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ABSTRACT
Road condition monitoring is essential for improving traffic safety and reducing
accidents.Machine learningmethods have recently gained prominence in the practically
important task of controlling road surface quality. Several systems have been proposed
using sensors, especially accelerometers present in smartphones due to their availability
and low cost. However, these methods require practitioners to specify an exact set
of features from all the sensors to provide more accurate results, including the
time, frequency, and wavelet-domain signal features. It is important to know the
effect of these features change on machine learning model performance in handling
road anomalies classification tasks. Thus, we address such a problem by conducting
a sensitivity analysis of three machine learning models which are Support Vector
Machine, Decision Tree, and Multi-Layer Perceptron to test the effectiveness of the
model by selecting features. We built a feature vector from all three axes of the sensors
that boosts classification performance. Our proposed approach achieved an overall
accuracy of 94% on four types of road anomalies. To allow an objective analysis of
different features, we used available accelerometer datasets. Our objective is to achieve a
good classificationperformance of road anomalies by distinguishing between significant
and relatively insignificant features. Our chosen baseline machine learning models
are based on their comparative simplicity and powerful empirical performance. The
extensive analysis results of our study provide practical advice for practitioners wishing
to select features effectively in real-world settings for road anomalies detection.

Subjects Artificial Intelligence, Data Mining and Machine Learning
Keywords Features selection, Road anomalies detection, Time domain, Frequency domain,
Wavelet, Support vector machine, Decision tree, Multi layer perceptron, Machine learning

INTRODUCTION
Monitoring the physical conditions of roads is an extremely crucial area within the
transportation domain. The detection of road anomalies has been given considerable
attention, and a variety of field experiments have been conducted to establish the protocol,
methods, and algorithms (Outay, Mengash & Adnan, 2020). Road anomaly is referred to
as any deviation or variation from the standard road surface conditions (Seraj et al., 2015).
Various anomalies on the road can cause a vehicle to fall unexpectedly. Some of them are
potholes, rutting, cracks, and speed bumps. This necessitates the development of automated
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techniques for detecting different road anomalies. Many systems have been implemented
for fast and reliable anomaly detection to prevent road accidents. Some of these systems are
detecting anomalies either by using expensive and specialized road-monitoring equipment
(inductive loops, video-detectors, magnetometers, etc.) or by surveying roads manually. A
major drawback of these solutions is low flexibility and significant maintenance costs.

To overcome these drawbacks, a promising method for gathering real-world
data is mobile sensing technology without the need to deploy special sensors and
instruments (Schuurman et al., 2012). It is a smartphone-based method of sensing, in
which data is collected using embedded sensors (Lane et al., 2010). Accelerometer sensors
have been widely used to collect data for analysis. Based on many studies (Astarita et al.,
2012; Li, Chen & Chu, 2014; Li & Goldberg, 2018), road roughness is a source of vibration
in vehicles and a well-known cause of wear and damage to the vehicle itself, as well as
to bridges and pavements. These vibrations can be effectively captured by smartphone
accelerometers. There are three axes on an accelerometer (X, Y, and Z), which correspond
to the longitudinal, vertical, and transverse directions of a smartphone, respectively. When
acceleration is experienced in any of these axes, the accelerometer captures it (in m/s2).
Through analyzing these axes’ signals, road anomalies can be potentially identified.

Different approaches in the literature have been proposed to classify road anomalies
based on features obtained from the accelerometer sensor. Especially the machine learning
algorithms which are quite diverse (Eriksson et al., 2008; Perttunen et al., 2011; Carlos et al.,
2018; Bridgelall & Tolliver, 2020; Alam et al., 2020). In Basavaraju et al. (2019); Silva et al.
(2017), the authors employed Multilayer Perceptron (MLP) and they made comparisons
with other models such as Random Forest (RF), Support Vector Machine (SVM), and
Decision Tree (DT). Other researchers used a decision tree-based classifier (Alam et al.,
2020; Kalim, Jeong & Ilyas, 2016) to detect and classify different types of road anomalies.
Also, Support Vector Machines have been widely used in many works (Eriksson et al., 2008;
Perttunen et al., 2011; Carlos et al., 2018; Bridgelall & Tolliver, 2020; Alam et al., 2020).

The efficiency of any machine learning model is highly related to determining the
set of features that can ‘most accurately’ describe the input data that has been collected
from the accelerometer sensor. Several well-known features have been used in literature,
such as time- and frequency-domain features. In most cases, they are mixed with other
features (Kalim, Jeong & Ilyas, 2016; Silva et al., 2017; Nunes & Mota, 2019; Alam et al.,
2020). There have also been reports of feature extraction based on wavelets (Basavaraju
et al., 2019; Brisimi et al., 2016). It is not always clear which features will give the best
classification in previous literature. Additionally, it is important to minimize the number
of features to make the classifier faster and also more accurate since as more features are
added, the size of the design set must also increase. Knowing which features to extract
from an abundance of features in the raw data is the most challenging part. In this paper,
we will go into detail about those challenges by analyzing the sensibility of some machine
learning models to different categories of features. By demonstrating that specific features
from accelerometer data have the greatest impact on machine learning models, we can
avoid employing redundant features in the classification step as much as possible. For this
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purpose, a comprehensive and up-to-date set of thirty features from the time, frequency
and wavelet domains have been evaluated in this study.

Most previous studies have focused on a comparison between different machine
learning models rather than investigating the sensibility of such models to selected features.
Therefore, rather than studying features that practitioners should spend effort tuning, we
aimed to learn which features perform better regardless of the dataset andwhich features are
inconsequential. This paper reports the results of experiments investigating three machine
learning models (Support Vector Machine, Multi-Layer Perceptron, and Decision Tree) in
a large number of different configurations using two available datasets with various types
of anomalies. Analyzing sensitivity, in particular, is an important part of modeling. Model
builders and users are provided with useful information by emphasizing the parameters
that have the most influence on the model’s results. Sensitivity analysis can highlight the
parameters that should be measured most precisely in order to maximize the model’s
accuracy. It can also provide a general assessment of the accuracy of the model. In order to
develop effective design strategies, identify the parameters and interactions that have the
greatest influence on the model’s performance.

This paper is structured as follows: first, we present the overall machine learning-
based workflow of detecting road surface anomalies from smartphone sensors, followed
by a review of the most used features in the literature as well as the machine learning
techniques. Then, we present our experimental results using two types of accelerometer
datasets. In the following sections, the models reviewed and their limitations are discussed.
Finally, we summarize the results of the study and identify challenges with detecting road
surface anomalies of smartphones, along with potential research directions that should be
pursued.

METHODS AND MATERIALS
General overview
Themethodology we used to compare different feature techniques for automated detection
of road anomalies is illustrated in Fig. 1. In general, online running and offline training are
the two main phases of the system flow. It applies a machine learning approach to identify
road anomalies based on smartphone vibrations. In the first phase, a database of annotated
data is used to discover and extract useful information during the feature extraction step.
A machine learning model should then be trained using the extracted features. In order to
determine how the trained model functions and what its reliability is, it should be tested
against new data to determine its performance. It is imperative to mention that several
types of embedded sensors can be incorporated in providing input data. In our study, we
will use the accelerometer sensor. The resulting trained model is used during the second
phase to detect and classify anomalies from real time accelerometer readings. The feature
extraction process is performed in both phases. The reason why it is a crucial step in the
classification workflow.
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Figure 1 A general flow of machine learning based approach for road anomalies detection.
Full-size DOI: 10.7717/peerjcs.941/fig-1

Feature extraction
The specific technique used to detect anomalies is determined by the features extracted from
the accelerometer readings. Furthermore, it is crucial to extract the relevant features from
accelerometer measurements, since the features become inputs for specific techniques.

Time domain
Time domain features are often implemented as pre-processing (Radu et al., 2018) so they
are easy to implement. They can be used to extract basic signal patterns from raw sensor
data. We used a total of eight time domain features.

• Mean is the most common and easy implemented feature of the time domain. It only
finds the mean of amplitude values over sample length of the signal xi that represents a
sequence of N discrete values {x1,x2,...,xN }. It is obtained using Eq. (1)

mean(µ)=
1
N

N∑
i=1

|xi| (1)

• Integral square (IS) uses energy of the signal as a feature. It is a summation of square
values of the signal amplitude. Generally, this parameter is defined as an energy index,
which can be expressed as:

IS=
1
N

N∑
i=1

x2i (2)

• The variance is alsomost common statisticalmethod for time domain feature extraction.
It is defined as follows (Eq. (3)):

variance=
1

N −1

N∑
i=1

(xi−µ)2 (3)

• The standard deviation is calculated using the following equation:

StandardDeviation(σ )=

√√√√ 1
N −1

N∑
i=1

(xi−µ)2 (4)
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• The median is the number at which the data samples are divided into two regions with
equal amplitude.
• The range is the difference between maximum and minimum sample values.
• The root mean square (RMS) of a signal xi that represents a sequence of N discrete
values {x1,x2,...,xN } is obtained using Eq. (5) and can be associated with meaningful
context information.

xRMS=

√
x21+x

2
2+ ...+x

2
N

N
(5)

• Entropy describes how much information about the data randomness is provided by a
signal or event (Shannon, 1948).

Frequency domain
Initially, the time-domain vibration signals must be transformed into frequency-domain
signals using a fast Fourier transform (FFT) in order to extract the frequency-domain
features (Martens, 1992). Our extracted features are the next:

• The Spectrum energy of the signal is equal to the squared sum of its spectral coefficients.
• Median Frequency (MF) –A frequency that divides the spectrum into two equally
amplituded regions.
• Mean power (MP) –The Spectrum power average.
• Peak magnitude (PM) –The Spectrum amplitude at its maximum.
• Minimum magnitude (MM) –The lowest amplitude in the spectrum.
• Total power is defined as an aggregate of the signal power spectrum.
• The Discrete Cosine component is the first coefficient in the spectral representation of
a signal and its value is often much larger than the remaining spectral coefficients.

Time-frequency (wavelets) domain
A wavelet is a fast-decaying function with zero averaging. The nice features of wavelets are
that they have local property in both spatial and frequency domain and can be used to fully
represent volumes with small numbers of wavelet coefficients. With the wavelet approach.

In a time-domain analysis section, the original time-domain signal is usually decomposed
into distinct bands using designed filters paired with downsampling in order to split
the signal when the effective sample rate remains unchanged (Mallat, 2009). Based
on the characteristics of the source and/or application, each produced band can be
processed independently. After filtering and up-sampling, the signal is reconstructed as an
approximate representation of the original. By iterating the low-pass output at each scale,
the wavelet transform and its filter bank realization are repeated. Therefore, it produces a
series of band-pass outputs, which are actually wavelet coefficients. As mentioned earlier,
the wavelet is comprised of a high-pass filter, followed by a series of low-pass filters. For
further details, seeChau (2001). In our study, we used the following wavelet decomposition;
the accelerometer signal is decomposed using thewavelet transform and the features defined
as signal power measurements. Each of the five detailed coefficients is then summed up.
At the end, it returns a total of 15 features. In Table 1, we summarize all the feature sets
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Table 1 Features summary.

Domain Feature name Symbol

Time Mean µ

Integral square IS
Variance Var
Standard deviation σ

Median 30 Med
Range Rg
Root Mean Square RMS
Entropy Ent

Frequency Spectrum Energy SE
Median Frequency MF
Mean Power MP
Peak Magnitude PM
MinimumMagnitude MM
Total Power TP
Discrete Cosine DC

Wavelet Five levels - Daubechies 2 cDij

used in our research. Our choice of features is based on a critical issue is how to combine
these different sets of features in a way that may increase the performance of the model
classification. We used an overlapping sliding window scheme using a window of length
w to group the data. The features are extracted from each window. Since the anomaly
location is originally unknown and needs to be estimated, the overlapping window ensures
that there exists some window that overlaps with the anomaly. Basically, the output from
the previous step will be used as input to three different classifiers in order to compare
their efficiency based on features selected.

Machine learning baseline models
As popular and reliable technologies that can be applied for classifying road vibration data,
SVM, Decision Trees and Neural Networks were utilized in this study.

Support vector machine
SVM aims to construct a hyperplane or set of hyperplanes in an N-dimensional space
(N is the number of features), which can be used for classifying the data points. Many
hyperplanes could be chosen; the most optimal hyperplane is the one that has the largest
margin, i.e the maximum distance between data points of both classes. Research by Boser,
Guyon & Vapnik (1992) in 1992 revealed a method for creating nonlinear classifiers by
using kernel functions (originally proposed by Aizerman, Braverman, and Rozonoer in
Aizerman, Braverman & Rozonoer, 1964). In this algorithm, nonlinear kernel functions are
often applied to transform input data into a high-dimensional feature space in which the
input data becomemore separable compared to the original input space.Maximum-margin
hyperplanes are then created. In the following text, for the purpose of this research, one
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type of SVM is used, C-SVC that can incorporate different basic kernels. Given training
vectors.

Decision tree
Adecision tree also known as a classification tree is a predictivemodel derived by recursively
partitioning the feature space into subspaces that constitute a basis for prediction (Rokach,
2016). In the tree structures, leaves represent classifications (also referred to as labels),
non-leaf nodes are features, and branches represent conjunctions of features that lead
to the classifications. Decision trees are derived by doing successive binary splits (some
algorithms can make multiple branches for every split). The first split will produce the
most distinct data between two groups. The subgroups are then split until some stopping
criteria are reached. There are differences in algorithmic approaches to establishing the
distance between two groups (Loh, 2011).

Multi layer perceptron
A multilayer perceptron can be used to perform classification. It is an example of a
feed-forward neural network where each node performs a nonlinear activation function.
The weights connecting the nodes are determined using back propagation. This network
receives as input a feature vector extracted from the object to be classified. It outputs a
block code, in which one high output identifies the class of the object and the other outputs
are low. In order to approximate functions, only one hidden layer is required (Cybenko,
1989). It depends on the problem as to how many layers in the network and nodes in each
hidden layer are used.

Datasets
To validate our study, we use two different types of accelerometer measurements datasets:
simulated and real data. The measurements are labeled with several categories. All the
training measurements in each of these categories are split into segments according to a
predetermined window size, w with an overlap of w/2. Each segment is represented by
a descriptor comprising the features mentioned previously. Two types of accelerometer
datasets are used: simulated data and real data. A part of the data was used to train, while
the other part was used to test. With the training data, we calibrated the parameters for
each model, trying to find the values that produced the best results. To make any approach
usable, it is important to reduce the amount of data it needs to be calibrated. Accordingly,
in all cases, the training components are shorter than the testing components testing
components.

Simulated data
Pothole Lab (Carlos et al., 2018), which can be used to create virtual roads with a
configurable number and nature of road anomalies, generated the first dataset we used for
our experiments (DB1). Different roads were built with acceleration samples taken from
the X,Y, and Z axes with a sampling rate of 50 Hz. The generated roads are divided into
three types: roads without anomalies, homogeneous roads (only one kind of anomaly),
and heterogeneous roads (different types of anomalies). We generated 60 virtual roads
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with a total of 1591 anomalies of three types (potholes, metal speed bumps and asphalt
speed bumps). Table 2 describes the details of the dataset used and the number and type
of each anomaly. In this table, the term bumps represents Asphalt bumps, other terms are
self-explanatory. The dataset were divided into training (70%) and testing sets (30%).

Real data
The second dataset we employed (DB2) was published in Gonzlez et al. (2017) where 12
vehicles were used to perform the data collection. This dataset contains accelerometer
samples from z-axis only, using a sampling rate of 50 Hz. More than 500 events were
recorded and classified into five categories: metal bumps, worn out road, potholes, asphalt
bumps, and regular road. Table 3 shows the details of the dataset used in this study as well
as the distribution of anomalies used.

Model evaluation parameters
This evaluation aims to assess the effectiveness of our models in classifying road anomalies.
Following are the performance scores we calculated in this study. Accuracy, recall, and
F1-score. A measure of recall is dependent on the understanding and measurement of
relevance. Measures of completeness and quantity can be viewed as recall. Accuracy
measures the overall performance of the classification.

• Accuracy is measured as a ratio of correctly predicted samples to the number of input
samples. It gives a reasonable estimation of the model performance only if there are an
equal number of samples belonging to each class. It is calculated using the following
equation:

Accuracy =
TN +TP

TN +TP+FN +FP
(6)

• The recall, or true positive rate, determines how well the classifier predicts positive
samples. It is calculated in the following manner:

Recall =
TP

TP+FN
(7)

• F1 Score is the harmonic mean between precision and recall. The greater the F1 Score,
the better is the performance of our model. F1-score is calculated as the following:

F1=
2×Precision×Recall
Precision+Recall

(8)

The TP (true positive) indicates that it is a valid classification of the anomaly (ground
truth). A TN (true negative) indicates how many times an anomaly is classified properly as
not being observed. An algorithm that falsely identifies an anomaly that was not observed
is known as a false positive (FP). FN (False Negatives), is the number of cases in which an
anomaly was observed (ground truth) but classified as something else by the algorithm.

Moreover, we applied cross-validation in the performance evaluation of each
classification model to estimate the skill of a machine learning model on unseen data.
A 10 group split is a reasonable compromise for providing robust estimates of performance
and being computationally feasible. Every unique group is treated as a hold-out or test set,
and all the other groups are treated as training sets. We then fit the model to the training
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Table 2 The dataset generated with Pothole Lab (Carlos et al., 2018).

Anomaly Training set Testing set

Potholes 362 155
Metal speed bumps 324 139
Asphalt speed bumps 427 184

Table 3 The real dataset used (Gonzlez et al., 2017).

Anomaly Training set Testing set

Potholes 70 30
Metal bumps 70 30
Asphalt bumps 70 30
Worn out road 70 30
Regular road 70 30

data and evaluate it on the test data. That evaluation score is retained. As the last step, we
compute the skill of the model based on the sample of model evaluation scores. However,
the cross-validation accuracy is the same as the overall accuracy in all our experiments.

RESULTS AND DISCUSSION
Experimental setup
The experiments covered a diverse combination of factors that could potentially affect the
accuracy of any machine learning model for classifying road anomalies. To determine the
usefulness of these factors in the used data sets, we carried out three types of experiments:

• The effect of the accelerometer axis data. We focused on varying the input data fed to
our models by applying all the possible combinations of X, Y, and Z -axis. We used a
window size equal to 30 and a time step of 15, from which we extracted 30 features as
described in Table 1.
• The effect of sliding window size:We consideredmultiple window sizes and we recorded
the corresponding performance.We used only Z -axis data and all features were extracted
for each window size.
• The effect of features extraction.We evaluated in our first experience the three categories
of features (time, frequency, and wavelet) separately. Then, we explored all the possible
combinations of features while recording the corresponding performance for each
combination.

In all our experiments, we repeated the training and the testing procedures over many
trials, and the average detector performance is reported. This is to discard randomness
effects. The parameters in our machine learning models are set in accordance with the
literature. For SVM, we used a regularization parameter equal to 1, the ‘rbf’ function
kernel with a coefficient of 2×10−3 and a tolerance of 10−3. For MLP, the ‘relu’ activation
function is used over 300 iterations. The random state value for DT was set to zero. We
used in our tests a machine having a single Nvidia Tesla K80 GPU and 12 GB of RAM.
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Analysis of accelerometer axis data
In this section, we examine how the tri-axial accelerometer sensor improves classification
rate by analyzing the effectiveness and contribution of each axis. Three well-known
anomalies were selected: potholes, asphalt speed bumps, and metal bumps. Experimental
results were assessed using accuracy metrics. An important property of road anomalies
classification models based on accelerometer data is the possibility of taking as input 3
different signals from the accelerometer axis: X, Y, and Z -axis. The flexibility of such
architectures affords swapping in different axis data during model initialization. Therefore,
we first extract all features from each window for each axis X, Y, and Z, involving time,
frequency, and wavelet features. In the next step, we assess the sensitivity of the selected
anomalymodels according to the input axis data by depicting a combination of the different
axis of the accelerometer to recognize the anomalies. Specifically, we consider all possible
combinations: only X-axis, only Y -axis, only Z -axis, X and Y axis, X and Z axis, Y and Z
axis and, all axis. We report accuracy achieved using SVM, DT, and MLP. In Table 4 the
best classification rates of different anomalies against X-axis is 86%, Y -axis is 88%, Z -axis
is 90%, X-Y axis is 89%, X-Z axis is 91%, Y-Z axis is 94%, and X-Y-Z axis is 94%.

Analyzing the relative performance of different axes shows that using the information
from all axes gives the most effective results. Besides, according to the results obtained
in Table 4, the use of the Z -axis either alone or with another axis has an impact on the
performance of the models. By looking at the actual performances using all models, it
shows that the top two accuracy values are 94% and 91%.When the Z -axis was paired with
the Y -axis and both X-Y-axes, the highest accuracy (94%) was achieved. It is pertinent
to notice that accuracy values in the last two columns of Table 4 are similar. This means
that the X-axis has less effect on the model performance when compared to the other axis.
Moreover, the Z -axis of the accelerometer sensor is a potential feature. The combination
of the Z -axis with the X-axis increases the performance from 86% to 91%. Likewise, its
combination with the Y -axis increases the performance from 88% to 94%. The lowest
performance values reached are 80%, 81%, and 82%. In all of them, we notice the use of the
X-axis either alone or combined with another axis. Unfortunately, simply using the X-axis
or concatenating it with another axis does not have an improving effect. Also, combining
Y and Z -axis data with MLP may indeed give reliable results (94%). It is imperative to note
that models settings are kept the same as in the basic configuration to highlight the effect
of axes used. We emphasize that MLP and SVM models gave better average results when
compared to DT in most of the cases.

Analysis of sliding window size
We reported in the previous section the performance obtained by combining various
accelerometer axes. In this section, we discuss how the sliding window affects the model’s
performance. We first convert the accelerometer Z -axis signal into data windows of 30
features that overlap 50% of each other. To prevent removing relevant information from
the signal, no preprocessing is applied. As long as the anomalies are diverse, this is normal
practice, and even more so if the quality of the data permits it. A machine learning model
is designed to identify windows when an anomaly occurs. We use a variety of window sizes
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Table 4 Accuracy (%) of our machine learning models according to accelerometer axes used.

Model X -axis Y -axis Z -axis (X-Y) axis (X-Z) axis (Y-Z) axis (X-Y-Z) axis

SVM 86% 88% 87% 89% 91% 93% 93%
DT 81% 83% 87% 83% 80% 93% 94%
MLP 84% 85% 90% 82% 85% 94% 93%

for evaluation, ranging from 10 up to 100 in steps of 10. Previous anomalies detection
systems have mostly used this interval. Figure 2 shows the performance results for diverse
window sizes and models. Since we only need to see the trend in model accuracy as the
window size is altered (rather than the absolute performance of each model), the accuracy
is only shown as a percentage change as the sliding window size is increased.

Experimental results have shown that window sizes differ between models. One reason
for this may be that different anomalies have varying durations. In DB1, SVM and DT
models show an increasing performance with larger windows. For size 5, a minimum
performance of 81% is achieved, which nevertheless increases up to 94% when the window
is enlarged to 80. For some window sizes, the performance improves by less than 5% as
compared to the performance at size 80. Actually, from a window size greater than 80, no
significant benefits are obtained in all models’ performances. Regarding DB2, different
performance values have been recorded varying between 25% and 59%. Conversely to
DB1, all models, especially DT and MLP, suffer from a worsening of performance when
the window size is increased beyond 50. Window sizes between 45 and 50 provide the
best performance for DT. This technique provides the highest level of performance, with a
94% accuracy rate. Upper and lower values of 30 and 60 generally decrease the classifier’s
performance. The MLP model is showing an oscillating behavior when increasing the
window size.

It was shown that each model has its optimal window size based on the results. However,
considering the figure in Fig. 2, a reasonable range of size might be around 30 to 60 for
our used datasets comprising three types of anomalies for DB1 and four types in DB2. In
addition, the classification accuracy trend seems to be different for each model in DB2.
Additionally, it is also found that the window size is highly related to the type of anomaly.
Studying each anomaly, in particular, would be of interest.

The choice of small window size is a challenging task when using machine learning
techniques because the cost of labeling every short interval of data is extremely high.
Several approaches may be used for solving such a problem, including incremental learning
or reinforcement learning, which can maintain and modify the expert model over time
without the need to re-train it. The main limitation that should be noted, which should be
studied further is that only a few benchmarking datasets are available for the classification
of road anomalies.
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Figure 2 Effect of the overlapping window size using only Z -axis for: (A) DB1, (B) DB2.
Full-size DOI: 10.7717/peerjcs.941/fig-2

Table 5 Performance evaluation of our machine learning models according to domain feature used
(without domain combination).

Simulated data Real data

Model Accuracy Precision Recall F1 Accuracy Precision Recall F1

Time SVM 0.88 0.77 0.30 0.33 0.43 0.38 0.32 0.28
DT 0.87 0.56 0.55 0.55 0.36 0.33 0.33 0.33
MLP 0.88 0.43 0.35 0.38 0.47 0.42 0.37 0.35

Frequency SVM 0.86 0.74 0.26 0.26 0.29 0.21 0.20 0.16
DT 0.83 0.42 0.42 0.42 0.34 0.30 0.30 0.30
MLP 0.86 0.27 0.25 0.24 0.24 0.04 0.2 0.07

Wavelet SVM 0.89 0.59 0.39 0.41 0.48 0.46 0.38 0.36
DT 0.85 0.49 0.51 0.49 0.38 0.34 0.34 0.34
MLP 0.90 0.69 0.42 0.45 0.49 044 0.39 0.37

Analysis of features
In this experiment, the basic configuration is held constant, while we only alter the number
of features extracted for each model. Each of the three feature domains–Time, Frequency,
and Wavelet–is considered separately. We report results in Table 5.

When comparing the wavelet with the other feature domains, it provides a very
competitive level of accuracy. An MLP model achieved an accuracy of 90% in DB1 and
49% in DB2 (about one percent greater than an SVMmodel). Similar results were obtained
with MLP, which achieved the highest accuracy when using wavelet decomposition.
Theoretically, MLP classifiers implement empirical risk minimization, whereas SVMs
minimize structural risk. So, both MLPs and SVMs are efficient and generate the highest
classification accuracy for our used datasets. However, from our results, we have noticed
that the DT achieved the lowest accuracy for both DB1 and DB2. A possible explanation
is that decision trees work better with training data which does not exist in our datasets.
(DB1 contains four categories and DB2 contains five categories).

Another key result we obtained is that the model accuracy is higher when using a
simulated dataset. Models using data from road simulators (where the anomalies detected
are recorded in controlled conditions) lack information about many factors that can affect
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Table 6 Performance evaluation of our machine learning models according to domain feature used
(with domain combination).

Simulated data Real data

Model Accuracy Precision Recall F1 Accuracy Precision Recall F1

T + F SVM 0.86 0.75 0.26 0.26 0.29 0.21 0.20 0.16
DT 0.86 0.51 0.51 0.51 0.36 0.33 0.33 0.33
MLP 0.86 0.33 0.25 0.24 0.24 0.04 0.2 0.07

T + W SVM 0.89 0.59 0.39 0.41 0.49 0.48 0.40 0.38
DT 0.88 0.55 0.57 0.56 0.42 0.39 0.39 0.39
MLP 0.90 0.67 0.42 0.47 0.52 0.54 0.44 0.44

F + W SVM 0.87 0.94 0.28 0.30 0.30 0.22 0.20 0.14
DT 0.86 0.49 0.50 0.49 0.40 0.36 0.35 0.35
MLP 0.87 0.54 0.27 0.27 0.34 0.34 0.28 0.21

T + F + W SVM 0.87 0.94 0.28 0.30 0.30 0.22 0.20 0.14
DT 0.87 0.53 0.56 0.54 0.42 0.39 0.39 0.39
MLP 0.87 0.57 0.47 0.47 0.42 0.30 0.30 0.25

the signal accuracy such as driver behavior. On the other hand, the accuracy obtained from
real data seems to give a reliable evaluation of any machine learning model.

A combination of several features has also been considered. Table 6 presents the
obtained results. With the application of time and wavelet features, the accuracy increases
significantly with an accuracy of 90% for DB1 and 52% for DB2. However, by using all the
features, the accuracy is not improved, and the overall performance is lower.

The confusion matrices of the highest accuracy obtained using wavelet and time features
are shown in Fig. 3. In DB1, the pothole is sometimes confused with no anomaly. However,
there is almost no confusion between the metal bump and other anomalies. As a metal
bump will have a different effect from a pothole or regular road, it makes sense because a
metal bump is expected to have a distinctive effect.

The results are different in DB2 as we notice that the distribution of accuracy across
categories is nearly the same. One possible reason is that DB2 is a collection ofmore realistic
data.

The source code for these experiments has been released to researchers on request so they
can replicate this work and examine more features and models. This study was conducted
to encourage additional research exploring more features and models. This research
will also be useful in many other applications, such as activity recognition, to select
the appropriate feature extraction techniques. This study describes the methodological
challenges of extracting features from various machine learning models input and explores
what features are suitable for analyzing road anomalies. In addition, deep learning models
may be compared to standard machine learning models.

To ensure excellent accuracy, other techniques could also be incorporated in addition
to the well-known ones used in this study. Several feature techniques combined, for
instance, could produce acceptable results. Many of these techniques, however, tend
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Figure 3 Averaged Confusionmatrices of MLP with wavelet and time features (using only Z -axis) for:
(A) DB1, (B) DB2.

Full-size DOI: 10.7717/peerjcs.941/fig-3

to be computationally expensive, and may not be suitable for applications requiring
near-real-time processing.

The ‘most appropriate’ domain of features depends on the model. It would seem,
however, that using the feature domains separately would yield the lowest level of precision.
Another salient practical point is that the time required to extract features varies according
to the domain. In practice, these findings suggest that it may be beneficial to use different
domain-specific features to improve classification performance.

Comparison with literature works
To evaluate the ability of our approach to competitively produce accurate predictions of
different types of anomalies, we made a comparison with different literature works detailed
previously. It is imperative to note that the datasets used in these methods are different.
Thereby, an exact comparison is not possible due to different data sets and test setups. We
mention in Table 7 the types of anomalies detected in each method as well as the accuracy
of the predictive model applied. The accuracy values reported in the table are directly cited
from the original publications. Using our proposed set of features, we achieved an accuracy
average of 94%, which is a very competitive result compared to state-of-the-art works.
Previous works in literature considered that only the Z -axis could represent the anomaly
information. Also, their efforts have been focused on threshold heuristics. However, these
strategies have shown their limitations when implemented in real-world applications.
Remarkably, achieving a high classification performance is not related to the number of
features used. A well-chosen set of features may result in a much more efficient classifier.
This last point implies that the choice of discriminators plays an imperative role in detecting
road irregularities.

Ferjani et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.941 14/18

https://peerj.com
https://doi.org/10.7717/peerjcs.941/fig-3
http://dx.doi.org/10.7717/peerj-cs.941


Table 7 Accuracy comparison between the best classifier reported in this work and works from the lit-
erature.

Reference Anomalies detected Technique Accuracy
average

Eriksson et al. (2008) Potholes Threshold 92.4%
Fazeen et al. (2012) Pothole, Bumps,

Rough, Smooth
uneven

Threshold 85.6%

Martinez, Gonzalez & Carlos (2014) potholes, speed bumps,
metal humps, rough roads

ANN,
Logistic regression

86%

Gonzlez et al. (2017) Potholes, Metal bumps,
Asphalt bumps, Regular road,
Worn out road

ANN, SVM,
DT, RF,
NB, KR, KNN

93.8%

Alam et al. (2020) speed-breakers, potholes,
broken road patches

Decision tree 93%

This work Potholes, Metal speed bumps,
Asphalt speed bumps

MLP, DT, SVM 94%

CONCLUSION AND FUTURE WORK
This work tackles the problem of classifying road anomalies using machine learning
techniques. An extensive experiment was conducted to investigate three machine learning
models for classifying road anomalies. In conclusion, we summarize our main findings
and conclude with concrete advice for researchers and practitioners wishing to apply these
machine learning models to real-world road assessment systems. The results show that the
accuracy rates of machine learning models trained with features extracted from all three
coordinate axes are significantly higher than those trained with the axis perpendicular to
the ground only (Z -axis). All three machine learning techniques explored in this paper
show this trend. The results support our hypothesis that all three axes of the coordinate
system provide useful information about the road’s condition. Based on the results of a
sensitivity analysis, an overlapping window strategy with a size between 30 and 60 was
selected for better performance. Further analysis is needed to completely understand the
relation between the window size and the type of anomaly specified. Another important
finding of our study is the sensibility ofmachine learningmodels to the selected features.We
built a better feature vector that increases classification performance. This vector is based
on wavelet features that outperform other domain features. Also, the MLP model has a
reasonably high level of accuracy in classifying anomalies. With the extraction of all domain
features, an overall success rate of 94% is observed when compared to the ground truth.
From this point of view, merging different feature domains, especially wavelet features,
seems to be more effective for preserving most road anomaly characteristics. However,
separating each domain seems to be inefficient. This article discusses only datasets that
contain roads with characteristics similar to those considered for this work. Our findings
here may not apply to all cases. Nevertheless, we believe these suggestions are likely to be
useful for researchers interested in integratingmachine learning approaches into real-world
anomaly detection tasks.
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