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ABSTRACT
In this paper we investigate a variety of deep learning strategies for solving inverse
problems. We classify existing deep learning solutions for inverse problems into three
categories of Direct Mapping, Data Consistency Optimizer, and Deep Regularizer.
We choose a sample of each inverse problem type, so as to compare the robustness of
the three categories, and report a statistical analysis of their differences. We perform
extensive experiments on the classic problem of linear regression and three well-
known inverse problems in computer vision, namely image denoising, 3D human
face inverse rendering, and object tracking, in presence of noise and outliers, are
selected as representative prototypes for each class of inverse problems. The overall
results and the statistical analyses show that the solution categories have a robustness
behaviour dependent on the type of inverse problem domain, and specifically
dependent on whether or not the problem includes measurement outliers. Based on
our experimental results, we conclude by proposing the most robust solution
category for each inverse problem class.

Subjects Artificial Intelligence, Computer Vision
Keywords Deep learning for inverse problems, 3D reconstruction as inverse problem, Single object
tracking as inverse problem, Image denoising as inverse problem, Linear regression as inverse
problem

INTRODUCTION
An inverse problem (Bertero & Boccacci, 1998; Fieguth, 2010; Stuart, 2010) seeks to
formulate a solution to estimating the unknown state underlying a measured system.
Specifically, a forward function F(·) describes the relationship of a measured output m,

m ¼ FðzÞ þ m (1)

as a function of the system state z, subject to a measurement noise m. The objective of
the inverse problem is to estimate z as a function of given measurement m, assuming a
detailed knowledge of the system, F(·), where if F(·) is not known or is partially known the
problem becomes blind or semi-blind (Lucas et al., 2018).

Different perspectives lead to different types of inverse problems. From the perspective
of data type, two classes of inverse problems are restoration and reconstruction (Arridge
et al., 2019), where restoration problems have the same domain for measurement and
state (e.g., signal or image denoising), while reconstruction has different domains (e.g., 3D
shape inference). Next, from the perspective of modeling, inverse problems are
classified into static and dynamic problems, where the static case seeks a single estimate ẑ,
consistent with some prior model on z and the forward model FðzÞ, whereas the dynamic
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case seeks estimates ẑðtÞ over time, consistent with an initial prior and a dynamic model.
We also consider a new class of inverse problems with some knowledge provided in the
form of PDEs. In this paper we will examine each of these inverse problems.

Existing analytical methods for solving inverse problems take advantage of domain
knowledge to regularize and constrain the problem to obtain numerically-stable solutions.
These methods are classified into four categories in Arridge et al. (2019):

� Analytic inversion (Natterer, 2001; Schuster, 2007) having the objective of finding a
closed form, possibly approximate, of F−1. This category of solutions will be highly
problem dependent.

� Iterative methods (Calvetti, Lewis & Reichel, 2002; Byrne, 2008), which optimize the
data consistency term

min
z

jjm� FðzÞjj: (2)

Because of the ill-posed nature of most inverse problems, the iteration tends to have a
semi-convergent behaviour, with the reconstruction error decreasing until some point and
then diverging, necessitating appropriate stopping criteria.

� Discretization as regularization (Hämarik et al., 2016; Kaltenbacher, Kirchner &
Vexler, 2011), including projection methods searching for an approximate solution of an
inverse problems in a predefined subspace. Choosing an appropriate subspace has high
impact on finding stable solutions.

� Variational methods, with the idea of minimizing data consistency penalized using
some regularizer R parameterized by θ:

min
z

jjm� FðzÞjj þ Rðz; hÞ (3)

This is a generic adaptable framework where F(·), R(·, ·) are chosen to fit a specific
problem, of which well-known classical examples include (Tikhonov Groetsch, 1984) and
total variation (Makovetskii, Voronin & Kober, 2015) regularization.

These approaches have weaknesses in requiring explicitly identified prior knowledge,
selected regularizers, some shortcomings in handling noise, computational complexity in
inference due to the optimization-based mechanisms, and most significantly limited
applicability, in the sense that each inverse problem needs to be solved one-off.

As a result, we are highly motivated to consider the roles of Deep Neural Networks
(DNNs) (Larochelle et al., 2009), which have the advantages of being generic data driven
methods, are adaptable to a wide variety of different problems, and can learn prior
models implicitly through examples. DNNs are currently in widespread use to solve a vast
range of problems in machine learning (Balas et al., 2019), artificial intelligence (Samek,
Wiegand &Müller, 2017), and computer vision Kim et al. (2018). The strong advantages of
using such structures include their near-universal applicability, their real-time inference
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(Canziani, Paszke & Culurciello, 2016; Khan et al., 2019), and their superiority in handling
sensor and/or measurement noise (Han et al., 2018).

A variety of studies (Aggarwal, Mani & Jacob, 2018; Lucas et al., 2018) have shown that
planned, systematic DNNs will tend to have fewer parameters and better generalization
power compared to generic architectures, which motivates us to consider systematic
strategies in addressing complex inverse problems.

In principle, every deep learning framework could be interpreted as solving some sort of
inverse problem, in the sense that the network is trained to take measurements and to
infer, from given ground truth, the desired unknown state. For example, for the common
DNN application to image classification, the input is a (measured) image, and the network
output is a (unknown state) label, describing the object or scene appearing in the
image. The network parameters then implicitly learn the inverse of the forward model,
which had been the generation of an image from a label.

Using DNNs for solving inverse problems aims to approximate the inverse of the
forward model (Fieguth, 2010). In some cases, the forward model may be explicitly defined
(Anirudh et al., 2018; Chang et al., 2017; Aggarwal, Mani & Jacob, 2018), whereas in
other cases it may be implicitly defined in the form of the training data (Adler & Öktem,
2017; Antholzer, Haltmeier & Schwab, 2019; Jin et al., 2017; Kelly, Matthews & Anastasio,
2017; Anirudh et al., 2018; Zhang & Ghanem, 2018; Fan et al., 2017). In this paper our
focus is on solving non-blind inverse problems, with the forward model known. Analytical
approaches to inverse problems, whether deterministic or stochastic, take advantage of
the explicit forward model and prior knowledge in formulating the solution; in contrast,
DNNs cannot take advantage of such information, and must instead learn implicitly from
large datasets of training data in a black-box approach.

Inspired by the above techniques, there are indeed a number of proposed deep
frameworks in the literature with the aim of bringing regularization techniques or prior
knowledge into the DNN learning process for solving inverse problems (Aggarwal, Mani &
Jacob, 2018; Chang et al., 2017; Dosovitskiy et al., 2015; Wang et al., 2015; Xu et al.,
2014; Schuler et al., 2015; Raissi, Perdikaris & Karniadakis, 2019; Bu & Karpatne, 2021).
In this paper, we classify deep solutions for inverse problems into four categories based
on their objective criteria, and compare them in solving different types of inverse
problems.

The focus of this paper is comparing the robustness of different deep learning structures
based on their optimization criterion associated with the training scheme; that is, the main
objective of this research is to provide insight into the choice of appropriate framework,
particularly with regards to performance robustness. It is worth noticing here that our
goal is not to outperform the state-of-the-art performance in different problems, nor to
propose new deep-learning approaches, rather to examine different frameworks with fair
parameter settings. Using these frameworks, we select a prototype inverse problem from
each category and evaluate the performance and the robustness of the designed
frameworks. We believe the results obtained in this way give insight into the strength of
each solution category in addressing different categories of inverse problems.
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The contributions in this paper focus on developing three categories of deep learning
frameworks, applying each of these to five widespread, broadly-understood inverse
problems, and then assessing the robustness in each case via statistical analysis. The
specific contribution of this work is to develop a deeper understanding of the choice of best
deep-learning framework for each type of inverse problem.

The rest of this paper is organized as follows: “Literature Review” includes a review of
the most recent deep approaches to solving inverse problems; “Problem Definition”
describes the problem definition, introducing three main categories for deep solutions for
inverse problems; “Experiments” explains the experimental results including robustness
analysis; finally “Conclusions” concludes the paper, proposing the best approach based on
our experiments.

LITERATURE REVIEW
Inverse problems have had a long history (Engl, Hanke & Neubauer, 1996; Fieguth, 2010;
Stuart, 2010) in a wide variety of fields. In our context, since imaging involves the
observing of a scene or phenomenon of interest, through a lens and spatial sensor,
where the goal is to infer some aspect of the observed scene, essentially all imaging is an
inverse problem, widely explored in the literature (Bertero & Boccacci, 1998; Mousavi &
Baraniuk, 2017; De los Reyes, Schönlieb & Valkonen, 2016). Imaging-related inverse
problems may fall under any of image recovery, restoration, deconvolution,
pansharpening, concealment, inpainting, deblocking, demosaicking, super-resolution,
reconstruction from projections, compressive sensing, and many others.

Inverse problems are ultimately the deducing of some function G(·) which inverts the
forward problem in (1), with z ¼ GðmÞ, where some objective criterion obviously needs to
be specified in order to select G(·). Since G(·) is very large (an input image has many
pixels), unknown, and frequently nonlinear, it has become increasingly attractive to
consider the role of DNNs, in their role as universal function approximators, in deducing
G(·), and a number of approaches have been recently proposed in this fashion (Lucas et al.,
2018; Arridge et al., 2019; McCann & Unser, 2019).

The most common approach when using DNNs for inverse problem solving includes
optimizing the squared-error criterion jjz � GðmÞjj22, with G(·) a DNN to be learned
(Adler & Öktem, 2017; Antholzer, Haltmeier & Schwab, 2019; Jin et al., 2017; Kelly,
Matthews & Anastasio, 2017; Anirudh et al., 2018; Zhang & Ghanem, 2018; Fan et al.,
2017). This strategy implicitly finds a direct mapping from m to z using pairs ðz;mÞ as the
training data in the learning phase, which seeks to solve

Ŵ ¼ argW min jjz � Gðm;WÞjj22 (4)

forW the network weights in the DNN, and z,m as system parameters and measurements,
respectively. Such supervised training needs a large number of data samples, which in
some cases may be generated from the forward function F(·).

Recent work in direct mapping includes (Häggström et al., 2019), in which an encoder-
decoder structure is proposed to directly solve clinical positron emission tomography
(PET) image reconstruction. Similarly Chen et al. (2019) proposes a direct mapping deep
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learning framework to identify the impact load conditions of shell structures based on their
final state of damage, an inverse problem of engineering failure analysis.

Recent research investigates the incorporation of prior knowledge into DNN solutions
for inverse problems. In particular, the use of intelligent initialization of DNN weights and
analytical regularization techniques form the main classes of existing work in this
domain (Lucas et al., 2018). In Goh et al. (2019), variational autoencoders are used to solve
forward and inverse problems, where the latent space of the autoencoder is used as the
Parameter of Interest (PoI) space, and input and output of the autoencoder as the
observation spaces. In Anirudh et al. (2018), an unsupervised deep framework is proposed
for solving inverse problems using a Generative Adversarial Network (GAN) to learn a
prior without any information about the measurement process. In Dittmer et al. (2019), a
variational autoencoder (VAE) is used to solve electrical impedance tomography (EIT),
a nonlinear ill-posed inverse problem. The VAE uses a variety of training data sets to
generate a low dimensional manifold of approximate solutions, which allows the ill-posed
problem to be converted to a well-posed one.

The forward model provides knowledge regarding data generation, based on the physics
of the system. In Chang et al. (2017) an iterative variational framework is proposed to
solve linear computer vision inverse problems of denoising, impainting, and super-
resolution. It proposes a general regularizer R for linear inverse problems which is first
learned by a huge collection of images, and which is then incorporated into an Alternating
Direction Method of Multipliers (ADMM) algorithm for optimizing

minẑ
1
2
jjm� Fẑjj22 þ kRðẑ;WÞ (5)

Here regularizer R(·) was learned from image datasets and W is the network weight
matrix, as before. Here F is a matrix, the (assumed to be) linear forward model.

The equivalent approach for a non-linear forward model is considered in Li et al. (2018),
in which a data consistency term DðFðẑÞ;mÞ as a training objective incorporates the
forward model into the problem:

minẑ fDðFðẑÞ;mÞ þ kRðẑ;WÞg (6)

for regularization weight λ.
In Senouf et al. (2019), a self-supervised deep learning framework is proposed for

solving inverse problems in medical imaging using only the measurements and forward
model in training the DNN.

Further DNN methods for inverse problems are explored in Aggarwal, Mani & Jacob
(2018), where the forward model is explicitly used in an iterative deep learning framework,
requiring fewer parameters compared to direct mapping approaches. In Yaman et al.
(2019), an iterative deep learning framework is proposed for MRI image reconstruction.
The work in Bar & Sochen (2019) proposes an unsupervised framework for solving
forward and inverse problems in EIT. In Cha, Lee & Oh (2019) the analytical forward
model is directly used in determining a DNN loss function, yielding an unsupervised
framework utilizing knowledge about data generation. Other methods optimize data
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consistency using an estimate of the forward model, learned from training data (Fraccaro
et al., 2017).

A recent trend toward solving inverse problems involves estimating the posterior
probability of the system parameters pðzjmÞ (Dinh, Sohl-Dickstein & Bengio, 2016;
Ardizzone et al., 2018; Kingma & Dhariwal, 2018). An invertible structure is adopted to
train the framework with the system parameters as input and measurements as network
outputs. After training, the invertible network structure permits operating in the opposite
direction, i.e., accepting measurements as input and producing the desired estimates
(Ardizzone et al., 2018). Our focus in this paper is on the objective function for
categorization the solutions, therefore such invertible structures do not themselves
introduce a separate solution category in our experiments.

The system parameters may themselves be coefficients in a partial differential equation
(PDE) governing the system, whereby the observations are discrete measurements of the
state variables of the PDE. Assuming that the observations are corrupted by additive
noise, then function F(·) in (1) will be a PDE. In such Physics Informed inverse problems,
specific deep learning structures have been developed, including Physics Informed
Neural Networks (PINNs) (Raissi, Perdikaris & Karniadakis, 2019), in which the PDE is
faced as a regularization term, or Quadratic residual (Qres) NNs (Bu & Karpatne,
2021) with greater expressive power. This class of inverse problems aims to find more
complex solutions with less training data and achieving fewer parameters. In Pakravan
et al. (2021) and Goh et al. (2019), the parameters of an inverse problem in PDEs are
considered as the latent space of an autoencoder, and are learned in an unsupervised
manner. The work of Goh et al. (2019) uses a variational autoencoder, and Pakravan et al.
(2021) aims to find the coefficients using a semantic autoencoder in which the decoder part
is an analytic PDE solver.

The approach presented inMaass (2019) is closely related to ours, and aims at analysing
deep learning structures for solving inverse problems, seeking to understand neural
networks for solving small inverse problems. Our goal in this paper is to categorize deep
learning frameworks for different inverse problems, based on their objectives and training
schemes, investigating the power of each.

PROBLEM DEFINITION
Recall the forward model (1):

m ¼ FðzÞ þ m m�Nð0; IÞ (7)

with given noise process m, assumed to be white. There are three fundamental classes of
inverse problems to solve:

� Static Estimation Problems, in which the system state z is static, without any evolution
over time Fieguth (2010). We will consider the following static problems:

– Image Restoration, part of a class of inverse problems in which the state and
measurement spaces coincide (same number of pixels). Typically the measurements are a
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corrupted version of the unknown state, and the problem is to recover an estimate of the
true signal from its corrupted version knowing the (forward) distortion model.

– Image Reconstruction, to find a projection from some measurement space to a
differently sized state, such as 3D shape reconstruction from 2D scenes. These problems
need careful regularization to find feasible solutions.

� Dynamic Estimation Problems, in which z is subject to dynamics and measurements
over time Fieguth (2010), such as in object tracking.

� Inverse Problems in Partial Differential Equations (PDEs) refers to reconstruction of
the parameters of a PDE, including coefficients, boundary conditions, initial conditions,
the shape of domains, or singularity from partial knowledge of solutions to the PDE
(Raissi, Perdikaris & Karniadakis, 2019; Bu & Karpatne, 2021; Pakravan et al., 2021; Goh
et al., 2019).

Our focus is on DNNs as data-driven models for solving inverse problems, so we wish to
redefine inverse problems to the context of learning from examples in statistical learning
theory (Vito et al., 2005). We need two sets of variables:

Inputs m 2 M Outputs z 2 Z (8)

The relation between input and output is described by a probability distribution
pðm; zÞ 2 M � Z, where the distribution is known only through a finite set of samples, the
training set

S ¼ fmi; zig 1 � i � N (9)

assumed to have been drawn independently and identically distributed (i.i.d.) from p. The
learning objective is to find a function GðmÞ to be an appropriate approximation of output
z in the case of a given input m. That is,

True z � Estimated z ¼ GðmjSÞ; (10)

such that G(· | S) was learned on the basis of S.
In order to measure the effectiveness of estimator function G in inferring the desired

relationship described by p, the expected conditional error can be used:

IðGÞ ¼
Z
M�Z

DðGðmÞ; zÞdpðz;mÞ (11)

where DðGðmÞ; zÞ is the cost or loss function, measuring the cost associated with
approximating true value z with an estimate GðmÞ. Choosing a squared loss ðGðmÞ � zÞ2
allows us to derive

GðmÞ ¼
Z
Z
zdpðzjmÞ ¼ Ep½zjm�; (12)

the classic optimal Bayesian least-squares estimator (Fieguth, 2010). In the case of
learning from examples, (12) cannot be reconstructed exactly since only a finite set of
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examples S is given; therefore a regularized least squares algorithm may be used as an
alternative (Poggio & Girosi, 1989; Cucker & Smale, 2002), where the hypothesis space H is
fixed and the estimate Gk

S is obtained as

Gk
S ¼ argG2H min

XN
i¼1

DðGðmiÞ; ziÞ þ kRðGðmiÞÞ
( )

; (13)

where R(·) is a penalty term and λ a regularization parameter which could be selected via
cross-validation (Arridge et al., 2019).

Given that H is the hypothesis space of possible inverse functions, in this paper it is
quite reasonable to understand H to be the space of functions which can be learned by a
deep neural network, on the basis of optimizing its weight matrix W. Based on the
optimization criterion (13), which is actually the variational framework in functional
analytic regularization theory (Poggio, Torre & Koch, 1985), and which forms the basis for
inverse-function DNN learning, we claim in this paper that, in terms of the objective
criterion, each deep learning solution category lies in the one of the following three classes:

� Direct Mapping (DM)

� Data Consistency Optimizer (DC)

� Deep Regularizer (DR)

Each of these is developed and defined, as follows.

Direct mapping
The direct mapping category is used as the objective criterion in a large body of research in
deep learning based inverse problems (Adler & Öktem, 2017; Antholzer, Haltmeier &
Schwab, 2019; Jin et al., 2017; Kelly, Matthews & Anastasio, 2017; Anirudh et al., 2018;
Zhang & Ghanem, 2018; Fan et al., 2017). These methods seek to find end-to-end solutions
for

min
W1

XN
i¼1

Dðz;Gðm;W1ÞÞ þ kRðGðm;W1ÞÞ
( )

(14)

whereby D(·, ·) is the cost function to be minimized by a DNN Gðm;W1Þ, on the basis of
optimizing DNN weights W1. RðGðm;W1ÞÞ specifies a generic analytical regularizer, to
restrict the estimator to feasible solutions.

The Direct Mapping category approximates an estimator G as an inverse to the forward
model F, requiring a dataset of pairs fðmi; ziÞgi of observed measurements and
corresponding target system parameters, as illustrated in Fig. 1.

This category of DNN is typically used in those cases where we have a model-based
imaging system having a linear forward model m ¼ FðzÞ, where z is an image, so that
convolution networks (CNNs) are nearly always used. As discussed earlier, for Image
Restoration problems the measurements themselves are already images, however in more
general contexts we may choose to project the measurements as FHm, back into the
domain of z, such that the CNN is trained to learn the estimator
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ẑ ¼ GðFHm;W1Þ (15)

The translation invariance of FH F, relatively common in imaging inverse problems,
makes the convolutional-kernel nature of CNNs particularly suitable for serving as the
estimator for these problems.

In general, the performance of direct inversion is remarkable (Lucas et al., 2018).
However the receptive field (i.e., the size of the field of view the unit has over its input
layer) of the CNN should be matched to the support of the point spread function
(Aggarwal, Mani & Jacob, 2018). Therefore, large CNNs with many parameters and
accordingly extensive amount of training time and data are often needed for the methods
in this category. These DNNs are highly problem dependent and for different forward
models (e.g., with different matrix sizes, resolutions, etc.) a new DNN will need to be
learned.

Data consistency optimizer
The Data Consistency Optimizer category of deep learning aims to optimize data
consistency as an unsupervised criterion within a variational framework (Aggarwal, Mani
& Jacob, 2018; Cha, Lee & Oh, 2019):

min
W2

XN
i¼1

Dðm; FðGðm;W2ÞÞÞ þ kRðGðm;W2ÞÞ
( )

(16)

where, as in (14), D(·, ·) is the cost function to be minimized by DNN Gðm;W2Þ,
parameterized by weights W2, subject to regularizer RðGðm;W1ÞÞ. The overall picture is
summarized in Fig. 2.

Figure 1 Direct mapping of deep learning inverse problems.
Full-size DOI: 10.7717/peerj-cs.951/fig-1

Figure 2 Data consistency optimization, where (A) the forward model is incorporated in the loss
function of the DNN and is utilized during DNN training and (B) is removed in the inference
time. Full-size DOI: 10.7717/peerj-cs.951/fig-2

Kamyab et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.951 9/37

http://dx.doi.org/10.7717/peerj-cs.951/fig-1
http://dx.doi.org/10.7717/peerj-cs.951/fig-2
http://dx.doi.org/10.7717/peerj-cs.951
https://peerj.com/computer-science/


In contrast to (14), where the network cost function D is expressed in the space of
unknowns z, here (16) expresses the cost in the space of measurements m, based on
forward model F(·). That is, the data consistency term is no longer learning from
supervised examples, rather from the forward model we obtain an unsupervised data
consistency term, not needing data labels, whereby the forward model provides some form
of implicit supervision.

Compared to the direct mapping category, the use of the forward model in (16) leads to
a network with relatively few parameters, in part because the receptive field of the DNN
need not be matched to the support of the point spread function. However, the ill-
posedness of the inverse problem causes a semi-convergent behaviour (Arridge et al., 2019)
using this criterion, therefore an early stopping regularization needs to be adopted in the
learning process.

Deep regularizer
Finally, the Deep Regularizer (DR) category needs a different problem modeling scheme,
since there is not a learning phase as in DM and DC. Instead, only a DNN (usually a
classifier) is trained to be used as the regularizer in a variational optimization framework.
That is, DR continues to optimize the data consistency term, however the overall
optimization process is undertaken in the form of an analytical variational framework and
uses a DNN as the regularizer (Chang et al., 2017; Li et al., 2018):

min
ẑ

XN
i¼1

Dðm; FðẑÞÞ þ kRðẑ;W3Þ
( )

(17)

Here Rðẑ;W3Þ is a pre-trained deep regularizer, based on weight matrix W3, usually
chosen as a deep classifier (Chang et al., 2017; Li et al., 2018), discriminating the feasible
solutions from non-feasible ones.

This category usually includes an analytical variational framework consisting of a data
consistency term and a learned DNN to capture redundancy in the parameter space (see
Fig. 3).

Since our interest is in the DNN solution of the inverse problem, and not the details of
the optimization, we have chosen two fairly standard optimization approaches, a simplex/
Nelder-Mead approach Singer & Nelder (2009) (DR-NM) and a Genetic Algorithm
strategy (DR-GA), both based on their respective Matlab implementations. Because GA

Figure 3 Deep regularized category of inverse problems, in which a DNN is used only as the
regularizer as part of an analytical variational framework.

Full-size DOI: 10.7717/peerj-cs.951/fig-3
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solutions may be different from one run to the next, in general we report the results
averaged over multiple independent runs.

The Deep Regularizer category needs the fewest parameter settings, compared to the
earlier categories; however because of the optimization based inference step it is
computationally demanding.

EXPERIMENTS
Our focus in this paper is to study solution robustness in the presence of noise and outliers
during inference. This section explores experimental results, for each of the the
fundamental inverse-problem classes (restoration, reconstruction, dynamic estimation,
physics informed) for each of the categories of solution (direct mapping (DM), data
consistency optimizer (DC), deep regularizer (DR)), as discussed in the previous section.
Our study is based on a statistical analysis via the Wilcoxon signed rank test (Lathuilière
et al., 2019), a well-known tool for analysing deep learning frameworks. The null
hypothesis is that the result of each pairwise combination of DM, DC, and DR are from the
same distribution, i.e., that the results are not significantly different. The experimental
results are based on the following problems:

� Linear Regression: a reconstruction problem, with the aim of finding line parameters
from the noisy/outlier sample points drawn from that line.

� Finding the coefficients of Burgers’ PDE: an Inverse problem in PDEs as continuous time
model (Bu & Karpatne, 2021), with the aim of finding PDE coefficients from a set of
observed data.

� Image Denoising: a restoration problem, with the objective of recovering a clean image
from noisy observations. We use both synthetic texture images and real images.

� Single View 3D Shape Inverse Rendering: a reconstruction problem, for which the
domains of the measurements and system parameters are different. The measurements
include a limited number of 2D points (input image landmarks) with the unknown state,
to be recovered, a 3D Morphable Model (3DMM). We use a 3D model of the human
face, based on eigen-faces obtained from principal component analysis.

� Single Object Tracking: a dynamic estimation problem, for which the goal is to predict
the location (system parameter) of a moving object based on its (noisy) locations,
measured in preceding frames. While this problem seems to belong to the class of
restoration problems, the embedded state in this problem requires additional
assumptions regarding the time-dynamics, and thus additional search strategies.

All DNNs were implemented using the KERAS library (Chollet, 2015) and ADAM
optimizer (Kingma & Ba, 2014) on an NVIDIA GeForce GTX 1080 Ti. The DNN
structures can be found in the corresponding subsection. All of the deep learning
components in our experiments are trained for at most 100 epochs using the default
learning rate in KERAS library. Table 1 summarizes the overall experimental setup for all
problems.
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Linear regression
We begin with an exceptionally simple inverse problem. Consider a set of one dimensional
samples fðxðiÞ;mðiÞ

y ÞgNi¼1, subject to noise, with some number of the training data subject to
more extreme outliers, as illustrated in Fig. 4.

As an inverse problem, we need to define the forward model, which for linear regression
is simply

my ¼ ax þ bþ m: (18)

Since our interest is in assessing the robustness of the resulting inverse solver, the
number and behaviour of outliers should be quite irregular, to make it challenging for a
network to generalize from the training data. As a result, the noise m is random variance,
plus heavy-tailed (power law) outliers, where the number of outliers is exponentially
distributed.

For this inverse problem, the unknown state is comprised of the system parameters

zT ¼ ½a;b�. Thus linear regression leads to a reconstruction problem, for which the goal is
to recover the line parameters from a sample set including noisy and outlier data points.

With the problem defined, we next need to formulate an approach for each of the
three solution categories. For direct mapping (DM) and data consistency (DC), the
training data and DNN structures are the same, shown in Fig. 5, where the DC approach
includes an additional layer which applies the given forward model of (18). We used the
KERAS library, in which a Lambda layer is designed for this forward operation.

Table 1 The five inverse problems considered in our experiments.

Inverse problem Measurements Unknown parameters Forward model Training data

Linear Regression
(Reconstruction)

2D coordinates of N
drawn samples from
the line

Slope, Intercept Straight line plus noise Synthetic: {(yi, xi)} including Gaussian noise
with heavy-tailed outliers

Burgers’ PDE (PDE
Inverse Problems)

Observations m,
provided by Bu &
Karpatne (2021)

PDE parameters in Burgers’:
mt þ �1mmx � �2mxx ¼ 0

Nonlinear PDE
equation plus noise

Synthetic

Image Denoising
(Restoration)

Noisy Image Clean Image Image plus noise Synthetic: 5,000 gray scale texture images
(64 × 64) from stationary random process
Fieguth (2010) including exponential
number of pixel outliers with heavy tailed
distribution

3D Shape Rendering
(Reconstruction)

Standard 2D
landmarks on input
face image

Parameters of a BFM 3D
model

Noisy projection from
3D to 2D

Synthetic: 72 landmarks on 2D input image
of a 3D human face generated by a Besel
Face Model (BFM) Aldrian & Smith (2012)
including 5% outliers in input 2D
landmarks

Single Object
Tracking (Dynamic
Estimation)

Noisy location of a ball
in a board from n
previous time steps
to current step

True Location of the ball True object locations
plus noise

Synthetic: Sequences of a moving ball
location with different random initial
states and variable speeds including
Gaussian noise for all measurements
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Since the problem is one-dimensional with limited spatial structure, the network
contains only dense feed-forward layers. Residual blocks are used in order to allow
gradient flow through the DNN and to improve training. Network training was based on
1,000 records, each of N = 500 noisy sample points.

The Deep Regularizer (DR) category needs a different problem modeling scheme,
since 2there is not a learning phase as in DM and DC. Instead, only a DNN (usually a
classifier) is trained to be used as the regularizer in a variational optimization framework.
The DNN regularizer is given the system parameters (α, β) and determines whether they
account for a feasible line. Here, we define the feasible line as a line having a tangent in
some specified range. We generate a synthetic set of system parameters with associated

Figure 4 1D sample points for linear regression, with Gaussian noise and occasional large outliers.
Full-size DOI: 10.7717/peerj-cs.951/fig-4

Figure 5 DNN structure for DM and DC solutions to linear regression. The layer type and number of
neurons are reported below each layer. Note that in the DC case, there is an additional Lambda layer,
which computes the forward function from the predicted line parameters.

Full-size DOI: 10.7717/peerj-cs.951/fig-5
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labels for training a fully connected DNN as the regularizer for this category. Since our
interest is in the DNN solution of the inverse problem, and not the details of the
optimization, we have chosen two fairly standard optimization approaches, a simplex/
Nelder-Mead approach Singer & Nelder (2009) and a Genetic Algorithm (GA) strategy,
both based on their respective Matlab implementations. Because GA solutions may be
different over multiple runs, we report the results averaged over ten independent runs.

Table 2 shows the average solution found by each category over 10 independent
trainings for DM and DC, and 10 independent inferences for DR. The table also reports
Least-Squares (LS) results as a point of reference method, particularly to show the
improvement that deep learning methods have to offer for robustness in solving inverse
problems. Observe the significant difference when the DNN methods are trained with
noise-free as opposed to noisy data, such that the noisy training data force the network to
acquire a robustness to outliers.

For DR we trained a 5 layer MLP with dense layers of sizes 5, 4, 3, 2, 1, as the regularizer,
using the generated synthetic data including feasible line parameters (in the specific range)
as the positive training samples and invalid line parameters as the negative training
samples. The average test accuracy of the trained regularizer is 95.70%.

We performed the Wilcoxon signed rank test, for both cases of training with noisy
data (Table 3) and noise-free training (Table 4). The tables show the pairwise p-values over
the 10 independent runs. A p-value in excess of 0.05 implies that the two methods are likely
to stem from the same distribution; in particular, the Wilcoxon test computes the
probability that the difference between the results of two methods are from a distribution
with median equal to zero. Clearly all of the DNN methods are statistically significantly

Table 2 The error of estimated lines, with parameters averaged over 10 independent training/inference runs, obtained by the three DNN
categories compared with least-squares.

Training data Measure—Method DM DC DR-GA DR-NM (z0 = [0, 0]) LS

Noisy + Outlier Error (Slope) 0.23 ± 1.37 0.30 ± 1.27 0.96 ± 0.03 0.90 ± 0 0.61 ± 2.10

Error (Intercept) 0.15 ± 1.68 0.06 ± 1.59 1.13 ± 0.04 1.09 ± 0 0.22 ± 3.00

Noise-Free Error (Slope) 1.50 ± 2.08 1.26 ± 1.45 0.96 ± 0.03 0.90 ± 0 0.61 ± 2.09

Error (Intercept) 0.32 ± 1.85 0.32 ± 1.38 1.13 ± 0.04 1.09 ± 0 0.21 ± 3.00

Note:
In each case, the best result is marked in bold.

Table 3 Wilcoxon signed rank test p-values obtained for the linear regression problem, using noisy
and outlier data for both training and testing. We used 500 test samples to perform the statistical
analysis over 10 independent training/inference steps of each method.

p-value (Wilcoxon Test) DM DC DR-GA DR-NM LS

DM – 0.695 0.002 0.002 0.002

DC 0.695 – 0.002 0.002 0.002

DR-GA 0.002 0.002 – 0.781 0.002

DR-NM 0.002 0.002 0.781 – 0.002

LS 0.002 0.002 0.002 0.002 –
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different from the least-squares (LS) results. For noisy training data, the statistical
results in Table 3 show similar performance for DM and DC, and for DR-NM and DR-GA,
the latter similarity suggesting that the specific choice of optimization methodology does
not significantly affect the DR performance.

The results in Table 2 show that DM and DC significantly improve in robustness
when trained with noisy data, relative to training with noise-free data. The principal
difference between DM/DC vs DR is the learning phase for DM/DC, allowing us to
conclude that, at least for reconstruction problems, a learning phase using noisy samples in
training significantly improves the robustness of the solution. A further observation is that
whereas DM and DC achieve similar performance, DC is unsupervised and DM is
supervised. Thus it would appear that the forward model knowledge and the data
consistency term as objective criterion for DC provide an equal degree of robustness
compared to the supervised learning in DM.

For this reconstruction problem, we conclude that both DC and DM perform well, with
the unsupervised DC showing strong performance both with noisy and noise-free training
data.

Finding coefficients of Burgers’ PDE (inverse problems in PDEs)
To test deep learning for Inverse Problems in PDEs, we chose Burgers’ Partial Differential
Equations (PDEs) as a dynamic, continuous time PDE in our experiments.

Burgers’ PDE or Bateman–Burgers equation (Bateman, 1915; Burgers, 1948) is a basic
partial differential equation occurring in various areas of applied mathematics, such as
fluid mechanics, nonlinear acoustics, gas dynamics, and traffic flow Xin (2009). This setup
encapsulates a wide range of problems in the mathematical physics including conservation
laws, diffusion processes, advection-diffusion-reaction systems, and kinetic equations
(Raissi, Perdikaris & Karniadakis, 2019).

For a given fieldmðx; tÞ, we consider Burgers’ equation as the forward function, defined
as

Fðmðx; tÞ; zÞ ¼ mt þ z1mmx � z2mxx ¼ 0 x 2 �; t 2 ½0;T� (19)

where z1, z2 denote the parameters of the equation and mðx; tÞ the state of the system, the
subscripts denoting partial differentiation in either time or space. The goal is then to
estimate parameters z1, z2, given a collection of points (Raissi, Perdikaris & Karniadakis,
2019; Bu & Karpatne, 2021).

Table 4 Like Table 3, but now using noise-free data, i.e., without any noise or outliers, for method
training. Noisy and outlier data remain in place for testing.

p-value (Wilcoxon Test) DM DC DR-GA DR-NM LS

DM – 0.002 0.002 0.002 0.002

DC 0.002 – 0.002 0.002 0.002

DR-GA 0.002 0.002 – 0.781 0.002

DR-NM 0.002 0.002 0.781 – 0.002

LS 0.002 0.002 0.002 0.002 –
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Solutions for this type of inverse problems in the literature, including Physics Informed
Neural Networks (PINNs) (Raissi, Perdikaris & Karniadakis, 2019), and Quadratic
Residual Neural Networks (QRes) (Bu & Karpatne, 2021) actually use a regularized version
of data loss, with Fðm; zÞ2 as the regularizer. For instance, PINNs are defined as

G :¼ Fðmðx; tÞ; zÞ (20)

with F from (19), and using a DNN to approximate mðx; tÞ. The DNN, along with (20),
form the Physics Informed Neural Network G(t, x) in which the chain rule could be used for
differentiating compositions of functions using automatic differentiation (Baydin et al.,
2018), which we call AutoGrad, and has the same parameters as the network representing
G(t, x; W2), albeit with different activation functions due to the action of F. The shared
parameters between the neural networks m(t, x) and G(t, x; W2) can be learned by
minimizing the mean squared error loss

JDM ¼ PGLossþ DataLoss (21)

where

DataLoss ¼ 1
Nm

XNm

i¼1

jmðtim; xim;W1Þ �mij2 (22)

and

PGLoss ¼ 1
NG

XNG

i¼1

jGðtiG; xiG;W2Þj2 (23)

where ftim; xim;mig denote the initial and boundary training data on mðt; xÞ and
ftiG; xiGgNG

i¼1 specify the collocations points for G(t, x). DataLoss corresponds to the initial

and boundary data while PGLoss enforces the structure imposed by (19) at a finite set of
collocation points.

This definition of the loss functions makes them consistent with the objective of the
Data Consistency optimizer (DC) solution category. Therefore, we include these methods
within DC in our experiments.

In the case of the DM approach, we can define the loss function as

JDMðmðx; tÞ; zÞ ¼ 1
NG

XNG

i¼1

jzipred � zGT j2 þ jGðtiG; xiG;W2Þj2 (24)

where zipred, z
GT stand for the predicted parameter by the solution category and its ground

truth, respectively.
Figure 6 shows the DM and DC DNNs for Burgers’ Inverse problem, where AutoGrad,

the automatic differentiation component, is used for computing the needed gradients. The
DC solution category only uses the PGLoss in its training procedure.

For DR, we define the loss function as
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JDR ¼ 1
NG

XNG

i¼1

jGðtiG; xiGÞj2 þ kRðm;W3Þ (25)

where
1
NG

XNG

i¼1
jGðtiG; xiGÞj2 is the data consistency term and Rðm;W3Þ is a deep classifier,

for which we trained an MLP classifier with dense layers of size 5, 4, 3, 2, 1, trained by he
available measurement states, to control the values of m to be in the specified range,
provided by Bu & Karpatne (2021).

For the experiments, we used synthetic data provided by Bu & Karpatne (2021) as the
training and test data, where the standard deviation of the noise is set to 1% of the
data standard deviation, and for xim, t

i
m we used equi-spaced values in the specified ranges.

In the case of outliers, we used additive Gaussian noise with magnitude equal to 10 times
the data standard deviation for 0.05% of the data. Table 5 compares the MSE between
the obtained parameter values by existing methods, averaged over 5 independent training/
inferences.

The statistical analyses of the results in Table 5 are reported in Table 6. From Tables 5
and 6, it is observable that in this case it is DC which achieves the best robustness

Figure 6 Network structure for the (A) DM and (B) DC solution categories, in finding coefficients of
Burgers’ PDE. Full-size DOI: 10.7717/peerj-cs.951/fig-6
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performance. The statistical analysis shows that the choice of DR optimization method
does not impact the results. The results also show that the learning phase in DC
significantly improves the obtained results compared with DR under the same objective.

Image denoising (restoration)
We now consider an image denoising problem, following the steps described in “Linear
Regression” for regression. We consider real and synthetic images, including 5 classes and
1,200 training images, 400 test images per class, from the Linnaeus dataset (Chaladze &
Kalatozishvili, 2017) as real data, and synthesized 5,000 texture images generated by
sampling from stationary periodic kernels, as synthetic data.

The synthetic images are generated using an FFT method (Fieguth, 2010), based on a
thin-plate second-order Gauss–Markov random field kernel

P ¼

0 0 1 0 0
0 2 �8 2 0
1 �8 20þ a2 �8 1
0 2 �8 2 0
0 0 1 0 0

2
6666664

3
7777775

(26)

such that a texture T is found by inverting the kernel in the frequency domain,

T ¼ FFT�1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1	FFT2ðPÞ

p

FFT2ðWÞ

� �
; (27)

Table 5 MSE of the parameters of Burgers’ PDE, predicted by deep learning solution categories for
this problem.

Training data Measure—Method DM DC DR-GA DR-NM (z0 = [0, 0])

Noise-Free Error (z_1) (× 10−4) 0.1 ± 0.10 2.7 ± 0.12 5.3 ± 3.5 5.1 ± 0

Error(z_2) (× 10−4) 131.4 ± 51.0 37.9 ± 3.3 117.13 ± 83.5 100.1 ± 0

Noisy Error (z_1) (× 10−4) 0.3 ± 0.1 17.0 ± 9.2 5.3 ± 3.5 5.1 ± 0

Error(z_2) (× 10−4) 42.1 ± 3.3 3.1 ± 0.8 117.13 ± 83.5 100.1 ± 0

Noisy + Outlier Error (z_1) (× 10−4) 31.2 ± 11.0 2.7 ± 13.0 0.53 ± 3.5 5.1 ± 0

Error(z_2) (× 10−4) 67.0 ± 32.0 0.60 ± 32.0 117.13 ± 83.5 100.10 ± 0

Note:
In each case, the best result is marked in bold.

Table 6 Statistical analysis of the results in Table 5, usingWilcoxon signed rank test, in the case of all
types of measurements, including noise-free, noisy and noisy and outlier case, for training the
networks.

p-value (Wilcoxon Test) DM DC DR-GA DR-NM

DM – 0.005 0.005 0.005

DC 0.005 – 0.005 0.005

DR-GA 0.005 0.005 – 0.834

DR-NM 0.002 0.002 0.834 –
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with 
, 	 as element-by-element multiplication and division, W as unit-variance white
noise, and with the kernel P zero-padded to the intended size of T. Further details about
this approach can be found in Fieguth (2010).

Parameter α2, affecting the central element of the kernel P, effectively determines the
texture spatial correlation-length in T, as

a2¼ 104�log10u (28)

for process correlation length, u, measured in pixels. We set u to be a random integer in the
range [10, 200] in our experiments.

All images are set to be 64 × 64 in size, with pixel values normalized to [0, 1]. Pixels are
corrupted by additive Gaussian noise, with an exponentially distributed number of
outliers.

The inverse problem is a restoration problem, having the objective of restoring the
original image from its noisy/outlier observation. The linear forward model is

m ¼ z þ m (29)

for measured, original, and added noise, respectively. The Gaussian noise ν has zero mean
and random variance, and an exponential number of pixels become outliers, their values
replaced with a uniformly distributed random intensity value.

We used 5,000 training samples and 500 test samples for the learning and evaluation
phases of the DM and DC approaches. The DNN structure for both DM and DC is the
same and is shown in Fig. 7. In the case of DC, we design a DNN layer to compute
the forward function. Since we are dealing with input images, both as measurements and
system state, we design a fully convolutional DNN in an encoder-decoder structure,
finding the main structures in the image through encoding and recovering the image via
decoding. Since there may be information loss during encoding, we introduce skip
connections to help preserve desirable information.

The DR category needs a pre-trained regularizer which determines whether the
prediction is a feasible texture image. We trained a classifier for texture discrimination,

Figure 7 DNN for the DM and DC solutions for image denoising problem. We have a fully con-
volutional DNN with an encoder-decoder structure, where the values in parentheses indicate the stride
value of the corresponding convolutional layer. The skip connection helps to recover desirable infor-
mation which may be lost during encoding. Full-size DOI: 10.7717/peerj-cs.951/fig-7
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generated using (27), from ordinary images gathered from the web, as the regularizer. Both
GA and Nelder-Mead optimizers are used.

We use peak signal to noise ratio (PSNR) as the evaluation criterion, computed as

PSNRðIpred; IGTÞ ¼ 20 � log10 maxðIpredÞ � 10 � log10MSE; (30)

MSE ¼ 1
n

X
i;j

ðIGTi;j � Ipredi;j Þ2 (31)

where IGTi,j, I
pred

i,j are the (i,j)
th pixel in the ground-truth and predicted images,

respectively. Note that in the DR case, since the input and output of the model are 64 * 64 =
4,096 images, the GA optimization routine was unable to find the solution in a reasonable
time, therefore we do not avoid report any DR-GA results for this problem.

As a reference point, we also report results obtained by the non-local means (NLM)
filter (Buades, Coll & Morel, 2011), to give insight into the amount of improvement of deep
learning inverse methods over a well-established standard in image denoising.

Figure 8 shows results based on synthetic textures. Each row in the figure shows a
sample image associated with a particular correlation length noise standard deviation. The
DM approach offers by far the best reconstruction among the DNN methods, and
outperforms NLM in terms of PSNR. The time complexity of GA in DR-GA makes it
inapplicable to problems of significant size (even though the images were still quite modest
in size).

Figure 8 Image denoinsing results on synthetic textures. Only a single image is shown in each case,
however the reported average PSNR at the bottom is computed over the entire test set. The given noisy
image is subject to both additive noise and outliers. NLM, in the rightmost column, is the non-local
means filter, a standard approach from image processing. Full-size DOI: 10.7717/peerj-cs.951/fig-8
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The Wilcoxon signed rank test was performed on the DM, DC and DR-(Nelder-Mead)
results. The statistical analysis of the obtained results gave a p value of 0.002 for each
pairwise comparison, implying a statistically significant difference, thus the very strong
performance of DM in Fig. 8 is validated.

In the case of real images, Fig. 9 shows the visual results obtained by DM, DC and
DR-NM for seven test samples.

The statistical analysis is consistent with the results from the synthetic texture case,
which is that all pairwise Wilcoxon tests led to a conclusion of statistically significant
differences, with p values well below 0.05.

From the results in Figs. 8 and 9 and their respective statistical analyses, we conclude
that:

� For image denoising as a prototype for restoration problems, which have the same
measurement and system parameter spaces, the concentration of the loss function on
the true parameters (as in DM) provides better information and leads to a more effective
estimator having greater robustness than the measurements themselves (as in DC).

� DR-(Nelder-Mead) performed poorly, even though it optimizes data consistency, like
DC, however we believe that the learning phase in DC, compared to DR, provides
knowledge for its inference and allows DC to be more robust than DR for restoration
inverse problems.

Figure 9 As in Fig. 8, but here for denoising results on the Linnaeus dataset. The reported average
PSNR in the last row is computed over all test images. As in Fig. 8, the DM results other DNN inverse
solvers and also non-local means (NLM). Full-size DOI: 10.7717/peerj-cs.951/fig-9
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3D shape inverse rendering (reconstruction)
We now wish to test a 3D shape inverse rendering (IR) (Aldrian & Smith, 2012) problem,
for which a 3D morphable model (3DMM) (Blanz & Vetter, 1999) describes the 3D shape
of a human face s. This model is based on extracting eigenfaces si, usually using PCA,
from a set of 3D face shapes as the training data, then to obtain new faces as a weighted
combination zi of the eigenfaces. The 3D shape model reconstructs a 3D face in
homogeneous coordinates as

s ¼ �sþ
Xn
i¼1

zisi; (32)

where �s is the mean shape of the 3DMM, and zi the weight of eigenface si. We use the
Besel Face Model (Aldrian & Smith, 2012) as the 3DMM in this experiment for which there
are N = 54,390 3D points in each face shape and 199 eigenfaces. We can therefore rewrite
(32) as

sN ¼ �sN þ zT � SN (33)

where S is the tensor of 199 eigenfaces. In our experiments each face is characterized by 72
standard landmarks, shown in Fig. 10, which are normalized and then presented to the
system as the measurements. Therefore we actually only care about L = 72 out of N =
54,390 3D points in the 3DMM. This experiment tackles the reconstruction of a 3D
human face by finding the weights z of the 3DMM from its input 2D landmarks. We
generated training data from the 3DMM by assigning random values to the 3DMM
weights, resulting in a 3D human face, and rendered the obtained 3D shape into a 2D
image using orthographic projection.

The measurement noise consists of small perturbations of the 2D landmarks, with
outliers as much larger landmark perturbations. We add zero-mean Gaussian noise having
a standard deviation of 3 × 103 in the training data and 5 × 103 in the test data. Outliers
are much larger, with a standard deviation of 5 × 104 added to 10 of the 72 landmarks

Figure 10 Location and order of 72 standard landmarks on a 2D image of a sample human face. The
human face image in this figure is generated using BFM by Blanz & Vetter (1999) © Shima Kamyab.

Full-size DOI: 10.7717/peerj-cs.951/fig-10
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in 10% of the training data and 20% of the test data. Landmark point coordinates are in the
range [−8 × 104, 8 × 104], so the outlier magnitudes are very large.

Let subscript L represent the the set of landmark point indices, in which case the forward
model is the orthographic projection

m ¼ CsL þ m C ¼
1 0 0 0
0 1 0 0
0 0 0 0

2
4

3
5 (34)

such that C converts from homogeneous 3D to homogeneous 2D coordinates, and the
measurement noise is

m�0:9Nð0; 3� 103IÞ þ 0:1Nð0; 5� 104IÞ (35)

as noise and outliers associated with the projection operator. Since the goal of this inverse
problem is to estimate z in the 3DMM for a given 3D shape, we write (34) as

m ¼ Cð�sL þ SL � zÞ þ m (36)

For the DM and DC solutions we generated 4,000 sample faces as training data, using
the Besel face model (Aldrian & Smith, 2012) as the 3DMM. The DR regularizer is a
pre-trained classifier which discriminates a feasible 3D shape from random distorted
versions of it.

In DC we implemented the forward function layer as described in Aldrian & Smith
(2012), with the resulting DM and DC DNN shown in Fig. 11, where we used feed-forward
layers because the system input is the vectorized 72 2D homogeneous coordinates and its
output a weight vector. We design an encoder-decoder structure for DNNs, so as to
map the 2D coordinates to a low dimensional space and to recover the parameters from
that low dimensional representation.

For the DR regularizer we trained a five layer MLP classifier to discriminate between a
3D face shape, generated by BFM, and randomly generated 3D point clouds as negative
examples.

Figure 11 DNN structure for DM and DC for 3D shape inverse rendering.
Full-size DOI: 10.7717/peerj-cs.951/fig-11
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Figure 12 shows visual results obtained by each solution category, where heat maps
visualize the point-wise error magnitude relative to the ground truth. The visual results
show that the DM and DC methods can capture the main features in the face (including
eye, nose, mouth) better than the DR variants, however the differences between DM and
DC seem to be negligible.

To validate our observations, the numerical results and respective statistical analyses
are shown in Tables 7 and 8. Table 7 lists the RMSE values for each solution category. We
used 10 out of sample faces in the BFM model as test cases for reporting the results. In the
case of DR (Nelder-Mead) we set the start point, i.e., z0, as a random value and report
the averaged result over 10 independent runs. Note that the RMSE values are expected to
be relatively large, since each 3D face shape provided by BFM is a point cloud of 53,490
3D coordinates in the range [−8 × 104, 8 × 104]. As a point of comparison, we
computed the average RMSE between a set of 500 generated 3D faces and 1,000
random generated faces, to have a sense of RMSE normalization to random prediction.
The average RMSE for random prediction is 1.28 × 104, a factor of two to four times larger
than the RMSE values reported in Table 7.

Table 8 shows the results of the Wilcoxon p values for statistical significance in the
difference between reported values in Table 7, where we consider a p value threshold of
0.07.

Based on the preceding numerical results and statistical analysis, we claim the following
about each solution category facing with Reconstruction inverse problems:

� Broadly, for training and test data not involving outliers, the overall performance of
the methods is similar, with DM outperforming. This observation shows that the
learning phase is not crucial in the presence of noise, and methods which concentrate on
the test data can achieve equal performance compared to trainable frameworks.

� In cases involving outliers the performance of the methods is more distinct, but with
the DM and DC methods, having a learning phase for optimizing their main objective
term, outperforming the DR variants. We conclude that a learning phase is important to
make methods robust to outliers.

� In the case of DR, the results show similar performance of the GA and NM optimization
schemes, with GA outperforming NM. This observation encourages the reader to use
optimization methods with more exploration power Eftimov & Korošec (2019), the
ability of an optimization method to search broadly across the whole solution space, for
DR solutions to reconstruction problems.

� In all cases, we can observe that although DC is unsupervised, its performance when
solving reconstruction inverse problems is near to that of DM, even outperforming DM
in the case of outliers. Therefore, it is possible to solve reconstruction problems even
without label information in the training phase.

� One interesting observation is that while 3D shape inverse rendering is a complex
reconstruction problem, the results for each solution category are qualitatively similar to

Kamyab et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.951 24/37

http://dx.doi.org/10.7717/peerj-cs.951
https://peerj.com/computer-science/


Figure 12 Qualitative results for 3D inverse rendering. Each result is shown as two faces, an upper with the actual 3D result, and a lower as a heat
map showing the error magnitude in each point of predicted face are shown in the form of heat map for each prediction. For the DR method, the
average error magnitude over 20 runs is reported. We use the Besel Face Model (BFM) (Aldrian & Smith, 2012; Blanz & Vetter, 1999) which is based
on a 3D mean face and compensates for outliers. The BFM data was provided by Dr T. Vetter, University of Besel (Gerig et al., 2018).

Full-size DOI: 10.7717/peerj-cs.951/fig-12
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the very different and far simpler inverse problem of linear regression, where DC
similarly outperformed training data containing noisy and outlier samples.

Single object tracking (dynamic estimation)
Up to this point we have investigated deep learning approaches applied to static problems.
We would now like to examine a dynamic inverse problem, that of single-object tracking.

The classical approach for tracking is the Kalman Filter (KF) (Fieguth, 2010) and its
many variations, all based on a predictor-corrector framework, meaning that the filter
alternates between prediction (asserting the time-dynamics) and correcting (asserting
information based on the measurements). For the inverse problem under study, we
consider the current location estimation (filtering) in a two dimensional environment.
Synthetic object tracking problems, as considered here, are studied in a variety of object
tracking papers (Kim et al., 2019; Choi & Christensen, 2013; Black, Ellis & Rosin, 2003;
Lyons & Benjamin, 2009), where the specific tracking problem in this section is inspired
from the approach of Fraccaro et al. (2017), Vermaak, Lawrence & Pérez (2003).

Table 7 Average test RMSE with standard deviation values (over 10 out-of-sample faces of the BFM
(Aldrian & Smith, 2012)) for 3D shape inverse rendering.

Method Noisy test cases (× 103) Noisy + Outlier test cases (× 103)

Training data DM DC DR-GA DR-NM DM DC DR-GA DR-NM

Noise-free 3.8 ± 2.0 4.2 ± 1.8 3.9 ± 0.7 4.2 ± 2.2 5.9± 2.4 5.5 ± 2.2 5.7 ± 1.2 5.8 ± 3.3

Noisy 3.5 ± 1.6 4.2 ± 2.1 3.9 ± 0.7 4.2± 2.2 5.4 ± 3.5 5.7 ± 3.6 5.7± 1.2 5.8 ± 3.3

Noisy + Outlier 3.3 ± 1.4 3.9 ± 1.8 3.9 ± 0.7 4.2 ± 2.2 5.4 ± 2.9 5.4 ± 3.0 5.7± 1.2 5.8 ± 3.3

Note:
In each case, the best result is marked as bold.

Table 8 Wilcoxon signed rank test p values for the 3D shape inverse rendering problem.

Test data Noisy Noisy + Outlier

Training data p-value DM DC DR-GA DR-NM DM DC DR-GA DR-NM

Noise-free DM – 0.19 0.43 0.30 – 0.06 0.06 0.06

DC 0.19 – 0.43 0.30 0.06 – 0.06 0.06

DR-GA 0.43 0.43 – 0.78 0.06 0.06 – 0.78

DR-NM 0.30 0.30 0.78 – 0.06 0.06 0.78 –

Noisy DM – 0.19 0.19 0.30 – 0.06 0.06 0.06

DC 0.19 – 0.30 0.30 0.06 – 0.12 0.30

DR-GA 0.19 0.30 – 0.78 0.06 0.12 – 0.78

DR-NM 0.30 0.30 0.78 – 0.06 0.30 0.78 –

Noisy + Outlier DM – 0.06 0.06 0.06 – 1 0.06 0.06

DC 0.06 – 0.06 0.06 1 – 0.06 0.06

DR-GA 0.06 0.06 – 0.78 0.06 0.06 – 0.78

DR-NM 0.06 0.06 0.78 – 0.06 0.06 0.78 –

Kamyab et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.951 26/37

http://dx.doi.org/10.7717/peerj-cs.951
https://peerj.com/computer-science/


The inverse problem task is to estimate the current ball location, given the noisy
measurement in the corresponding time step and the previous state of the ball. Formally,
we denote the measured ball location by mt , and the system state, the current location of
the ball, as zt . The graphical model in Fig. 13 illustrates the problem definition of the
tracking problem, where the objective of the inverse problem is to address the dashed line,
the inference of system state from corresponding measurement.

To perform the experiments, we generate the training and test sets similar to
Fraccaro et al. (2017) except that we assume that our measurements are received from a
detection algorithm, which detects the ball location from input images having a size of 32 ×
32 pixels, and that the movement of the ball is non-linear.

In each training and test sequence the ball starts from a random location in the 2D
environment, with a random speed and direction, and then moving for 30 time steps. The
dynamic of the generated data includes changing the ball location zt and its velocity vt as

zt ¼ vðt�1ÞDt þ zðt�1Þ (37)

vt ¼ vðt�1Þ � ðcðvðt�1ÞÞ2signðvtÞÞ (38)

where c is a constant and is set to 0.001. In our data, collisions with walls are fully elastic
and the velocity decreases exponentially over time. In this simulation, the training and
testing data-sets contain 10,000 and 3,000 sequences of 30-time steps, respectively.

The training measurement noise is

m�0:95Nð0; 0:2IÞ þ 0:05Nð0; 10IÞ; (39)

a mixture model of Gaussian noise with 5% outliers. The testing noise is similar,

m�0:85Nð0; 0:4IÞ þ 0:15Nð0; 10IÞ (40)

with a higher likelihood of outliers.
The inverse problem is single-target tracking for which the dynamic of the model is

unknown. The inverse problem of interest is to find zt in

zt ¼ Gðzðt�1Þ;mtÞ (41)

As shown in Fig. 13, we can model our problem as a first order Markov model where the
current measurement is independent of others given the current system state. The forward
model is then defined as

Figure 13 Graphical model for single object tracking: the goal is to estimate the location of a moving
ball in the current frame in a bounded 2D environment. mt denotes the current measured location
and zt is the current state. Full-size DOI: 10.7717/peerj-cs.951/fig-13
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mt ¼ FðztÞ ¼ Czt þ m; C ¼ I; m�Nð0; rÞ (42)

We can model Markov models using Recurrent Neural Networks (RNN) (Krishnan,
Shalit & Sontag, 2017; Hafner et al., 2019; Rangapuram et al., 2018; Coskun et al., 2017).
The DNN structure for DM and DC solution categories is shown in Fig. 14, in which
the LSTM layers lead the learning process to capture the time state and dynamic
information in the data sequences.

We design the regularizer of the DR category as a classifier to classify location
feasibility—those locations lying within the border of the 2D environment. Figure 15
shows the positive and negative samples which we used to train the DR regularizer.

As before, we used GA (DR-GA) and Nelder-Mead (DR-NM) algorithms as optimizers
for DR. In the case of using Nelder-Mead, the results vary as a function of starting point z0,
and found that using the last sequence measurement as the starting point empirically
gave the best result for DR-NM.

Visual and numerical results and statistical analysis
Table 9 includes the numerical results obtained by each method in our experiments, where
we report the average RMSE between reference and predicted points on the test trajectory
as the evaluation criterion for each method.

The obtained results and their statistical analysis are shown in Tables 9 and 10, based on
which we conclude that

� In the case of single object tracking, for which system parameters are permitted to evolve
and be measured over time (Fieguth, 2010), the DM category achieves the best
performance using all types of training data. The results are improved when the training
data contain representative noise and outliers.

Figure 14 DNN structure for DM and DC solution categories in the case of single object tracking
problem. Full-size DOI: 10.7717/peerj-cs.951/fig-14
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� When the training does not include outliers, the DR-NM category achieves the second
rank after DM; note that DR-NM is an unsupervised framework without a learning
phase, showing that a learning phase is not necessarily required, and that looking only
into test cases can give reasonable results.

Figure 15 The positive and negative samples used for training the DR regularizer, where the black
and gray samples are in the positive and negative classes, respectively.

Full-size DOI: 10.7717/peerj-cs.951/fig-15

Table 9 RMSE obtained by deep learning solution categories for tracking. The test data include both noise and outliers.

Training
data

Noise-free Noisy Noisy + Outlier

Method DM DC DR-GA DR-NM DM DC DR-GA DR-NM DM DC DR-GA DR-NM

RMSE 1.70 ± 0.05 1.79 ± 0.21 2.05 ± 0.00 1.85 ± 0.00 1.72 ± 0.08 2.04 ± 0.28 2.05 ± 0.00 1.85 ± 0.00 0.39 ± 0.03 1.94 ± 0.02 2.05 ± 0.00 1.85 ± 0.00

Note:
The best result is marked in bold.

Table 10 Pairwise p values for tracking: the Wilcoxon signed rank test checks whether the obtained results are significantly different.

p-value (Wilcoxon Test) Training data: Noise-free Training data: Noisy Training data: Noisy + Outlier

DM DC DR-GA DR-NM DM DC DR-GA DR-NM DM DC DR-GA DR-NM

DM – 0.160 0.002 0.002 – 0.002 0.002 0.002 – 0.002 0.002 0.002

DC 0.160 – 0.013 0.130 0.002 – 0.322 0.027 0.002 – 0.002 0.002

DR-GA 0.002 0.013 – 0.002 0.002 0.322 – 0.002 0.002 0.002 – 0.002

DR-NM 0.002 0.130 0.002 – 0.027 0.002 0.002 – 0.002 0.002 0.002 –
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� When the training data include noisy and outlier samples, the solutions’ behaviour for
single object tracking is similar to that of restoration problems. In particular, in single
object tracking the measurements and system parameters are in the same space, like
restoration problems.

� In the case of DR solution category for dynamic estimation problems, it is observable
that, unlike reconstruction problems, the NM optimization scheme performs better than
the GA approach, emphasizing the importance of exploitation power (Eftimov &
Korošec, 2019; Xu & Zhang, 2014), referring to the ability of an optimization method to
concentrate on a specific region of the solution space.

DISCUSSION
Based on the preceding experiments, Table 11 summarizes the overall findings, from which
we conclude the following:

� Overall, the presence or absence of outliers in the training phase leads to distinct
differences in robustness. Generally, DM will be the best method when the training data
does include outliers, whereas DC outperforms other methods if the training does not
include outliers, based on having a data consistency term in its objective.

� In reconstruction problems, comparing GA and NM optimization approaches in DR
shows that GA achieves better performance, indicating the importance of exploration
power in optimization for this class of problems.

� The restoration inverse problems, which recover the system parameters from
measurements of the same space, need label information (as in DM) to be robust against
noise and outliers.

Table 11 Performance comparison by solution category and inverse problem types. Note that a > b means that method a is statistically sig-
nificantly better than method b.

Inverse problem Problem type Training data Test data Score (Larger is better)

Linear Regression Reconstruction Noise-free Noisy + Outlier DC > (DR-GA = DR-NM) > DM

Noisy + Outlier Noisy + Outlier (DM = DC) > (DR-GA = DR-NM)

3D Shape Inverse Rendering Reconstruction Noise-free Noisy DM = DC = DR-GA = DR-NM

Noise-free Noisy + Outlier DC > (DR-GA = DR-NM) > DM

Noisy Noisy DM = DC = DR-GA = DR-NM

Noisy Noisy + Outlier DM > (DC = DR-GA = DR-NM)

Noisy + Outlier Noisy DM > DC > (DR-GA = DR-NM)

Noisy + Outlier Noisy+ Outlier (DM = DC) > (DR-GA = DR-NM)

Image Denoising Restoration Noisy + Outlier Noisy+ Outlier DM > DC > (DR-GA = DR-NM)

Single Object Tracking Dynamic Estimation Noise-free Noisy + Outlier (DM = DC) > DR-NM > DR-GA

Noisy Noisy + Outlier DM > DR-NM > (DC = DR-GA)

Noisy + Outlier Noisy + Outlier DM > DC > DR-NM > DR-GA

Burgers’ PDE coefficients Inverse Problems in PDEs Noise-free Noisy + Outlier DC > DM > (DR-GA = DR-NM)

Noisy Noisy + Outlier DC > DM > (DR-GA = DR-NM)

Noisy + Outlier Noisy + Outlier DC > (DR-GA = DR-NM) > DM
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� In the case of restoration problems in static estimation, DM has the highest rank among
tested methods. We believe this is because in the process of finding a mapping from
one space to itself, the exploitation of accurate solution matters and this property is
achieved using label information in the process of training the framework.

� In the case of dynamic estimation problems, the DR solution performs well when the
training data do not include outlier samples. Therefore we conclude that this class of
problems could be solved without needing a learning phase and that solely the test case
is sufficient to find a robust solution.

� The dynamic estimation problems have additional challenges stemming from the
time-dependent state information to be captured, an attribute which leads the solution
to have different behavior from other problem types. We observed that there are
similarities, based on the measurement and system parameter spaces, between the
robustness power of the solution categories’ performance in a dynamic estimation
problem and a static estimation problems with the same measurement and system
parameter spaces.

� For PDE inverse problems, the DC solution category achieves the best performance
among the methods, and it is the DC learning phase which plays an important role in its
performance.

CONCLUSIONS
This paper investigated deep learning strategies to explicitly solve inverse problems. The
literature on deep learning methods for solving inverse problems was classified into three
categories, each of which was evaluated on sample inverse problems of different types.
Our focus is on the robustness of different categories, particularly with respect to their
handling of noise and outliers. The results show that each solution category has a different
behavior in the sense of strengths and weaknesses with regards to problem assumptions,
such that the problem characteristics need to be considered in selecting an appropriate
solution mechanism for a given inverse problem.

Typically, reconstruction problems need more exploration power and the existence of
outliers in their training data makes DM the most robust among deep learning solution
categories. Otherwise, when the training data do not include outliers for reconstruction
problems, DC achieves the best performance, although not using label information in
its training phase. The restoration problems need a greater degree of exploitation power for
which the DM methods are best suited. In the case of dynamic estimation problems,
when the training data do not include outliers, DR achieves second rank, indicating that
dynamic estimation problems can be solved with reasonable robustness without a need for
learning in the presence of noise. The solution categories for inverse problems in PDEs
have specific strategies in the literature, for which the DC category shows the best
performance among for almost all types of training data.
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