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ABSTRACT
A myoelectric prosthesis is manipulated using electromyogram (EMG) signals from
the existing muscles for performing the activities of daily living. A feature vector that
is formed by concatenating data from many EMG channels may result in a high
dimensional space, which may cause prolonged computation time, redundancy, and
irrelevant information. We evaluated feature projection techniques, namely principal
component analysis (PCA), linear discriminant analysis (LDA), t-Distributed
Stochastic Neighbor Embedding (t-SNE), and spectral regression extreme learning
machine (SRELM), applied to object grasp classification. These represent feature
projections that are combinations of either linear or nonlinear, and supervised or
unsupervised types. All pairs of the four types of feature projection with seven types
of classifiers were evaluated, with data from six EMG channels and an IMU sensors
for nine upper limb positions in the transverse plane. The results showed that SRELM
outperformed LDA with supervised feature projections, and t-SNE was superior to
PCA with unsupervised feature projections. The classification errors from SRELM
and t-SNE paired with the seven classifiers were from 1.50% to 2.65% and from
1.27% to 17.15%, respectively. A one-way ANOVA test revealed no statistically
significant difference by classifier type when using the SRELM projection, which is a
nonlinear supervised feature projection (p = 0.334). On the other hand, we have to
carefully select an appropriate classifier for use with t-SNE, which is a nonlinear
unsupervised feature projection. We achieved the lowest classification error 1.27%
using t-SNE paired with a k-nearest neighbors classifier. For SRELM, the lowest
1.50% classification error was obtained when paired with a neural network classifier.

Subjects Human-Computer Interaction, Artificial Intelligence, Data Mining and Machine
Learning, Robotics
Keywords Electromyogram signal, Hand grasp classification, Feature projection, Dimensionality
reduction, Limb position change

INTRODUCTION
There were approximately 1.6 million persons with limb loss in the United States in 2005.
It is projected that the total number of persons with limb loss will be 3.6 million by the
year 2050 (Ziegler-Graham et al., 2008). A total of 35% of persons with limb loss (541
thousand persons) have an amputated upper extremity. Among the persons with upper
limb loss, 41,000 were amputations above or below the elbow, and 500,000 were
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amputations of fingers or hands (Ziegler-Graham et al., 2008). In spite of the small fraction
of upper limb amputations, these are disastrous incidents for the patients and cause
disability preventing activities of daily living.

Prosthetic devices have been developed to enhance the quality of life for people with
upper-limb amputation. Currently, the available commercial prostheses come under two
general types, i.e. passive/cosmetic prosthesis and active/functional prosthesis. The
cosmetic prosthesis is primarily designed to replace the missing parts of the body, though
unable to function as a natural hand. In contrast, the functional prosthesis is mainly aimed
at enabling the users to manipulate the device in performing activities of daily life
(Fang et al., 2015; Peerdeman et al., 2011; Cordella et al., 2016; Clement, Bugler & Oliver,
2011; Scheme & Englehart, 2011; Smirnov et al., 2021).

A surface electromyogram (EMG) is a biological signal, which directly reflects nerves
and muscle activities relating to body movements and can be recorded from the skin
(Scheme & Englehart, 2011; Liu, 2014). Its noninvasive acquisition enables convenient uses
in clinical applications (Liu, 2014). Therefore, the EMG signals from upper limb muscles
are popularly used as a control source for the functional hand prostheses (Anam &
Al-Jumaily, 2020; Al-Angari et al., 2016; Radmand, Scheme & Englehart, 2016; Khushaba
et al., 2016; Khairuddin et al., 2021; Feng et al., 2021). Current control strategies of the
functional hand prostheses are generally categorized into two groups, namely non-pattern
recognition based and pattern recognition (PR) based control schemes (Asghari Oskoei &
Hu, 2007). Prior publications reported the success of EMG-PR algorithm for hand
prosthesis control with a high number of degrees-of-freedom (DOF) compared to other
methods, such as on-off, proportional, direct, and finite state machine control
(Geethanjali, 2016).

In the EMG-PR scheme, after the EMG signals from various muscles are acquired,
features from each EMG channel are extracted. Then, a feature vector is formed by
concatenating the features from all EMG channels. The successful classification accuracy
for a high DOF hand prosthesis control requires either a large number of distinct features,
such as autoregressive coefficients (Anam & Al-Jumaily, 2020; Al-Angari et al., 2016),
spectral coefficients (Khushaba et al., 2016), and wavelet coefficients (Al-Angari et al.,
2016; Savareh et al., 2018), or a large number of EMG channels (Radmand, Scheme &
Englehart, 2016). However, a large number of EMG channels combined with a large
number of features per channel may cause the feature vector to have an excessively high
dimensionality. For example, in accordance with Al-Timemy et al. (2013), 12 EMG
channels were recorded in intact-limbed subjects to classify 15 hand and finger motions;
and 11 EMG channels were acquired in amputee subjects to classify 12 hand and finger
motions. Then, 11 features per EMG channel were extracted resulting in feature vectors
with dimensions of 121 and 132.

A very high dimensional feature vector may cause some disadvantages such as long
computation times. Also, redundant and irrelevant information in the high dimensional
feature vector may degrade accuracy. For dimension reduction of the feature vector,
feature projection is used (Al-Timemy et al., 2013; Khushaba, Al-Ani & Al-Jumaily, 2010;
Phukpattaranont et al., 2018; Chu et al., 2007; Chu, Moon &Mun, 2006; Liu, 2014). Feature
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projection attempts to construct a mathematical model, which transforms the significant
information of a high-dimension space to a low-dimension space by analyzing the
distribution of the reduced space. This allows for a visualizing of a high dimension space to
a low dimension space (Chu et al., 2007). Feature projection can be categorized into
two types, either linear or nonlinear. In addition, each type of feature projection can be
further divided into either supervised or unsupervised. The most popular unsupervised
linear feature projection is principal component analysis (PCA) (Al-Timemy et al., 2013;
Khushaba, Al-Ani & Al-Jumaily, 2010; Chu et al., 2007; Chu, Moon & Mun, 2006; Liu,
2014; Anam & Al-Jumaily, 2020; Rabin et al., 2020). It is usually used as a baseline in
comparison with other techniques.

For supervised linear feature projection, linear discriminant analysis (LDA) is the
most popular (Khushaba, Al-Ani & Al-Jumaily, 2010; Phukpattaranont et al., 2018; Chu
et al., 2007; Lashgari & Maoz, 2021). Its variants include an uncorrelated LDA, an
orthogonal LDA, and a fuzzy LDA (Khushaba, Al-Ani & Al-Jumaily, 2010). The results
from previous publications show that LDA has outperformed PCA (Khushaba, Al-Ani &
Al-Jumaily, 2010; Phukpattaranont et al., 2018; Chu et al., 2007). For linearly separable
data, the application of linear feature projection technique is appropriate. However, for
non-linearly separable data, a nonlinear feature projection may give better performance.
The supervised nonlinear technique used in spectral regression extreme learning
machine (SRELM) was performed by Phukpattaranont et al. (2018) and Anam &
Al-Jumaily (2020). SRELM reduced the dimension of EMG feature vector from 66 to 13
in accordance with Phukpattaranont et al. (2018). The accuracy from the classification of
14 hand and finger motions based on SRELM was superior to the linear projection
techniques, i.e., PCA, LDA, and LDA variants. According to Anam & Al-Jumaily (2020),
SRELM was evaluated for various number of hand motion classes (5–10 classes) and the
various number feature dimensions (12–195 dimensions) using two EMG channels.
Similar results were obtained. In other words, when the number of hand motion classes is
10, SRELM provided better classification results than LDA and spectral regression
discriminant analysis (SRDA).

The t-distributed Stochastic Neighbor Embedding (t-SNE) is an unsupervised nonlinear
feature projection technique. It has recently gained much interest and has been successfully
used in many applications (Devassy, George & Nussbaum, 2020; Exarchos et al., 2019;
Oliveira, Machado & Andrade, 2018). The t-SNE is widely used for visualizing
hyperdimensional biosignals in two or three dimensions (Birjandtalab, Pouyan &
Nourani, 2016; Hajian, Etemad & Morin, 2019; Connan et al., 2016). Devassy, George &
Nussbaum (2020) applied the t-SNE to reduce the dimensionality of hyperspectral paper
data. Its clustering performance was superior to PCA. For the dimension reduction of
inertial and EMG data in the classification to distinguish healthy subjects from those
suffering from Parkinson’s disease, the t-SNE was compared to two other feature
projections, PCA and Sammon’s mapping, byOliveira, Machado & Andrade (2018). When
the projected features were input to a support vector machine (SVM), classification
accuracies for the test set from PCA, Sammon’s mapping, and t-SNE were 67.8%, 74.1%,
and 76.6%, respectively (Oliveira, Machado & Andrade, 2018).
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Recently, several studies exposed the semantic gap between laboratory research and
clinical implementation. Due to the assumption of EMG stationary, the traditional
research examines the experiment in the laboratory environment, which is disregarded for
dynamic and unintended movement. The EMG data was usually collected from a fixed
position. In the realistic scenario, there are various factors that are able to impair the
pattern of EMG signal, such as electrode displacement, muscle fatigue, as well as variation
in force and limb position change (Scheme & Englehart, 2011; Li, Shi & Yu, 2021; Simão
et al., 2019). These cause the transient change in the EMG signal, which degrades the
performance of the classification and control system (Scheme & Englehart, 2011).
To overcome these limitations, the limb position change effects on EMG-PR were
studied since the year of 2010 in Scheme & Englehart (2011). The sensor fusion
technique between EMG and various kinematic sensors, such as an accelerometer (ACC)
(Fougner et al., 2011; Shahzad et al., 2019; Geng, Zhou & Li, 2012), gyroscope (GYR)
(Shahzad et al., 2019), mechanomyogram (MMG) (Geng, Zhou & Li, 2012), and
electromagnetic sensor (Yang et al., 2017; Rabin et al., 2020), were proposed to construct
the limb position awareness system by training classifier with data from multiple limb
positions. However, the integration of multiple sensors might bring about a high-
dimensional feature vector.

In prior publications, feature projection techniques were evaluated with the EMG
signals acquired from hand and finger motions when the limb positions were fixed (Chu
et al., 2007; Khushaba, Al-Ani & Al-Jumaily, 2010; Al-Timemy et al., 2013; Liu, 2014;
Khushaba et al., 2014; Anam & Al-Jumaily, 2020; Rabin et al., 2020). The classification of
EMG signals from different limb positions is needed for the practical use of an EMG-based
prosthetic hand in a real environment (Shahzad et al., 2019; Jochumsen, Waris &
Kamavuako, 2018; Yang et al., 2017). This is more challenging compared to the
classification of EMG signals from fixed limb positions because of the larger signal
variations. Moreover, note that four types of feature projection techniques, namely
unsupervised-linear, supervised-linear, unsupervised-nonlinear, and supervised-
nonlinear, have not been compared with the same data. Therefore, in this paper, we
propose to evaluate PCA, LDA, and SRELM in object grasp classification, using EMG and
kinematics signals from different limb positions. We also include the evaluation of t-SNE,
which is an unsupervised nonlinear feature projection technique that has provided
successful results in other applications. However, it has not been reported in the context of
recognition from EMG of hand and finger movements.

DATA ACQUISITION AND EXPERIMENTAL PROTOCOL
Sensor placement and data acquisition
This section describes sensor placement and data acquisition for EMG and the inertial
measurement unit (IMU) signals. The details are as follows.

EMG data acquisition
Before EMG data acquisition, the subjects cleaned their skin with alcohol for good signal
quality. Then, six pairs of self-adhesive Ag/AgCl snap bipolar electrodes were placed on
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three regions of the right arm, namely a pair on the posterior shoulder region, a pair
on the upper arm, and four pairs on the forearm, as shown in Fig. 1. The six targeted
muscles that correspond to this electrode placement are given in Table 1. All of the EMG
signals were recorded by a commercial EMG measurement system (TMSI, MOBI) and
were wirelessly transmitted to the computer using Bluetooth. The EMG signals were
sampled at 1,024 Hz, amplified 1,000-fold, and filtered by a bandpass filter with a passband
range from 20 to 500 Hz.

IMU data acquisition
The kinematic signals were measured via an IMU sensor (MPU-6050TM) consisting of
both a 3-axis accelerometer (ACC) and a 3-axis gyroscope (GYR) integrated on a single
chip. The IMU sensor was attached on the right wrist with the direction of the Y-axis

Figure 1 EMG and IMU sensor placement. Full-size DOI: 10.7717/peerj-cs.949/fig-1

Table 1 Summary of EMG and IMU sensor placements.

Sensor Underlying muscle Location

EMG-CH1 Posterior deltoid Shoulder

EMG-CH2 Triceps brachii Upper arm

EMG-CH3 Extensor pollicis longus Forearm

EMG-CH4 Extensor digitorum communis Forearm

EMG-CH5 Brachioradialis Forearm

EMG-CH6 Flexor digitorum profundus Forearm

EMG-Ground Not applicable Left wrist

IMU Not applicable Right wrist
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pointing out forward and the direction of X-axis pointing into the center of the subject’s
body. A microcontroller (Arduino Uno) was used to record the IMU signal with a
sampling rate of 60 Hz. A trigger signal was generated so that the EMG and IMU data were
recorded simultaneously.

Experimental protocol
Six-channel EMG signals and the signals from an IMU during object grasps were collected
from 14 healthy subjects (seven males and seven females) aged between 18 and 44, who
were not reported of neuromuscular disorder history. All subjects understood the
experimental protocol and gave the written informed consent before performing
experiment. The experiments were in accordance with the Declaration of Helsinki and
duly approved by the Human Research Ethical Committee of the Faculty of Medicine,
Prince of Songkla University (REC.62-310-19-2).

After attaching the EMG and IMU sensors, the participants performed the experiment
by sitting in front of a grid table with 90 degrees of elbow flexed. Their right wrist was over
position P0 as shown in Fig. 2. Five object grasps were studied consisting of a sphere
(diameter 8 cm), a cylinder (diameter 3.3 cm), a keycard (thickness 0.15 cm), an eraser
(thickness 1.4 cm), and a pen (diameter 1 cm). We examined the effects of limb position
change by placing the objects at nine positions (P1–P9), which were divided into main
three orientations, i.e., (1) the middle direction (P1–P3), (2) 45 degrees apart from the
middle direction to the left (P4–P6), and (3) 45 degrees to the right (P7–P9), as shown in
Fig. 2.

A demonstration video was shown on a monitor during data collection for guiding the
participant’s movements and to control the timing. There were three steps in grasping an
object placed on one of the nine positions, as follows: Step (1) reach to grasp the target
object within 1–3 s depending on how far the target position is from the initial position P0,
Step (2) grasp and lift the target object at the target position for 2 s, and Step (3) place
the object to the target position and return to P0 within 1–3 s. All participants were asked
to perform five repetitions for each grasp type and each object position. As a result, in total

Figure 2 Experimental setup and nine positions for object placement.
Full-size DOI: 10.7717/peerj-cs.949/fig-2
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225 trials (5 objects × 9 positions × 5 repetitions) were performed. To avoid fatigue, the
participants took a rest for 2–5 min after finishing the experiment in each trial.

PROPOSED ANALYTICAL METHOD
Figure 3 shows the schematic of proposed analytical method consisting of feature
extraction, feature projection, and classification. Details are as follows.

Feature extraction
Six channels of EMG signals from the shoulder and upper limb muscles were processed
with two digital filters. Firstly, to suppress motion artifacts, a fifth-order Butterworth
bandpass filter with a passband of 20–450 Hz was employed. Secondly, we eliminated the
power line interference at 50 Hz by a notch filter. In addition, the IMU signals were
smoothed with a moving average filter for reduction of the signal fluctuations. Then,
the filtered EMG and IMU signals from the step “grasp-and-lift object at the target position
for 2 s” were segmented into short sessions for further analysis. The size of each session
was 150 ms with a 50 ms increment for obtaining the next segmented session with 100 ms
overlap on the current one.

To identify the grasp type, the well-known time-domain features extracted from the
EMG signal ui in each session (150 ms) were mean absolute value (MAV), zero crossings
(ZC), waveform length (WL), slope sign changes (SSC), and the sixth order autoregressive
coefficients (AR). The brief details on each feature calculation are as follows.

� MAV is determined by taking the absolute value of all EMG signals in each session and
averaging them, which can be expressed as

MAV ¼ 1
N

XN
i¼1

juij; (1)

where ui is the EMG amplitude at index i and N is the size of each EMG session.

� ZC denotes the number of times the EMG amplitude changes sign in each session, which
can be defined as

ZC ¼ PN�1

i¼1
½gðui � uiþ1Þ�;

where gðdÞ ¼ 1; if d, 0
0; otherwise

� (2)

Figure 3 Schematic of proposed analytical method. Full-size DOI: 10.7717/peerj-cs.949/fig-3

Thiamchoo and Phukpattaranont (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.949 7/24

http://dx.doi.org/10.7717/peerj-cs.949/fig-3
http://dx.doi.org/10.7717/peerj-cs.949
https://peerj.com/computer-science/


� WL is calculated by averaging the absolute value of the differences between each
subsequent EMG pair in each session, which is given by

WL ¼
XN�1

i¼1

juiþ1 � uij: (3)

� SSC is the number of times the slope of the EMG amplitude changes sign. It is defined as

SSC ¼ PN�1

i¼2
½hfðui � uiþ1Þðui � ui�1Þg�;

where hðdÞ ¼ 1; if d. 0
0; otherwise

� (4)

� AR represents each EMG signal sample as a linear combination of the preceding sample
and a white noise error component εi, which can be given by

ui ¼
XP�1

p¼0

apui�p þ ei; (5)

where a1; a2; . . . ; aP are the feature values from the model and P is the order of the AR
model, which is 6 in this paper.

All feature values from each EMG session are concatenated to form a feature vector with
a dimension of 60 (10 features per channel × 6 EMG channels). Furthermore, six root-
mean square (RMS) values were determined for each IMU session (3 from ACC and 3
from GYR). The RMS can be expressed as

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
M

XM
i¼1

v2i

vuut ; (6)

where vi is the IMU amplitude at index i and M is the size of each IMU session. A feature
vector with a dimension of 6 is obtained by combining all IMU feature values.

We concatenated the EMG feature vector with the IMU feature vector to achieve the
combined feature vector with a length of 66 to represent an analytical session window. All
feature vectors from each participant were randomized and separated into training and
testing datasets using five-fold cross validation. In other words, for each subject, data from
all recorded positions were divided into five sections. When one of the five sections was
evaluated as the test data (20%), the remaining sections were the training data (80%).
The classification error was obtained by averaging the errors from all five test sections. All
processing was performed on a notebook (AMD Ryzen 7 3750H CPU and 8 GB of RAM)
using MATLAB (2021).

Before feature projection, the minimum and maximum values of MAV, ZC, WL, SSC,
AR from 6 EMG channels and the minimum and maximum values of RMS from 3-asix
ACC and GYR from the training data were determined and kept. These values were used
to normalize both the training and testing datasets into the range from −1 to 1.
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Feature projection
A high-dimensional feature vector might cause high computational cost. A feature
projection technique was used to map the original feature vector into a small feature space,
which could save in required computing resources. In this paper, the four feature
projection techniques PCA, LDA, SRELM, and t-SNE were evaluated and compared. It
should be noted that the dimensionality of each projected feature set after feature
projection, was four (the number of grasp type minus one).

A set of n feature vectors xi ∈ Rm in the high dimensional space can be written as an
n × m feature matrix X = [x1, x2,…,xn]

T, where n is the total number of feature vectors.
After feature projection, we obtain the low dimensional counterpart yi ∈ Rk (k < m) of
the high dimensional feature vector xi. Then, the corresponding low dimensional n × k
feature matrix can be expressed as Y = [y1, y2,…,yn]

T. The brief details on each projection
technique are as follows.

� PCA is based on the concept of finding the orthogonal basis vectors, which maximize
variance. After the eigenvalues and eigenvectors are determined from the eigenvalue
decomposition of a covariance matrixXTX, anm × k projection matrixUk is constructed
using the eigenvectors with the k highest eigenvalues (Martinez & Kak, 2001). Then, the
feature vectors in low dimensional space are obtained by projecting X onto Uk

(Y = XUk).

� LDA aims to transform the data by maximizing the ratio of the between-class variance
to the within-class variance. The within-class variance is given by Tharwat et al. (2017)

Sw ¼
Xc
j¼1

Xnj
i¼1

ðxji � ljÞðxji � ljÞT ; (7)

where xji is the ith feature vector of class j, lj is the mean vector of class j, c is the number of
classes, and nj the number of feature vectors in class j. The between-class variance can be
expressed as Tharwat et al. (2017)

Sb ¼
Xc
j¼1

njðlj � lÞðlj � lÞT ; (8)

where μ represents the mean of all classes. An m × k projection matrix Vk, which
maximizes the ratio of between-class and within-class variability, can be obtained from the
eigenvectors of S�1

w Sb. In other words, after S�1
w Sb is decomposed using eigenvalue

decomposition, Vk is constructed using the eigenvectors with the k highest eigenvalues.
Then, the feature vectors in low dimensional space are obtained by projecting X onto Vk

(Y = XVk).

� SRELM was evaluated for its projection performance with features extracted using the
EMG signals acquired from a fixed limb position (Phukpattaranont et al., 2018). It is
composed of two main algorithms, i.e., extreme learning machine (ELM) and spectral
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regression (SR). While the ELM is employed unsupervised, the labels are included in
the SR. As a result, SRELM is exploited as a supervised dimensionality reduction.
Pseudocode describing the SRELM projection algorithm is shown in Table 2.

There are two parameters in SRELM calculation, i.e., the number of hidden nodes and
alpha. A grid search strategy was used to determine both. The alpha was varied from 1
to 10 with an increase of 1, while the number of hidden nodes was varied from 50 to
1,500 with an increment of 50 nodes. The best parameters were chosen from the
combinations that produced the lowest classification error. As a consequence, alpha 1 was
employed and 1,000 hidden nodes were used.

� t-SNE is an unsupervised nonlinear dimensionality reduction technique, which is
introduced byMaaten & Hinton (2008). In t-SNE, the similarity of feature vectors xi and
xj in high dimensional space is determined using the conditional probability pj|i, which is
defined as Maaten & Hinton (2008)

pjji ¼ e�kxi�xjk2=2r2iP
k 6¼i

e�kxi�xkk2=2r2i
: (9)

Table 2 Pseudo-code describing the SRELM projection algorithm.

Algorithm 1: SRELM feature projection in the training stage

Input: the number of hidden nodes L, the alpha parameter α, the training feature vectors

Xtr = [x1, x2,…,xn]
T ∈ Rn×m, and the training class label vector t ∈ Rn

Output: the output weight U = [u1, u2,…,u(c−1)] ∈ RL×(c−1)

1) Generate randomly hidden node parameters ðai; biÞ; i ¼ 1; 2; . . . ; L

2) Calculate the hidden layer output matrixH = [h(x1), h(x2),…,h(xn)]
T ∈ Rn×L, where hðxÞ ¼ ½gða1 � x1 þ b1Þ; a2 � x2 þ b2Þ . . . gðaL � xL þ bLÞ�T and

gðai � x þ biÞ ¼ 1
1þ eai�xþbi

3) Calculate an orthogonal matrix Z = [z1, z2,…,z(c−1)] ∈ Rn×(c−1) from QR decomposition of the class label vector t

4) Calculate the output weight U which subjects to Hu = z from the solution of regularized least squares problem:

u ¼ argmin
u

Xn
i¼1

uThðxiÞ � zi
� �2 þ a

XL
j¼1

u2j

 !

Algorithm 2: SRELM feature projection in the testing stage

Input: the testing feature vectors Xts = [x1, x2,…,xns]
T ∈ Rns×m and the output weight U = [u1, u2,…,u(c−1)] ∈ RL×(c−1) from the training stage

Output: the projected feature vectors Y = [y1, y2,…,yns]
T ∈ Rns×(c−1)

1) Generate randomly hidden node parameters ðai; biÞ; i ¼ 1; 2; . . . ; L

2) Calculate Hts = [h(x1), h(x2),…,h(xns)]
T ∈ Rns×L

3) Calculate the projected features from Y = HtsU
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The feature vectors from the same grasp type give relatively high pj|i because of the
similarity between xi and xj. Then, to obtain a symmetric matrix, the joint probability pij is
determined by Maaten & Hinton (2008)

pij ¼
pijj þ pjji

2n
: (10)

For the low dimensional counterparts of the high dimensional feature vectors, a joint
probability qij can be expressed as Maaten & Hinton (2008)

qij ¼
ð1þ kyi � yjk2Þ

�1

P
k6¼l

ð1þ kyk � ylk2Þ
�1 : (11)

t-SNE aims to find a low-dimensional data representation that minimizes the mismatch
between pij and qij. This can be achieved by minimizing a cost function C determined
based on a single Kullback–Leibler divergence using a gradient descent method, which is
given by Maaten & Hinton (2008)

C ¼
X
i

X
j

pijlog
pij
qij

� �
: (12)

Classification
After feature projection, we evaluate the classification error of projected features from each
feature projection technique. Seven linear and nonlinear classifiers, which have been
employed for EMG pattern classification of hand and finger movements in prior
publications, are tested and compared in this paper. The linear classifiers, which decide a
class based on a linear combination of feature values, consist of LDA, naive Bayes (NB),
and SVM with a linear kernel (SVML). On the other hand, four nonlinear classifiers
include k-nearest neighbors (KNN), SVM with a radial basis function kernel (SVMB),
SVM with a polynomial kernel (SVMP), and neural network (NN).

While parameter selection for LDA and NB was not needed, the parameters for KNN,
SVM, and NN were determined by a grid search strategy. The parameter k in KNN was set
to 3, resulting from the best selection in the range from 1 to 7. For SVM, gamma and
cost parameters are varied in a range between 0.5 and 6 with a 0.5 interval. The optimal
parameters were picked from those that resulted in the lowest classification error. As a
result, gamma in the kernel function was set to one and cost was also set to one. For NN,
three-layered feed-forward back-propagation neural networks consisting of four neurons
in the input layer, 14 neurons in the tan-sigmoid hidden layer, and five neurons in the
linear output layer were used. The number of neurons in the input and output layers was
fixed by the dimension of the input feature vector and the number of grasp types,
respectively. On the other hand, the number of neurons in the hidden layer 14 was
determined from a grid search with a range between 1 and 50.
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Projected feature evaluation
To quantify the pattern characteristics of the projected features, we employ separability
index (SI), mean semi-principal axis (MSA), and repeatability index (RI). The SI is defined
as a half of the modified Mahalanobis distance, and is given by Nilsson, Håkansson &
Ortiz-Catalan (2017).

SI ¼ 1
c

Xc
i¼1

min
j¼1;...i�1;iþ1;...c

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
li � lj
� 	T

S�1 li � lj
� 	r

: (13)

where S ¼ Si þ Sj
2

is the average covariance matrix, Si is the covariance matrix of class i,
and Sj is the covariance matrix of class j. The SI value indicates quantitative measurement
of grasp cluster separation. The higher SI indicates the better grasp cluster separation.

The MSA measures the compactness of feature distribution in each cluster. Better
cluster compactness leads to a lower MSA. It is determined from the geometric mean of the
semi-principal axes averaged across the five grasp types, which is defined as

MSA ¼ 1
c

Xc
i¼1

Yk
j¼1

aij

 !1
k

0
B@

1
CA; (14)

where aij is from the k highest eigenvalues.
The RI measures the ability to reproduce the features determined from one position to

the others. It is determined as one-half the Mahalanobis distance between the mean feature
vector for a training dataset and a testing dataset, averaged across the nine positions
and the five grasp types as given by

RI ¼ 1
c

Xc
i¼1

1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lTri � lTsið ÞT S�1

Tri lTri � lTsið Þ
q

; (15)

where STri is the covariance of the ith-class training data, lTri and lTsi are the mean vectors
of the ith-class training and testing data, respectively. The better consistency in feature
characteristics from different positions leads to a lower RI.

RESULTS
Projected feature evaluation
In this section, we use SI and MSA values to assess the projected features from PCA, LDA,
t-SNE, and SRELM in terms of grasp cluster separation and grasp cluster compactness.
Table 3 shows average SI and MSA values from the four feature projection techniques.
The mean of SI from SRELM (14.88) is the highest compared to those from PCA (6.42),
LDA (11.05), and t-SNE (9.02). In other words, the projected features from SRELM
give the best cluster separation for five different grasps compared with other feature
projection techniques. In terms of cluster compactness, LDA is the best, which is
supported by an MSA of 0.0015.

To gain more insight on the resulting SI andMSA, we compare scatter plots of the MAV
and SCC feature vectors before feature projection from all placement positions in Fig. 4
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with those of the first two elements of the projected feature vectors when using the four
feature projection techniques (PCA, LDA, t-SNE, and SRELM) in Fig. 5. We can see
that the degree of cluster separation in the scatter plot from the SRELM is noticeable
compared to the others. Moreover, the SI of SRELM at 11.39 is also in line with its
separation degree, which is higher than that from LDA (SI = 6.99). On the other hand,
PCA and t-SNE provide the small degree of cluster separation resulting in the SI at 4.60,
and 2.37, respectively.

In addition, the cluster compactness of SRELM (MSA = 0.0014) is the best, superior to
PCA (MSA = 0.0030), LDA (MSA = 0.0017), and t-SNE (MSA = 0.0066). The visualization
of cluster sizes from four feature projection techniques shown in Fig. 5 coincides with
the reported MSA values.

Classification accuracy
Classification error rates from all pairwise combinations of the four feature projection
techniques with the seven classifiers are shown in Fig. 6. The classification errors from

Table 3 Average values of SI and MSA from four feature projection techniques.

Projection type SI MSA

PCA 6.42 0.0164

LDA 11.05 0.0015

t-SNE 9.02 0.0327

SRELM 14.88 0.0082

Figure 4 Scatter plots of the MAV and SCC feature vectors before feature projection from all
placement positions. While the features from a sphere, a cylinder, a keycard, an eraser, and a pen are
shown using red, green, blue, orange, and magenta colors, respectively, the features from positions 1 to 9
are shown using point, circle, asterisk, hexagram, diamond, triangle, cross, plus sign, and square markers,
respectively. Full-size DOI: 10.7717/peerj-cs.949/fig-4

Thiamchoo and Phukpattaranont (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.949 13/24

http://dx.doi.org/10.7717/peerj-cs.949/fig-4
http://dx.doi.org/10.7717/peerj-cs.949
https://peerj.com/computer-science/


Figure 5 Scatter plots of the first two elements of the reduced feature vectors from all placement
positions when using four feature projection techniques: (A) PCA, (B) LDA, (C) t-SNE, and
(D) SRELM. While the features from a sphere, a cylinder, a keycard, an eraser, and a pen are shown
using red, green, blue, orange, and magenta colors, respectively, the features from positions 1 to 9 are
shown using point, circle, asterisk, hexagram, diamond, triangle, cross, plus sign, and square markers,
respectively. Full-size DOI: 10.7717/peerj-cs.949/fig-5

Figure 6 Mean and standard deviation of classification errors from all pairwise combinations of four
feature projection techniques and seven classifiers. Full-size DOI: 10.7717/peerj-cs.949/fig-6
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SRELM are lower than from the others. In other words, the mean classification errors when
using SRELM with the classifiers LDA, NB, KNN, SVMR, SVML, SVMP, and NN are
1.93%, 2.18%, 1.65%, 1.50%, 2.65%, 1.67%, and 1.58%, respectively. They are lower than
those from LDA projection, which are in the range from 3.28% to 7.22%. The mean
classification errors from t-SNE are minimum at 1.27% when paired with KNN classifier
and maximum at 17.15% when paired with SVML classifier. Moreover, the mean
classification errors from PCA are in the range from 12.39% to 34.74%, which are inferior
to the others.

Two-way ANOVA analysis with a significance level of 0.05 was employed to investigate
the effects of choices of projection technique and of classifier on the classification error
rate. The results reveal that there is a significant difference when using these four
projection techniques (p < 0.001). In addition, the post hoc test using Fisher’s Least
Significant Difference (LSD) shows that the classification error rates from LDA and SVML
classifiers are significantly higher than those of the other classifiers (p < 0.019), while there
are no significant differences among NB, KNN, SVMB, SVMP and NN classifiers.
However, a one-way ANOVA test reveals that there is no statistically significant difference
by classifier type when using the SRELM projection (p = 0.334).

Figure 7 shows comparison of average classification error rate from the six pairs of two
feature projection techniques (t-SNE and SRELM) with three classifiers (LDA, KNN, and
NN) as functions of training position count. The classification error rate declines when
the number of training positions increases, in all cases of those six pairs. The results from
t-SNE-LDA provide a noticeably higher error compared to the other pairs. A three-way

Figure 7 The average classification error rate for difference schematics of feature projection and
classifier when reducing availability of training positions. The result is averaged over all 14 subjects,
five classes, and nine testing positions. Full-size DOI: 10.7717/peerj-cs.949/fig-7
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ANOVA revealed that there is a significant difference for interaction between all three
factors: projection type, classifier type, and the number of training positions (p = 0.001).
Moreover, all three factors significantly affect the classification error rate. The post hoc
analysis with LSD indicates that the projection techniques and classifiers are significantly
different for every pair, whereas there is no significant difference when the number of
training positions is greater than or equal to 7.

To investigate the effects of classifier type with different projection techniques, the mean
values of classification errors from applying t-SNE and SRELM were compared by a
two-way ANOVA analysis over classifier type and the number of training positions as the
two factors. The significant results were subjected to LSD post hoc test with 0.05
significance level.

Considering the result from t-SNE pairs, the rate of declination depends on the classifier
type (p < 0.001). For example, there is no statistically significant difference in classification
error rate when the number of training positions is greater than three in t-SNE-LDA
pairs (p = 0.467), which is different from t-SNE-KNN (the number of training positions is
greater than seven, p = 0.264) and t-SNE-NN (the number of training positions is greater
than six, p = 0.212) pairs. On the other hand, SRELM provides a similar declination
trend for all three pairs (p = 0.704). In other words, there is no statistically significant
difference in classification error rate when the training positions is greater than six in
SRELM (p > 0.191).

Table 4 presents the best positions used in training step corresponding to each number
of training positions from SRELM-NN pair shown in Fig. 7. For example, the best six
training potions are P1, P3, P4, P6, P7, and P9, which give an average classification error
rate of 3.16%. When the number of training positions increases from 7 to 9, the
corresponding average classification error rates are 2.60%, 2.15%, and 1.58%, respectively,
which are not significantly different. When the number of training positions increases
from one to nine, the RI decreases from 3.52 to 0.06. These results indicate that degree of
overlap between training and testing data increases when the number of training positions
increases as shown by decrease in RI.

Table 4 The average and standard deviation of classification error rate across 14 subjects for
different numbers of training positions by SRELM feature projection and NN classifier.

Training position(s) CER ± SD (%) SI RI

P5 24.84 ± 5.93 8.29 3.52

P5–P9 12.60 ± 4.23 9.88 1.19

P1–P5–P9 8.53 ± 3.66 10.97 0.67

P1–P3–P5–P9 5.75 ± 2.66 12.09 0.44

P1–P3–P5–P8–P9 4.11 ± 1.84 12.98 0.29

P1–P3–P4–P6–P7–P9 3.16 ± 1.86 13.59 0.20

P1–P2–P3–P4–P6–P7–P9 2.60 ± 1.78 14.00 0.15

P1–P2–P3–P4–P5–P6–P7–P9 2.15 ± 1.58 14.58 0.11

P1–P2–P3–P4–P5–P6–P7–P8–P9 1.58 ± 1.23 15.16 0.06
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DISCUSSION
Projected feature evaluation
This study examined the effects of projection technique and classifier type on hand grasp
classification during variation in limb positions. Our results indicate that the variation in
limb positions causes feature distribution changes, resulting in classification performance
impairment.

Figure 8 shows the scatter plots between the MAV and the SCC feature vectors for each
placement position before processing with feature projection. The clusters of feature
vectors representing each grasp type in each position are quite overlap. Moreover, it is seen
that the centers of clusters from each grasp type change when the positions change,
resulting in SI values from 5.18 to 15.89. When all clusters from all positions are combined,
the degree of cluster overlap increases resulting in the degradation of SI to 3.70 as shown in
Fig. 4.

This was also reported in a prior publication. Jochumsen, Waris & Kamavuako (2018)
investigated the distributions of EMG features from different motion classes with limb
position changes. The results showed that shifts in mean values and standard deviations of
some motion classes occurred when changing limb positions (Jochumsen, Waris &
Kamavuako, 2018). Fougner et al. (2011) explained that muscles need to adjust the
contractile strength resulting in changes of muscle shape, length and the number of active
motor units, to stabilize the limb during performing specific hand motions at the different
limb positions. This variation brought about transitions in amplitude and frequency of
EMG characteristics.

Figure 8 Scatter plots of the MAV and SCC feature vectors for each placement position.
Full-size DOI: 10.7717/peerj-cs.949/fig-8
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In addition, it was reported that the MAV feature was more resistant to limb position
changes compared to WL, ZC, and SSC features (Jochumsen, Waris & Kamavuako, 2018).
The pairing of MAV and WL was suggested as the best feature source for surface EMG
signals (Jochumsen, Waris & Kamavuako, 2018). However, our results showed that the best
feature pair was MAV and SSC.

For comparison, we show the scatter plots between the first two elements of the reduced
feature vectors from each placement position after processing with SRELM feature
projection in Fig. 9. In contrast to the results from scatter plots before feature projection,
the results after SRELM feature projection show that the cluster of each grasp type in
each position is quite well separated. Moreover, the center of each cluster from each
grasp type slightly changes when considering different object placement positions. The SI
values from nine positions are in the range from 11.17 to 15.16. When we combine all
clusters from all nine positions, the degree of separation still can be observed resulting in SI
at 11.39 as shown in Fig. 5D.

The class separability of four projection techniques measured by the SI value in Table 3
shows that the supervised projections, namely LDA and SRELM, produce a higher SI
compared to those from the unsupervised projections, namely PCA and t-SNE. While
the largest SI 14.88 is from SRELM, PCA provides the smallest SI at 6.42. According to Chu
et al. (2007), the four different projection techniques LDA, PCA, nonlinear discriminant
analysis (NLDA, a supervised nonlinear feature projection), and self-organizing feature
map (SOFM, an unsupervised nonlinear feature projection) were applied to EMG pattern
recognition when the limb positions were fixed. The class separability was measured by

Figure 9 Scatter plots of the first two elements of the reduced feature vectors from each placement
position after applying SRELM feature projection. Full-size DOI: 10.7717/peerj-cs.949/fig-9
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Fisher’s index. The results also indicated that the supervised methods (LDA and NLDA)
outperformed the unsupervised methods (PCA and SOFM). While the highest Fisher’s
index 25,345.8 was from LDA, the lowest Fisher’s index 0.0839 was from PCA.

Classification accuracy
Figure 6 shows that variation in classification errors from the seven classifiers is quite low
with the supervised feature projections (LDA and SRELM) compared to that from the
unsupervised feature projections (PCA and t-SNE). For example, the classification
errors from the seven classifiers using SRELM are in the range from 1.58% to 2.65%
compared to those using t-SNE ranging from 1.27% to 17.15%. The classification error rate
from using the t-SNE projection clearly varies with classifier type. It seems that t-SNE is
not appropriate for linear classifiers, namely LDA and SVML, resulting in quite high
classification errors (12.38–17.15%). However, better results are achieved when using the
nonlinear classifiers. Therefore, when the unsupervised feature projection like t-SNE is
applied, the classifier has to be carefully selected to achieve good classification error. The
pairing between t-SNE and KNN is able to produce the minimum error rate of 1.27%.
Nevertheless, there is no statistically significant difference compared with the pairing
SRELM-KNN (p = 0.462). Then, it can refer that SRELM features give well separated
cluster distribution in the projected features from different positions, better compared to
the other feature projection techniques, resulting in no significant differences in
classification error rate for the different classifiers.

Khushaba et al. (2014) proposed an alternative feature extraction based on time-
dependent spectral analysis to resolve the variations in limb positions in the sagittal plane.
The orthogonal fuzzy neighborhood discriminant analysis (OFNDA), which was a linear
supervised feature projection, was employed for dimensionality reduction of EMG
features. Eight types of hand motions from five different limb positions were classified
when training with features from multiple limb positions. The classification errors for
four classifiers including SVM, LDA, KNN (k = 5), and Extreme Learning Machine
(ELM, 780 nodes in the hidden layer) were 8.85%, 9.62%, 9.34%, and 8.86%, respectively.
We can see that the classification errors from OFNDA are also in a low variation, which is
similar to our results. In other words, the supervised feature projection tends to provide
less variation in classification error compared to the unsupervised feature projection.
Similar results were reported by Khushaba, Al-Ani & Al-Jumaily (2010). When the
projected features by OFNDA were classified with the linear (LIBLINEAR) and nonlinear
(multilayer perceptron) classifiers, there was no significant difference in classification error
(p = 0.7069).

In accordance with Chu et al. (2007), nine hand motions were classified by a multilayer
perceptron, which was a nonlinear classifier, when the limb position was fixed. The
classification error from four feature projections, namely LDA, PCA, NLDA, and SOFM,
was 2.6%, 4.1%, 2.1%, and 3.8%, respectively. These results show that even classification
error from PCA is in the same range with the other feature projections. However, our
classification error from PCA is quite high compared to that from other feature
projections. For example, when the NN classifier is used, our classification errors from
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PCA and LDA feature projections are 13.58% and 3.35%, respectively. This may be caused
by the differences in EMG data characteristic. In other words, while the EMG data in Chu
et al. (2007) were acquired from fixed limb positions, the EMG data in this paper were
recorded from variable limb positions.

CONCLUSION
In this study, we evaluated feature projection techniques for an EMG pattern-recognition
system to support myoelectric hand control, which is affected from variations in upper
limb position. The four different projection techniques PCA (linear unsupervised),
LDA (linear supervised), t-SNE (nonlinear unsupervised) and SRELM (nonlinear
supervised) were evaluated with seven different classifier types to classify five different
object grasps from nine positions in the transverse plane.

The results from feature visualization showed that SREML produced the remarkable
best class separability, leading to a low classification error rate. From a classification
accuracy comparison, the statistical analyses reveal that the choice of projection
technique is a more significant factor than the choice of classifier type. The unsupervised
projections, namely PCA and t-SNE, provide a wide range of classification performances
depending on classifier type. In contrast, the supervised projections, namely LDA and
SRELM, were able to achieve comparable performances regardless of classifier choice.
Moreover, the nonlinear projections may offer an opportunity to achieve a high
classification accuracy.

Regarding our results, the reduced feature vectors from SRELM showed the best
performance not only in terms of achieving a high feature separability but also obtaining a
low classification error rate (1.50–2.65%). It can be concluded that SRELM is able to
provide an invariant feature and is efficient in representing the effects on limb position
variation for myoelectric hand control.

From the present results, there are some further potential issues need to be addressed.
Although the nonlinear projection techniques can promise good classification accuracy,
they might spend more processing time than the linear projection techniques, especially
when the original feature vector is of high dimensionality and variation. Consequently, the
impacts of EMG features and the number of channels need to be studied in the future.
Alternatively, a linear-nonlinear feature projection, a cascade of two projection which are
linear and nonlinear, might be possible solution to enable the real-time system as had been
reported by Chu, Moon & Mun (2006). According to our present results, the minimum
classification error is achieved by pairing t-SNE projection with KNN classifier, which are
both unsupervised learning tools, resulting in non-mathematical mapping models (i.e.,
relying on storing prior data, not only a small number of model parameters). This is quite
difficult to implement in intuitively appealing control. For t-SNE, the corresponding
mapping model might be indirectly constructed by employing some supervise learning
such as artificial neural network as had been reported by Oliveira, Machado & Andrade
(2018). In the future, the knowledge from this study will be used with prosthetic devices to
improve the quality of life for people who have had their upper limbs amputated.
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