100]”
20 Expanded Schaffer’s F6 Function [-100, 100]”
Composite Functions

21 Composite Function 1 (n = 5, Rotated) [-100, 100]"
22 Composite Function 2 (n = 3, Unrotated) [-100, 100]”
23 Composite Function 3 (n = 3, Rotated) [-100, 100]”
24 Composite Function 4 (n = 3, Rotated) [-100, 100]"
25 Composite Function 5 (n = 3, Rotated) [-100, 100]"
26 Composite Function 6 (n = 5, Rotated) [-100, 100]”
27 Composite Function 7 (n = 5, Rotated) [-100, 100]”
28 Composite Function 8 (n = 5, Rotated) [-100, 100]"

(2019). That publication was utilised to reference the results of other methods included in
the comparative analysis. Authors Zandevakili, Rashedi ¢ Mahani (2019) proposed a
novel version of the GSA by adding the attracting and repulsing parameters to enhance
both diversification and intensification phases. It is worth noting that the authors have
implemented all algorithms used by Zandevakili, Rashedi ¢ Mahani (2019) on their own
and tested them independently by using the same experimental setup proposed by
Zandevakili, Rashedi & Mahani (2019). The novel CFAEE-SCA has been implemented and
verified on all 28 benchmark functions with 30 dimensions (D = 30), together with the
basic FA implementation.
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Table 2 Results comparison CEC2013 unimodal functions 1-5.

FA RGA GSA D-GSA BH-GSA C-GSA AR-GSA CFAEE-SCA
F1
Best 0.00E+00 1.845E+02 0.00E+00 6.71E-01 4.57E-13 2.28E-13 0.00E+00 0.00E+00
Median 0.00E+00 2.82E+02 0.00E+00 9.54E-01 3.67E-12 2.24E-13 0.00E+00 0.00E+00
Worst 2.14E-13 3.55E+02 2.24E-13 1.48E+00 5.02E-12 4.53E-13 0.00E+00 0.00E+00
Mean 6.92E-14 2.85E+02 7.54E-14 9.76E-01 3.33E-12 2.74E-13 0.00E+00 0.00E+00
Std 1.13E-13 3.12E+01 1.09E-13 1.95E-01 1.02E-12 9.48E-14 0.00E+00 0.00E+00
F2
Best 9.14E+05 1.06E+07 9.23E+05 7.29E+06 5.26E+05 9.66E+05 1.58E+05 1.21E+05
Median 1.75E+06 1.61E+07 1.72E+06 1.14E+07 1.95E+06 1.77E+06 6.08E+05 5.75E+05
Worst 3.59E+06 2.52E+07 3.36E+06 1.84E+07 4.92E+06 3.10E+06 6.55E+06 6.51E+06
Mean 1.26E+06 1.72E+07 1.84E+06 1.18E+07 2.03E+06 1.85E+06 1.39E+06 1.18E+06
Std 5.24E+05 3.65E+06 5.14E+05 2.19E+06 7.82E+05 4.52E+05 1.70E+06 1.48E+06
F3
Best 2.73E+07 3.32E+09 2.81E+07 1.04E+09 4.85E-05 2.88E+07 7.73E-12 7.34E-12
Median 7.69E+08 6.27E+09 7.88E+08 2.92E+09 1.59E+06 1.09E+09 1.24E-11 1.13E-11
Worst 2.95E+09 2.34E+10 2.98E+09 9.24E+09 2.91E+19 4.42E+09 1.48E-11 1.42E-11
Mean 9.85E+08 6.74E+09 9.86E+08 3.53E+09 5.72E+17 1.23E+09 1.18E-11 1.05E-11
Std 7.54E+08 3.01E+09 7.16E+08 1.74E+09 4.09E+18 8.44E+08 1.83E-12 1.74E-12
F4
Best 5.75E+04 5.18E+04 5.74E+04 5.82E+04 4.96E+04 5.62E+04 4.61E+04 4.39E+04
Median 6.83E+04 7.14E+04 6.89E+04 6.85E+04 6.84E+04 6.93E+04 6.51E+04 6.12E+04
Worst 7.95E+04 1.06E+05 7.94E+04 7.11E+04 9.05E+04 8.59E+04 7.81E+04 7.55E+04
Mean 6.84E+04 7.32E+04 6.82E+04 6.75E+04 6.82E+04 7.04E+04 6.48E+04 6.19E+04
Std 5.82E+03 1.22E+04 5.63E+03 3.34E+03 8.19E+03 5.22E+03 7.83E+03 7.48E+03
F5
Best 1.62E-12 1.93E+02 1.46E-12 2.70E+00 1.94E-11 1.42E-11 2.04E-08 2.28E-08
Median 2.64E-12 3.05E+02 2.41E-12 1.51E+01 1.02E-10 2.12E-11 9.93E-08 8.85E-08
Worst 3.98E-12 4.63E+02 3.74E-12 6.04E+01 3.33E-10 5.74E-11 1.85E-07 2.89E-07
Mean 2.65E-12 3.04E+02 2.38E-12 1.90E+01 1.23E-10 2.34E-11 1.05E-07 1.53E-07
Std 5.79E-13 6.11E+01 5.39E-13 1.12E+01 7.13E-11 7.50E-12 3.54E-08 3.49E-08
Note:

The best obtained results for each metric are marked in bold.

In Tables 2-4, the results of the CFAEE-SCA on CEC2013 instances with 30 dimensions
and 51 independent runs for uni-modal, multi-modal and composite functions,

respectively, have been evaluated against six other swarm intelligence metaheuristics.

As mentioned before, the same simulation conditions were utilised as in (Zandevakili,

Rashedi & Mahani, 2019), with the same stop criteria of the number of fitness functions

evaluations with the maximum number being 1.00E+05. Furthermore, the experiments

have been conducted with 50 solutions in the population (N = 50).

Convergence graphs of the proposed CFAEE-SCA method for two unimodal, four

multimodal and two composite functions that were chosen as examples have been
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Table 3 Results comparison CEC2013 multimodal functions 6-20.

FA RGA GSA D-GSA BH-GSA C-GSA AR-GSA CFAEE-SCA

F6

Best 2.73E-01 7.79E+01 2.51E-01 5.58E-01 2.25E-01 1.46E-01 3.72E-01 2.74E-01
Median 5.61E+01 1.12E+02 5.70E+01 7.16E+01 3.33E+00 5.46E+01 1.74E+01 1.49E+01
Worst 9.56E+01 1.34E+02 9.46E+01 1.33E+02 6.82E+01 1.03E+02 8.15E+01 7.59E+01
Mean 5.41E+01 1.14E+02 5.21E+01 7.39E+01 2.24E+01 5.16E+01 3.39E+01 3.08E+01
Std 2.71E+01 1.19E+01 2.53E+01 248E+01 2.71E+01 2.48E+01 2.68E+01 2.34E+01
F7

Best 2.75E+01 4.12E+01 2.78E+01 3.57E+01 4.48E-05 3.08E+01 4.33E-09 4.03E-09
Median 4.62E+01 5.61E+01 4.43E+01 5.54E+01 5.28E-01 4.34E+01 2.62E-05 2.18E-05
Worst 8.72E+01 6.83E+01 8.52E+01 9.08E+01 2.84E+01 741E+01 3.68E-03 3.01E-03
Mean 5.05E+01 5.62E+01 4.68E+01 5.69E+01 5.64E+00 4.64E+01 1.53E-04 1.10E-04
Std 1.58E+01 5.64E+00 1.22E+01 1.23E+01 7.65E+00 1.12E+01 5.24E-04 4.92E-04
F8

Best 2.15E+01 2.12E+01 2.10E+01 2.10E+01 2.10E+01 2.10E+01 2.08E+01 1.72E+01
Median 2.22E+01 2.10E+01 2.10E+01 2.10E+01 2.10E+01 2.11E+01 2.10E+01 1.88E+01
Worst 2.29E+01 2.11E+01 2.11E+01 2.11E+01 2.11E+01 2.15E+01 2.11E+01 2.08E+01
Mean 2.20E+01 2.10E+01 2.10E+01 2.10E+01 2.10E+01 2.13E+01 2.10E+01 1.82E+01
Std 5.63E-02 4.69E-02 4.81E-02 5.32E-02 5.64E-02 1.61E-01 7.15E-02 4.49E-02
F9

Best 2.44E+01 1.61E+01 2.12E+01 2.09E+01 3.26E+00 2.01E+01 2.37E-07 2.12E-07
Median 3.02E+01 2.12E+01 2.76E+01 3.04E+01 7.18E+00 2.84E+01 5.02E+00 4.33E+00
Worst 3.96E+01 2.69E+01 3.49E+01 3.78E+01 1.49E+01 3.70E+01 8.92E+00 8.91E+00
Mean 2.90E+01 2.14E+01 2.79E+01 3.03E+01 7.82E+00 2.85E+01 5.23E+00 5.09E+00
Std 3.73E+00 2.34E+00 3.55E+00 3.93E+00 2.46E+00 3.62E+00 1.97E+00 1.83E+00
F10

Best 0.00E+00 3.56E+01 0.00E+00 1.23E+00 5.70E-13 3.39E-13 0.00E+00 0.00E+00
Median 5.48E-14 5.94E+01 5.70E-14 1.51E+00 1.20E-12 7.39E-03 0.00E+00 0.00E+00
Worst 2.19E-02 6.99E+01 2.20E-02 2.19E+00 1.74E-02 2.98E-02 1.52E-02 1.29E-02
Mean 5.68E-03 5.89E+01 5.56E-03 1.61E+00 2.54E-03 7.42E-03 1.72E-03 1.38E-03
Std 6.59E-03 6.74E+00 6.41E-03 2.72E-01 5.03E-03 6.05E-03 3.85E-03 3.52E-03
F11

Best 1.42E+02 1.12E+02 1.31E+02 1.29E+02 8.97E+00 1.41E+02 7.98E+00 7.69E+00
Median 1.83E+02 1.46E+02 1.85E+02 1.87E+02 1.70E+01 1.83E+02 1.81E+01 1.86E+01
Worst 2.66E+02 1.64E+02 2.33E+02 2.29E+02 3.40E+01 2.36E+02 2.99E+01 2.72E+01
Mean 1.99E+02 1.46E+02 1.90E+02 1.86E+02 1.80E+01 1.85E+02 1.85E+01 1.72E+01
Std 2.55E+01 9.18E+00 2.38E+01 2.20E+01 5.19E+00 2.14E+01 4.50E+00 4.23E+00
F12

Best 1.73E+02 1.44E+02 1.59E+02 1.54E+02 7.95E+00 1.49E+02 1.32E+01 1.08E+01
Median 2.19E+02 1.60E+02 2.11E+02 2.11E+02 1.38E+01 2.04E+02 2.32E+01 2.08E+01
Worst 2.74E+02 1.73E+02 2.61E+02 2.64E+02 2.50E+01 2.64E+02 3.89E+01 3.59E+01
Mean 2.24E+02 1.59E+02 2.09E+02 2.11E+02 1.44E+01 2.08E+02 2.34E+01 2.19E+01
Std 2.89E+01 8.68E+00 2.74E+01 241E+01 3.75E+00 2.38E+01 5.43E+00 5.28E+00
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Table 3 (continued)

FA RGA GSA D-GSA BH-GSA C-GSA AR-GSA CFAEE-SCA

F13

Best 2.52E+02 1.32E+02 2.77E+02 2.48E+02 5.15E+00 2.42E+02 1.17E+01 4.83E+00
Median 3.55E+02 1.60E+02 3.29E+02 3.24E+02 2.52E+01 3.35E+02 4.12E+01 2.13E+00
Worst 4.61E+02 1.70E+02 4.31E+02 4.26E+02 6.16E+01 4.08E+02 8.76E+01 6.05E+01
Mean 3.61E+02 1.59E+02 3.32E+02 3.29E+02 2.78E+01 3.31E+02 4.49E+01 2.39E+01
Std 3.51E+01 7.03E+00 3.34E+01 3.80E+01 1.30E+01 3.97E+01 1.81E+01 6.52E+00
F14

Best 2.24E+03 4.38E+03 2.21E+03 2.48E+03 1.07E+03 2.19E+03 7.82E+02 7.15E+02
Median 3.56E+03 5.02E+03 3.27E+03 3.39E+03 1.66E+03 3.31E+03 1.48E+03 1.23E+03
Worst 4.42E+03 5.62E+03 4.31E+03 4.32E+03 2.59E+03 4.57E+03 2.49E+03 2.29E+03
Mean 3.52E+03 5.08E+03 3.33E+03 3.35E+03 1.65E+03 3.43E+03 1.51E+03 1.31E+03
Std 4.98E+02 2.64E+02 5.02E+02 4.22E+02 3.26E+02 4.86E+02 3.78E+02 2.52E+02
F15

Best 2.52E+03 4.57E+03 2.41E+03 2.15E+03 5.14E+02 2.31E+03 5.32E+02 4.99E+02
Median 3.45E+03 5.29E+03 3.28E+03 3.34E+03 1.22E+03 3.17E+03 1.19E+03 1.02E+03
Worst 4.93E+03 5.96E+03 4.70E+03 5.00E+03 2.26E+03 4.12E+03 1.81E+03 2.29E+03
Mean 3.56E+03 5.30E+03 3.34E+03 3.39E+03 1.24E+03 3.32E+03 1.24E+03 1.13E+03
Std 5.76E+02 2.89E+02 5.44E+02 4.95E+02 3.88E+02 4.53E+02 3.32E+02 2.73E+02
Fl16

Best 4.35E-04 1.94E+00 4.09E-04 7.00E-01 6.06E-04 6.05E-04 5.52E-04 5.34E-04
Median 2.32E-03 2.49E+00 2.12E-03 1.14E+00 3.31E-03 2.58E-03 2.05E-03 2.23E-03
Worst 9.68E-03 3.04E+00 9.41E-03 1.74E+00 1.15E-02 9.31E-03 1.03E-02 1.32E-02
Mean 2.82E-03 2.47E+00 2.85E-03 1.13E+00 3.99E-03 3.46E-03 2.74E-03 2.52E-03
Std 2.39E-03 2.74E-01 2.18E-03 2.25E-01 2.30E-03 2.26E-03 1.86E-03 1.31E-03
F17

Best 3.74E+01 1.93E+02 3.75E+01 7.44E+01 3.72E+01 3.61E+01 4.09E+01 3.39E+01
Median 4.35E+01 2.10E+02 4.45E+01 1.03E+02 4.59E+01 4.32E+01 5.03E+01 4.56E+01
Worst 6.68E+01 2.34E+02 6.72E+01 1.26E+02 5.65E+01 5.72E+01 6.52E+01 7.69E+01
Mean 4.73E+01 2.12E+02 4.49E+01 1.03E+02 4.64E+01 4.42E+01 5.03E+01 4.52E+01
Std 5.45E+00 9.39E+00 5.06E+00 1.09E+01 4.11E+00 4.39E+00 5.29E+00 3.99E+00
F18

Best 3.85E+01 1.84E+02 3.65E+01 1.34E+02 3.95E+01 3.74E+01 4.15E+01 3.53E+01
Median 4.74E+01 2.11E+02 4.54E+01 1.72E+02 4.72E+01 4.44E+01 5.53E+01 4.48E+01
Worst 5.93E+01 2.30E+02 5.36E+01 1.98E+02 5.92E+01 5.88E+01 7.13E+01 5.09E+01
Mean 4.86E+01 2.11E+02 4.54E+01 1.75E+02 4.72E+01 4.58E+01 5.59E+01 4.42E+01
Std 3.92E+00 8.89E+00 3.76E+00 1.43E+01 4.04E+00 4.24E+00 7.11E+00 3.62E+00
F19

Best 1.75E+00 2.17E+01 1.79E+00 4.33E+00 2.77E+00 1.72E+00 2.56E+00 2.29E+00
Median 2.69E+00 2.54E+01 2.75E+00 6.48E+00 4.59E+00 3.04E+00 3.55E+00 3.63E+00
Worst 4.08E+00 2.92E+01 4.38E+00 1.55E+01 6.25E+00 4.44E+00 6.86E+00 6.89E+00
Mean 2.82E+00 2.53E+01 2.96E+00 7.26E+00 4.69E+00 3.02E+00 3.85E+00 3.89E+00
Std 6.82E-01 1.59E+00 6.78E-01 2.76E+00 9.54E-01 6.27E-01 8.87E-01 8.49E-01
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Table 3 (continued)

FA RGA GSA D-GSA BH-GSA C-GSA AR-GSA CFAEE-SCA
F20
Best 1.66E+01 1.50E+01 1.42E+01 1.41E+01 1.50E+01 1.50E+01 1.48E+01 1.45E+01
Median 1.67E+01 1.50E+01 1.50E+01 1.50E+01 1.50E+01 1.50E+01 1.50E+01 1.50E+01
Worst 1.69E+01 1.50E+01 1.50E+01 1.50E+01 1.50E+01 1.50E+01 1.50E+01 1.50E+01
Mean 1.68E+01 1.50E+01 1.50E+01 1.50E+01 1.50E+01 1.50E+01 1.50E+01 1.50E+01
Std 1.46E-01 9.94E-06 1.34E-01 1.83E-01 6.29E-08 3.11E-06 1.99E-02 6.11E-08
Note:
The best obtained results for each metric are marked in bold.
Table 4 Results comparison CEC2013 composite functions 21-28.
FA RGA GSA D-GSA BH-GSA C-GSA AR-GSA CFAEE-SCA
F21
Best 1.33E+02 4.61E+02 1.00E+02 1.28E+02 2.01E+02 1.00E+02 2.00E+02 1.93E+02
Median 3.68E+02 5.64E+02 3.00E+02 3.16E+02 3.00E+02 3.00E+02 3.00E+02 2.79E+02
Worst 4.79E+02 6.05E+02 4.44E+02 4.44E+02 4.44E+02 4.44E+02 4.44E+02 4.24E+02
Mean 3.39E+02 5.39E+02 3.18E+02 3.39E+02 3.35E+02 3.34E+02 3.25E+02 3.09E+02
Std 7.45E+01 4.31E+01 7.27E+01 7.16E+01 9.11E+01 7.99E+01 9.24E+01 4.24E+01
F22
Best 3.99+03 4.32E+03 3.79E+03 4.01E+03 3.30E+02 3.88E+03 3.10E+02 3.04E+02
Median 5.49E+03 4.98E+03 5.20E+03 5.41E+03 1.09E+03 5.54E+03 1.12E+03 1.04E+03
Worst 7.33E+03 5.76E+03 7.12E+03 7.06E+03 2.23E+03 7.51E+03 2.25E+03 2.14E+03
Mean 5.66E+03 5.07E+03 5.36E+03 5.55E+03 1.21E+03 5.53E+03 1.11E+03 1.02E+03
Std 8.96E+02 3.42E+02 8.60E+02 7.92E+02 4.11E+02 8.05E+02 3.85E+02 3.19E+02
F23
Best 4.45E+03 4.39E+03 4.24E+03 4.87E+03 6.02E+02 3.85E+03 1.02E+03 1.24E+03
Median 5.73E+03 5.42E+03 5.51E+03 5.57E+03 1.97E+03 5.50E+03 1.85E+03 1.89E+03
Worst 6.95E+03 6.23E+03 6.68E+03 6.42E+03 4.26E+03 6.11E+03 3.77E+03 3.84E+03
Mean 5.83E+03 5.42E+03 5.56E+03 5.60E+03 2.12E+03 5.46E+03 1.96E+03 2.12E+03
Std 4.62E+02 4.04E+02 4.38E+02 3.24E+02 7.62E+02 4.33E+02 6.02E+02 3.09E+02
F24
Best 2.55E+02 2.32E+02 2.20E+02 2.17E+02 2.02E+02 2.30E+02 2.00E+02 1.98E+02
Median 2.75E+02 2.38E+02 2.59E+02 2.60E+02 2.01E+02 2.57E+02 2.00E+02 1.99E+02
Worst 3.99E+02 2.79E+02 3.92E+02 3.83E+02 2.11E+02 3.88E+02 2.00E+02 2.05E+02
Mean 2.86E+02 2.41E+02 2.80E+02 2.72E+02 2.02E+02 2.69E+02 2.00E+02 2.00E+00
Std 4.65E+01 1.13E+01 4.50E+01 3.77E+01 1.19E-01 3.64E+01 2.46E-02 2.15E-02
F25
Best 2.30E+02 2.41E+02 2.00E+02 2.10E+02 2.00E+02 2.00E+02 2.00E+02 1.88E+02
Median 3.62E+02 2.84E+02 3.42E+02 3.49E+02 2.00E+02 3.40E+02 2.00E+02 1.94E+02
Worst 4.23E+02 3.05E+02 3.88E+02 3.87E+02 2.72E+02 3.84E+02 2.00E+02 1.98E+02
Mean 3.91E+02 2.73E+02 3.34E+02 3.40E+02 2.13E+02 3.34E+02 2.00E+02 1.95E+02
Std 4.62E+01 2.52E+01 4.08E+01 3.70E+01 2.54E+01 4.18E+01 1.84E-05 1.79E-05
(Continued)
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Table 4 (continued)

FA RGA GSA D-GSA BH-GSA C-GSA AR-GSA CFAEE-SCA
F26
Best 2.62E+02 2.21E+02 2.35E+02 2.00E+02 1.11E+02 2.00E+02 2.28E+02 2.29E+02
Median 3.73E+02 3.41E+02 3.42E+02 3.51E+02 3.00E+02 3.47E+02 2.97E+02 3.02E+02
Worst 3.98E+02 3.65E+02 3.77E+02 3.71E+02 3.26E+02 3.73E+02 3.20E+02 3.23E+02
Mean 3.48E+02 3.16E+02 3.30E+02 3.34E+02 2.86E+02 3.25E+02 2.93E+02 2.96E+02
Std 3.94E+01 6.05E+01 3.76E+01 4.37E+01 4.29E+01 4.78E+01 1.72E+01 1.66E+01
F27
Best 5.75E+02 6.18E+02 5.85E+02 6.12E+02 3.01E+02 6.26E+02 3.00E+02 3.18E+02
Median 7.58E+02 7.95E+02 7.64E+02 8.42E+02 3.01E+02 7.69E+02 3.00E+02 3.22E+02
Worst 9.89E+02 1.03E+03 9.88E+02 1.04E+03 3.05E+02 1.02E+03 3.03E+02 3.29E+02
Mean 7.83E+02 7.76E+02 7.88E+02 8.40E+02 3.02E+02 7.86E+02 3.00E+02 3.23E+02
Std 1.06E+02 1.35E+02 1.10E+02 1.12E+02 1.15E+00 9.31E+01 4.11E-01 4.29E-01
F28
Best 2.42E+03 5.10E+02 2.47E+03 2.84E+03 1.00E+02 2.35E+03 3.00E+02 3.25E+02
Median 3.35E+03 8.14E+02 3.12E+03 3.23E+03 3.01E+02 3.18E+03 3.00E+02 3.27E+02
Worst 3.67E+03 1.76E+03 3.69E+03 3.93E+03 1.37E+03 3.94E+03 3.00E+02 3.33E+02
Mean 3.10E+03 8.93E+02 3.16E+03 3.24E+03 3.52E+02 3.25E+03 3.00E+02 3.26E+02
Std 2.66E+02 3.54E+02 2.73E+02 2.38E+02 2.54E+02 2.92E+02 8.81E-09 8.95E-09
Note:

The best obtained results for each metrics are marked in bold.

presented in Fig. 2. The proposed CFAEE-SCA has been compared to the basic FA, and
cutting-edge metaheuristics such as AR-GSA, GSA and RGA. From the presented
convergence graphs, it can be seen that the proposed method in most cases converges
faster than the other metaheuristics included in the experiments. Additionally, the
proposed method is significantly superior to the basic FA metaheuristics, that in most cases
stagnates while the CFAEE-SCA accelerates the convergence speed.

In order to provide more objective way for determining the performances and efficiency
of the proposed method against other competitors, statistical tests must be conducted.
Therefore, the Friedman test that was introduced by Friedman (1937, 1940), together with
the ranked two-way analysis of variances of the suggested approach and other
implemented algorithms were conducted.

The results obtained by the eight implemented approaches on the set of 28 challenging
function instances from the CEC2013 benchmark suite, including the Friedman and the
aligned Friedman test, are given in the Tables 5 and 6, respectively.

According to the findings presented in Table 6, the proposed CFAEE-SCA outscored all
other algorithms, together with the original FA which achieved the average rank of
133.463. Suggested CFAEE-SCA achieved an average ranking of 56.838.

Additionally, the research by Sheskin (2020) suggested the possible enhancement in
terms of performance by comparing with the y* value. Therefore, the Iman and
Davenport’s test introduced by Iman ¢ Davenport (1980) has been applied as well. The
findings of this test are presented in Table 7.
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Figure 2 Converging velocity graphs of the eight CEC 2013 benchmark functions as direct
comparison between the proposed CFAEE-SCA method and other relevant algorithms.

Full-size k&l DOTL: 10.7717/peerj-cs.956/fig-2
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Table 5 Friedman test ranks for the observed methods over 28 CEC2013 functions.
RGA GSA D-GSA BH-GSA C-GSA AR-GSA CFAEE-SCA
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The obtained findings show a value of 2.230E+01 that indicates significantly better
results than the F-distribution critical value (F(9,9 x 10) = 2.058E+00). Additionally, the
null hypothesis Hy has been rejected by Iman and Davenport’s test. The Friedman statistics
score of (er = 1.407E+01) results in better performance than the F-distribution critical
value at the level of significance of & = 0.05.

The final observation that can be drawn here is that the null hypothesis (H,) can be
rejected and that the proposed CFAEE-SCA is obviously the best algorithm in the
conducted tests.

As both executed statistical tests rejected the null hypothesis, the next type of test,
namely the Holm’s step-down procedure has been performed. This procedure is a non-
parametric post-hoc method. The results of this procedure have been presented in Table 8.
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Table 6 Aligned Friedman test ranks for the observed methods over 28 CEC2013 functions.

Functions FA RGA GSA D-GSA BH-GSA C-GSA AR-GSA CFAEE-SCA
F1 64 192 65 68 67 66 62.5 62.5
F2 8 223 12 222 13 11 10 9
F3 4 7 3 6 224 5 1.5 1.5
F4 216 221 195.5 32 195.5 219 15 14
F5 51 194 52 85 54 53 55 56
Fe6 109 167 115 153 73 112 87 84
F7 148 155 147 157 79 146 71 70
F8 123 132.5 132.5 132.5 132.5 136 130 113
F9 144 139 142 145 95 143 93 92
F10 103 164 102 105 101 104 100 99
F11 175 156 170 168.5 44 168.5 45 43
F12 171 159 173 174 40 172 42 41
F13 190 50 182 179 38 180 39 37
F14 187 218 197 199 30 201 29 27
F15 193 220 200 202 24 198 23 22
F1e6 127 138 126 137 129 128 125 124
F17 82 183 75 158 77 74 83 76
F18 69 181 59 177 61 60 78 57
F19 107 150 106 135 114 108 110 111
F20 140 119 119 119 119 119 119 119
F21 49 189 72 97 91 89 81 58
F22 217 206 212 214 18 213 17 16
F23 215 203 207 208 20.5 204 19 20.5
F24 176 152 166 163 88 162 86 36
F25 178 94 160.5 165 48 160.5 47 46
F26 98 141 151 154 80 149 90
F27 188 184 185.5 191 34 185.5 33 35
F28 205 31 209 211 28 210 25 26
Average 133.464 156.018 133.429 148.464 75.625 134.875 61.286 56.839
Ranking
Rank 5 8 4 7 3 6 2 1

Table 7 Friedman and Iman-Davenport statistical test results summary (a = 0.05).
Friedman value §” critical value p-value Iman-Davenport value F-critical value

8.866E+01 1.407E+01 1.110E-16 2.230E+01 2.058E+00

The p value is the main sorting reference for all approaches included in the experiment,
and they are compared against the a/(k — 7). The k represents the degree of freedom, and
the i denotes the number of the method.

This paper used the a parameter at the levels of 0.05 and 0.1. It is worth mentioning that
the values of p parameter are given in scientific notation.
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Table 8 Results of the Holm’s step-down procedure.

Comparison p’ values Ranking alpha =0.05 alpha=0.1 HI1 H2

CFAEE-SCA vs D-GSA 1.33227E-13 0 0.007142857  0.014285714 TRUE TRUE
CFAEE-SCA vs RGA 3.53276E-11 1 0.008333333  0.016666667 TRUE  TRUE
CFAEE-SCA vs C-GSA 3.96302E-07 2 0.01 0.02 TRUE TRUE
CFAEE-SCA vs FA 7.90191E-07 3 0.0125 0.025 TRUE TRUE
CFAEE-SCA vs GSA 6.37484E-06 4 0.016666667  0.033333333 TRUE TRUE
CFAEE-SCA vs BH-GSA  0.003462325 5 0.025 0.05 TRUE TRUE
CFAEE-SCA vs AR-GSA  0.109821937 6 0.05 0.1 FALSE FALSE

The summary of the conducted Holm’s procedure presented in the Table 8 indicates
that the significant enhancement has been achieved by the proposed method in case of
both levels of significance.

THE XGBOOST CLASSIFIER TUNING WITH CFAEE-SCA

In this section, the basic information relevant to the framework for optimising the
XGBoost model by using the proposed CFAEE-SCA algorithm are shown. Later on, this
section presents the results of the proposed approach on two sets of network intrusion
detection experiments. First experiment was conducted by utilising the NSL-KDD
benchmark dataset, while the second experiment used more recent, UNSW-NB15 network
intrusion dataset.

The CFAEE-SCA-XGBoost overview

The XGBoost is an extensible and configurable improved gradient Boosting decision tree
optimiser with fast computation and good performance. It constructs Boosted regression
and classification trees, which operate in parallel. It efficiently optimises the value of
the objective function. According to Chen ¢ Guestrin (2016), it works by scoring the
frequency and by measuring the coverage of the impact of a selected feature on the output
of a function.

XGBoost utilises additive training optimisation, where each new iteration is dependant
on the result of the previous one. This is evident in the i-th iteration’s objective function
calculation method:

§ =010, 30 ) (23)
* th
KT )
AT
R() =Ty +5 300w (26)
F =Y " Wi +fix) + R(f) + C (27)

In Eqgs. (23)-(27), g and h are the 1*" and 2™ derivatives, w are the weights, R is the
model’s regularisation term, y and A are parameters for configuring the tree structure
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Table 9 XGBoost parameters optimised by CFAEE-SCA.

Parameter Default Range Details

eta 0.3 [0, 1] Learning rate

max_depth 6 [0, +oo] Maximum depth of the tree
min_child_weight 1 [0, +e0] Minimum leaf weight

gamma 0 [0, +oo] Related to loss function

sub-sample 1 0, 1] Controls sampling to prevent over-fitting
colsample_bytree 1 (0, 1] Controls feature sampling proportions

(larger values give simpler trees). F' is the i-th iteration’s object function, ! is the loss term
in that iteration, and C is a constant term. Finally, the score of the loss function, which is
used to evaluate the complexity of the tree structure:

2 Z “> h + A T 28)

The proposed CFAEE-SCA-XGBoost model’s parameters are optimised using the
CFAEE-SCA algorithm. The six optimised parameters shown in Table 9. The parameters
have been chosen based on the several previous published research including Jiang et al.
(2020), as they have the most influence on the performances of the model. The same
parameters have been optimised for both conducted experiments.

Therefore, the proposed CFAEE-SCA solution is encoding as a vector with six
components, where each vector’s parameter represents one XGBoost hyper-parameter
from Table 9 which is subject to optimisation process. Some of the components are
continuous (eta, gamma,sub-sample,colsample_bytree) and some are integer (max_depth
and min_child_weight) and this represents a typical mixed variables NP-hard challenge.
During the search process, due to the search expressions of the CFAEE-SCA optimiser,
integer variables are transformed to continuous, and they are eventually transformed back
to integers by using simple sigmoid transfer function.

The fitness of each solution is calculated by constructing the XGBoost model based on
the solution and validating its performance on the training set, while for the global best
solution (the one that establishes the best fitness on the training set), the constructed
XGBoost model is validated against the testing set and these metrics are reported in the
results’ tables. Pipeline of the CFAEE-SCA-XGBoost framework is presented in Fig. 3.

Experiments with NSL-KDD dataset

The proposed model was trained and tested using the NSL-KDD dataset, which was
analysed for the first time in Tavallaee et al. (2009). The NSL-KDD dataset can be retrieved
from the following URL: https://unb.ca/cic/datasets/nsL.html. This dataset is prepared and
used for intrusion Detection system evaluation. Dataset features are described in Protic
(2018). A summary describing the main features of the dataset is shown in Table 10.
The proposed model was tested with the swarm size of 100 agents throughout 800
iterations, with 8,000 fitness function evaluations (FFE). This setup was proposed by Jiang
et al. (2020).
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Figure 3 Pipeline of CFAEE-SCA-XGBoost framework. Full-size Kl DOI: 10.7717/peerj-cs.956/fig-3

Table 10 NSL-KDD dataset summary.

Property Description
Number of records 126,620
Number of features 41

Number of classes
Groups of attacks
Types of attacks

Number of sets

2 (normal uses and attacks)
4 (Probe, DoS, U2R and R2L)
38 in total (21 in training set)

2 (a training and a testing set)

There are five event classes which represent normal use, denial of service (DoS) attack,

probe attack, user to root attack (U2R), and remote to local user (R2L). As very well

documented by Proti¢ (2018), the dataset has predefined training and testing sets, whose

structure is shown in Table 11, while visual representation is provided in Fig. 4.

The proposed model was tested, following instructions set up by Jiang et al. (2020), with

the substituting of their optimisation algorithm with the proposed CFAEE-SCA algorithm,

for this experiment.
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Figure 4 Visual representation of training and testing NSL-KDD datasets. Full-size k&l DOT: 10.7717/peerj-cs.956/fig-4
Table 11 NSL-KDD dataset structure.
Event type Training set Testing set
Normal use 67,343 53.46% 9,711 43.08%
DoS 45,927 36.46% 7,456 33.07%
Probe 11,656 9.25% 2,421 10.74%
U2R 52 0.04% 200 0.89%
R2L 995 0.79% 2,756 12.22%

Total 125,973 22,544

Because of different types of data in the dataset, data-points are standardised into a
continuous range:

1 M
d’] ledlf
/o i=
4= T (29)
M; dij—M;d,-j

In Eq. (29), M represents the total number of records in the dataset, d is an individual
data-point for the i-th feature of the j-th record, and d’ is the corresponding data-point’s
standardised value. After standardising all data-points, they are normalised:

U
ij dmin

dl = 2 Tmin_
il
dmax - dmin

(30)

In Eq. (30), d” is the normalised value of the corresponding d" data-point. d,,;,, and d,y,,
are the minimum and maximum values of the j-th feature.
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Table 12 The dataset testing set optimal parameters confusion matrix.

Normal Probe Dos U2R R2L Average/total

XGBoost Precision 0.63 0.75 0.96 0.75 0.67 0.76
Recall 0.97 0.71 0.67 0.03 0.00 0.72
F-Score 0.76 0.73 0.79 0.06 0.00 0.67
Support 9,711 2,421 7,458 200 2,754 22,544
PSO-XGBoost Precision  0.66 0.81 0.94 1.00 0.95 0.81
Recall 0.96 0.52 0.84 0.01 0.05 0.74
F-Score 0.76 0.64 0.87 0.01 0.09 0.70
Support 9,771 2,421 7,458 200 2,754 22,544
FA-XGBoost Precision 0.67 0.79 0.93 0.92 0.85 0.79
Recall 0.97 0.63 0.87 0.15 0.62 0.76
F-Score 0.77 0.68 0.88 0.19 0.64 0.72
Support 9,771 2,421 7,458 200 2,754 22,544
CFAEE-SCA-XGBoost  Precision 1.00 0.79 0.91 0.89 0.86 0.93
Recall 1.00 0.92 0.91 0.21 0.79 0.93
F-Score 1.00 0.85 0.91 0.34 0.82 0.93
Support 9,771 2,421 7,458 200 2,754 22,544
Note:

The best achieved performance metric in all comparative analysis results tables are marked in bold.

The proposed model is evaluated using precision, recall, f-score, and the P-R curve. The
P-R curve is used instead of the ROC curve due to its better ability to capture the binary
event situation measurement impact, as explained by Sofaer, Hoeting & Jarnevich
(2019). Specifically, these events happen in this dataset due to a limited number of U2R
attack cases related to other events. P-R curve-based values, including the average
precision (AP), mean average precision (mAP) and macro-averaging calculations, further
help evaluate the model’s performance.

Experimental results of the proposed model are presented and compared to results of
the solution with the pure XGBoost approach, the original FA-XGBoost and the PSO-
XGBoost. The experimental setup is the same as the setup proposed in Jiang et al. (2020),
that was used to reference the PSO-XGBoost results. It is important to state that the
authors have implemented the PSO-XGBoost and tested it independently, by using the
same conditions as in Jiang et al. (2020). Results for the FA and CFAEE-SCA supported
versions of the XGBoost framework are shown in Table 12, together with the PSO-
XGBoost and basic XGBoost results. The best results are marked in bold. As the presented
results show, the proposed CFAEE-SCA-XGBoost approach clearly outperforms both
other metaheuristics approaches for the observed classes. Additionally, it can be seen that
the CFAEE-SCA-XGBoost significantly outperforms the basic XGBoost method. The basic
FA-XGBoost obtained similar level of performances as PSO-XGBoost.

Table 13 shows AP values from the P-R curves of the CFAEE-SCA-XGBoost model
compared to the values of XGBoost, FA-XGBoost and PSO-XGBoost models for all event
types and classes. The proposed CFAEE-SCA-XGBoost approach performed better than
other compared approaches for all types and classes. It is important to note that the
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Table 13 Comparison of AP values for each class.

XGBoost PSO-XGBoost FA-XGBoost CFAEE-SCA-XGBoost
Normal 0.89 0.89 0.90 1.0
Probe 0.75 0.79 0.78 0.93
Dos 0.88 0.94 0.93 0.98
U2R 0.11 0.15 0.24 0.33
R2L 0.42 0.48 0.55 0.94

Note:
The best achieved performance metric in all comparative analysis results tables are marked in bold.
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Figure 5 PR curve of the basic XGBoost. Full-size Kal DOL: 10.7717/peerj-cs.956/fig-5

NSL-KDD is imbalanced dataset, and the proposed CFAEE-SCA-XGBoost managed to
achieve high performances (even for minority classes) for the accuracy and recall without
modifying the original dataset. The PR curve of the basic XGBoost approach is shown in
Fig. 5, while the PR curve of the proposed CFAEE-SCA-XGBoost method is presented in
Fig. 6. To help visualising the difference and the improvements of the CFAEE-SCA-
XGBoost method against the basic XGBoost, Fig. 7 depicts the precision vs recall curve
comparison between the proposed CFAEE-SCA method and the basic XGBoost
implementation. Finally, Table 14 presents the values of XGBoost parameters determined
by the proposed CFAEE-SCA method.

Experiments with UNSW-NB15 dataset

In the second set of experiments, the proposed model has been trained and tested by
utilising the more recent UNSW-NB15 dataset, that was first proposed and analysed by
Moustafa & Slay (2015) and Moustafa ¢ Slay (2016). The UNSW-NB15 dataset can be
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Figure 6 PR curve of CFAEE-SCA-XGBoost.
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Figure 7 PR curve comparative analysis between CFAEE-SCA-XGBoost and the basic XGBoost.
Full-size K&l DOT: 10.7717/peerj-cs.956/fig-7

Table 14 XGBoost parameter values after optimisation by CFAEE-SCA.

Parameter Determined value Description

eta 0.95 Learning rate

max_depth 3 Max depth

min_child_weight 1.74 Min leaf weight

gamma 0.1 Related to loss function

sub-sample 0.6 Controls sampling to prevent over-fitting
colsample_bytree 0.88s Controls feature sampling proportions

Zivkovic et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.956 28/38


http://dx.doi.org/10.7717/peerj-cs.956/fig-7
http://dx.doi.org/10.7717/peerj-cs.956/fig-6
http://dx.doi.org/10.7717/peerj-cs.956
https://peerj.com/computer-science/

PeerJ Computer Science

Table 15 Machine learning methods’ parameter settings.

Method Parameters

ANN Adam solver, single hidden layer, size = {5, 10, 15, 30, 50, 100}, adaptive learning rate 0.02
LR random state set to 10, maximum 1,000 iterations

kNN multiple models, number_of_neighours = {3, 5,7, 9, 11}

SVM regularisation parameter C = 1.12, gamma = ‘scale’, kernel = ‘rbf

DT multiple models, maximum_depth_value = {2, 5, 7, 8, 9}

retrieved from the following URL: https://github.com/naviprem/ids-deep-learning/blob/
master/datasets/ UNSW-NB15.md. Dataset features have been explained in Moustafa ¢
Slay (2015).

In total, the UNSW-NB15 dataset contains 42 features, out of which 39 are
numerical, and three are categorical (non-numeric). The UNSW-NB15 contains two main
datasets: UNSW-NB15-TRAIN, utilised for training various models and the UNSW-
NB15-TEST, utilised for testing purposes of the trained models. The proposed model has
been tested by following the instructions specified by Kasongo ¢ Sun (2020), in order
to provide common grounds to compare the proposed model against their published
results. The train set was divided into two parts, namely TRAIN-1 (75% of the training set)
and VAL (25% of the training set), where the first part was used for training and the second
part was used for validating before proceeding to test phase.

The UNSW-NB15 is comprised of instances belonging to the following categories that
cover typical network attacks: Normal, Backdoor, Reconnaissance, Worms, Fuzzers, DoS,
Generic, Analysis, Shellcode and Exploits. The research by Kasongo ¢ Sun (2020)
utilises XGBoost as the filter method for feature selection, and the features are normalised
by using Min-Max scaling during the data processing. This was followed by application on
various machine learning models, such as support vector machine (SVM), linear
regression (LR), artificial neural network (ANN), decision tree (DT) and k-nearest
neighbours (kNN).

The first phase of the experiments used the full feature size (total of 42 features) for the
binary and multiclass configurations. The second part of the experiments utilised the
feature selection powered by XGBoost as the filter method, resulting in the reduced
number of features (19), that were subsequently used for the binary and multiclass
configuration (details about the reduced features vector can be found in Kasongo ¢ Sun
(2020)). The parameters used for ANN, LR, kNN, SVM and DT are summarised in
Table 15. It is important to state that the authors have implemented and recreated all
experiments by utilising the same conditions as in Kasongo ¢» Sun (2020) and tested them
independently, with maximum FFE as termination condition.

The simulation results are shown in Tables 16-19. As mentioned before, the results for
the ANN, LR, kNN, SVM and DT were obtained through independent testing by authors
and those values have been reported and compared to the values obtained by the basic
XGBoost (with default parameters’ values), PSO-XGBoost, FA-XGBoost and the proposed
CFAEE-SCA-XGBoost. The best result in each category is marked in bold text.
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Table 16 Comparative results of binary classification by utilising all 42 features.

Method Acc training Acc val Acc test Precision Recall F1-Score
ANN 0.9448 0.9423 0.8670 0.8156 0.9803 0.8902
LR 0.9320 0.9286 0.7961 0.7331 0.9892 0.8424
kNN 0.9677 0.9357 0.8321 0.7916 0.9428 0.8603
SVM 0.7096 0.7062 0.6243 0.6089 0.8860 0.7117
DT 0.9366 0.9335 0.8811 0.8389 0.9648 0.9001
XGBoost 0.9526 0.9483 0.8712 0.8233 0.9824 0.8927
PSO-XGBoost 0.9713 09414  0.8914 0.8425 09894  0.9046
FA-XGBoost 0.9722 09427  0.8932 0.8457 09902  0.9061
CFAEE-SCA-XGBoost ~ 0.9734 0.9469  0.8968 0.8493 0.9912  0.9103
Note:
The best achieved performance metric in all comparative analysis results tables are marked in bold.
Table 17 Comparative results of binary classification by utilising 19 features.
Method Acc training Acc val Acc test Precision Recall F1-Score
ANN 0.9377 0.9368 0.8441 0.7855 0.9852 0.8744
LR 0.8919 0.8924 0.7761 0.7316 0.9373 0.8218
kNN 0.9584 0.9471 0.8443 0.8028 0.9511 0.8709
SVM 0.7543 0.7553 0.6092 0.5893 0.9589 0.7299
DT 0.9413 0.9378 0.9086 0.8034 0.9841 0.8842
XGBoost 0.9516 0.9397 0.8478 0.7969 0.9788 0.8735
PSO-XGBoost 0.9599 09502 09121 0.8117 09859  0.8856
FA-XGBoost 0.9613 09514 09128 0.8134 09866  0.8873
CFAEE-SCA-XGBoost ~ 0.9642 0.9539  0.9142 0.8167 0.9884  0.8891
Note:
The best achieved performance metric in all comparative analysis results tables are marked in bold.
Table 18 Comparative results of multiclass classification by utilising all 42 features.
Method Acc training Acc val Acc test Precision Recall F1-Score
ANN 0.7988 0.7957 0.7559 0.7991 0.7557 0.7655
LR 0.7552 0.7395 0.6556 0.7693 0.6547 0.6663
kNN 0.8174 0.7681 0.7012 0.7578 0.7018 0.7202
SVM 0.5345 0.5271 0.6113 0.4749 0.6201 0.5378
DT 0.7766 0.7735 0.6601 0.7977 0.6604 0.5109
XGBoost 0.8155 0.7868 0.7395 0.7981 0.7264 0.7609
PSO-XGBoost 0.8216 0.7985 0.7592 0.8013 0.7611 0.7683
FA-XGBoost 0.8233 0.8007 0.7604 0.8028 0.7626 0.7698
CFAEE-SCA-XGBoost ~ 0.8247 0.8029 0.7630 0.8045 0.7654 0.7724
Note:

The best achieved performance metric in all comparative analysis results tables are marked in bold.

Table 16 reports the findings of the experiments with different ML approaches, basic

XGBoost and three XGBoost metaheuristics models for the binary classification that
utilises the complete feature set of the UNSW-NB15 dataset. On the other hand, Table 17
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Table 19 Comparative results of multiclass classification by utilising 19 features.

Method Acc training Acc val Acc test Precision Recall F1-Score
ANN 0.7944 0.7890 0.7748 0.7949 0.7751 0.7725
LR 0.7252 0.7179 0.6527 0.7085 0.6526 0.6594
kNN 0.8267 0.7989 0.7232 0.7726 0.7232 0.7385
SVM 0.5358 0.5295 0.6151 0.5392 0.6150 0.5127
DT 0.7876 0.7845 0.6759 0.7967 0.6758 0.6927
XGBoost 0.7987 0.7903 0.7592 0.7931 0.7429 0.7528
PSO-XGBoost 0.8324 0.8016 0.7765 0.7993 0.7772 0.7756
FA-XGBoost 0.8347 0.8033 0.7784 0.8015 0.7796 0.7789
CFAEE-SCA-XGBoost 0.8378 0.8069 0.7803 0.8046 0.8015 0.7824
Note:

The best achieved performance metric in all comparative analysis results tables are marked in bold.

depicts the results of the binary classification over the reduced feature set of the UNSW-
NB15 dataset.

Tables 18 and 19 present the results obtained by different ML models, basic XGBoost
and three XGBoost metaheuristics models for the multiclass classification that uses the
complete and reduced feature vectors, respectively. In every table, Acc training represents
the accuracy obtained over the training data, Acc val stands for the accuracy obtained
over the validation data partition, and finally, Ac test denotes the accuracy obtained over
the test data.

The experimental findings over the USNW-NB15 IDS dataset clearly indicate the
superiority of the hybrid swarm intelligence and XGBoost methods over the standard
machine learning approaches. All three XGBoost variants that use metaheuristics
significantly outperformed all other models, both in case of binary classification and in case
of multiclass classification. Similarly, the swarm based approaches outperformed the
traditional methods for both complete feature set, and for the reduced number of features.
Among the three XGBoost variants that use metaheuristics for optimisation, the PSO-
XGBoost achieved the third place, basic FA-XGBoost finished second, while the proposed
CFAEE-SCA-XGBoost obtained the best scores on all four test scenarios by the significant
margin. This conclusion further establishes the proposed CFAEE-SCA-XGBoost
method as a very promising option for the intrusion detection problem.

CONCLUSIONS

This article has presented a proposed an improved FA optimisation algorithm CFAEE-
SCA, that was devised with a goal to overcome the deficiencies of the basic FA
metaheuristics. Several modifications have been made to the basic algorithm, including
explicit exploration mechanism, gBest CLS strategy, and hybridisation with SCA to further
enhance the search process. The proposed improved metaheuristics was later used to
optimise the XGBoost classifier for the intrusion detection problem. The CFAEE-SCA-
XGBoost framework has been proposed, based on the XGBoost classifier, with its hyper-
parameters, optimised and tuned using the newly proposed CFAEE-SCA algorithm. The
proposed model was trained and tested for network intrusion detection using two well-
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known datasets: NSL-KDD and UNSW-NB15 dataset. The proposed model, supported by
the CFAEE-SCA algorithm, outperformed the variation supported by the original FA
algorithm, the PSO-XGBoost and the basic implementation of the XGBoost, that were
used in the comparative analysis.

The experimental results show that the CFAEE-SCA-XGBoost model obtained the best
accuracy compared to the original model and suggest the potential for using swarm
intelligence algorithms for NIDS. These results uncover possible future areas for research
and application.
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