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In this paper we investigate a variety of deep learning strategies for solving inverse
problems. We classify existing deep learning solutions for inverse problems into three
categories of Direct Mapping, Data Consistency Optimizer, and Deep Regularizer. We
choose a sample of each inverse problem type, so as to compare the robustness of the
three categories, and report a statistical analysis of their differences. We perform
extensive experiments on the classic problem of linear regression and three well-known
inverse problems in computer vision, namely image denoising, 3D human face inverse
rendering, and object tracking, in presence of noise and outliers, are selected as
representative prototypes for each class of inverse problems. The overall results and the
statistical analyses show that the solution categories have a robustness behaviour
dependent on the type of inverse problem domain, and specifically dependent on whether
or not the problem includes measurement outliers. Based on our experimental results, we
conclude by proposing the most robust solution category for each inverse problem class.
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ABSTRACT9

In this paper we investigate the robustness of a variety of deep learning strategies applied to solving

inverse problems. We classify existing deep learning solutions for inverse problems into three categories

of Direct Mapping, Data Consistency Optimizer, and Deep Regularizer. We choose a sample of each

inverse problem type, so as to compare the robustness of the considered solution categories, for each

problem type, and report a statistical analysis of their differences. We perform extensive experiments

on the classic problems of linear regression, PDE coefficient inference, and three well-known inverse

problems in computer vision, namely image denoising, 3D human face inverse rendering, and object

tracking, selected as representative prototypes for each class of inverse problems. The overall results and

the statistical analyses show that the solution categories have a robustness behaviour indeed dependent

on the type of inverse problem domain, and specifically dependent on whether or not the problem includes

measurement outliers. Based on our experimental results, we conclude by proposing the most robust

solution category for each inverse problem class.
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INTRODUCTION22

An inverse problem Bertero and Boccacci (1998); Fieguth (2010); Stuart (2010) seeks to formulate a

solution to estimating the unknown state underlying a measured system. Specifically, a forward function

F(·) describes the relationship of a measured output m,

m = F(z)+ν (1)

as a function of the system state z, subject to a measurement noise ν . The objective of the inverse problem23

is to estimate z as a function of given measurement m, assuming a detailed knowledge of the system, F(·),24

where if F(·) is not known or is partially known the problem becomes blind or semi-blind Lucas et al.25

(2018).26

Different perspectives lead to different types of inverse problems. From the perspective of data type,27

two classes of inverse problems are restoration and reconstruction Arridge et al. (2019), where restoration28

problems have the same domain for measurement and state (e.g., signal or image denoising), while29

reconstruction has different domains (e.g., 3D shape inference). Next, from the perspective of modeling,30

inverse problems are classified into static and dynamic problems, where the static case seeks a single31

estimate ẑ, consistent with some prior model on z and the forward model F(z), whereas the dynamic case32

seeks estimates ẑ(t) over time, consistent with an initial prior and a dynamic model. We also consider a33

new class of inverse problems with some knowledge provided in the form of PDEs. In this paper we will34

examine each of these inverse problems.35

Existing analytical methods for solving inverse problems take advantage of domain knowledge to36

regularize and constrain the problem to obtain numerically-stable solutions. These methods are classified37

into four categories in Arridge et al. (2019):38

• Analytic inversion Natterer (2001); Schuster (2007) having the objective of finding a closed39

form, possibly approximate, of F−1. This category of solutions will be highly problem dependent.40
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• Iterative methods Calvetti et al. (2002); Byrne (2008), which optimize the data inconsistency

term

min
z

||m−F(z)||. (2)

Because of the ill-posed nature of most inverse problems, the iteration tends to have a semi-41

convergent behaviour, with the reconstruction error decreasing until some point and then diverging,42

necessitating appropriate stopping criteria.43

• Discretization as regularization Hämarik et al. (2016); Kaltenbacher et al. (2011), including44

projection methods searching for an approximate solution of an inverse problems in a predefined45

subspace. Choosing an appropriate subspace has high impact on finding stable solutions.46

• Variational methods, with the idea of minimizing data consistency penalized using some regular-

izer R parameterized by θ :

min
z

||m−F(z)||+R(z,θ) (3)

This is a generic adaptable framework where F(·),R(·, ·) are chosen to fit a specific problem,47

of which well-known classical examples include Tikhonov Groetsch (1984) and total variation48

Makovetskii et al. (2015) regularization.49

These approaches have weaknesses in requiring explicitly identified prior knowledge, selected regularizers,50

some shortcomings in handling noise, computational complexity in inference due to the optimization-51

based mechanisms, and most significantly limited applicability, in the sense that each inverse problem52

needs to be solved one-off.53

As a result, we are highly motivated to consider the roles of Deep Neural Networks (DNNs) Larochelle54

et al. (2009), which have the advantages of being generic data driven methods, are adaptable to a wide55

variety of different problems, and can learn prior models implicitly through examples. DNNs are currently56

in widespread use to solve a vast range of problems in machine learning Balas et al. (2019), artificial57

intelligence Samek et al. (2017), and computer vision Kim et al. (2018). Strong advantages of using such58

structures include their near-universal applicability, their real-time inference Canziani et al. (2016); Khan59

et al. (2019), and their superiority in handling sensor and/or measurement noise Han et al. (2018).60

A variety of studies Aggarwal et al. (2018); Lucas et al. (2018) have shown that planned, systematic61

DNNs will tend to have fewer parameters and better generalization power compared to generic architec-62

tures, which motivates us to consider systematic strategies in addressing complex inverse problems.63

In principle, every deep learning framework could be interpreted as solving some sort of inverse64

problem, in the sense that the network is trained to take measurements and to infer, from given ground65

truth, the desired unknown state. For example, for the common DNN application to image classification,66

the input is a (measured) image, and the network output is a (unknown state) label, describing the object67

or scene appearing in the image. The network parameters then implicitly learn the inverse of the forward68

model, which had been the generation of an image from a label.69

Using DNNs for solving inverse problems aims to approximate the inverse of the forward model Fieguth70

(2010). In some cases, the forward model may be explicitly defined Anirudh et al. (2018); Chang, JH71

Rick et al. (2017); Aggarwal et al. (2018), whereas in other cases it may be implicitly defined in the form72

of the training data Adler and Öktem (2017); Antholzer et al. (2019); Jin et al. (2017); Kelly et al. (2017);73

Anirudh et al. (2018); Zhang and Ghanem (2018); Fan et al. (2017). In this paper our focus is on solving74

non-blind inverse problems, with the forward model known. Analytical approaches to inverse problems,75

whether deterministic or stochastic, take advantage of the explicit forward model and prior knowledge in76

formulating the solution; in contrast, DNNs cannot take advantage of such information, and must instead77

learn implicitly from large datasets of training data in a black-box approach.78

Inspired by the above techniques, there are indeed a number of proposed deep frameworks in the79

literature with the aim of bringing regularization techniques or prior knowledge into the DNN learning80

process for solving inverse problems Aggarwal et al. (2018); Chang, JH Rick et al. (2017); Dosovitskiy81

et al. (2015); Wang et al. (2015); Xu et al. (2014); Schuler et al. (2015); Raissi et al. (2019); Bu and82

Karpatne (2021). In this paper, we classify deep solutions for inverse problems into four categories based83

on their objective criteria, and compare them in solving different types of inverse problems.84
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The focus of this paper is comparing the robustness of different deep learning structures based on85

their optimization criterion associated with the training scheme; that is, the main objective of this research86

is to provide insight into the choice of appropriate framework, particularly with regards to performance87

robustness. It is worth noticing here that our goal is not to outperform the state-of-the-art performance in88

different problems, nor to propose new deep-learning approaches, rather to examine different frameworks89

with fair parameter settings. Using these frameworks, we select a prototype inverse problem from each90

category and evaluate the performance and the robustness of the designed frameworks. We believe the91

results obtained in this way give insight into the strength of each solution category in addressing different92

categories of inverse problems.93

The contributions in this paper focus on developing three categories of deep learning frameworks,94

applying each of these to five widespread, broadly-understood inverse problems, and then assessing the95

robustness in each case via statistical analysis. The specific contribution of this work is to develop a96

deeper understanding of the choice of best deep-learning framework for each type of inverse problem.97

The rest of this paper is organized as follows: Section includes a review of the most recent deep98

approaches to solving inverse problems; Section describes the problem definition, introducing three main99

categories for deep solutions for inverse problems; Section 0.3 explains the experimental results including100

robustness analysis; finally Section 0.8.1 concludes the paper, proposing the best approach based on our101

experiments.102

LITERATURE REVIEW103

Inverse problems have had a long history Engl et al. (1996); Fieguth (2010); Stuart (2010) in a wide104

variety of fields. In our context, since imaging involves the observing of a scene or phenomenon of105

interest, through a lens and spatial sensor, where the goal is to infer some aspect of the observed scene,106

essentially all imaging is an inverse problem, widely explored in the literature Bertero and Boccacci107

(1998); Mousavi and Baraniuk (2017); De los Reyes et al. (2016). Imaging-related inverse problems may108

fall under any of image recovery, restoration, deconvolution, pansharpening, concealment, inpainting,109

deblocking, demosaicking, super-resolution, reconstruction from projections, compressive sensing, and110

many others.111

Inverse problems are ultimately the deducing of some function G(·) which inverts the forward problem112

in (1), with ẑ = G(m), where some objective criterion obviously needs to be specified in order to select113

G(·). Since G(·) is very large (an input image has many pixels), unknown, and frequently nonlinear,114

it has become increasingly attractive to consider the role of DNNs, in their role as universal function115

approximators, in deducing G(·), and a number of approaches have been recently proposed in this fashion116

Lucas et al. (2018); Arridge et al. (2019); McCann and Unser (2019).117

The most common approach when using DNNs for inverse problem solving includes optimizing the

squared-error criterion ||z−G(m)||22, with G(·) a DNN to be learned Adler and Öktem (2017); Antholzer

et al. (2019); Jin et al. (2017); Kelly et al. (2017); Anirudh et al. (2018); Zhang and Ghanem (2018); Fan

et al. (2017). This strategy implicitly finds a direct mapping from m to ẑ using pairs (z,m) as the training

data in the learning phase, which seeks to solve

Ŵ = argW min ||z−G(m,W )||22 (4)

for W the network weights in the DNN, and z, m as system parameters and measurements, respectively.118

Such supervised training needs a large number of data samples, which in some cases may be generated119

from the forward function F(·).120

Recent work in direct mapping includes Häggström et al. (2019), in which an encoder-decoder121

structure is proposed to directly solve clinical positron emission tomography (PET) image reconstruction.122

Similarly Chen et al. (2019) proposes a direct mapping deep learning framework to identify the impact123

load conditions of shell structures based on their final state of damage, an inverse problem of engineering124

failure analysis.125

Recent research investigates the incorporation of prior knowledge into DNN solutions for inverse126

problems. In particular, the use of intelligent initialization of DNN weights and analytical regularization127

techniques form the main classes of existing work in this domain Lucas et al. (2018). In Goh et al. (2019),128

variational autoencoders are used to solve forward and inverse problems, where the latent space of the129

autoencoder is used as the Parameter of Interest (PoI) space, and input and output of the autoencoder as130
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the observation spaces. In Anirudh et al. (2018), an unsupervised deep framework is proposed for solving131

inverse problems using a Generative Adversarial Network (GAN) to learn a prior without any information132

about the measurement process. In Dittmer et al. (2019), a variational autoencoder (VAE) is used to solve133

electrical impedance tomography (EIT), a nonlinear ill-posed inverse problem. The VAE uses a variety134

of training data sets to generate a low dimensional manifold of approximate solutions, which allows the135

ill-posed problem to be converted to a well-posed one.136

The forward model provides knowledge regarding data generation, based on the physics of the system.

In Chang, JH Rick et al. (2017) an iterative variational framework is proposed to solve linear computer

vision inverse problems of denoising, impainting, and super-resolution. It proposes a general regularizer

R for linear inverse problems which is first learned by a huge collection of images, and which is then

incorporated into an Alternating Direction Method of Multipliers (ADMM) algorithm for optimizing

minẑ

1

2
||m−Fẑ||22+λR(ẑ,W ) (5)

Here regularizer R(·) was learned from image datasets and W is the network weight matrix, as before.137

Here F is a matrix, the (assumed to be) linear forward model.138

The equivalent approach for a non-linear forward model is considered in Li et al. (2018), in which a

data consistency term D(F(ẑ),m) as a training objective incorporates the forward model into the problem:

minẑ {D(F(ẑ),m)+λR(ẑ,W )} (6)

for regularization weight λ .139

In Senouf et al. (2019), a self-supervised deep learning framework is proposed for solving inverse140

problems in medical imaging using only the measurements and forward model in training the DNN.141

Further DNN methods for inverse problems are explored in Aggarwal et al. (2018), where the forward142

model is explicitly used in an iterative deep learning framework, requiring fewer parameters compared to143

direct mapping approaches. In Yaman et al. (2019), an iterative deep learning framework is proposed for144

MRI image reconstruction. The work in Bar and Sochen (2019) proposes an unsupervised framework for145

solving forward and inverse problems in EIT. In Cha et al. (2019) the analytical forward model is directly146

used in determining a DNN loss function, yielding an unsupervised framework utilizing knowledge about147

data generation. Other methods optimize data consistency using an estimate of the forward model, learned148

from training data Fraccaro et al. (2017).149

A recent trend toward solving inverse problems involves estimating the posterior probability of the150

system parameters p(z|m) Dinh et al. (2016); Ardizzone et al. (2018); Kingma and Dhariwal (2018).151

An invertible structure is adopted to train the framework with the system parameters as input and152

measurements as network outputs. After training, the invertible network structure permits operating in the153

opposite direction, i.e., accepting measurements as input and producing the desired estimates Ardizzone154

et al. (2018). Our focus in this paper is on the objective function for categorization the solutions, therefore155

such invertible structures do not themselves introduce a separate solution category in our experiments.156

The system parameters may themselves be coefficients in a partial differential equation (PDE)157

governing the system, whereby the observations are discrete measurements of the state variables of the158

PDE. Assuming that the observations are corrupted by additive noise, then function F(·) in (1) will be a159

PDE. In such Physics Informed inverse problems, specific deep learning structures have been developed,160

including Physics Informed Neural Networks (PINNs) Raissi et al. (2019), in which the PDE is faced as a161

regularization term, or Quadratic residual (Qres) NNs Bu and Karpatne (2021) with greater expressive162

power. This class of inverse problems aims to find more complex solutions with less training data and163

achieving fewer parameters. In Pakravan et al. (2021); Goh et al. (2019), the parameters of an inverse164

problem in PDEs are considered as the latent space of an autoencoder, and are learned in an unsupervised165

manner. The work of Goh et al. (2019) uses a variational autoencoder, and Pakravan et al. (2021) aims to166

find the coefficients using a semantic autoencoder in which the decoder part is an analytic PDE solver.167

The approach presented in Maass (2019) is closely related to ours, and aims at analysing deep learning168

structures for solving inverse problems, seeking to understand neural networks for solving small inverse169

problems. Our goal in this paper is to categorize deep learning frameworks for different inverse problems,170

based on their objectives and training schemes, investigating the power of each.171
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PROBLEM DEFINITION172

Recall the forward model (1):

m = F(z)+ν ν ∼ N(0, I) (7)

with given noise process ν , assumed to be white. There are three fundamental classes of inverse problems173

to solve:174

• Static Estimation Problems, in which the system state z is static, without any evolution over175

time Fieguth (2010). We will consider the following static problems:176

– Image Restoration, part of a class of inverse problems in which the state and measurement177

spaces coincide (same number of pixels). Typically the measurements are a corrupted version178

of the unknown state, and the problem is to recover an estimate of the true signal from its179

corrupted version knowing the (forward) distortion model.180

– Image Reconstruction, to find a projection from some measurement space to a differently181

sized state, such as 3D shape reconstruction from 2D scenes. These problems need careful182

regularization to find feasible solutions.183

• Dynamic Estimation Problems, in which z is subject to dynamics and measurements over184

time Fieguth (2010), such as in object tracking.185

• Inverse Problems in Partial Differential Equations (PDEs) refers to reconstruction of the186

parameters of a PDE, including coefficients, boundary conditions, initial conditions, the shape of187

domains, or singularity from partial knowledge of solutions to the PDE Raissi et al. (2019); Bu and188

Karpatne (2021); Pakravan et al. (2021); Goh et al. (2019).189

Our focus is on DNNs as data-driven models for solving inverse problems, so we wish to redefine inverse

problems to the context of learning from examples in statistical learning theory Vito et al. (2005). We

need two sets of variables:

Inputs m ∈ M Outputs z ∈ Z (8)

The relation between input and output is described by a probability distribution p(m,z) ∈ M×Z, where

the distribution is known only through a finite set of samples, the training set

S = {mi,zi} 1 ≤ i ≤ N (9)

assumed to have been drawn independently and identically distributed (i.i.d.) from p. The learning

objective is to find a function G(m) to be an appropriate approximation of output z in the case of a given

input m. That is,

True z ≈ Estimated ẑ = G(m|S), (10)

such that G(·|S) was learned on the basis of S.190

In order to measure the effectiveness of estimator function G in inferring the desired relationship

described by p, the expected conditional error can be used:

I(G) =
∫

M×Z
D(G(m),z)d p(z,m) (11)

where D(G(m),z) is the cost or loss function, measuring the cost associated with approximating true value

z with an estimate G(m). Choosing a squared loss (G(m)− z)2 allows us to derive

G(m) =
∫

Z
zd p(z|m) = Ep[z|m], (12)

the classic optimal Bayesian least-squares estimator Fieguth (2010). In the case of learning from examples,

(12) cannot be reconstructed exactly since only a finite set of examples S is given; therefore a regularized
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Figure 1. Direct mapping of deep learning inverse problems.

least squares algorithm may be used as an alternative Poggio and Girosi (1989); Cucker and Smale (2002),

where the hypothesis space H is fixed and the estimate Gλ
S is obtained as

Gλ
S = argG∈H min

{

N

∑
i=1

D(G(mi),zi)+λR(G(mi))

}

, (13)

where R(·) is a penalty term and λ a regularization parameter which could be selected via cross-191

validation Arridge et al. (2019).192

Given that H is the hypothesis space of possible inverse functions, in this paper it is quite reasonable193

to understand H to be the space of functions which can be learned by a deep neural network, on the194

basis of optimizing its weight matrix W . Based on the optimization criterion (13), which is actually the195

variational framework in functional analytic regularization theory Poggio et al. (1985), and which forms196

the basis for inverse-function DNN learning, we claim in this paper that, in terms of the objective criterion,197

each deep learning solution category lies in the one of the following three classes:198

• Direct Mapping (DM)199

• Data Consistency Optimizer (DC)200

• Deep Regularizer (DR)201

Each of these is developed and defined, as follows.202

0.1 Direct Mapping203

The direct mapping category is used as the objective criterion in a large body of research in deep learning

based inverse problems Adler and Öktem (2017); Antholzer et al. (2019); Jin et al. (2017); Kelly et al.

(2017); Anirudh et al. (2018); Zhang and Ghanem (2018); Fan et al. (2017). These methods seek to find

end-to-end solutions for

min
W1

{

N

∑
i=1

D(z,G(m,W1))+λR(G(m,W1))

}

(14)

whereby D(·, ·) is the cost function to be minimized by a DNN G(m,W1), on the basis of optimizing DNN204

weights W1. R(G(m,W1)) specifies a generic analytical regularizer, to restrict the estimator to feasible205

solutions.206

The Direct Mapping category approximates an estimator G as an inverse to the forward model207

F , requiring a dataset of pairs {(mi,zi)}i of observed measurements and corresponding target system208

parameters, as illustrated in Figure 1.209

This category of DNN is typically used in those cases where we have a model-based imaging system

having a linear forward model m = Fz, where z is an image, so that convolution networks (CNNs) are

nearly always used. As discussed earlier, for Image Restoration problems the measurements themselves

are already images, however in more general contexts we may choose to project the measurements as

FHm, back into the domain of z, such that the CNN is trained to learn the estimator

ẑ = G(FHm,W1) (15)
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Figure 2. Data consistency optimization, where (A) the forward model is incorporated in the loss

function of the DNN and is utilized during DNN training and (B) is removed in the inference time.

The translation invariance of FHF , relatively common in imaging inverse problems, makes the convolutional-210

kernel nature of CNNs particularly suitable for serving as the estimator for these problems.211

In general, the performance of direct inversion is remarkable Lucas et al. (2018). However the212

receptive field (i.e., the size of the field of view the unit has over its input layer) of the CNN should be213

matched to the support of the point spread function Aggarwal et al. (2018). Therefore, large CNNs with214

many parameters and accordingly extensive amount of training time and data are often needed for the215

methods in this category. These DNNs are highly problem dependent and for different forward models216

(e.g., with different matrix sizes, resolutions, etc.) a new DNN will need to be learned.217

0.2 Data Consistency Optimizer218

The Data Consistency Optimizer category of deep learning aims to optimize data consistency as an

unsupervised criterion within a variational framework Aggarwal et al. (2018); Cha et al. (2019):

min
W2

{

N

∑
i=1

D
(

m,F(G(m,W2))
)

+λR(G(m,W2))

}

(16)

where, as in (14), D(·, ·) is the cost function to be minimized by DNN G(m,W2), parameterized by weights219

W2, subject to regularizer R(G(m,W1)). The overall picture is summarized in Figure 2.220

In contrast to (14), where the network cost function D is expressed in the space of unknowns z, here221

(16) expresses the cost in the space of measurements m, based on forward model F(·). That is, the data222

consistency term is no longer learning from supervised examples, rather from the forward model we obtain223

an unsupervised data consistency term, not needing data labels, whereby the forward model provides224

some form of implicit supervision.225

Compared to the direct mapping category, the use of the forward model in (16) leads to a network226

with relatively few parameters, in part because the receptive field of the DNN need not be matched to the227

support of the point spread function. However, the ill-posedness of the inverse problem causes a semi-228

convergent behaviour Arridge et al. (2019) using this criterion, therefore an early stopping regularization229

needs to be adopted in the learning process.230

0.3 Deep Regularizer231

Finally, the Deep Regularizer (DR) category needs a different problem modeling scheme, since there is

not a learning phase as in DM and DC. Instead, only a DNN (usually a classifier) is trained to be used

as the regularizer in a variational optimization framework. That is, DR continues to optimize the data

consistency term, however the overall optimization process is undertaken in the form of an analytical
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Figure 3. Deep regularized category of inverse problems, in which a DNN is used only as the regularizer

as part of an analytical variational framework.

variational framework and uses a DNN as the regularizer Chang, JH Rick et al. (2017); Li et al. (2018):

min
ẑ

{

N

∑
i=1

D(m,F(ẑ))+λR(ẑ,W3)

}

(17)

Here R(ẑ,W3) is a pre-trained deep regularizer, based on weight matrix W3, usually chosen as a deep232

classifier Chang, JH Rick et al. (2017); Li et al. (2018), discriminating the feasible solutions from233

non-feasible ones.234

This category usually includes an analytical variational framework consisting of a data consistency235

term and a learned DNN to capture redundancy in the parameter space (see Figure 3).236

Since our interest is in the DNN solution of the inverse problem, and not the details of the optimization,237

we have chosen two fairly standard optimization approaches, a simplex / Nelder-Mead approach Singer238

and Nelder (2009) (DR-NM) and a Genetic Algorithm strategy (DR-GA), both based on their respective239

Matlab implementations. Because GA solutions may be different from one run to the next, in general we240

report the results averaged over multiple independent runs.241

The Deep Regularizer category needs the fewest parameter settings, compared to the earlier categories;242

however because of the optimization based inference step it is computationally demanding.243

EXPERIMENTS244

Our focus in this paper is to study solution robustness in the presence of noise and outliers during245

inference. This section explores experimental results, for each of the the fundamental inverse-problem246

classes (restoration, reconstruction, dynamic estimation, physics informed) for each of the categories247

of solution (direct mapping (DM), data consistency optimizer (DC), deep regularizer (DR), physics248

informed deep structures (PIDS)), as discussed in Section . Our study is based on a statistical analysis via249

the Wilcoxon signed rank test Lathuilière et al. (2019), a well-known tool for analysing deep learning250

frameworks. The null hypothesis is that the result of each pairwise combination of DM, DC, and DR are251

from the same distribution, i.e., that the results are not significantly different. The experimental results are252

based on the following problems:253

• Linear Regression: a reconstruction problem, with the aim of finding line parameters from the254

noisy / outlier sample points drawn from that line.255

• Finding the coefficients of Burgers’ PDE: an Inverse problem in PDEs as continuous time model Bu256

and Karpatne (2021), with the aim of finding PDE coefficients from a set of observed data.257

• Image Denoising: a restoration problem, with the objective of recovering a clean image from noisy258

observations. We use both synthetic texture images and real images.259

• Single View 3D Shape Inverse Rendering: a reconstruction problem, for which the domains of the260

measurements and system parameters are different. The measurements include a limited number of261
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Table 1. The five inverse problems considered in our experiments.

Inverse Problem Measurements Unknown parameters Forward Model Training Data

Linear Regression

(Reconstruction)

2D coordinates of

N drawn samples

from the line

Slope, Intercept
Straight line

plus noise

Synthetic:

{(yi ,xi)}
including Gaussian noise

with heavy-tailed outliers

Burgers’ PDE

(PDE Inverse Problems)

Observations m,

provided by

Bu and Karpatne (2021)

PDE parameters in

Burgers’ :

mt +λ1mmx −λ2mxx = 0

Nonlinear PDE

equation plus noise
Synthetic

Image Denoising

(Restoration)
Noisy Image Clean Image Image plus noise

Synthetic:

5000 gray scale

texture images (64×64)

from stationary random process Fieguth (2010)

including exponential

number of pixel outliers

with heavy tailed

distribution

3D Shape Rendering

(Reconstruction)

Standard 2D landmarks

on input face image

Parameters of a

BFM 3D model

Noisy projection

from 3D to 2D

Synthetic:

72 landmarks on 2D

input image of a 3D human

face generated by a Besel

Face Model (BFM) Aldrian and Smith (2012)

including 5% outliers

in input 2D landmarks

Single Object Tracking

(Dynamic Estimation)

Noisy location of a ball

in a board

from n previous time steps

to current step

True Location of the ball
True object locations

plus noise

Synthetic:

Sequences

of a moving ball location

with different random initial states

and variable speeds

including Gaussian noise

for all measurements.

2D points (input image landmarks) with the unknown state, to be recovered, a 3D Morphable Model262

(3DMM). We use a 3D model of the human face, based on eigen-faces obtained from principal263

component analysis.264

• Single Object Tracking: a dynamic estimation problem, for which the goal is to predict the location265

(system parameter) of a moving object based on its (noisy) locations, measured in preceding frames.266

While this problem seems to belong to the class of restoration problems, the embedded state in this267

problem requires additional assumptions regarding the time-dynamics, and thus additional search268

strategies.269

All DNNs were implemented using the KERAS library Chollet et al. (2015) and ADAM optimizer270

Kingma and Ba (2014) on an NVIDIA GeForce GTX 1080 Ti. The DNN structures can be found in the271

corresponding subsection. All of the deep learning components in our experiments are trained for at most272

100 epochs using the default learning rate in KERAS library. Table 1 summarizes the overall experimental273

setup for all problems.274

0.4 Linear Regression275

We begin with an exceptionally simple inverse problem. Consider a set of one dimensional samples276

{(x(i),m
(i)
y )}N

i=1, subject to noise, with some number of the training data subject to more extreme outliers,277

as illustrated in Figure 4.278

As an inverse problem, we need to define the forward model, which for linear regression is simply

my = αx+β +ν . (18)

Since our interest is in assessing the robustness of the resulting inverse solver, the number and behaviour279

of outliers should be quite irregular, to make it challenging for a network to generalize from the training280

data. As a result, the noise ν is random variance, plus heavy-tailed (power law) outliers, where the number281

of outliers is exponentially distributed.282

For this inverse problem, the unknown state is comprised of the system parameters zT = [α,β ]. Thus283

linear regression leads to a reconstruction problem, for which the goal is to recover the line parameters284

from a sample set including noisy and outlier data points.285

With the problem defined, we next need to formulate an approach for each of the three solution286

categories. For direct mapping (DM) and data consistency (DC), the training data and DNN structures are287

the same, shown in Figure 5, where the DC approach includes an additional layer which applies the given288

forward model of (18). We used the KERAS library, in which a Lambda layer is designed for this forward289

operation.290
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Figure 4. 1D sample points for linear regression, with Gaussian noise and occasional large outliers.

Since the problem is one-dimensional with limited spatial structure, the network contains only dense291

feed-forward layers. Residual blocks are used in order to allow gradient flow through the DNN and to292

improve training. Network training was based on 1000 records, each of N = 500 noisy sample points.293

The Deep Regularizer (DR) category needs a different problem modeling scheme, since there is not a294

learning phase as in DM and DC. Instead, only a DNN (usually a classifier) is trained to be used as the295

regularizer in a variational optimization framework. The DNN regularizer is given the system parameters296

(α,β ) and determines whether they account for a feasible line. Here, we define the feasible line as a297

line having a tangent in some specified range. We generate a synthetic set of system parameters with298

associated labels for training a fully connected DNN as the regularizer for this category. Since our interest299

is in the DNN solution of the inverse problem, and not the details of the optimization, we have chosen two300

fairly standard optimization approaches, a simplex / Nelder-Mead approach Singer and Nelder (2009) and301

a Genetic Algorithm (GA) strategy, both based on their respective Matlab implementations. Because GA302

solutions may be different over multiple runs, we report the results averaged over ten independent runs.303

Table 2 shows the average solution found by each category over 10 independent trainings for DM and304

DC, and 10 independent inferences for DR. The table also reports Least-Squares (LS) results as a point305

of reference method, particularly to show the improvement that deep learning methods have to offer for306

robustness in solving inverse problems. Observe the significant difference when the DNN methods are307

trained with noise-free as opposed to noisy data, such that the noisy training data force the network to308

acquire a robustness to outliers.309

For DR we trained a 5 layer MLP with dense layers of sizes 5,4,3,2,1, as the regularizer, using the310

generated synthetic data including feasible line parameters (in the specific range) as the positive training311

samples and invalid line parameters as the negative training samples. The average test accuracy of the312

trained regularizer is 95.70%.313

We performed the Wilcoxon signed rank test, for both cases of training with noisy data (Table 3) and314

noise-free training (Table 4). The tables show the pairwise p-values over the 10 independent runs. A315

p− value in excess of 0.05 implies that the two methods are likely to stem from the same distribution;316

in particular, the Wilcoxon test computes the probability that the difference between the results of two317

methods are from a distribution with median equal to zero. Clearly all of the DNN methods are statistically318

significantly different from the least-squares (LS) results. For noisy training data, the statistical results319
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Figure 5. DNN structure for DM and DC solutions to linear regression. The layer type and number of

neurons are reported below each layer. Note that in the DC case, there is an additional Lambda layer,

which computes the forward function from the predicted line parameters.

Table 2. The error of estimated lines, with parameters averaged over 10 independent training / inference

runs, obtained by the three DNN categories compared with least-squares.

Training Data Measure — Method DM DC DR-GA DR-NM (z0 = [0,0]) LS

Noisy + Outlier
Error (Slope) 0.23±1.37 0.30±1.27 0.96±0.03 0.90±0 0.61±2.10

Error (Intercept) 0.15±1.68 0.06±1.59 1.13±0.04 1.09±0 0.22±3.00

Noise-Free
Error (Slope) 1.50±2.08 1.26±1.45 0.96±0.03 0.90±0 0.61±2.09

Error (Intercept) 0.32±1.85 0.32±1.38 1.13±0.04 1.09±0 0.21±3.00

in Table 3 show similar performance for DM and DC, and for DR-NM and DR-GA, the latter similarity320

suggesting that the specific choice of optimization methodology does not significantly affect the DR321

performance.322

The results in Table 2 show that DM and DC significantly improve in robustness when trained with323

noisy data, relative to training with noise-free data. The principal difference between DM/DC versus DR324

is the learning phase for DM/DC, allowing us to conclude that, at least for reconstruction problems, a325

learning phase using noisy samples in training significantly improves the robustness of the solution. A326

further observation is that whereas DM and DC achieve similar performance, DC is unsupervised and327

DM is supervised. Thus it would appear that the forward model knowledge and the data consistency term328

as objective criterion for DC provide an equal degree of robustness compared to the supervised learning329

in DM.330

For this reconstruction problem, we conclude that both DC and DM perform well, with the unsuper-331

vised DC showing strong performance both with noisy and noise-free training data.332

0.5 Finding Coefficients of Burgers’ PDE (Inverse Problems in PDEs)333

To test deep learning for Inverse Problems in PDEs, we chose Burgers’ Partial Differential Equations334

(PDEs) as a dynamic, continuous time PDE in our experiments.335

Burgers’ PDE or Bateman–Burgers equation Bateman (1915); Burgers (1948) is a basic partial336

differential equation occurring in various areas of applied mathematics, such as fluid mechanics, nonlinear337

acoustics, gas dynamics, and traffic flow Xin (2009). This setup encapsulates a wide range of problems in338

Table 3. Wilcoxon signed rank test p-values obtained for the linear regression problem, using noisy and

outlier data for both training and testing. We used 500 test samples to perform the statistical analysis over

10 independent training/inference steps of each method.

p-value

(Wilcoxon Test)
DM DC DR-GA DR-NM LS

DM - 0.695 0.002 0.002 0.002

DC 0.695 - 0.002 0.002 0.002

DR-GA 0.002 0.002 - 0.781 0.002

DR-NM 0.002 0.002 0.781 - 0.002

LS 0.002 0.002 0.002 0.002 -
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Table 4. Like Table 3, but now using noise-free data, i.e., without any noise or outliers, for method

training. Noisy and outlier data remain in place for testing.

p-value

(Wilcoxon Test)
DM DC DR-GA DR-NM LS

DM - 0.002 0.002 0.002 0.002

DC 0.002 - 0.002 0.002 0.002

DR-GA 0.002 0.002 - 0.781 0.002

DR-NM 0.002 0.002 0.781 - 0.002

LS 0.002 0.002 0.002 0.002 -

the mathematical physics including conservation laws, diffusion processes, advection-diffusion-reaction339

systems, and kinetic equations Raissi et al. (2019).340

For a given field m(x, t), we consider Burgers’ equation as the forward function, defined as

F(m(x, t);z) = mt + z1mmx − z2 mxx = 0 x ∈ Ω, t ∈ [0,T ] (19)

where z1,z2 denote the parameters of the equation and m(x, t) the state of the system, the subscripts341

denoting partial differentiation in either time or space. The goal is then to estimate parameters z1,z2,342

given a collection of points Raissi et al. (2019); Bu and Karpatne (2021).343

Solutions for this type of inverse problems in the literature, including Physics Informed Neural

Networks (PINNs) Raissi et al. (2019), and Quadratic Residual Neural Networks (QRes) Bu and Karpatne

(2021) actually use a regularized version of data loss, with F(m;z)2 as the regularizer. For instance,

PINNs are defined as

G := F(m(x, t);z) (20)

with F from (19), and using a DNN to approximate m(x, t). The DNN, along with (20), form the Physics

Informed Neural Network G(t,x) in which the chain rule could be used for differentiating compositions of

functions using automatic differentiation Baydin et al. (2018), which we call AutoGrad, and has the same

parameters as the network representing G(t,x;W2), albeit with different activation functions due to the

action of F . The shared parameters between the neural networks m(t,x) and G(t,x;W2) can be learned by

minimizing the mean squared error loss

JDM = PGLoss+DataLoss (21)

where

DataLoss =
1

Nm

Nm

∑
i=1

|m(t i
m,x

i
m;W1)−mi|2 (22)

and

PGLoss =
1

NG

NG

∑
i=1

|G(t i
G,x

i
G;W2)|

2 (23)

where {t i
m,x

i
m,m

i} denote the initial and boundary training data on m(t,x) and {t i
G,x

i
G}

NG
i=1 specify the344

collocations points for G(t,x). DataLoss corresponds to the initial and boundary data while PGLoss345

enforces the structure imposed by (19) at a finite set of collocation points.346

This definition of the loss functions makes them consistent with the objective of the Data Consistency347

optimizer (DC) solution category. Therefore, we include these methods within DC in our experiments.348

In the case of the DM approach, we can define the loss function as

JDM(m(x, t);z) =
1

NG

NG

∑
i=1

|zi
pred − zGT |2+|G(t i

G,x
i
G;W2)|

2 (24)

where zi
pred ,z

GT stand for the predicted parameter by the solution category and its ground truth, respec-349

tively.350
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Figure 6. Network structure for the (A) DM and (B) DC solution categories, in finding coefficients of

Burgers’ PDE.
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Table 5. MSE of the parameters of Burgers’ PDE, predicted by deep learning solution categories for this

problem.

Training Data Measure — Method DM DC DR-GA DR-NM (z0 = [0,0])

Noise-Free
Error (z˙1) (×10−4) 0.1±0.10 2.7±0.12 5.3±3.5 5.1±0

Error(z˙2)(×10−4) 131.4±51. 37.9±3.3 117.13±83.5 100.1±0

Noisy
Error (z˙1)(×10−4) 0.3±0.1 17.0±9.2 5.3±3.5 5.1±0

Error(z˙2)(×10−4) 42.1±3.3 3.1±0.8 117.13±83.5 100.1±0

Noisy + Outlier
Error (z˙1)(×10−4) 31.2±11.0 2.7±13.0 0.53±3.5 5.1±0

Error(z˙2)(×10−4) 67.0±32.0 0.60±32.0 117.13±83.5 100.10±0

Table 6. Statistical Analysis of the results in Table 5, using Wilcoxon signed rank test, in the case of all

types of measurements, including noise-free, noisy and noisy and outlier case, for training the networks.

p-value

(Wilcoxon Test)
DM DC DR-GA DR-NM

DM - 0.005 0.005 0.005

DC 0.005 - 0.005 0.005

DR-GA 0.005 0.005 - 0.834

DR-NM 0.002 0.002 0.834 -

Figure 6 shows the DM and DC DNNs for Burgers’ Inverse problem, where AutoGrad, the automatic351

differentiation component, is used for computing the needed gradients. The DC solution category only352

uses the PGLoss in its training procedure.353

For DR, we define the loss function as

JDR =
1

NG

NG

∑
i=1

|G(t i
G,x

i
G)|

2+λR(m;W3) (25)

where 1
NG

∑
NG
i=1|G(t i

G,x
i
G)|

2 is the data consistency term and R(m;W3) is a deep classifier, for which we354

trained an MLP classifier with dense layers of size 5, 4, 3, 2, 1, trained by he available measurement355

states, to control the values of m to be in the specified range, provided by Bu and Karpatne (2021).356

For the experiments, we used synthetic data provided by Bu and Karpatne (2021) as the training357

and test data, where the standard deviation of the noise is set to 1% of the data standard deviation, and358

for xi
m, t

i
m we used equi-spaced values in the specified ranges. In the case of outliers, we used additive359

Gaussian noise with magnitude equal to 10 times the data standard deviation for 0.05% of the data.360

Table 5 compares the MSE between the obtained parameter values by existing methods, averaged over 5361

independent training/ inferences.362

The statistical analyses of the results in Table 5 are reported in Table 6. From Tables 5, 6, it is363

observable that in this case it is DC which achieves the best robustness performance. The statistical364

analysis shows that the choice of DR optimization method does not impact the results. The results also365

show that the learning phase in DC significantly improves the obtained results compared with DR under366

the same objective.367

0.6 Image Denoising (Restoration)368

We now consider an image denoising problem, following the steps described in Section 0.4 for regression.369

We consider real and synthetic images, including 5 classes and 1200 training images, 400 test images per370

class, from the Linnaeus dataset Chaladze and Kalatozishvili (2017) as real data, and synthesized 5000371

texture images generated by sampling from stationary periodic kernels, as synthetic data.372

The synthetic images are generated using an FFT method Fieguth (2010), based on a thin-plate
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second-order Gauss-Markov random field kernel

P =













0 0 1 0 0

0 2 −8 2 0

1 −8 20+α2 −8 1

0 2 −8 2 0

0 0 1 0 0













(26)

such that a texture T is found by inverting the kernel in the frequency domain,

T = FFT−1
2

(

√

1⊘FFT2(P)⊙FFT2(W )
)

, (27)

with ⊙,⊘ as element-by-element multiplication and division, W as unit-variance white noise, and with373

the kernel P zero-padded to the intended size of T . Further details about this approach can be found in374

Fieguth (2010).375

Parameter α2, affecting the central element of the kernel P , effectively determines the texture spatial

correlation-length in T , as

α2 = 104−log10u (28)

for process correlation length, u, measured in pixels. We set u to be a random integer in the range [10,200]376

in our experiments.377

All images are set to be 64×64 in size, with pixel values normalized to [0,1]. Pixels are corrupted by378

additive Gaussian noise, with an exponentially distributed number of outliers.379

The inverse problem is a restoration problem, having the objective of restoring the original image

from its noisy/outlier observation. The linear forward model is

m = z+ν (29)

for measured, original, and added noise, respectively. The Gaussian noise ν has zero mean and random380

variance, and an exponential number of pixels become outliers, their values replaced with a uniformly381

distributed random intensity value.382

We used 5000 training samples and 500 test samples for the learning and evaluation phases of the383

DM and DC approaches. The DNN structure for both DM and DC is the same and is shown in Figure 7.384

In the case of DC, we design a DNN layer to compute the forward function. Since we are dealing385

with input images, both as measurements and system state, we design a fully convolutional DNN in an386

encoder-decoder structure, finding the main structures in the image through encoding and recovering the387

image via decoding. Since there may be information loss during encoding, we introduce skip connections388

to help preserve desirable information.389

Figure 7. DNN for the DM and DC solutions for image denoising problem. We have a fully

convolutional DNN with an encoder-decoder structure, where the values in parentheses indicate the stride

value of the corresponding convolutional layer. The skip connection helps to recover desirable

information which may be lost during encoding.

The DR category needs a pre-trained regularizer which determines whether the prediction is a feasible390

texture image. We trained a classifier for texture discrimination, generated using (27), from ordinary391

images gathered from the web, as the regularizer. Both GA and Nelder-Mead optimizers are used.392
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Figure 8. Image denoinsing results on synthetic textures. Only a single image is shown in each case,

however the reported average PSNR at the bottom is computed over the entire test set. The given noisy

image is subject to both additive noise and outliers. NLM, in the rightmost column, is the non-local

means filter, a standard approach from image processing.

We use peak signal to noise ratio (PSNR) as the evaluation criterion, computed as

PSNR(Ipred
, IGT) = 20 · log10 max(Ipred)−10 · log10MSE, (30)

MSE =
1

n
∑
i, j

(IGT
i, j − I

pred
i, j )2 (31)

where IGT
i, j , I

pred
i, j are the (i, j)th pixel in the ground-truth and predicted images, respectively. Note that in393

the DR case, since the input and output of the model are 64∗64 = 4096 images, the GA optimization394

routine was unable to find the solution in a reasonable time, therefore we do not avoid report any DR-GA395

results for this problem.396

As a reference point, we also report results obtained by the non-local means (NLM) filter Buades397

et al. (2011), to give insight into the amount of improvement of deep learning inverse methods over a398

well-established standard in image denoising.399

Figure 8 shows results based on synthetic textures. Each row in the figure shows a sample image400

associated with a particular correlation length noise standard deviation. The DM approach offers by401

far the best reconstruction among the DNN methods, and outperforms NLM in terms of PSNR. The402

time complexity of GA in DR-GA makes it inapplicable to problems of significant size (even though the403

images were still quite modest in size). The Wilcoxon signed rank test was performed on the DM, DC404

and DR-(Nelder-Mead) results. The statistical analysis of the obtained results gave a p value of 0.002 for405

each pairwise comparison, implying a statistically significant difference, thus the very strong performance406

of DM in Figure 8 is validated.407

In the case of real images, Figure 9 shows the visual results obtained by DM, DC and DR-NM for408

seven test samples.409

The statistical analysis is consistent with the results from the synthetic texture case, which is that all410

pairwise Wilcoxon tests led to a conclusion of statistically significant differences, with p values well411

below 0.05.412
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Figure 9. As in Figure 8, but here for denoising results on the Linnaeus dataset. The reported average

PSNR in the last row is computed over all test images. As in Figure 8, the DM results significantly

outperform other DNN inverse solvers and also non-local means (NLM).

From the results in Figures 8 and 9 and their respective statistical analyses, we conclude that:413

• For image denoising as a prototype for restoration problems, which have the same measurement414

and system parameter spaces, the concentration of the loss function on the true parameters (as in415

DM) provides better information and leads to a more effective estimator having greater robustness416

than the measurements themselves (as in DC).417

• DR-(Nelder-Mead) performed poorly, even though it optimizes data consistency, like DC, however418

we believe that the learning phase in DC, compared to DR, provides knowledge for its inference419

and allows DC to be more robust than DR for restoration inverse problems.420

0.7 3D shape Inverse Rendering (Reconstruction)421

We now wish to test a 3D shape inverse rendering (IR) Aldrian and Smith (2012) problem, for which a 3D

morphable model (3DMM) Blanz et al. (1999) describes the 3D shape of a human face s. This model is

based on extracting eigenfaces si, usually using PCA, from a set of 3D face shapes as the training data,

then to obtain new faces as a weighted combination zi of the eigenfaces. The 3D shape model reconstructs

a 3D face in homogeneous coordinates as

s = s̄+
n

∑
i=1

zisi, (32)

where s̄ is the mean shape of the 3DMM, and zi the weight of eigenface si. We use the Besel Face

Model Aldrian and Smith (2012) as the 3DMM in this experiment for which there are N = 54390 3D

points in each face shape and 199 eigenfaces. We can therefore rewrite (32) as

sN = s̄N + zT ∗SN (33)

where S is the tensor of 199 eigenfaces. In our experiments each face is characterized by 72 standard422

landmarks, shown in Figure 10, which are normalized and then presented to the system as the measure-423

ments. Therefore we actually only care about L = 72 out of N = 54390 3D points in the 3DMM. This424

experiment tackles the reconstruction of a 3D human face by finding the weights z of the 3DMM from425

its input 2D landmarks. We generated training data from the 3DMM by assigning random values to the426

3DMM weights, resulting in a 3D human face, and rendered the obtained 3D shape into a 2D image using427

orthographic projection.428
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Figure 10. Location and order of 72 standard landmarks on a 2D image of a sample human face. The

human face image in this figure is generated using BFM by Blanz et al. (1999).

The measurement noise consists of small perturbations of the 2D landmarks, with outliers as much429

larger landmark perturbations. We add zero-mean Gaussian noise having a standard deviation of 3×103
430

in the training data and 5×103 in the test data. Outliers are much larger, with a standard deviation of431

5×104 added to 10 of the 72 landmarks in 10% of the training data and 20% of the test data. Landmark432

point coordinates are in the range [−8×104,8×104], so the outlier magnitudes are very large.433

Let subscript L represent the the set of landmark point indices, in which case the forward model is the

orthographic projection

m =CsL +ν C =





1 0 0 0

0 1 0 0

0 0 0 0



 (34)

such that C converts from homogeneous 3D to homogeneous 2D coordinates, and the measurement noise

is

ν ∼ 0.9N(0,3×103I)+0.1N(0,5×104I) (35)

as noise and outliers associated with the projection operator. Since the goal of this inverse problem is to

estimate z in the 3DMM for a given 3D shape, we write (34) as

m =C(s̄L +SL ∗ z)+ν (36)

For the DM and DC solutions we generated 4000 sample faces as training data, using the Besel face434

model Aldrian and Smith (2012) as the 3DMM. The DR regularizer is a pre-trained classifier which435

discriminates a feasible 3D shape from random distorted versions of it.436

In DC we implemented the forward function layer as described in Aldrian and Smith (2012), with the437

resulting DM and DC DNN shown in Figure 11, where we used feed-forward layers because the system438

input is the vectorized 72 2D homogeneous coordinates and its output a weight vector. We design an439

encoder-decoder structure for DNNs, so as to map the 2D coordinates to a low dimensional space and440

to recover the parameters from that low dimensional representation. For the DR regularizer we trained441

a five layer MLP classifier to discriminate between a 3D face shape, generated by BFM, and randomly442

generated 3D point clouds as negative examples.443

Figure 12 shows visual results obtained by each solution category, where heat maps visualize the444

point-wise error magnitude relative to the ground truth. The visual results show that the DM and DC445

methods can capture the main features in the face (including eye, nose, mouth) better than the DR variants,446

however the differences between DM and DC seem to be negligible.447

To validate our observations, the numerical results and respective statistical analyses are shown in448

Tables 7 and 8. Table 7 lists the RMSE values for each solution category. We used 10 out of sample449

faces in the BFM model as test cases for reporting the results. In the case of DR (Nelder-Mead) we set450

the start point, i.e., z0, as a random value and report the averaged result over 10 independent runs. Note451

that the RMSE values are expected to be relatively large, since each 3D face shape provided by BFM is452

a point cloud of 53490 3D coordinates in the range [−8×104,8×104]. As a point of comparison, we453
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Figure 11. DNN structure for DM and DC for 3D shape inverse rendering.

Table 7. Average test RMSE with standard deviation values (over 10 out-of-sample faces of the

BFM Aldrian and Smith (2012)) for 3D shape inverse rendering.

Training Data

Method Noisy Test Cases (×103) Noisy + Outlier Test Cases (×103)

DM DC DR-GA DR-NM DM DC DR-GA DR-NM

Noise-free 3.8±2.0 4.2±1.8 3.9±0.7 4.2±2.2 5.9±2.4 5.5±2.2 5.7±1.2 5.8±3.3

Noisy 3.5±1.6 4.2±2.1 3.9±0.7 4.2±2.2 5.4±3.5 5.7±3.6 5.7±1.2 5.8±3.3

Noisy + Outlier 3.3±1.4 3.9±1.8 3.9±0.7 4.2±2.2 5.4±2.9 5.4±3.0 5.7±1.2 5.8±3.3

computed the average RMSE between a set of 500 generated 3D faces and 1000 random generated faces,454

to have a sense of RMSE normalization to random prediction. The average RMSE for random prediction455

is 1.28×104, a factor of two to four times larger than the RMSE values reported in Table 7.456

Table 8 shows the results of the Wilcoxon p values for statistical significance in the difference between457

reported values in Table 7, where we consider a p value threshold of 0.07.458

Based on the preceding numerical results and statistical analysis, we claim the following about each459

solution category facing with Reconstruction inverse problems:460

• Broadly, for training and test data not involving outliers, the overall performance of the methods is461

similar, with DM outperforming. This observation shows that the learning phase is not crucial in the462

presence of noise, and methods which concentrate on the test data can achieve equal performance463

compared to trainable frameworks.464

• In cases involving outliers the performance of the methods is more distinct, but with the DM and465

DC methods, having a learning phase for optimizing their main objective term, outperforming the466

DR variants. We conclude that a learning phase is important to make methods robust to outliers.467

• In the case of DR, the results show similar performance of the GA and NM optimization schemes,468

with GA outperforming NM. This observation encourages the reader to use optimization methods469

with more exploration power Eftimov and Korošec (2019), the ability of an optimization method to470

search broadly across the whole solution space, for DR solutions to reconstruction problems.471

• In all cases, we can observe that although DC is unsupervised, its performance when solving472

reconstruction inverse problems is near to that of DM, even outperforming DM in the case of473

outliers. Therefore, it is possible to solve reconstruction problems even without label information474

in the training phase.475

• One interesting observation is that while 3D shape inverse rendering is a complex reconstruction476

problem, the results for each solution category are qualitatively similar to the very different and477

far simpler inverse problem of linear regression, where DC similarly outperformed training data478

containing noisy and outlier samples.479
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Figure 12. Qualitative Results for 3D inverse rendering. Each result is shown as two faces, an upper

with the actual 3D result, and a lower as a heat map showing the error magnitude in each point of

predicted face are shown in the form of heat map for each prediction. For the DR method, the average

error magnitude over 20 runs is reported. We use the Besel Face Model (BFM) Aldrian and Smith (2012);

Blanz et al. (1999) which is based on a 3D mean face and compensates for outliers.

0.8 Single Object Tracking (Dynamic Estimation)480

Up to this point we have investigated deep learning approaches applied to static problems. We would now481

like to examine a dynamic inverse problem, that of single-object tracking.482

The classical approach for tracking is the Kalman Filter (KF) Fieguth (2010) and its many variations,483

all based on a predictor-corrector framework, meaning that the filter alternates between prediction484

(asserting the time-dynamics) and correcting (asserting information based on the measurements). For the485

inverse problem under study, we consider the current location estimation (filtering) in a two dimensional486

environment. Synthetic object tracking problems, as considered here, are studied in a variety of object487

tracking papers Kim et al. (2019); Choi and Christensen (2013); Black et al. (2003); Lyons and Benjamin488

(2009), where the specific tracking problem in this section is inspired from the approach of Fraccaro et al.489

(2017); Vermaak et al. (2003)490

The inverse problem task is to estimate the current ball location, given the noisy measurement in the491

corresponding time step and the previous state of the ball. Formally, we denote the measured ball location492
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Table 8. Wilcoxon signed rank test p values for the 3D shape inverse rendering problem.

Training Data

Test Data Noisy Noisy + Outlier

p-value DM DC DR-GA DR-NM DM DC DR-GA DR-NM

Noise-free

DM - 0.19 0.43 0.30 - 0.06 0.06 0.06

DC 0.19 - 0.43 0.30 0.06 - 0.06 0.06

DR-GA 0.43 0.43 - 0.78 0.06 0.06 - 0.78

DR-NM 0.30 0.30 0.78 - 0.06 0.06 0.78 -

Noisy

DM - 0.19 0.19 0.30 - 0.06 0.06 0.06

DC 0.19 - 0.30 0.30 0.06 - 0.12 0.30

DR-GA 0.19 0.30 - 0.78 0.06 0.12 - 0.78

DR-NM 0.30 0.30 0.78 - 0.06 0.30 0.78 -

Noisy + Outlier

DM - 0.06 0.06 0.06 - 1 0.06 0.06

DC 0.06 - 0.06 0.06 1 - 0.06 0.06

DR-GA 0.06 0.06 - 0.78 0.06 0.06 - 0.78

DR-NM 0.06 0.06 0.78 - 0.06 0.06 0.78 -

Figure 13. Graphical model for single object tracking: the goal is to estimate the location of a moving

ball in the current frame in a bounded 2D environment. mt denotes the current measured location and zt is

the current state.

by mt , and the system state, the current location of the ball, as zt . The graphical model in Figure 13493

illustrates the problem definition of the tracking problem, where the objective of the inverse problem is to494

address the dashed line, the inference of system state from corresponding measurement.495

To perform the experiments, we generate the training and test sets similar to Fraccaro et al. (2017)496

except that we assume that our measurements are received from a detection algorithm, which detects497

the ball location from input images having a size of 32×32 pixels, and that the movement of the ball is498

non-linear.499

In each training and test sequence the ball starts from a random location in the 2D environment, with

a random speed and direction, and then moving for 30 time steps. The dynamic of the generated data

includes changing the ball location zt and its velocity vt as

zt = v(t−1)∆t + z(t−1) (37)

vt = v(t−1)− (c(v(t−1))2sign(vt)) (38)

where c is a constant and is set to 0.001. In our data, collisions with walls are fully elastic and the velocity500

decreases exponentially over time. In this simulation, the training and testing data-sets contain 10000 and501

3000 sequences of 30-time steps, respectively.502

The training measurement noise is

ν ∼ 0.95N(0,0.2I)+0.05N(0,10I), (39)

a mixture model of Gaussian noise with 5% outliers. The testing noise is similar,

ν ∼ 0.85N(0,0.4I)+0.15N(0,10I) (40)

with a higher likelihood of outliers.503

The inverse problem is single-target tracking for which the dynamic of the model is unknown. The

inverse problem of interest is to find zt in

zt = G(z(t−1)
,mt) (41)
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As shown in Figure 13, we can model our problem as a first order Markov model where the current

measurement is independent of others given the current system state. The forward model is then defined

as

mt = F(zt) =Czt +ν , C = I, ν ∼ N(0,σ) (42)

We can model Markov models using Recurrent Neural Networks (RNN) Krishnan et al. (2017); Hafner504

et al. (2019); Rangapuram et al. (2018); Coskun et al. (2017). The DNN structure for DM and DC solution505

categories is shown in Figure 14, in which the LSTM layers lead the learning process to capture the time506

state and dynamic information in the data sequences.507

Figure 14. DNN structure for DM and DC solution categories in the case of single object tracking

problem.

We design the regularizer of the DR category as a classifier to classify location feasibility — those508

locations lying within the border of the 2D environment. Figure 15 shows the positive and negative509

samples which we used to train the DR regularizer. As before, we used GA (DR-GA) and Nelder-Mead

Figure 15. The positive and negative samples used for training the DR regularizer, where the black and

gray samples are in the positive and negative classes, respectively.

510

(DR-NM) algorithms as optimizers for DR. In the case of using Nelder-Mead, the results vary as a function511

of starting point z0, and found that using the last sequence measurement as the starting point empirically512

gave the best result for DR-NM.513
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Table 9. RMSE obtained by deep learning solution categories for tracking. The test data include both

noise and outliers.

Training Data Noise-free Noisy Noisy + Outlier

Method DM DC DR-GA DR-NM DM DC DR-GA DR-NM DM DC DR-GA DR-NM

RMSE
1.70

±0.05

1.79

±0.21

2.05

±0.00

1.85

±0.00

1.72

±0.08

2.04

±0.28

2.05

±0.00

1.85

±0.00

0.39

±0.03

1.94

±0.02

2.05

±0.00

1.85

±0.00

Table 10. Pairwise p values for tracking: the Wilcoxon signed rank test checks whether the obtained

results are significantly different.

p-value

(Wilcoxon Test)

Training Data:

Noise-free

Training Data:

Noisy

Training Data:

Noisy + Outlier

DM DC DR-GA DR-NM DM DC DR-GA DR-NM DM DC DR-GA DR-NM

DM - 0.160 0.002 0.002 - 0.002 0.002 0.002 - 0.002 0.002 0.002

DC 0.160 - 0.013 0.130 0.002 - 0.322 0.027 0.002 - 0.002 0.002

DR-GA 0.002 0.013 - 0.002 0.002 0.322 - 0.002 0.002 0.002 - 0.002

DR-NM 0.002 0.130 0.002 - 0.027 0.002 0.002 - 0.002 0.002 0.002 -

0.8.1 Visual and Numerical Results and Statistical Analysis514

Table 9 includes the numerical results obtained by each method in our experiments, where we report the515

average RMSE between reference and predicted points on the test trajectory as the evaluation criterion for516

each method.517

The obtained results and their statistical analysis are shown in Tables 9 and 10, based on which we518

conclude that519

• In the case of single object tracking, for which system parameters are permitted to evolve and be520

measured over time Fieguth (2010), the DM category achieves the best performance using all types521

of training data. The results are improved when the training data contain representative noise and522

outliers.523

• When the training does not include outliers, the DR-NM category achieves the second rank after524

DM; note that DR-NM is an unsupervised framework without a learning phase, showing that a525

learning phase is not necessarily required, and that looking only into test cases can give reasonable526

results.527

• When the training data include noisy and outlier samples, the solutions’ behaviour for single528

object tracking is similar to that of restoration problems. In particular, in single object tracking the529

measurements and system parameters are in the same space, like restoration problems.530

• In the case of DR solution category for dynamic estimation problems, it is observable that, unlike531

reconstruction problems, the NM optimization scheme performs better than the GA approach,532

emphasizing the importance of exploitation power Eftimov and Korošec (2019); Xu and Zhang533

(2014), referring to the ability of an optimization method to concentrate on a specific region of the534

solution space.535

DISCUSSION536

Based on the preceding experiments, Table 11 summarizes the overall findings, from which we conclude537

the following:538

• Overall, the presence or absence of outliers in the training phase leads to distinct differences in539

robustness. Generally, DM will be the best method when the training data does include outliers,540

whereas DC outperforms other methods if the training does not include outliers, based on having a541

data consistency term in its objective.542

• In reconstruction problems, comparing GA and NM optimization approaches in DR shows that GA543

achieves better performance, indicating the importance of exploration power in optimization for544

this class of problems.545

• The restoration inverse problems, which recover the system parameters from measurements of the546

same space, need label information (as in DM) to be robust against noise and outliers.547
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Table 11. Performance comparison by solution category and inverse problem types. Note that a > b

means that method a is statistically significantly better than method b.

Inverse Problem Problem Type Training Data Test Data Score (Larger is better)

Linear

Regression
Reconstruction

Noise-free Noisy + Outlier DC ¿ (DR-GA=DR-NM) ¿ DM

Noisy + Outlier Noisy + Outlier (DM = DC) ¿ (DR-GA=DR-NM)

3D Shape

Inverse

Rendering

Reconstruction

Noise-free Noisy DM = DC = DR-GA = DR-NM

Noise-free Noisy + Outlier DC ¿ (DR-GA=DR-NM) ¿ DM

Noisy Noisy DM = DC = DR-GA = DR-NM

Noisy Noisy + Outlier DM ¿ (DC = DR-GA = DR-NM)

Noisy + Outlier Noisy DM ¿ DC ¿ (DR-GA = DR-NM)

Noisy + Outlier Noisy+ Outlier (DM = DC) ¿ (DR-GA=DR-NM)

Image

Denoising
Restoration Noisy + Outlier Noisy+ Outlier DM ¿ DC ¿ (DR-GA = DR-NM)

Single

Object

Tracking

Dynamic

Estimation

Noise-free Noisy + Outlier (DM = DC) ¿ DR-NM ¿ DR-GA

Noisy Noisy + Outlier DM ¿ DR-NM ¿ (DC = DR-GA)

Noisy + Outlier Noisy + Outlier DM ¿ DC ¿ DR-NM ¿ DR-GA

Burgers’ PDE

coefficients

Inverse

Problems

in PDEs

Noise-free Noisy + Outlier DC ¿ DM ¿ (DR-GA=DR-NM)

Noisy Noisy + Outlier DC ¿ DM ¿ (DR-GA=DR-NM)

Noisy + Outlier Noisy + Outlier DC ¿ (DR-GA=DR-NM) ¿ DM

• In the case of restoration problems in static estimation, DM has the highest rank among tested548

methods. We believe this is because in the process of finding a mapping from one space to itself,549

the exploitation of accurate solution matters and this property is achieved using label information in550

the process of training the framework.551

• In the case of dynamic estimation problems, the DR solution performs well when the training data552

do not include outlier samples. Therefore we conclude that this class of problems could be solved553

without needing a learning phase and that solely the test case is sufficient to find a robust solution.554

• The dynamic estimation problems have additional challenges stemming from the time-dependent555

state information to be captured, an attribute which leads the solution to have different behavior556

from other problem types. We observed that there are similarities, based on the measurement and557

system parameter spaces, between the robustness power of the solution categories’ performance in558

a dynamic estimation problem and a static estimation problems with the same measurement and559

system parameter spaces.560

• For PDE inverse problems, the DC solution category achieves the best performance among the561

methods, and it is the DC learning phase which plays an important role in its performance.562

CONCLUSIONS563

This paper investigated deep learning strategies to explicitly solve inverse problems. The literature564

on deep learning methods for solving inverse problems was classified into three categories, each of565

which was evaluated on sample inverse problems of different types. Our focus is on the robustness of566

different categories, particularly with respect to their handling of noise and outliers. The results show that567

each solution category has different behaviours, in the sense of strengths and weaknesses with regards568

to problem assumptions, such that the problem characteristics need to be considered in selecting an569

appropriate solution mechanism for a given inverse problem.570

Typically, reconstruction problems need more exploration power and the existence of outliers in their571

training data makes DM the most robust among deep learning solution categories. Otherwise, when572

the training data do not include outliers for reconstruction problems, DC achieves the best performance,573

although not using label information in its training phase. The restoration problems need a greater degree574

of exploitation power for which the DM methods are best suited. In the case of dynamic estimation575

problems, when the training data do not include outliers, DR achieves second rank, indicating that dynamic576

estimation problems can be solved with reasonable robustness without a need for learning in the presence577
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of noise. The solution categories for inverse problems in PDEs have specific strategies in the literature,578

for which the DC category shows the best performance among for almost all types of training data.579
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Häggström, I., Schmidtlein, C. R., Campanella, G., and Fuchs, T. J. (2019). Deeppet: A deep encoder–668

decoder network for directly solving the pet image reconstruction inverse problem. Medical Image669

Analysis, 54:253–262.670
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