
Deep fake detection using a sparse auto
encoder with a graph capsule dual graph
CNN
Venkatachalam Kandasamy1, Štěpán Hubálovský1 and Pavel Trojovský2

1 Department of Applied Cybernetics, Faculty of Science, University of Hradec Králové,
Czech Republic

2 Department of Mathematics, University of Hradec Králové, Hradec Králové, Czech Republic

ABSTRACT
Deepfake (DF) is a kind of forged image or video that is developed to spread
misinformation and facilitate vulnerabilities to privacy hacking and truth masking
with advanced technologies, including deep learning and artificial intelligence with
trained algorithms. This kind of multimedia manipulation, such as changing facial
expressions or speech, can be used for a variety of purposes to spread misinformation
or exploitation. This kind of multimedia manipulation, such as changing facial
expressions or speech, can be used for a variety of purposes to spread misinformation
or exploitation. With the recent advancement of generative adversarial networks
(GANs) in deep learning models, DF has become an essential part of social media. To
detect forged video and images, numerous methods have been developed, and those
methods are focused on a particular domain and obsolete in the case of new attacks/
threats. Hence, a novel method needs to be developed to tackle new attacks. The
method introduced in this article can detect various types of spoofs of images and
videos that are computationally generated using deep learning models, such as
variants of long short-term memory and convolutional neural networks. The first
phase of this proposed work extracts the feature frames from the forged video/image
using a sparse autoencoder with a graph long short-term memory (SAE-GLSTM)
method at training time. The first phase of this proposed work extracts the feature
frames from the forged video/image using a sparse autoencoder with a graph long
short-term memory (SAE-GLSTM) method at training time. The proposed DF
detection model is tested using the FFHQ database, 100K-Faces, Celeb-DF (V2) and
WildDeepfake. The evaluated results show the effectiveness of the proposed method.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision, Data
Mining and Machine Learning, Data Science
Keywords DeepFake, Deep learning, Generative adversarial networks, Long short term memory
(LSTM), Graph LSTM, Capsule convolution neural network

INTRODUCTION
With the advancement of technology, accessibility to social networks is easier for all
users. Therefore, many deepfake images and videos have been spread on social media
platforms. Manipulation of digital images or videos on social media involves replacing the
image of a person with the face of another person. This manipulation of facial images is
called deepfake and has become a very annoying social problem nowadays. Swapping
popular faces with celebrities from Hollywood or politicians will mislead people’s opinions

How to cite this article Kandasamy V, Hubálovský Š, Trojovský P. 2022. Deep fake detection using a sparse auto encoder with a graph
capsule dual graph CNN. PeerJ Comput. Sci. 8:e953 DOI 10.7717/peerj-cs.953

Submitted 7 January 2022
Accepted 28 March 2022
Published 31 May 2022

Corresponding author
Pavel Trojovský,
pavel.trojovsky@uhk.cz

Academic editor
Imran Ashraf

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj-cs.953

Copyright
2022 Kandasamy et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.953
mailto:pavel.�trojovsky@�uhk.�cz
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.953
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

and create rumors about celebrities or politicians (Wang et al., 2020; Nataraj et al., 2019).
The spread of false information in the form of deepfake through synthetically created
images and videos has increased daily. This will become a significant issue for manipulative
detection techniques.

Detection and prevention of deepfake images and videos are essential on social media.
For these research studies, various organizations, such as Facebook Inc., the US Defense
Advanced Research Projects Agency (DARPA), and Google, support researchers in
detecting and preventing deepfake images and videos. (Westerlund, 2019; Kwok & Koh,
2021). In the detection of forged images and videos, many research works have been
developed, and these research works focus on keeping personality information secret in a
secure way. To detect the difference between real and fake images, ocular biometrics, based
on the CNN approaches of SqueezeNet, DenseNet, ResNet and light CNN (Nguyen,
Yamagishi & Echizen, 2019), is used. To ensure personnel data security and avoid the
deepfakes, the researchers are motivated to develop an efficient deepfake detection system
using deep learning approaches. The main contributions of this research work are as
follows.

1. Implementing the deepfake face detection method based on the SAE-GLSTM and
capsule dual graph CNN model in which dimensionality reduction is used for the
features in the face image.

2. To improve accuracy, preprocessing in this work implements an adaptive median filter
and uses GLSTM to extract image features.

3. Compare to the existing research works, our proposed is efficient in deepfake detection
system using deep learning based preprocessing, feature extraction and detection. This
system ensures the efficiency, reliability and integrity.

The article is organized as follows. “Review of Literature” describes a review of the
literature, “Proposed Methodology” introduces deep detection using SAE-GLSTM and the
capsule dual graph CNN model, “Experimental Result & Discussions” discusses the
experimental results, and “Conclusion” concludes the article with future directions.

REVIEW OF LITERATURE
Deepfake is composed of “deep learning” and “fake” concepts with a technique for
synthesizing videos or images using deep learning techniques. Deepfake enthusiasts swap
the face of an image or perform video forgery to spread misinformation, mask real
information, and promote privacy insecurity using advanced techniques such as artificial
intelligence and deep learning techniques. This swapping of images or videos of faces
has become an annoyance for social media platforms. Social media users have had
difficulty publishing forged images or videos that are developed by combining celebrity or
politician images in the video (Kaur, Kumar & Kumaraguru, 2020).

Kandasamy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.953 2/21

http://dx.doi.org/10.7717/peerj-cs.953
https://peerj.com/computer-science/

Detection of face tampering using the CNN model is based on the concept of two
streams of face classification and patch triplets. In the training process, the face image was
classified as having been tampered with (Zhou et al., 2017). One article (Korshunova et al.,
2017) proposed the transformation of the original face image into a fake image using a
face-swap process. However, it preserves facial expressions, lighting, and position of
images from the source to the destination of the image. The first deepfake video was
released in 2017 in which a celebrity face was swapped with the face of a porn actor.
Additionally, deepfake videos of famous politicians were created as fake speeches. It is a
great threat to the world for the preservation of the security and privacy of world-famous
actors and politicians (Howcroft, 2018; Chesney & Citron, 2019; Soare & Burton, 2020).
Identifying the original face image from the deepfake video is evaluated based on the
properties of deepfake videos, which undergo an affine warping process to match the face
of the original image (Li & Lyu, 2019).

Fake face videos are exposed using deep-generative networks based on eye blinking
features. To achieve this, it detects the faces frame by frame and aligns them with the same
coordinate value and observes head movement in a realistic manner (Li, Chang & Lyu,
2018). From each frame of a video, eye blinking is detected using the long-term recurrent
convolutional neural network (LRCN) method. In this LRCN method, the swapping of
the face in the videos is implemented more easily. A pipeline-based temporal-aware system
was proposed to detect deepfake videos automatically. Features are extracted in the form of
a frame by a frame (Güera & Delp, 2018). Table 1 shows the results of a survey of the
deepfake detection methods.

PROPOSED METHODOLOGY
The proposed deepfake detection method shown in Fig. 1 is suitable for video and
images. In the pre-processing phase, the deepfake video input is split into frames, and
detection is performed from the frames. During the training phase, the features of the
video frames or images are extracted using the graph LSTMmethod. The extracted feature
subset is given as input to phase II for detection using a capsule network, the capsule dual
graph CNN, which identifies the frame sequence/image as real or fake.

Preprocessing
The preprocessing of fake videos/images is shown in Fig. 2. Initially, the input fake videos
are split into frames. Using multitask cascaded convolutional neural networks (MTCNNs)
(Zhang et al., 2016), the face is detected and cropped from video frames. MTCNN is a
Python face detection module with an accuracy of 95%. It can extract the face that focuses
on computer vision transformation. This extracted face is pre-processed using the
sequence of operations listed below to enhance image quality. The feature vector was
generated by extracting the computer vision features from the preprocessed image using
the graph LSTM method.

Kandasamy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.953 3/21

http://dx.doi.org/10.7717/peerj-cs.953
https://peerj.com/computer-science/

Image rescaling
The input image/frames consist of RGB values in the range of 0 to 255. The values are
rescaled to the interval [0,1] to be fed as input into the proposed model using the 1/255
scaling method.

Shear mapping
Each image in the frames is converted from the edge to the vertical direction. From the
original frame, this parameter controls the angle of deviation of the horizontal line and the
displacement rate. The value of the shear range is 0.3.

Noise removal
Accurate noise removal of input data will build up the improved quality training data set.
This will improve the accuracy of the detection system. The background noise of the
normalized image is removed using an adaptive median filter. An adaptive median filter
solves issues related to median filters, such as the capability of the median filter to remove
only salt and pepper noise. If there is no proper kernel size smoothing and if the
spatial density is high, then the median filter is not effective. Various adaptive median
filters are suitable for kernels with variable sizes, and all pixels are not replaced with
median values. In Algorithm 1, we follow Soni & Sankhe (2019), in which the idea of a
two-level median filter appeared. This algoritm consists of two steps. For each kernel, the
median value is calculated and the pixel value of salt and pepper noise is checked.

Table 1 Survey on deepfake detection methods.

Author Classifier Type of
input

Dataset

Hsu, Zhuang & Lee
(2020)

CNN concatenated to CFFN Image CelebA, DCGAN WGAN WGAN-GP, least squares GAN PGGAN.

Chintha et al. (2020) Convolutional bidirectional
recurrent LSTM network

Videos FaceForensics++ and Celeb-DF (5,639 deepfake videos) and the ASVSpoof
Access audio dataset.

Agarwal et al. (2020) CNN Videos Four in-the-wild lip-sync deep fakes from Instagram and YouTube (www.
instagram.com/bill posters ukand youtu.be/VWMEDacz3L4).

Fernandes et al. (2020) ResNet50model [102],
pretrained on VGGFace2

Videos VidTIMIT and two other original datasets obtained from the COHFACE and
Deepfake TIMIT datasets.

Sabir et al. (2019) Spatiotemporal features with
RCN

Videos FaceForensics++ dataset, including 1,000 videos.

Xuan et al. (2019) DCGAN, WGAN-GP and
PGGAN.

Images CelebA-HQ, DCGAN, GAN-GP and PGGAN

Yang, Li & Lyu (2019) SVM Videos/
Images

UADFV consists of 49 deepfake videos, and 252 deepfake images from DARPA
MediFor GAN Image/Video Challenge.

Nguyen, Yamagishi &
Echizen (2019)

Capsule networks Videos/
Images

The Idiap Research Institute replayattack, facial reenactment FaceForensics.

Afchar et al. (2018) CNN Videos Deepfake one constituted from onlinevideos and the FaceForensics one created
by the Face2Face approach.

Güera & Delp (2018) CNN and LSTM Videos A collection of 600 videos obtained from multiple websites.

Li, Chang & Lyu (2018),
Li & Lyu (2019)

LRCN Videos Consists of 49 interview and presentation videos, and their corresponding
generated deepfakes.

Kandasamy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.953 4/21

http://dx.doi.org/10.7717/peerj-cs.953
https://peerj.com/computer-science/

We consider the input grayscale image with pixel dimensions m × n. We assume that this
image is given as the matrix G of the gray levels of all pixels in the image, so G = (gx,y),
where x ¼ 1; . . . ;m, y ¼ 1; . . . ; n, and gx,y is a gray level of the pixel in the coordinates (x,
y). Algorithm 1 will transform the input gray level gx,y of the pixel in the coordinates (x,y)
into the noise removed value of the gray level of this pixel. The method of transformation
of the value gx,y is done in the construction of all s-neighborhoods Us of the pixel in
coordinates (x,y) (this pixel lies in the center of these squre-neighborhoods) with the side

Figure 2 Proposed stages of preprocessing. Full-size DOI: 10.7717/peerj-cs.953/fig-2

Figure 1 Overview of proposed DeepFake detection system.
Full-size DOI: 10.7717/peerj-cs.953/fig-1

Kandasamy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.953 5/21

http://dx.doi.org/10.7717/peerj-cs.953/fig-2
http://dx.doi.org/10.7717/peerj-cs.953/fig-1
http://dx.doi.org/10.7717/peerj-cs.953
https://peerj.com/computer-science/

of this square equal to s (the initial value is s = 3) and we manage this transformation in two
levels LA and LB, in which we compare the value gx,y with the minimal, maximal, and
median grayscale values of all pixels in neighborhood Us for s ≥ 3. The exact procedure of
Algorithm 1 is evident from the pseudocode below; only we must realize that for the
smallest s-neighborhood with the side s = 3, the pixel inside the image has eight adjacent
pixels, but the pixels in the corners have only three neighbors, and the other pixels at the
edge of the image have five neighbors.

Data augmentation
During the training process, the augmentation method is as follows:

1. Zooming augmentation: zooming augmentation is used to view the input image as larger
with the value 0.2 in the range [0.8, 0.2]. The parameter values vary from the 1 − value to
the 1 + value.

2. Horizontal flipping: with the help of Boolean value ‘true’, the zoomed image is
horizontally flipped.

3. Random rotation of approximately 30°.

4. Random contrast, brightness and saturation jitter.

5. Coarse dropout with the size of 0.03.

Algorithm 1: Two-Level Adaptive Median Noise Removal Filter.

Input: The gray level gx,y of the pixel at the coordinates (x,y), the maximal value smax of the side of the square Us.

Output: The noise removed value of the gray level gx;y of the pixel in the coordinates (x,y).

Step 1: Assume that LA and LB are the two levels of noise pollution.

Step 2: Consider a s-neighborhood Us. Initially, we take s = 3.

Step 3: Calculate gmed, gmin, gmax as the median, minimal, and maximal gray level of the pixels in Us.

Step 4: Level LA.

A11 ¼ gmed � gmin; A12 ¼ gmed � gmax:

Step 5: if (A11 > 0 && A12 < 0) then go to Step 11.

Step 6: else s = s + 2 // We increase the size of s-neighborhood Us (s must be an odd number, as the pixel (x,y) must be in the center).

Step 7: end if

Step 8: if s ≤ smax then go to Step 4.

Step 9: else Output: gx;y ¼ gx;y .

Step 10: end if

Step 11: Level LB.

B11 ¼ gx;y � gmin; B12 ¼ gx;y � gmax:

Step 12: if (B11 ≥ 0 && B12 ≤ 0) then Output: gx;y ¼ gmed .

Step 13: else Output: gx;y ¼ gx;y .

Step 14: end if

Kandasamy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.953 6/21

http://dx.doi.org/10.7717/peerj-cs.953
https://peerj.com/computer-science/

Feature extraction using the sparse autoencoder (SAE) with graph
LSTM
The pre-processed image is fed into this section to extract the computer vision features
using the proposed sparse autoencoder-based LSTM model. The traditional auto-encoder
method has some problems, such as its inability to find features by copying memory into
an implicit layer (Olshausen & Field, 1996). This problem is resolved with a sparsity
approach with an autoencoder called a sparse autoencoder (SAE) (Hoq, Uddin & Park,
2021). It is an unsupervised deep learning method with a single hidden layer (Kang et al.,
2017) used to encode the data for feature extraction. This will extract the most relevant
features from the expressions of the hidden layer and estimate the error (Leng & Jiang,
2016). The regularization equation for the sparsity is defined in Eq. (1).

Sparsity regrsn ¼
Xu2
i¼1

KLð#jjb#iÞ; (1)

where the divergence implemented is the Kullback-Leibler divergence (KL), b#i is the
activation function of the hidden node ith, ϑ is the sparsity parameter. The KL-divergence is
mathematically defined by Eq. (2)

KLð#jjb#iÞ ¼ # log
#b#i

þ 1� #ð Þ log 1� #

1� b#i

: (2)

The sparse AE is trained with the cost function declared in Eq. (3) which consists of the
mean square error defined in Eq. (4). This will reconstruct the input vector X into the
output vector bX throughout the entire training dataset (Ng, 2011). The LASSO regression
term is declared in Eq. (3) and the final term of the sparsity transformation is defined
in Eq. (1). The importance of LASSO regression in SAE is to extract the most relevant
features by assigning the feature coefficients as zero for features that are of little relevance,
which will reduce the space of the parameter.

Cost function ¼ MSE þ a � Lasso regrsnþ b � Sparsity regrsn; (3)

MSE ¼ 1
N

XN
i¼1
ðXi � X̂iÞ2; (4)

Lasso regrsn ¼
Xnl�1
l¼1

Xul
i¼1

Xulþ1
j¼1
jwl

ijj; (5)

where N is the total number of input data points, X represents the input vector, X̂
represents the reconstructed output vector, α is the Lasso regression coefficient and β is the
sparsity regularization coefficient, l indicates the lth layer, nl is the number of layers, ul is
the number of units in the layer l and wl

ij is the weight value between the ith node of
the layer l and the jth node of the layer l + 1. LASSO regression can add the magnitude
of the absolute value as a penalty term. To improve the feature extraction process, this
penalty coefficient is set to zero. The LSTM trains SAE to improve the feature extraction
process. An LSTM is a backpropagation method for training the feature extraction model

Kandasamy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.953 7/21

http://dx.doi.org/10.7717/peerj-cs.953
https://peerj.com/computer-science/

with three gates: input, forget, and output gates. The input gate is responsible for
modifying the memory with the values decided by the sigmoid activation function. The
forget gate is used to discard features from the previous state. The output gate is used
to control the output features. Traditional LSTM is enhanced with a graph structure in
which each node of the graph is represented as a single LSTM unit with forward and
backward directions. In one direction, the node history is constructed and in another
direction the response is characterized. Figure 3 shows the proposed SAE-GLSTM model
to extract deepfake image features.

An SAE consists of an encoder, a compression/parameter space, and a decoder. The
encoder encodes the given input to the parameter space through hidden layers, and the
decoder is responsible for decoding the parameter space data to the output layer. Due to
the autoencoder nature of dealing with negative values, a rectified linear unit (ReLU) is
not suitable, and a sigmoid function is used as an activation function, which will reduce the
training ability of the network. SAE can reduce the error between the input and the
reconstructed data. The usage of hidden layers is reduced by the sparsity constraint.
The regularization used here will avoid the overfitting issue and can be applied to larger
datasets. The selected features are then passed on to the LSTM cell to enhance the feature
selection process by extracting the relevant features. The LSTM graph model comprises
six layers: the input layer, four hidden layers, and the output layer. The input layer of the
LSTM graph consists of the features extracted from SAE. Each feature is represented as a
neuron in the LSTM graph cell input layer graph, as shown in Fig. 4.

For the number of iterations t, SAE-GLSTM computes the hidden forward sequence
as s and the hidden backward sequence as s!, and the output sequence is represented as
Y. The input xt has a hierarchical timing layer and the transition of the node state is
declared a vector using the standard LSTM (Zhou, Xiang & Huang, 2020). Figure 5 shows
the hierarchical forward and backward timing structure of Graph LSTM.

Figure 3 Deep fake image feature extraction using proposed SAE-GLSTM network. Full-size DOI: 10.7717/peerj-cs.953/fig-3

Kandasamy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.953 8/21

http://dx.doi.org/10.7717/peerj-cs.953/fig-3
http://dx.doi.org/10.7717/peerj-cs.953
https://peerj.com/computer-science/

Let p(t) be considered the parent node of t and k(t) be the first child node. This
hierarchical timing structure has predecessor p(t) and successor s(t) representing the
forward and backward siblings, respectively. If there is no child, the values of k(t), p(t), and
s(t) are set to null. For the forward GLSTM, the parameters, such as the input gate ig,
temporal forget gate fg, hierarchical forget gate hg, cell c, and the output op, are updated
and represented in Eqs. (6) to (10) with the vectors igt indicating the new information
weight, fgt indicating the memory data of siblings, hgt indicating the memory data of the
parents, and σ representing the sigmoid function. For the backward GLSTM, l tð Þ is
replaced by k(t), p(t) is replaced by s(t) and is represented in Eqs. (11) to (15) listed in
Table 2.

The extracted features from SAE are enhanced with the LSTM graph by sending the
SAE output as input to the LSTM unit. The optimal relevant feature subset has been
selected as an output of this graph LSTM network. The extracted feature subset has
numerical values of specific images in matrix form.

Deepfake detection using capsule dual graph CNN
The proposed detection system consists of three capsules. Two capsules are allotted for
output to indicate fake and real images. CNN dual graph is represented in one capsule to

Figure 5 Hierarchical timing structure of (A) forward GLSTM (B) backward GLSTM.
Full-size DOI: 10.7717/peerj-cs.953/fig-5

Figure 4 GLSTM cell. Full-size DOI: 10.7717/peerj-cs.953/fig-4

Kandasamy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.953 9/21

http://dx.doi.org/10.7717/peerj-cs.953/fig-5
http://dx.doi.org/10.7717/peerj-cs.953/fig-4
http://dx.doi.org/10.7717/peerj-cs.953
https://peerj.com/computer-science/

perform detection. The features extracted from “Feature Extraction using the Sparse
Autoencoder (SAE) with Graph LSTM” are given as input to this detection model. The
dual graph neural network is the variance of the traditional neural network with a
graph (Scarselli et al., 2008). Each node in the graph is a feature. A dual graph CNN
consists of two CNNs and the input set of data points X ¼ x1; x2; . . . ; xl; xlþ1; . . . ; xnf g,
the set of labels C ¼ f1; 2; . . . ; cg, the first l points have labels fy1; y2; . . . ; ylg 2 C, and
a graph structure. We assume that each point has at most k features; therefore, we denote
the data set as a matrix X 2 Rn�k and represent the structure of the graph by the adjacency
matrix A 2 Rn�n. Using the input X, labels L, and A, our model aims to predict the
labels of the unlabeled points.

The model is constructed with local consistency (LC) and is a type of feed-forward
network that incorporates global consistency (GC) and a regularizer for the ensemble. The
feature vector FV and the adjacency matrix A are the inputs of the DGCNN model.
The local consistency output for the hidden layer i of the network Z(i) is declared in
Eq. (16) (Kipf & Welling, 2017)

convðiÞLC Xð Þ ¼ ZðiÞ ¼ r D
� 1

2AD
� 1

2Zði�1ÞWðiÞ
� �

; (16)

where A ¼ Aþ In is the adjacency matrix A with self-loops, In is the identity matrix, and

Di;i ¼
P

j Ai;j. Therefore, D
� 1

2AD
� 1

2 is the normalized adjacency matrix, Z(i−1) represents

the output of the (i − 1)th layer, Z(0) = X W(i) represents trainable parameters of the
network, and σ indicates the activation function (ReLU). The output of the DGCNN can be
visualized on the Karate club network, as shown in Fig. 6. The red color of this network
indicates a labeled node and the green color indicates an unlabeled node. The local
consistency network is optimized with PPMI (positive point-wise information) in the
global consistency layer.

Table 2 Forward and backward sequence equations of the graph LSTM.

Forward sequence Backward sequence

igt ¼ rðwigxt þ Uighp tð Þ þ Vighl tð Þ þ bigÞ (6) igt ¼ rðwigxt þ Uighs tð Þ þ Vighk tð Þ þ bigÞ (11)

fgt ¼ rðwfgxt þ Ufghp tð Þ þ Vfghl tð Þ þ bfgÞ (7) fgt ¼ rðwfgxt þ Ufghs tð Þ þ Vfghk tð Þ þ bfgÞ (12)

hgt ¼ rðwhgxt þ Uhghp tð Þ þ Vhghl tð Þ þ bhgÞ (8) hgt ¼ rðwhgxt þ Uhghs tð Þ þ Vhghk tð Þ þ bhgÞ (13)

ct ¼ wcxt þ Uchp tð Þ þ Vchl tð Þ þ bc (9) ct ¼ wcxt þ Uchs tð Þ þ Vchk tð Þ þ bc (14)

opt ¼ rðwopxt þ Uophp tð Þ þ Vophl tð Þ þ bopÞ (10) opt ¼ rðwopxt þ Uophs tð Þ þ Vophk tð Þ þ bopÞ (15)

Kandasamy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.953 10/21

http://dx.doi.org/10.7717/peerj-cs.953
https://peerj.com/computer-science/

Global consistency is formed with PPMI to encode semantic information and is denoted
as a matrix P 2 Rn�n. Initially, the frequency matrix FM is calculated by random walk and
on the basis of FM we calculate the matrix P. Furthermore, we define the convolution
function ConvGP based on P. We can calculate the matrix FM as follows: A random
user can choose the random path. If the random user is at node xi at time t, we define the
state as s(t) = xi. We set the probability of transition from node xi to one of its neighbors xj
by

p s t þ 1ð Þ ¼ xjjs tð Þ ¼ xi
� � ¼ Ai;j=

X
j

Ai;j: (17)

The frequency matrix is computed for all pairs of nodes and the path is calculated by
random walk. The ith vector of the frequency matrix is the ith node and jth node is the jth

column of the frequency matrix. This is called context cj. This frequency matrix is used to
calculate the PPMI matrix P, as shown in Eqs. (18) to (21).

pi;j ¼ FMi;jP
i;j FMi;j

; (18)

pi;� ¼
P

j FMi;jP
i;j FMi;j

; (19)

p�;j ¼
P

i FMi;jP
i;j FMi;j

; (20)

Pi;j ¼ maxfpmii;j ¼ log
pi;j

pi;� p�;j
; 0g; (21)

Figure 6 Karate club network for LC convolution (Kipf & Welling, 2017).
Full-size DOI: 10.7717/peerj-cs.953/fig-6

Kandasamy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.953 11/21

http://dx.doi.org/10.7717/peerj-cs.953/fig-6
http://dx.doi.org/10.7717/peerj-cs.953
https://peerj.com/computer-science/

where pi,j is the estimated probability that node xi occurs in context cj, pi,� is the estimated
probability of node xi, and p�,j is the probability of context cj, thus,

pmii;j ¼
0; if pi;j ¼ pi;� � p�;j ðxi and cj are independentÞ;
. 0; if pi;j. pi;� � p�;j ðbetween xi and cj is a semantic relationÞ;
, 0; if xi is unrelated to cj:

8<
:

The PPMI matrix P increases the relationship between data points compared to the
adjacency matrix A. Using the PPMI matrix, global consistency is calculated in Eq. (22)

ConvðiÞGCðXÞ ¼ ZðiÞ ¼ rðD� 1
2PD�

1
2Zði�1ÞWðiÞÞ; (22)

where P represents the PPMI matrix and Di;i ¼
P

j Pi;j for normalization. To combine the
local and global consistency convolution for the dual graph convolutional network, a
regularizer was used. The loss function with this regularizer is represented in Eq. (23)

Loss ¼ L0 ConvLCð Þ þ kðtÞ � LregðConvLC;ConvGCÞ; (23)

L0 ConvLCð Þ ¼ � 1
jyLj

X
l2yL

Xc

i¼1
Yl;i log Ẑ

A
l;i; (24)

where c is the number of different labels for prediction, ZA 2 Rn�c is the output given by
ConvLC, ẐA 2 Rn�c is the output of the softamax layer, yL represents the set of data indices
whose labels are observed for training and Y 2 Rn�c is the ground truth.

Figure 7 Capsule dual graph CNN structure. Full-size DOI: 10.7717/peerj-cs.953/fig-7

Kandasamy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.953 12/21

http://dx.doi.org/10.7717/peerj-cs.953/fig-7
http://dx.doi.org/10.7717/peerj-cs.953
https://peerj.com/computer-science/

Lreg ConvLC;ConvGCð Þ ¼ 1
n

Xn
i¼1

ẐP
i� � ẐA

i�
�� ���� ��2; (25)

where ẐP 2 Rn�c is the output of applying the softmax activation function given by
ConvGC (the vectors ẐA

i�; Ẑ
P
i� 2 Rn are ith columns of the matrices ẐA, ẐP, respectively).

For the calculations of L0 ConvLCð Þ and Lreg ConvLC;ConvGCð Þ, the activation function
called ReLU was used. After applying the activation function, the output matrix is
represented as ZA 2 Rn�c and ZP 2 Rn�c. The structure of the CNN dual graph capsule is
shown in Fig. 7. This proposed network consists of three main capsules. Each capsule
consists of a dual graph CNN and two capsules to represent real and fake images or videos.
The output of each CNN capsule called OCj|i is directed through dynamic routing to
produce the detected output Oj for r iterations, as mentioned in Algorithm 2.

Algorithm 2: Capsule Dual Graph CNN (C-DGCNN).

Input: FM, A, PPMI, yL, r, λ(t) and hidden convolution layers (H)

Output: Training model with best features.

Step 1: for t in range (0, Epoch number) do

Step 2: ZA ¼ ReLU ConvLCð Þ using Eq. (16)

Step 3: ZP ¼ ReLU ConvGCð Þ using Eq. (22)

Step 4: Compute Loss using Eq. (23)

Step 5: if convergence then break loops

Step 6: end if

Step 7: end for

Step 8: Dynamic routing procedure (OCj|i,W′,r). // Where W 0 2 Rm�n is the matrix of wights.

Step 9: W 0 W 0 þ rand size W 0ð Þð Þ
Step 10: for all input capsules i and all output capsules j do

Step 11: OCjji W 0
j squash (OCj|i)) // Where W 0

j 2 Rm.

Step 12: end for

Step 13: for all input capsules i and all output capsules j do

Step 14: bij 0

Step 15: end for

Step 16: for r iterations do

Step 17: for all input capsules i do ci softmaxðbiÞ
Step 18: for all output capsules j do sj

P
i ci;jOCjji

Step 19: for all output capsule networks i do Oi squashðsiÞ // Where squash sið Þ ¼ sik k2
1þ sik k2

� si
sik k.

Step 20: for all input capsules i and output capsules j do

Step 21: bij bij þ OCjji � Oj

Step 22: end for

Step 23: Return Oj

Step 24: end for

Kandasamy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.953 13/21

http://dx.doi.org/10.7717/peerj-cs.953
https://peerj.com/computer-science/

EXPERIMENTAL RESULT AND DISCUSSIONS
The proposed deep learning-based deepfake detection system with an efficient feature
extraction and detection process is tested with fake and real images of public datasets such
as FFHQ (Li & Lyu, 2019), 100K-Faces (Li, Chang & Lyu, 2018), Celeb-DF (V2) (Kipf &
Welling, 2017) and WildDeepfake. The proposed system is implemented using the
machine learning library called PyTorch.

Dataset description
Flickr-Faces-HQ, FFHQ

Flickr-Faces-HQ, FFHQ, is a dataset that contains a group of 70,000 face images with a
high-quality resolution generated by generative adversarial networks (GANs).

100K-Faces

The 100K-Faces dataset contains 100,000 unique human face images generated using
StyleGAN.

Celeb-DF (V2)
It is a large-scale video dataset with 590 real videos of celebrities and high-quality
deepfakes of 5,639 videos constructed using a synthesis process with respect to over two
million frames. Real videos gathered from YouTube videos and fake videos are created by
swapping each pair of faces.

WildDeepfake
It is a real-world deepfake detection dataset collected from the Internet. The subjects of this
dataset are real and fake, and they are collected from the internet sources and consist of
various scenes. Each scene consists of more persons with rich facial expressions.

Evaluation metrics
The proposed SAE-GLSTM-based capsule dual graph CNN deepfake detection is
evaluated with various evaluation metrics, such as accuracy, sensitivity, specificity, ROC
and error detection rate. The deepfake detection system is compared to standard deepfake
detection approaches such as VGG19 (Zi et al., 2020; Simonyan & Zisserman, 2015;
Zagoruyko & Komodakis, 2016; Sandler et al., 2018).

Accuracy

Accuracy ¼ TP þ TN
TP þ TN þ FP þ FN

� 100 (26)

Sensitivity

Sensitivity ¼ TP
TP þ FN

� 100 (27)

Kandasamy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.953 14/21

http://dx.doi.org/10.7717/peerj-cs.953
https://peerj.com/computer-science/

Specificity
It is used to evaluate the rate between true negatives (TNs) and true positives (TPs)

Specificity ¼ TN
TN þ FP

� 100 (28)

The comparison of the accuracy of the proposed SAE-GLSTM-C-DGCNN deepfake
detection is shown in Table 3 for various datasets. With the baseline of various approaches
such as VGG19, ResNet, and MobileNet, we experimented with the proposed efficient
deepfake image/video feature extraction with CNN capsule dual graph CNN for various
datasets. For the FFHQ datasets, existing and proposed systems obtained accuracies of
84.5%, 88.32%, 91.15%, and 96.92%. For 100K-Faces datasets, the approaches obtained the
corresponding accuracies of 74.12%, 80.11%, 90.21%, and 97.15%. For the Cele-DF dataset,
the accuracy values are 88.43%, 89.32%, 90.01%, and 98.12%, and for the WildDeepfake
dataset, they are 89.25%, 86.52%, 96.75%, and 98.91%. The results showed that the
proposed system achieved better percentage results compared to traditional deepfake
detection systems.

The sensitivity, specificity, and ROC comparisons of various deepfake detection systems
are evaluated using four different datasets, and the results are shown in Table 4 and Fig. 8.

Table 4 shows the sensitivity and specificity analyzes of the proposed SAE-GLSTM with
the C-DGCNN system compared to the existing algorithms and various datasets from
FFHQ, 100K-Faces, Celeb-DF, and WildDeepfake. The proposed SAE-GLSTM with
C-DGCNN obtained a sensitivity score of 91.67% in the FFHQ dataset, 89.8% in the 100K-
Faces dataset, 89.1% in the Celeb-DF dataset and 93.1% in the WildDeepfake dataset.
Similarly, the specificity of the proposed SAE-GLSTM with the C-DGCNN achieved a

Table 3 Accuracy comparison of the proposed vs traditional baseline systems for various datasets.

Methods Datasets

FFHQ 100K-Faces Celeb-DF WildDeepfake

VGG19 84.5 74.12 88.43 89.25

ResNet 88.32 80.11 89.32 86.52

MobileNet 91.15 90.21 90.01 96.75

Proposed SAE-GLSTM-CDGCNN 96.92 97.15 98.12 98.91

Table 4 Sensitivity and specificity analysis of the proposed system on different datasets.

Datasets Sensitivity % Specificity %

VGG19 ResNet Mobile- Net Proposed SAE-
GLSTM-CDGCNN

VGG19 ResNet Mobile- Net Proposed SAE-
GLSTM-CDGCNN

FFHQ 87.3 81.6 84.2 91.67 84.23 86.1 85.2 92.4

100K-Faces 86.2 83 85.6 89.8 84.2 86.2 89.54 93.5

Celeb-DF 84.9 88.3 83.7 89.1 87.1 87.1 89.1 94.2

WildDeepfake 91.2 85.3 90.1 93.1 86.1 89.4 86.3 95.2

Kandasamy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.953 15/21

http://dx.doi.org/10.7717/peerj-cs.953
https://peerj.com/computer-science/

score of 92.4% in the FFHQ dataset, 93.5% in the 100K-Faces dataset, 94.2% in the
Celeb-DF dataset, and 95.2% in the WildDeepfake dataset. The proposed deepfake
detection of fake video/images obtained improved sensitivity and specificity percentages
compared to other existing approaches. Figure 8 shows the comparison of the ROC values
of various deapfake detection systems with various datasets. From the analysis, the
proposed system obtained an improved ROC value of 94.2% for the FFHQ dataset, 94.1%
for the 100K-faces dataset, 96.12% for the Celeb-DF dataset, and 86.54% for the
WildDeepfake dataset. On the contrary, the baseline VGG19 system obtained ROC values
for the FFHQ, 100K-Faces, Celeb-DF, andWildDeepfake datasets of 83.1%, 85.1%, 95.53%
and 61.12%, respectively, the baseline ResNet approach secured ROC values of 79.2%,
82.3%, 88.47% and 69.78%, respectively, and the baseline MobileNet approach obtained
ROC values of 81.2%, 84.1%, 91.72% and 61.54%, respectively. From the comparison, the
proposed deapfake detection system secured an improved ROC value compared to
traditional baseline systems.

The error detection rate comparison of the proposed vs existing approaches is shown in
Table 4 evaluated on the FFHQ, 100K-Faces, Celeb-DF, and WildDeepfake datasets.
These datasets are used in both the training and testing processes by using the deepfake
detection classifier baseline methods namely, VGG19, ResNet, and MobileNet, with our
proposed work of SAE-GLSTM with the C-DGCNN model. Table 5 shows that the
proposed approach obtained a minimum error rate of 5.1 for the WildDeepfake dataset,
7.12 for Celeb-DF, 6.01 for 100K-Faces and 5.91 for FFHQ datasets. The error rate is
minimal compared to the baseline deepfake detection methods such as VGG19, ResNet,
and MobileNet.

Figure 9 illustrates the equal error rate (EER) of various approaches with respect to
various datasets. The proposed deapfake detection system secured a minimum EER of 1.9
for the WildDeepfake dataset, 1.67 for the Celeb-DF dataset, 2.1 for the 100K-Faces
dataset and 1.32 for the FFHQ dataset. These EERs are minimal compared to traditional
baseline systems such as VGG19, ResNet and MobileNet.

Figure 8 ROC value comparison. Full-size DOI: 10.7717/peerj-cs.953/fig-8

Kandasamy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.953 16/21

http://dx.doi.org/10.7717/peerj-cs.953/fig-8
http://dx.doi.org/10.7717/peerj-cs.953
https://peerj.com/computer-science/

Figure 10 shows the comparison of computational time. The proposed system secured
8.1 ms for the WildDeepfake dataset, 10.3 ms for Celeb-DF, 12.1 ms for 100K-Faces and
21.2 ms for the FFHQ dataset. This is minimal compared to other traditional baseline
deepfake detection systems, where VGG19 secured computational times for the datasets of
24.2, 34.12, 44.24 and 54.23 ms. ResNet obtained 14.22, 23.45, 34.5, and 36.81 ms,
MobileNet secured 30.2, 35.1, 40.2, and 44.4 ms. Therefore, all evaluation results have

Figure 10 Computation time. Full-size DOI: 10.7717/peerj-cs.953/fig-10

Table 5 Performance comparison of the proposed methods with different datasets in terms of the
error detection rate.

DF detection methods Datasets

FFHQ 100K-Faces Celeb-DF WildDeepfake

VGG19 13.11 18.32 12.3 11.4

ResNet 13.4 15.2 12.1 11.2

MobileNet 11.2 14.22 11.65 9.21

Proposed SAE-GLSTM-CDGCNN 5.91 6.01 7.12 5.1

Figure 9 EER comparison of DF detection systems. Full-size DOI: 10.7717/peerj-cs.953/fig-9

Kandasamy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.953 17/21

http://dx.doi.org/10.7717/peerj-cs.953/fig-10
http://dx.doi.org/10.7717/peerj-cs.953/fig-9
http://dx.doi.org/10.7717/peerj-cs.953
https://peerj.com/computer-science/

shown that the proposed SAE-GLSTM with CNN capsule dual graph improved sensitivity,
specificity, accuracy, and minimum error rate, EER, and computation time. Ultimately,
these findings have proven that the proposed system efficiently detects deepfake images/
videos with improved accuracy and minimum error.

CONCLUSION
This article demonstrated the two-level deep learning method for the detection of deepfake
images and videos. From the frames extracted, face images are extracted for deepfake
detection. The features of the face images are extracted using the proposed SAE method.
The most relevant features are extracted by enhancing the SAE-based feature extraction
with the graph LSTM approach. These relevant extracted features are then fed as input into
the capsule network for the detection of deepfakes. There are five capsules, including
three input capsules constructed from CNN graph and two output capsules to represent
fake and real images or videos. Experimental analysis with various baseline deepfake
detection approaches, such as VGG19, ResNet and MobileNet, using the benchmark
deepfake image and video datasets, including FFHQ, 100K-Faces, Celeb-DF and
WildDeepfake, demonstrated that the proposed two-level deepfake detection approach
secures improved accuracy of 96.2%, 97.15%, 98.12% and 98.91%, respectively, on these
datasets. The proposed system obtained an improved ROC value of 94.2% for the FFHQ
dataset, 94.1% for the 100K-Faces dataset, 96.12% for the Celeb-DF dataset and 86.54% for
the WildDeepfake dataset. In terms of the error rate, the proposed system secured the
corresponding values of 5.91, 6.01, 7.12 and 5.1. The proposed system secured the
computational time as 8.1 ms for the WildDeepfake dataset, 10.3 ms for Celeb-DF, 12.1 ms
for 100K-Faces and 21.2 ms for the FFHQ dataset. Therefore, all evaluations have
shown that the proposed two-level deepfake detection method is general and effective
in detecting a wide range of fake videos and image attacks. In the future, the proposed
system will be improved to defend against adversarial machine attacks with enhanced
capabilities.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Venkatachalam K. conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.
� Štěpán Hubálovský conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures and/
or tables, authored or reviewed drafts of the paper, and approved the final draft.

Kandasamy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.953 18/21

http://dx.doi.org/10.7717/peerj-cs.953
https://peerj.com/computer-science/

� Pavel Trojovský conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The data is available at GitHub: https://github.com/NVlabs/ffhq-dataset and Internet
Archive: https://archive.org/download/ffhq-dataset.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.953#supplemental-information.

REFERENCES
Afchar D, Nozick V, Yamagishi J, Echizen I. 2018. MesoNet: a compact facial video forgery

detection network. In: 2018 IEEE International Workshop on Information Forensics and Security
(WIFS). Piscataway: IEEE, 1–7.

Agarwal S, Farid H, Fried O, Agrawala M. 2020. Detecting deep-fake videos from phoneme-
viseme mismatches. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition Workshops. Piscataway: IEEE, 660–661.

Chesney R, Citron D. 2019. Deepfakes and the new disinformation war: the coming age of post-
truth geopolitics. Foreign Affairs 98(1):147–155.

Chintha A, Thai B, Sohrawardi SJ, Bhatt K, Hickerson A, Wright M, Ptucha R. 2020. Recurrent
convolutional structures for audio spoof and video deepfake detection. IEEE Journal of Selected
Topics in Signal Processing 14(5):1024–1037 DOI 10.1109/JSTSP.2020.2999185.

Fernandes S, Raj S, Ewetz R, Pannu JS, Jha SK, Ortiz E, Vintila I, Salter M. 2020. Detecting
deepfake videos using attribution-based confidence metric. In: Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE, 308–309.

Güera D, Delp EJ. 2018. Deepfake video detection using recurrent neural networks. In: 2018 15th
IEEE International Conference on Advanced Video and Signal Based Surveillance (AVSS).
Piscataway: IEEE, 1–6.

Hoq M, Uddin MN, Park S-B. 2021. Vocal feature extraction-based artificial intelligent model for
Parkinson’s disease detection. Diagnostics 11(6):1076 DOI 10.3390/diagnostics11061076.

Howcroft E. 2018. How faking videos became easy and why that’s so scary. New York, NY, USA:
Bloomberg.

Hsu C-C, Zhuang Y-X, Lee C-Y. 2020. Deep fake image detection based on pairwise learning.
Applied Sciences 10(1):370 DOI 10.3390/app10010370.

Kang M, Ji K, Leng X, Xing X, Zou H. 2017. Synthetic aperture radar target recognition with
feature fusion based on a stacked autoencoder. Sensors 17(1):192 DOI 10.3390/s17010192.

Kaur S, Kumar P, Kumaraguru P. 2020. Deepfakes: temporal sequential analysis to detect face-
swapped video clips using convolutional long short-term memory. Journal of Electronic Imaging
29(3):33013 DOI 10.1117/1.JEI.29.3.033013.

Kipf TN, Welling M. 2017. Semi-supervised classification with graph convolutional networks. In:
Proceedings of the 5th International Conference on Learning Representations, ICLR ’17. 1–14.

Kandasamy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.953 19/21

https://github.com/NVlabs/ffhq-dataset
https://archive.org/download/ffhq-dataset
http://dx.doi.org/10.7717/peerj-cs.953#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.953#supplemental-information
http://dx.doi.org/10.1109/JSTSP.2020.2999185
http://dx.doi.org/10.3390/diagnostics11061076
http://dx.doi.org/10.3390/app10010370
http://dx.doi.org/10.3390/s17010192
http://dx.doi.org/10.1117/1.JEI.29.3.033013
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.953

Korshunova I, Shi W, Dambre J, Theis L. 2017. Fast face-swap using convolutional neural
networks. In: Proceedings of the IEEE International Conference on Computer Vision. Piscataway:
IEEE, 3677–3685.

Kwok AOJ, Koh SGM. 2021. Deepfake: a social construction of technology perspective. Current
Issues in Tourism 24(13):1798–1802 DOI 10.1080/13683500.2020.1738357.

Leng J, Jiang P. 2016. A deep learning approach for relationship extraction from interaction
context in social manufacturing paradigm. Knowledge-Based Systems 100(12):188–199
DOI 10.1016/j.knosys.2016.03.008.

Li Y, Chang M-C, Lyu S. 2018. In ictu oculi: exposing AI created fake videos by detecting eye
blinking. In: 2018 IEEE International Workshop on Information Forensics and Security (WIFS).
Piscataway: IEEE, 1–7.

Li Y, Lyu S. 2019. Exposing deepfake videos by detecting face warping artifacts. In: IEEE
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW). Piscataway:
IEEE.

Nataraj L, Mohammed TM, Manjunath B, Chandrasekaran S, Flenner A, Bappy MJH,
Roy-Chowdhury A. 2019. Detecting GAN generated fake images using co-occurrence matrices.
Electronic Imaging 2019(5):532-1–532-7 DOI 10.2352/ISSN.2470-1173.2019.5.MWSF-532.

Ng A. 2011. Sparse autoencoder. CS294A Lecture Notes 72(2011):1–19.

Nguyen HH, Yamagishi J, Echizen I. 2019. Capsule-forensics: using capsule networks to detect
forged images and videos. In: ICASSP, 2019 - 2019 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP). Piscataway: IEEE, 2307–2311.

Olshausen BA, Field DJ. 1996. Emergence of simple-cell receptive field properties by learning a
sparse code for natural images. Nature 381(6583):607–609 DOI 10.1038/381607a0.

Sabir E, Cheng J, Jaiswal A, AbdAlmageed W, Masi I, Natarajan P. 2019. Recurrent
convolutional strategies for face manipulation detection in videos. In: Proceedings of the IEEE/
CVF Conference on Computer Vision and Pattern Recognition Workshops. Piscataway: IEEE,
80–87.

Sandler M, Howard A, Zhu M, Zhmoginov A, Chen L-C. 2018. MobileNetV2: inverted residuals
and linear bottlenecks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition. Piscataway: IEEE, 4510–4520.

Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G. 2008. The graph neural network
model. IEEE Transactions on Neural Networks 20(1):61–80 DOI 10.1109/TNN.2008.2005605.

Simonyan K, Zisserman A. 2015. Very deep convolutional networks for large-scale image
recognition. In: 3rd International Conference on Learning Representations, ICLR 2015.
San Diego, CA, USAMay 7-9, 2015, Conference Track Proceedings.

Soare SR, Burton J. 2020. Smart cities, cyber warfare and social disorder. In: Cyber Threats and
NATO 2030: Horizon Scanning and Analysis. Tallinn, Estonia: NATO CCDCOE Publications,
108–124.

Soni H, Sankhe D. 2019. Image restoration using adaptive median filtering. International Research
Journal of Engineering IT & Scientific Research 6(10):841–844.

Wang S-Y, Wang O, Zhang R, Owens A, Efros AA. 2020. CNN-generated images are surprisingly
easy to spot… for now. In: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition. Piscataway: IEEE, 8695–8704.

Westerlund M. 2019. The emergence of deepfake technology: a review. Technology Innovation
Management Review 9(11):39–52 DOI 10.22215/timreview/1282.

Kandasamy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.953 20/21

http://dx.doi.org/10.1080/13683500.2020.1738357
http://dx.doi.org/10.1016/j.knosys.2016.03.008
http://dx.doi.org/10.2352/ISSN.2470-1173.2019.5.MWSF-532
http://dx.doi.org/10.1038/381607a0
http://dx.doi.org/10.1109/TNN.2008.2005605
http://dx.doi.org/10.22215/timreview/1282
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.953

Xuan X, Peng B, Wang W, Dong J. 2019. On the generalization of GAN image forensics. In:
Sun Z, He R, Feng J, Shan S, Guo Z, eds. Biometric Recognition. CCBR 2019. Lecture Notes in
Computer Science. Vol. 11818. Cham: Springer, 134–141 DOI 10.1007/978-3-030-31456-9_15.

Yang X, Li Y, Lyu S. 2019. Exposing deep fakes using inconsistent head poses. In: ICASSP, 2019 -
2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).
Piscataway: IEEE, 8261–8265.

Zagoruyko S, Komodakis N. 2016. Wide residual networks. ArXiv preprint.
DOI 10.48550/arXiv.1605.07146.

Zhang K, Zhang Z, Li Z, Qiao Y. 2016. Joint face detection and alignment using multitask
cascaded convolutional networks. IEEE Signal Processing Letters 23(10):1499–1503
DOI 10.1109/LSP.2016.2603342.

Zhou P, Han X, Morariu VI, Davis LS. 2017. Two-stream neural networks for tampered face
detection. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition Workshops
(CVPRW). Piscataway: IEEE, 1831–1839.

Zhou J, Xiang J, Huang S. 2020. Classification and prediction of typhoon levels by satellite cloud
pictures through GC-LSTM deep learning model. Sensors 20(18):5132 DOI 10.3390/s20185132.

Zi B, Chang M, Chen J, Ma X, Jiang Y-G. 2020. WildDeepfake: a challenging real-world dataset
for deepfake detection. In: Proceedings of the 28th ACM International Conference onMultimedia.
New York: ACM, 2382–2390.

Kandasamy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.953 21/21

http://dx.doi.org/10.1007/978-3-030-31456-9_15
http://dx.doi.org/10.48550/arXiv.1605.07146
http://dx.doi.org/10.1109/LSP.2016.2603342
http://dx.doi.org/10.3390/s20185132
https://peerj.com/computer-science/
http://dx.doi.org/10.7717/peerj-cs.953

	Deep fake detection using a sparse auto encoder with a graph capsule dual graph CNN
	Introduction
	Review of literature
	Proposed methodology
	Experimental result and discussions
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

