
Deep learning-based approach for Arabic
open domain question answering
Kholoud Alsubhi, Amani Jamal and Areej Alhothali

Department of Computer Science, Faculty of Computing and Information Technology, King
Abdulaziz University, Jeddah, Saudi Arabia

ABSTRACT
Open-domain question answering (OpenQA) is one of the most challenging yet
widely investigated problems in natural language processing. It aims at building a
system that can answer any given question from large-scale unstructured text or
structured knowledge-base. To solve this problem, researchers traditionally use
information retrieval methods to retrieve the most relevant documents and then use
answer extractions techniques to extract the answer or passage from the candidate
documents. In recent years, deep learning techniques have shown great success in
OpenQA by using dense representation for document retrieval and reading
comprehension for answer extraction. However, despite the advancement in the
English language OpenQA, other languages such as Arabic have received less
attention and are often addressed using traditional methods. In this paper, we use
deep learning methods for Arabic OpenQA. The model consists of document
retrieval to retrieve passages relevant to a question from large-scale free text resources
such as Wikipedia and an answer reader to extract the precise answer to the given
question. The model implements dense passage retriever for the passage retrieval task
and the AraELECTRA for the reading comprehension task. The result was compared
to traditional Arabic OpenQA approaches and deep learning methods in the English
OpenQA. The results show that the dense passage retriever outperforms the
traditional Term Frequency-Inverse Document Frequency (TF-IDF) information
retriever in terms of the top-20 passage retrieval accuracy and improves our end-to-
end question answering system in two Arabic question-answering benchmark
datasets.

Subjects Artificial Intelligence, Computational Linguistics, Natural Language and Speech
Keywords Arabic open domain question answering, Transformer-based models for question
answering, Dense information retrieval approach

INTRODUCTION
Throughout the history of Natural Language Processing (NLP), OpenQA has remained a
long-standing issue. OpenQA is an intelligent system that answers questions based on
large-scale data. The data can be in a structured form (e.g., knowledge bases), semi-
structured form (e.g., tables), and unstructured form (e.g., open textual content). Since
1999, when the National Institute of Standards and Technology (NIST) first included the
QA track in the Text Retrieval Conference (TREC) contests, OpenQA research has
exploded (Chen et al., 2017).

Question Answering (QA) research has received considerable attention in recent years
due to the importance of QA applications. Traditional QAmethods are often performed in

How to cite this article Alsubhi K, Jamal A, Alhothali A. 2022. Deep learning-based approach for Arabic open domain question answering.
PeerJ Comput. Sci. 8:e952 DOI 10.7717/peerj-cs.952

Submitted 3 January 2022
Accepted 25 March 2022
Published 4 May 2022

Corresponding author
Kholoud Alsubhi,
kalsobhi0013@stu.kau.edu.sa

Academic editor
Yilun Shang

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj-cs.952

Copyright
2022 Alsubhi et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.952
mailto:kalsobhi0013@�stu.�kau.�edu.�sa
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.952
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

three stages first, analyze the question, retrieve the relevant articles, and then extract
the answer (Zhu et al., 2021). Reading comprehension tasks have progressed to offer QA
researchers a simple two-stage framework. In the first stage, a passage retriever returns
a subset of passages that include some of the answers to the question. While in the second
stage, a passage reader analyzes the retrieved passages to extract the correct answer (Chen
et al., 2017).

The passage retrieval task often uses classical Information Retrieval (IR) approaches
such as TF-IDF (Sammut & Webb, 2017) and BM25 (Amati, 2009) to retrieve relevant
candidates passages. Recent passage retrieval approaches have used deep learning
techniques to replace classical IR approaches. They, in particular, utilize dense
representations which learn to encode questions and documents into a latent vector space
where text semantics beyond term match can be measured (Zhu et al., 2021). The dense
passage retrieval models work by feeding dense representations of a question and
passages into a language model. The most relevant passages are then ranked using the
dot-product of these two representations. The passage reading task in the OpenQA system
aims to infer the answer to a question from a set of candidate passages. This task is
more complicated than the original Machine Reading Comprehension (MRC) that takes
only a passage and corresponding question to extract the answer. To understand the
progress in the passage reading task, one needs to have some background about transformer-
based pre-trained NLP models such as the Bidirectional Encoder Representations from
Transformers (BERT) (Devlin et al., 2019) that have contributed heavily to the success of
many NLP applications (Hedderich et al., 2021). Similar to other NLP tasks, pre-trained
transformer-based models, more specifically BERT-based models, have been successfully
utilized in many English QA systems (Qiu et al., 2020). However, few studies have
investigated the effects of using pre-trained models for Arabic QA tasks, despite the
availability of several Arabic pre-trained transformer models, such as AraBERT (Antoun,
Baly & Hajj, 2020) and AraELECTRA (Antoun, Baly & Hajj, 2021).

In this paper, we contribute to improving the performance of the Arabic OpenQA
system. We implement a two-stage (Retriever-Reader) architecture which is the most
efficient and promising way to create OpenQA systems (Huang et al., 2020). We use deep
learning techniques to build the information retriever and reading comprehension models.
To create our OpenQA system, we first fine-tuned the Dense Passage Retrieval (DPR)
(Karpukhin et al., 2020) using the ARCD (Mozannar et al., 2019) and TyDiQA-GoldP
(Clark et al., 2020) datasets. Then, we connected the DPR with the AraELECTRA passage
reader. Finally, we compared the performances of the OpenQA on different benchmark
datasets.

In this paper, “Related works” presents studies related to OpenQA and transformer-
based QA; “Model Overview” presents details of the model; “Dataset” provides details of
the datasets used in our experiments; “End-to-End System: Arabic OpenQA” presents our
end-to-end OpenQA system; and finally “Experiments and Results” covers the
experiments and evaluations of the system.

Alsubhi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.952 2/21

http://dx.doi.org/10.7717/peerj-cs.952
https://peerj.com/computer-science/

RELATED WORKS
Modern OpenQA systems combine IR and neural MRC models to answer open-domain
factual questions. The IR system’s goal is to find and rank relevant passages likely to
contain the correct answers to natural language questions. Traditional IR approaches
incorporate the sparse representation approach (TF-IDF or BM25) to rank articles based
on the weighted similarity score between documents and questions. However, in recent
years, several dense representation-based IR approaches have been developed that learn to
encode questions and passages into a latent vector space where text semantics beyond term
match can be measured.

Dense approaches outperform traditional sparse retrieval methods due to their ability to
capture lexical or semantic similarities, not only matching keywords (Karpukhin et al.,
2020). Karpukhin et al. (2020) focused on creating the correct dense embedding model
using only pairs of questions and answers by combining the BERT pre-trained model and a
dual-encoder architecture. Their dense passage retriever uses a dense encoder to convert
any text into a dimensional real-valued vector and creates an index for all passages to
be retrieved. Their proposed model achieved better results than multiple open-domain QA
on many QA datasets, including SQuAD, Natural Questions, and TriviaQA.

Lee, Chang & Toutanova (2019) designed a QA model in a supervised manner, where
the retriever and reader are trained together to optimize the marginal log-likelihood of the
right answers. There is no specific IR system for this QA model. Instead, the model can
retrieve any text from a corpus that is open to the public. The ORQA system only requires
(question, answer) string pairs during the training, rather than ground-truth context
passages (i.e., reading comprehension datasets). The retriever and reader components were
designed using BERT.

Guu et al. (2020) proposed an effective approach that combines a learned textual neural
knowledge retriever with the language model pre-training methods. Unlike models that
store knowledge in their parameters, this approach directly highlights the role of world
knowledge by requiring the model to choose which knowledge to extract and employ
during inference. The language model uses the retriever to retrieve documents from
Wikipedia before making each prediction, and then the documents are examined. On three
QA benchmarks, the Guu et al. (2020) model outperformed all the previous models, even
when compared to state-of-the-art models.

Neural MRC models offer a powerful solution for answer extraction in OpenQA,
eliminating the need for traditional linguistic analytic techniques and revolutionizing
OpenQA systems. Neural MRC models utilize the pre-trained language models for QA
tasks in a self-supervised manner. In Yang et al. (2019), BERT was integrated with the
open-source Anserini information retrieval toolkit to create an end-to-end question
answering system. Unlike multi-stage retrieval systems, which retrieve documents first and
then rank the retrieved passages, they employed a single-stage retriever to identify
Wikipedia text segments to send directly to the BERT reader. They fine-tuned BERT to
remove the final SoftMax layer over several answer spans.

Alsubhi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.952 3/21

http://dx.doi.org/10.7717/peerj-cs.952
https://peerj.com/computer-science/

Several researchers have used ELECTRA (Efficiently Learning an Encoder that Classifies
Token Replacements Accurately) for OpenQA reading comprehension. ELECTRA is a
self-supervised language representation learning approach pre-trained on a large corpus.
Antoun, Baly & Hajj (2021) developed the pre-training text discriminators for the Arabic
language understanding named AraELECTRA. The discriminator network has the same
architecture and layers as a BERT model. To fine-tune their approach, they added a linear
classification layer on top of ELECTRA’s output and fine-tuned the whole model with the
added layer on reading comprehension tasks. Researchers evaluated the model on many
Arabic NLP tasks, including reading comprehension. Compared to QA in the English
language, the progress in Arabic language QA systems is very slow. This is due to the shortage
of NLP resources and datasets for Arabic QA. Arabic OpenQA research incorporates the
sparse approach for passage retrieval. SOQAL (Mozannar et al., 2019) was the first attempt at
developing modern Arabic OpenQA systems, and it was created by integrating hierarchical
TF-IDF traditional IR approaches with a Multilingual Pre-trained Bi-directional Transformer
(mBERT) neural MRC model to answer open-domain factual queries. The system gets a set
of documents relevant to the query, retrieves the text most linked to the user’s query, and
returns the text as an answer using mBERT. An Arabic Reading Comprehension Dataset
(ARCD) with 1,395 questions in diverse fields was created based on Wikipedia articles. The
ARCD dataset experiment with the BERT-based reader achieved a 50.10 F1-score, and the
experiment on the Arabic-SQuAD dataset achieved a 48.6 F1 score. The overall performance
on the top five answers was 20.7 EM and a 42.5 F1 score.

Ahmed, Bibin & Babu Anto (2017) proposed a model called question answering based
on neural networks to answer factoid questions by accessing a knowledge base. The system
consisted of a question analyser, a knowledge retriever, and an answer generator. The
question is represented as a vector in the question analyser module using a bidirectional
Gated Recurrent Unit (GRU). The retrieved facts and the short-term memory of the
recurrent neural network are used to generate the answer. The accuracy of their system was
tested using a knowledge base, and the results showed a 53% accuracy rate.

Ahmed, Ahmed & Babu Anto (2017) proposed an Arabic QA based on machine-
learning techniques for question classification and answer selection tasks. Their system
consisted of a question-analysis module that included a tokenizer, a stemmer, stop-word
removal, and a question class identifier. Then, the passage retrieval module returned
related passages from the document set. The last component was the answer extraction.
They used a Support Vector Machine (SVM) classifier for question classification and
answer selection. They tested their system using a set of 434 translated questions from
TREC-QA Track, and the MRR score was 57.7%.

Ahmed & Babu Anto (2016) proposed an Arabic QA system that answers two types of
questions: “how” and “why” questions. The system consisted of question analysis, question
expansion, document retrieval, and answer extraction. They used TF-IDF weighing to
retrieve the related documents from the corpus. The F1 measure was 56% for the “how”
questions and 64% for the “why” questions.

Almiman, Osman & Torki (2020) discussed the Arabic community question answering
problem. They used different types of similarity features and studied the effect of using

Alsubhi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.952 4/21

http://dx.doi.org/10.7717/peerj-cs.952
https://peerj.com/computer-science/

preprocessing. They produced a novel deep neural network ensemble model from the
semantic and lexical similarity features. The model utilized recent advances in language
models using the BERT model. The model achieved an MRR value of 68.86%.

MODEL OVERVIEW
The OpenQA problem is formulated in this study with the retriever-reader approach that
consists of two major modules. The first is the dense passage retriever which, given a large
corpus (e.g., Arabic Wikipedia), retrieves a passage or several passages that likely contain
the correct answer to a given query. The second is the passage reader, which is a neural
MRC model that finds the answer from the retrieved passages. The following subsections
provide more details about both modules.

Dense passage retriever
Dense Passage Retrieval (DPR) was introduced in 2020 by Karpukhin et al. (2020) for
open-domain QA tasks as an alternative to the TF-IDF, and BM25 passage retrieval
approaches. This retriever improves the reader by working as a lightweight filter reducing
the number of documents that must be processed. Dense methods, such as a dual-encoder
in DPR, have outperformed the sparse techniques in English open-domain QA. These
methods use deep neural networks to embed both the document and the question into a
shared embedding space. The dense model uses transformer-based encoders that are more
sensitive to characteristics such as lexical variations or semantic relationships, whereas the
sparse methods consider the text as a “bag of words,” without considering word order and
grammar (Karpukhin et al., 2020).

DPR uses two independent BERT encoders to train a retriever using pairwise questions
and answers. To train DPR, we need a question, their answer, positive passages, and
negative passages. The negative samples can be obtained using methods such as BM25 to
return negative samples to a question from the corpus that does not contain the correct
answer or the in-batch negatives method to return samples that are paired with other
questions in the same batch. The representation-based method used in DPR can be very
fast since passages can be calculated and indexed offline in advance. However, because the
representations of the question and passage are generated independently, only shallow
interactions between them are captured, which may reduce retrieval efficiency. The
experiments on this method show that the inner product function is the best way to
calculate a dual-encoder retriever’s similarity score.

This allows the DPR model to capture the lexical or semantic similarities. Thus, phrases
that contain different tokens (keywords), but the same meaning may still be mapped to
vectors that are located relatively close to each other. For example, the DPR would be able
to better match (“ دوقن ” with “ لام ” - money) and extract the correct context. The purpose of
DPR is to index all passages in a low-dimensional, continuous space so that it may
efficiently retrieve the top passages relevant to the input question for the reader at run-time
(Karpukhin et al., 2020).

Alsubhi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.952 5/21

http://dx.doi.org/10.7717/peerj-cs.952
https://peerj.com/computer-science/

Dense passage retriever methodology
DPR is an efficient retrieval method that uses dense representations to compute relevancy.
Dense techniques use text as the input to neural network encoders, and the text is
represented as a vector of a fixed size, usually 768. Despite the fact that the individual
dimensions do not match any specific language or linguistic feature, each dimension stores
some information about the text. The relative density of these vectors is due to the rarity of
a zero value in them. The model architecture used a dual encoder, that is, two BERT base
models, one to encode the query and the other to encode the passage. The dot product
similarity between the query and the document embeddings is used to rank documents.
The passage encoder is used in all the passages and indexes them using FAISS (Johnson,
Douze & Jegou, 2021). During training, the question-context pair is sent into the DPR
model, and the weights are tuned to maximize the dot product between the two model
outputs. The dot product value of the two model outputs measures the similarity between
both vectors. A higher dot product correlates to higher similarity. The context encoder and
the question encoder were both trained to give very similar vectors as output for relevant
question-context pairs (see Fig. 1). Separate encoders will help with queries shorter than
documents, and employing "in-batch negatives," gold labels used as negative examples for
other data in the same batch, is more effective.

DPR (Karpukhin et al., 2020) employs a dense encoder EP(·), which converts any text
into a d-dimensional vector and generates an index for allM passages. DPR uses a separate
encoder called EQ(·) during run-time, which converts the input question to a d-
dimensional vector and returns K nearest passages vectors to the question vector. Using
the dot product of their vectors, the similarity between the question q and the passage p can
be defined as the following (Karpukhin et al., 2020):

Figure 1 The process of data flow through a DPR model during training. Where EP is the passage
encoder, and EQ is the question encoder adapted from Briggs (2021).

Full-size DOI: 10.7717/peerj-cs.952/fig-1

Alsubhi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.952 6/21

http://dx.doi.org/10.7717/peerj-cs.952/fig-1
http://dx.doi.org/10.7717/peerj-cs.952
https://peerj.com/computer-science/

simðq; pÞ ¼ EQðqÞTEPðpÞ (1)

The DPR encoder outputs the representation at the unique initial token of the sequence
[CLS] by combining two independent BERT networks (base, uncased). When training the
DPR, the training data consists of m examples. Each example includes one question (qi)
and one related positive passage ðpþi Þ along with n unrelated negative passages ðp�i;1Þ.
The training data can be formulated as follows: D ¼ ��

qi; pþi ; p
�
i;1; � � � ; p�i;n

��m
i¼1

(Karpukhin et al., 2020) and the optimizing loss function for the negative log-likelihood of
the positive passage as follows (Karpukhin et al., 2020):

L qi; pþi ; p
�
i;1; � � � ; p�i;n

� �
¼ � log

esim qi;pþið Þ

esim qi;pþið Þ þPn
j¼1 e

sim qi;p�i;j
� 	 (2)

Retriever evaluation

The main metrics used in IR evaluations are the recall, the precision, the accuracy, and
the Mean Average Precision (MAP) (Teufel, 2007). The fraction of relevant documents that
are retrieved is described as the recall (see Eq. (3)). Precision is the fraction of retrieved
documents that are relevant (see Eq. (4)). The proportion of correctly classified documents,
whether relevant or irrelevant, is defined as the accuracy (see Eq. (5)). The Mean Average
Precision (MAP) for a set of queries is the average of each query’s average precision scores
(see Eq. (6)). MAP is a value that ranges from zero (no matches) to one (the system
found correct documents for all top results). It’s extremely helpful when there’s more than
one correct document to find.

Recall ¼Number of relevant documents retrieved
Number of relevant documents

(3)

Precision ¼Number of relevant documents retrieved
Number of retrieved documents

(4)

Accuracy ¼Number of relevant retrieved and irrelevant documents not retrieved
Total number of all documents

(5)

Mean Average PrecisionðMAPÞ ¼
PQ

q¼1 AvePðqÞ
Q

where Q is the number of queries: (6)

AraELECTRA passage reader
ELECTRA (Efficiently Learning an Encoder that Classifies Token Replacements
Accurately) is a new and more efficient self-supervised language representation learning
approach. ELECTRA, similar to the Generative Adversarial Network (GAN) (Zhang et al.,
2018), trains two transformer models, the generator and discriminator. The model
performs a pre-training task called Replaced Token Detection (RTD) to replace some
tokens with plausible alternatives sampled from a small generator model. In doing this, the
discriminator model tries to predict whether a token is an original or a replacement by a
generator sample instead of training a model to predict the identities of the masked tokens.

Alsubhi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.952 7/21

http://dx.doi.org/10.7717/peerj-cs.952
https://peerj.com/computer-science/

ELECTRA was initially released as three pre-trained models: small, base, and large.
ELECTRA achieved state-of-the-art results on the SQuAD2.0 dataset in 2019 (Clark et al.,
2020).

AraELECTRA
AraELECTRA is an Arabic language representation model pre-trained using the RTD
(Antoun, Baly & Hajj, 2021) methodology on a large Arabic text corpus. AraELECTRA
consists of 12 encoder layers, 12 attention heads, 768 hidden sizes, and 512 maximum
input sequence lengths for a total of 136 million parameters. Figure 2 shows the replaced
token detection pre-training task for AraELECTRA.

Reader evaluation

We evaluated our model based on two metrics that are commonly used in QA tasks. The
first is the exact match (EM), and the second is the F1-score.

F1 METRICS: The F1 score is a widely used metric in QA tasks. It is useful when both
precision and recall need to be considered when evaluating the model performance. It is
calculated by the individual words in the prediction against those in the correct answer.
Precision is the ratio of correctly predicted tokens divided by the number of all predicted
tokens. The recall is also the ratio of correctly predicted tokens divided by the number
of ground truth tokens. If a question has many answers, then the answer that provides the
highest F1 score is considered to be the ground truth.

F1 ¼ 2 � Precision � Recall
Precisionþ Recall

(7)

Exact Match: This is a true/false metric that measures each question-answer pair. If the
predictions match the correct answers exactly, then the EM = 1 or else the EM = 0.

EM ¼
PN

i¼1 F xið Þ
N

;where F xið Þ ¼ 1; if predicted answer ¼ correct answer
0; otherwise

(8)

DATASET
To train the DPR and AraELECTRA reader, two public release datasets are used. The
format of the dataset matches the format of the well-known SQuAD1.0 dataset (Rajpurkar

Figure 2 Replaced token detection pre-training approach (Antoun, Baly & Hajj, 2021).
Full-size DOI: 10.7717/peerj-cs.952/fig-2

Alsubhi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.952 8/21

http://dx.doi.org/10.7717/peerj-cs.952/fig-2
http://dx.doi.org/10.7717/peerj-cs.952
https://peerj.com/computer-science/

et al., 2016). For training the DPR, we convert all used datasets from SQuAD structure to
DPR structure (see Fig. 3). This structure includes questions, answers, positive passages,
and hard negative passages. For every question, 30 hard negative passages are initialized
using the BM25 IR passage retrieval. Hard negative examples are the passages that do
not contain the answer but match most of the questions’ tokens. Positive passages are
the ones that appear in the training set paired with the questions.

Arabic reading comprehension dataset
ARCD was created byMozannar et al. (2019) in 2019 and contained 1,395 questions posed
by crowd workers on Arabic Wikipedia articles. This dataset was written by professional
Arabic speakers.

TyDiQA
TyDiQA is a multilingual, human-annotated question-answer dataset including
typologically diverse languages with 204 thousand question-answer pairs. The data is
collected directly from different languages without translation and is written without
seeing the answer. The dataset was designed for the training and evaluation of automatic
QA systems. The size of the Arabic dataset is 15,645 question-answer pairs. The primary
tasks of this dataset are the Passage Selection task (SelectP) and the Minimal Answer Span
task (MinSpan). The secondary task is the Gold Passage task (GoldP), which, given a
passage that contains the answer, predicts the single contiguous span of letters that answers

Figure 3 The dataset Structure for DPR. Where positive_ctxs: passages that are relevant to the ques-
tion, negative_ctxs: this was used by the original DPR authors to compare it against the in-batch negatives
approach and not used in our DPR so, we set it to an empty list, hard_negative_ctxs: passages that are not
related to the question. Full-size DOI: 10.7717/peerj-cs.952/fig-3

Alsubhi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.952 9/21

http://dx.doi.org/10.7717/peerj-cs.952/fig-3
http://dx.doi.org/10.7717/peerj-cs.952
https://peerj.com/computer-science/

the question. In this research, we used the Arabic TyDiQA-GoldP dataset (Clark et al.,
2020). Table 1 shows the size of the used datasets.

END-TO-END SYSTEM: ARABIC OPENQA
We built an OpenQA model that employs DPR and the AraELECTRA (Antoun, Baly &
Hajj, 2021) passage reader to answer open-domain questions based on Arabic Wikipedia
articles. First, the question is passed to the DPR retriever to return the top 20 passages.
Then, the candidate passages are fed into the AraELECTRA reader to produce the top
three answers. The reader returns an answer span and gives a span score to each passage.
The final three answers are chosen from the best span with the highest passage selection
score. We use the open-source NLP framework Haystack (Rusic, 2021) for our joint
retriever and reader approach.

The probability of a token starting and ending for an answer span and selecting a
passage are calculated as follows:

Pstart;iðsÞ ¼ softmax Piwstartð Þs (9)

Pend;iðtÞ ¼ softmax Piwendð Þt (10)

PselectedðiÞ ¼ softmax P̂
>
wselected

� �
i

(11)

where Pi 2 RL�hð1 � i � kÞ is the reader representation for the i-th passage, L is the
passage’s maximum length, and h is the hidden dimension.

EXPERIMENTS AND RESULTS
This section details the dataset we used for the experiments on the passage retriever and
the reader, including the basic setup.

Fine tuning multilingual dense passage retriever on Arabic datasets
DPR examines all the documents in the database and then identifies what is relevant and
discards what is not. It passes only a small set of candidate documents to the reader. This
results in computationally intensive indexing but quick querying.

We fine-tune the multilingual Dense Passage Retriever (mDPR) model from Hugging
face (Voidful, 2021) which trained based on multilingual BERT (Devlin et al., 2019). The
model is trained on a training set that contains 644,217 multilingual questions and 73,710
questions in the development set. The model trained using the following translated
datasets: NQ (Kwiatkowski et al., 2019), Trivia (Joshi et al., 2017), SQuAD (Rajpurkar et al.,
2016), Delta Reading Comprehension Dataset (DRCD) (Cui et al., 2020), and MLQA
(Lewis et al., 2020). Training the model from scratch requires initializing the embeddings

Table 1 Arabic reading comprehension datasets.

Reference Name Train Test

(Mozannar et al., 2019) ARCD 695 700

(Clark et al., 2020) TyDiQA-GoldP (Arabic) 14,724 921

Alsubhi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.952 10/21

http://dx.doi.org/10.7717/peerj-cs.952
https://peerj.com/computer-science/

of both the passage and the query models with an Arabic language model and a large
Arabic dataset containing enough unique passages. However, applying such a method
requires a large amount of well-labeled, clean, non-translated data. Thus, in this step, we
decided to fine-tune the mDPR with the ARCD (Mozannar et al., 2019) and TyDiQA-
GoldP (Clark et al., 2020) datasets. We used the pre-trained mDPR weights for fine-tuning
and initialized both the query and the passage models using the mBERT pre-trained
model. We used the previous DPR (Karpukhin et al., 2020) parameters for the maximum
passage length, but we reduced the maximum query length to 64 because the queries are
rarely longer than 64. We trained the merged and the single training set of the ARCD
(Mozannar et al., 2019) and TyDiQA-GoldP (Clark et al., 2020) datasets to 16 epochs since
we searched for the best number of train epochs from (4–16), and we used each test set for
testing the model.

We implemented our passage retriever module using dense representations, where
embeddings are learned from a number of questions and passages using a dual-encoder
model. To implement our dense passage retriever, we followed the steps below:

� We used the 01-09-2021 dump of Arabic Wikipedia (Wikimedia Foundation, 2021) as
our knowledge source to answer the factoid questions. Only the plain text was extracted
and all other data, such as lists and figures, were removed using the WikiExtractor
tool (Attardi, 2015). After removing the internal disambiguation, list, index, and outline
pages, we were able to extract 3.2 million pages with 2,130,180 articles. Due to memory
limitations, we only used 491,253 articles.

� We used Elasticsearch (elastic, 2021) to store the document text and other metadata. We
pre-processed by removing empty lines, whitespaces, and long headers and footers.
We also split files into small documents of around 100 words, storing these documents
in the Elasticsearch document storage. The text’s vector embeddings were indexed based
on Elasticsearch Indexing, which was then searched to get answers.

� We initialized our DPR to search for documents in DocumentStore, retrieve some
documents, and return the top 20 passages that are most related to the query. Initializing
and training the DPR retriever contained the following arguments:

1. document_store: A DocumentStore object from which documents can be retrieved.

2. query_embedding_model: A question encoder checkpoint. We used the mDPR
(Voidful, 2021) by hugging-face transformers.

3. passage_embedding_model: A passage encoder checkpoint. We used also the mDPR
(Voidful, 2021) by hugging-face transformers.

4. max_seq_len_query: The Maximum number of tokens for the query is 64.

5. max_seq_len_passage: The Maximum number of tokens for the passage is 256.
batch_size: The number of queries and passages to encode. The batch size is set to 4.

6. similarity_function: During training, the dot_product function is used to calculate the
similarity of the query and passage embeddings.

7. query: The question

Alsubhi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.952 11/21

http://dx.doi.org/10.7717/peerj-cs.952
https://peerj.com/computer-science/

8. filters: Contains the dictionary of the keys that indicate a metadata field and the value,
which is a list of acceptable values for that field.

9. top_k: Contains the number of passages to retrieve per question.

10. index: Contains the name of the DocumentStore index from which documents can be
retrieved.

In our work, we also applied a Term Frequency-Inverse Document Frequency (TF-IDF)
document retriever to compare the results to other approaches. In our TF-IDF document
retriever, each document is initially preprocessed with the NLTK Arabic tokenizer (Bird
et al., 2008) and stop words removal. The TF-IDF weights matrix in the document set, like
Arabic Wikipedia, were created using n-gram numbers to take local word order into
consideration. The retriever becomes more accurate as the number of documents goes up;
however, the retrieving procedure becomes longer and more memory costly. The vector is
normalized for every document, and the weights of the TF-IDF vector of question are
calculated according to the document’s vocabulary. The score is then calculated as the
cosine similarity between the question and vectors of the document. Finally, the top
documents with the highest similarity are returned (Mozannar et al., 2019).

When evaluated on the TyDiQA-Goldp dev set and the ARCD test set, our dense
retriever largely out-performs a TF-IDF in terms of the top-20 and top-100 passage
retrieval accuracy and improves our end-to-end OpenQA. Figure 4 shows an example of
our DPR prediction. In addition, we run the Elasticsearch’s default BM25 algorithm

Figure 4 Sample prediction of our DPR from the ARCD test.
Full-size DOI: 10.7717/peerj-cs.952/fig-4

Alsubhi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.952 12/21

http://dx.doi.org/10.7717/peerj-cs.952/fig-4
http://dx.doi.org/10.7717/peerj-cs.952
https://peerj.com/computer-science/

(elastic, 2021) and the TF-IDF retriever for comparison to get an example of what each
retriever retrieves (see Fig. 5).

Retriever results
Table 2 shows the results of our DPR trained on combined datasets and a single dataset of
ARCD and TyDiQA-GoldP. In all experiments, DPR’s provide higher recall and MAP
scores in comparison with traditional methods. Table 3 compares different passage
retrieval systems on two Arabic QA datasets, using the top-20 accuracy and top-100

Figure 5 Example of the top two passages retrieved by our DPR, BM25, and TF-IDF. Full-size DOI: 10.7717/peerj-cs.952/fig-5

Table 2 Results of the DPR model on TyDiQA-GoldP and ARCD datasets with different training
settings.

Training dataset Testing dataset Recall MAP

TyDiQA-GoldP TydiQA dev set 98.11 93.56

ARCD ARCD test 96.13 73.68

ARCD+TyDiQA-GoldP TydiQA dev set 98.00 94.12

ARCD+TyDiQA-GoldP ARCD test 93.28 68.94

Alsubhi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.952 13/21

http://dx.doi.org/10.7717/peerj-cs.952/fig-5
http://dx.doi.org/10.7717/peerj-cs.952
https://peerj.com/computer-science/

accuracy. Our DPR performs better than the TF-IDF on all datasets. When training with a
single dataset, ARCD is limited to a small set of Wikipedia documents, thus causing low
results. In contrast, the TyDiQA-GoldP dataset improves the results. Using combined
datasets for training improves the accuracy scores in all the experiments.

Fine-tuning AraELECTRA for reading comprehension task
We trained the AraELECTRA on the TyDiQA-GoldP and the ARCD training sets. In the
pre-processing step, we applied a pre-processing method that does the following:

� Replace emojis

� Remove HTML markups, except in the TyDiQA-GoldP dataset

� Replace email

� Remove diacritics and tatweel

� Insert whitespaces before and after all non-Arabic digits, English digits, and Arabic and
English Alphabet letters

� Insert whitespace between words and numbers or numbers and words

For dataset splitting, we followed the previous work of Antoun, Baly & Hajj (2020) and
used the original training and testing set of the ARCD and the TyDiQA-GoldP. We
implemented the AraELECTRA-base-discriminator on the reading comprehension
datasets, namely the TyDiQA-GoldP set and ARCD. To fine-tune, we searched for the best
number of train epochs (2,4,3), and we tried different learning rates [1e−4, 2e−4, 3e−4, 5e
−3]. We chose the hyper-parameters that gave us the best results. We used the following
hyper-parameters: three epochs and four batch sizes, with a learning rate 3 × 10−5. The
maximum total input sequence length after WordPiece (Wu et al., 2016) tokenization is
384. The maximum number of tokens for the question is 64, and the maximum length of
an answer that can be generated is 30. To provide a valid comparison, we used the same
hyperparameters on all experiments.

In the first experiment, we used the ARCD to train the AraELECTRA model. The
results, as shown in Table 4, demonstrate a large improvement in our models over the
mBERT model. The AraELECTRA achieved the best F1 score and EM. The small size of
the ARCD affected the performance of the model. The low results of the ARCD are due to
the poor quality of the training examples. The ARCD training set contained text in

Table 3 The results of DPR in comparison with TF-IDF on TydiQA and ARCD datasets.

Model Training dataset Test dataset Dataset size Accuracy Top-20 Accuracy Top-100

TF-IDF N/A TydiQA dev set 921 37.03 48.70

TF-IDF N/A ARCD test 696 33.61 40.19

DPR TyDiQA-GoldP TydiQA dev set train:14797 test:917 56.54 62.96

DPR ARCD ARCD test train:684 test:696 46.01 55.41

DPR ARCD+TyDiQA-GoldP TydiQA dev set train:15481 test:917 58.82 65.00

DPR ARCD+TyDiQA-GoldP ARCD test train:15481 test:696 50.56 57.26

Note: Boldfaced score indicates highest accuracy.

Alsubhi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.952 14/21

http://dx.doi.org/10.7717/peerj-cs.952
https://peerj.com/computer-science/

languages other than Arabic, which can reduce performance due to the unknown words
and characters (Antoun, Baly & Hajj, 2021).

In the second experiment of AraELECTRA, we used the TyDiQA-GoldP dataset. In this
experiment, we obtained a better result for the F1 score and EM compared to the ARCD that
used the same model (see Table 5). We recorded an increase in the exact match score over the
ARCD. EM measures the percentage of predictions that match any of the ground truth.

In our OpenQA system, we used the AraELECTRA based on the TyDiQA-GoldP
dataset because the results were much higher than those of the ARCD dataset. We believe
that this is because the dataset is much cleaner and is correctly labeled, without any
translations (Clark et al., 2020). This dataset was created by experts in the Arabic language.
We recognize that a deep understanding of the data itself is key to understanding what
modeling techniques are best suited for the data. Running those experiments was
computationally high, and the model took more than 12 h to train only three epochs. In
Fig. 6, we capture one of the results from the TyDiQA-GoldP development set. It can be
seen that the predicted answer exactly matches the exact ground truth answer.

Final results
Our system focuses on answering questions using Arabic Wikipedia. We used 491,253
documents to build an OpenQA system that can answer any type of factoid question where

Table 5 Comparison of the different text reader models on TyDiQA-GoldP.

Model TyDiQA-GoldP (F1-EM)

mBERT (Clark et al., 2020) 81.7–

AraBERTv0.1 (Antoun, Baly & Hajj, 2020) 82.86–68.51

AraBERTv1 (Antoun, Baly & Hajj, 2020) 79.36–61.11

AraBERTv0.2-base (Antoun, Baly & Hajj, 2020) 85.41–73.07

AraBERTv2-base (Antoun, Baly & Hajj, 2020) 81.66–61.67

AraBERTv0.2-large (Antoun, Baly & Hajj, 2020) 86.03–73.72

AraBERTv2-large (Antoun, Baly & Hajj, 2020) 82.51–64.49

ArabicBERT-base (Antoun, Baly & Hajj, 2020) 81.24–67.42

ArabicBERT-large (Antoun, Baly & Hajj, 2020) 84.12–70.03

Arabic-ALBERT-base (Antoun, Baly & Hajj, 2020) 80.98–67.10

Arabic-ALBERT-large (Antoun, Baly & Hajj, 2020) 81.59–68.07

Arabic-ALBERT-xlarge (Antoun, Baly & Hajj, 2020) 84.59–71.12

AraELECTRA (Antoun, Baly & Hajj, 2020) 86.86–74.91

AraELECTRA (ours) 86.01–74.07

Note: Boldfaced score indicates best performance.

Table 4 Comparison of two text reader models on ARCD.

Model ARCD (F1-EM)

mBERT (Mozannar et al., 2019) 50.10–23.9

AraELECTRA (ours) 68.15–35.47

Note: Boldfaced score indicates best performance.

Alsubhi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.952 15/21

http://dx.doi.org/10.7717/peerj-cs.952
https://peerj.com/computer-science/

the answer can be found on and retrieved fromWikipedia. Table 6 compares our OpenQA
and SOQAL (Mozannar et al., 2019) system on the ARCD dataset, using the top-1, top-3,
and top-5 answers. Our OpenQA system achieves better results than the SOQAL system.
We conclude that using deep learning techniques in all modules will improve the results.

Table 7 summarizes our final end-to-end QA results, measured by the F1 score and EM,
with the aspects of different training datasets of DPR for the passage retriever. Table 7
shows how increased retriever accuracy usually leads to better QA results in every dataset.
In addition, the models perform well when evaluated to the TyDiQA-GoldP dataset.
However, the ARCD dataset performs poorly in multi and single-training settings.

Figure 6 Example of results from the TyDiQA-GoldP development set.
Full-size DOI: 10.7717/peerj-cs.952/fig-6

Alsubhi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.952 16/21

http://dx.doi.org/10.7717/peerj-cs.952/fig-6
http://dx.doi.org/10.7717/peerj-cs.952
https://peerj.com/computer-science/

Table 6 Comparison of our OpenQA and SOQAL when returning the top k answers.

Model Evaluation dataset EM F1

SOQAL (top-1) (Mozannar et al., 2019) ARCD 12.8 27.6

SOQAL (top-3) (Mozannar et al., 2019) ARCD 17.8 37.9

SOQAL (top-5) (Mozannar et al., 2019) ARCD 20.7 42.5

our OpenQA (top-1) ARCD 15.7 36.4

our OpenQA (top-3) ARCD 23.1 39.6

our OpenQA (top-5) ARCD 26.8 43.1

Note: Boldfaced score indicates best performance.

Table 7 End-to-end QA results. Our DPR is trained using single or merged training datasets, as
indicated by the terms single and multi.

Training setting Model Evaluation dataset EM F1

Single ORQA (Lee, Chang & Toutanova, 2019) NQ 33.3 –

TriviaQA 45.0

WQ 36.4

TREC 30.1

SQuAD 20.2

Single REALM (Guu et al., 2020) NQ 39.2 –

WQ 40.2

TREC 46.8

Single DPR (Karpukhin et al., 2020) NQ 41.5 –

TriviaQA 56.8

WQ 34.6

TREC 25.9

SQuAD 29.8

Single DPR + BM25 (Karpukhin et al., 2020) NQ 39.0 –

TriviaQA 57.0

WQ 35.2

TREC 28.0

SQuAD 36.7

Multi DPR (Karpukhin et al., 2020) NQ 41.5 –

TriviaQA 56.8

WQ 42.4

TREC 49.4

SQuAD 24.1

Multi DPR + BM25 (Karpukhin et al., 2020) NQ 38.8 –

TriviaQA 57.9

WQ 41.1

TREC 50.6

SQuAD 35.8

Single our DPR TyDiQA-GoldP 41.8 50.1

Single our DPR ARCD 15.1 35.3

Multi our DPR TyDiQA-GoldP 43.1 51.6

Multi our DPR ARCD 15.7 36.3

Alsubhi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.952 17/21

http://dx.doi.org/10.7717/peerj-cs.952
https://peerj.com/computer-science/

CONCLUSIONS
OpenQA is an important research area in the NLP field. The goal of a QA system is to
answer any questions written in a natural language. The current growth of language
models like BERT and ELECTRA has made it possible for all kinds of NLP tasks to make
significant progress. In this paper, we evaluate the performance of an OpenQA system
using the DPR and the AraELECTRA models in the Arabic language. Our paper addresses
the problem of Arabic OpenQA and how different factors like datasets will affect the
results. For initializing our OpenQA system, a model is trained to answer questions from
the retrieved passages. The DPR and the AraELECTRA passage reader were trained in the
context of QA with ARCD and TyDiQA-GoldP datasets. Our DPR outperforms the
traditional TF-IDF information retriever in terms of top-20 and top-100 passage retrieval
accuracy and improves our end-to-end QA system. For future work, the retriever can be
improved by combining DPR with BM25 or other IR models using a hybrid approach.

ACKNOWLEDGEMENTS
The authors would like to thank the three anonymous reviewers for their insightful
suggestions and careful reading of the manuscript.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Kholoud Alsubhi conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

� Amani Jamal analyzed the data, authored or reviewed drafts of the paper, and approved
the final draft.

� Areej Alhothali analyzed the data, authored or reviewed drafts of the paper, and
approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The TyDiQA dataset is available at GitHub: https://github.com/google-research-datasets/
tydiqa.

The ARCD dataset is available at https://huggingface.co/datasets/arcd.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.952#supplemental-information.

Alsubhi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.952 18/21

https://github.com/google-research-datasets/tydiqa
https://github.com/google-research-datasets/tydiqa
https://huggingface.co/datasets/arcd
http://dx.doi.org/10.7717/peerj-cs.952#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.952#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.952
https://peerj.com/computer-science/

REFERENCES
Ahmed W, Ahmed A, Babu Anto P. 2017. Web-based Arabic question answering system using

machine learning approach. International Journal of Advanced Research in Computer Science
8(1):2849 DOI 10.26483/ijarcs.v8i1.2849.

Ahmed W, Babu Anto P. 2016. Answer extraction for how and why questions in question
answering systems. International Journal of Computational Engineering Research (IJCER)
12(6):18–22.

Ahmed W, Bibin PA, Babu Anto P. 2017. Question answering system based on neural networks.
International Journal of Engineering Research 6(3):142–144.

Almiman A, Osman N, Torki M. 2020. Deep neural network approach for Arabic community
question answering. Alexandria Engineering Journal 59(6):4427–4434
DOI 10.1016/j.aej.2020.07.048.

Amati G. 2009. BM25. In: Liu L, Özsu MT, eds. Encyclopedia of Database Systems. Boston:
Springer, 257–260.

Antoun W, Baly F, Hajj H. 2021. AraELECTRA: pre-training text discriminators for Arabic
language understanding. In: Proceedings of the Sixth Arabic Natural Language Processing
Workshop. Kyiv: Association for Computational Linguistics, 191–195.

Antoun W, Baly F, Hajj H. 2020. AraBERT: transformer-based model for Arabic language
understanding. In: Proceedings of the 4th Workshop on Open-Source Arabic Corpora and
Processing Tools, with a Shared Task on Offensive Language Detection. Marseille: European
Language Resource Association, 9–15.

Attardi W. 2015. Wikiextractor. GitHub. Available at https://github.com/attardi/wikiextractor.

Bird S, Klein E, Loper E, Baldridge J. 2008. Multidisciplinary instruction with the natural
language toolkit. In: Proceedings of the Third Workshop on Issues in Teaching Computational
Linguistics. Columbus: Association for Computational Linguistics, 62–70.

Briggs J. 2021. How Dense Passage Retrievers (DPR) Work. Available at https://
towardsdatascience.com/how-to-create-an-answer-from-a-question-with-dpr-d76e29cc5d60.

Chen D, Fisch A, Weston J, Bordes A. 2017. Reading Wikipedia to answer open-domain
questions. In: Proceedings of the 55th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers). Vancouver: Association for Computational Linguistics,
1870–1879.

Clark JH, Choi E, Collins M, Garrette D, Kwiatkowski T, Nikolaev V, Palomaki J. 2020. TyDi
QA: a benchmark for information-seeking question answering in typologically diverse
languages. Transactions of the Association for Computational Linguistics 8(1):454–470
DOI 10.1162/tacl_a_00317.

Clark K, Luong MT, Le QV, Manning CD. 2020. Electra: Pre-training text encoders as
discriminators rather than generators. arXiv preprint. Available at arXiv:2003.10555.

Cui Y, Liu T, Yang Z, Chen Z, Ma W, Che W, Wang S, Hu G. 2020. A sentence cloze dataset for
Chinese machine reading comprehension. In: Proceedings of the 28th International Conference
on Computational Linguistics. Barcelona: International Committee on Computational
Linguistics, 6717–6723.

Devlin J, Chang MW, Lee K, Toutanova K. 2019. BERT: pre-training of deep bidirectional
transformers for language understanding. In: Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics: Human Language
Technologies. Vol. 1. Minneapolis: Association for Computational Linguistics, 4171–4186.

Alsubhi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.952 19/21

http://dx.doi.org/10.26483/ijarcs.v8i1.2849
http://dx.doi.org/10.1016/j.aej.2020.07.048
https://github.com/attardi/wikiextractor
https://towardsdatascience.com/how-to-create-an-answer-from-a-question-with-dpr-d76e29cc5d60
https://towardsdatascience.com/how-to-create-an-answer-from-a-question-with-dpr-d76e29cc5d60
http://dx.doi.org/10.1162/tacl_a_00317
arXiv:2003.10555
http://dx.doi.org/10.7717/peerj-cs.952
https://peerj.com/computer-science/

elastic. 2021. Free and open search: the creators of elastic search, elk & kibana | elastic. Available at
https://www.elastic.co/ (accessed 9 January 2020).

Guu K, Lee K, Tung Z, Pasupat P, Chang MW. 2020. Realm: retrieval-augmented language model
pre-training. arXiv preprint. Available at arXiv:2002.08909.

Hedderich MA, Lange L, Adel H, Strötgen J, Klakow D. 2021. A survey on recent approaches for
natural language processing in low-resource scenarios. In: Proceedings of the 2021 Conference of
the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies. 2545–2568.

Huang Z, Xu S, Hu M, Wang X, Qiu J, Fu Y, Zhao Y, Peng Y, Wang C. 2020. Recent trends in
deep learning based open-domain textual question answering systems. IEEE Access 8:94341–
94356 DOI 10.1109/ACCESS.2020.2988903.

Johnson J, Douze M, Jegou H. 2021. Billion-scale similarity search with GPUs. IEEE Transactions
on Big Data 7(3):535–547 DOI 10.1109/TBDATA.2019.2921572.

Joshi M, Choi E, Weld D, Zettlemoyer L. 2017. TriviaQA: a large scale distantly supervised
challenge dataset for reading comprehension. In: Proceedings of the 55th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers). Vancouver: Association for
Computational Linguistics, 1601–1611.

Karpukhin V, Oguz B, Min S, Lewis P, Wu L, Edunov S, Chen D, Yih WT. 2020. Dense passage
retrieval for open-domain question answering. In: Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing (EMNLP). Association for Computational
Linguistics, 6769–6781.

Kwiatkowski T, Palomaki J, Redfield O, Collins M, Parikh A, Alberti C, Epstein D, Polosukhin
I, Devlin J, Lee K, Toutanova K, Jones L, Kelcey M, Chang M-W, Dai AM, Uszkoreit J, Le Q,
Petrov S. 2019. Natural questions: a benchmark for question answering research. Transactions
of the Association for Computational Linguistics 7(15):453–466 DOI 10.1162/tacl_a_00276.

Lee K, Chang MW, Toutanova K. 2019. Latent retrieval for weakly supervised open domain
question answering. In: Proceedings of the 57th Annual Meeting of the Association for
Computational Linguistics. Florence: Association for Computational Linguistics, 6086–6096.

Lewis P, Oguz B, Rinott R, Riedel S, Schwenk H. 2020.MLQA: evaluating cross-lingual extractive
question answering. In: Proceedings of the 58th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics, 7315–7330.

Mozannar H, Maamary E, El Hajal K, Hajj H. 2019. Neural Arabic question answering. In:
Proceedings of the Fourth Arabic Natural Language Processing Workshop. Florence: Association
for Computational Linguistics, 108–118.

Qiu XP, Sun TX, Xu YG, Shao YF, Dai N, Huang XJ. 2020. Pre-trained models for natural
language processing: a survey. Science China Technological Sciences 63(10):1872–1897
DOI 10.1007/s11431-020-1647-3.

Rajpurkar P, Zhang J, Lopyrev K, Liang P. 2016. SQuad: 100,000+ questions for machine
comprehension of text. In: Proceedings of the Conference on Empirical Methods in Natural
Language Processing (EMNLP, 2016). Association for Computational Linguistics, 2383–2392.

Rusic M. 2021. Nlp solutions to streamline neural search and question answering | deepset.
Available at https://www.deepset.ai/ (accessed 30 March 2020).

Sammut C, Webb GI. 2017. Encyclopedia of machine learning and data mining. Berlin: Springer.

Teufel S. 2007. An overview of evaluation methods in trec ad hoc information retrieval and trec
question answering. Evaluation of Text and Speech Systems 37:163–186
DOI 10.1007/978-1-4020-5817-2.

Alsubhi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.952 20/21

https://www.elastic.co/
arXiv:2002.08909
http://dx.doi.org/10.1109/ACCESS.2020.2988903
http://dx.doi.org/10.1109/TBDATA.2019.2921572
http://dx.doi.org/10.1162/tacl_a_00276
http://dx.doi.org/10.1007/s11431-020-1647-3
https://www.deepset.ai/
http://dx.doi.org/10.1007/978-1-4020-5817-2
http://dx.doi.org/10.7717/peerj-cs.952
https://peerj.com/computer-science/

Voidful. 2021. voidful/dpr ctx encoder bert base multilingual model nlp hub. Available at https://
huggingface.co/voidful/ (accessed 30 September 2020).

Wikimedia Foundation. 2021. arwiki dump progress on 20210901. Available at https://archive.
org/details/arwiki-20211220 (accessed 1 February 2021).

Wu Y, Schuster M, Chen Z, Le QV, Norouzi M, Macherey W, Krikun M, Cao Y, Gao Q,
Macherey K, Klingner J, Shah A, Johnson M, Liu X, Kaiser Ł, Gouws S, Kato Y, Kudo T,
Kazawa H, Stevens K, Kurian G, Patil N, Wang W, Young C, Smith J, Riesa J, Rudnick A,
Vinyals O, Corrado G, Hughes M, Dean J. 2016. Google’s neural machine translation system:
bridging the gap between human and machine translation. ArXiv preprint. Available at https://
doi.org/10.48550/arXiv.1609.08144.

Yang W, Xie Y, Lin A, Li X, Tan L, Xiong K, Li M, Lin J. 2019. End-to-end open-domain
question answering with BERTserini. In: Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computational Linguistics (Demonstrations).
Minneapolis: Association for Computational Linguistics, 72–77.

Zhang Z, Liu S, Li M, Zhou M, Chen E. 2018. Bidirectional generative adversarial networks for
neural machine translation. In: Proceedings of the 22nd Conference on Computational Natural
Language Learning. Brussels: Association for Computational Linguistics, 190–199.

Zhu F, Lei W,Wang C, Zheng J, Poria S, Chua TS. 2021. Retrieving and reading: a comprehensive
survey on open-domain question answering. ArXiv preprint. Available at https://doi.org/10.
48550/arXiv.2101.00774.

Alsubhi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.952 21/21

https://huggingface.co/voidful/
https://huggingface.co/voidful/
https://archive.org/details/arwiki-20211220
https://archive.org/details/arwiki-20211220
https://doi.org/10.48550/arXiv.1609.08144
https://doi.org/10.48550/arXiv.1609.08144
https://doi.org/10.48550/arXiv.2101.00774
https://doi.org/10.48550/arXiv.2101.00774
http://dx.doi.org/10.7717/peerj-cs.952
https://peerj.com/computer-science/

	Deep learning-based approach for Arabic open domain question answering
	Introduction
	Related works
	Model overview
	Dataset
	End-to-end system: arabic openqa
	Experiments and results
	Conclusions
	flink8
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

