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ABSTRACT

MRI reconstruction is one of the critical processes of MRI machines, along with the
acquisition. Due to a slow processing time of signal acquiring, parallel imaging and
reconstruction techniques are applied for acceleration. To accelerate the acquisition
process, fewer raw data are sampled simultaneously with all RF coils acquisition.
Then, the reconstruction uses under-sampled data from all RF coils to restore the
final MR image that resembles the fully sampled MR image. These processes have
been a traditional procedure inside the MRI system since the invention of the multi-
coils MRI machine. This paper proposes the deep learning technique with a
lightweight network. The deep neural network is capable of generating the high-
quality reconstructed MR image with a high peak signal-to-noise ratio (PSNR). This
also opens a high acceleration factor for MR data acquisition. The lightweight
network is called Multi-Level Pooling Encoder-Decoder Net (MLPED Net). The
proposed network outperforms the traditional encoder-decoder networks on 4-fold
acceleration with a significant margin on every evaluation metric. The network can
be trained end-to-end, and it is a lightweight structure that can reduce training time
significantly. Experimental results are based on a publicly available MRI Knee dataset
from the fastMRI competition.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning
Keywords MRI reconstruction, Multi-level pooling, Encoder-decoder CNN, Fast MRI

INTRODUCTION

Magnetic Resonance Imaging (MRI) is a commonly used tool due to its non-invasive
imaging technology. This is because the magnetic fields and radio waves are used
compared with the X-ray that uses ionizing radiation. This makes the MRI a leading
diagnostic tool for various disorders. However, the data acquisition process usually takes a
long time inherently, which can easily exceed 30 min. This can make elderly patients feel
uncomfortable when they lay still inside the MRI machine. This affects the patient
throughput compared with other diagnostic tools like X-ray or CT scan. Therefore, the
primary and ongoing researches in the MRI field are focused on increasing data acquisition
speed.
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Parallel Imaging (PI) is one of the most significant and successful developments in the
MRI machine. This can accelerate the acquisition time by the number of Radio Frequency
(RF) coils instead of using a single RF coil. The technique uses all information across
RF coils to simultaneously record different parts of a target object rather than a standard
sequential order. Then mathematics algorithms are applied for reconstruction into the
final MR image (Pruessmann et al., 1999; Griswold et al., 2002). This led to a reduction in
the number of phase-encoding steps during image acquisition. As a consequence, it results
in a several-fold reduction in imaging time. Therefore, parallel imaging is the default
option of many modern MRI scanners.

The introduction of Compressed Sensing (CS) in 2006 showed a promising
breakthrough technique in MR acquisition acceleration (Candes, Romberg ¢ Tao, 2006;
Lustig, Donoho & Pauly, 2007). The CS technique accelerated the data acquisition process
by acquiring less and incomplete information, an under-sampling process, required to
reconstruct high-quality images. A number of acceleration folds could define the under-
sampling. But the under-sampling also showed a devastating effect that was visible aliasing
artifacts due to a violation of the Nyquist-Shannon sampling theorem. These artifacts must
be eliminated in the reconstruction process by using an image with additional prior
information. The CS could also benefit from a non-parallel MRI system.

The rapid development of machine learning approaches has been seen recently in every
image processing field and also MR image reconstruction, which showed an excellent
promising for the acceleration of data acquisition (Hammernik et al., 2016; Wang et al.,
2016; Hammernik et al., 2018). The complexity of the deep learning technique makes it a
gold standard of the machine learning. An expandable complexity of the deep learning
network showed even more promising results for the MRI reconstruction at higher
acceleration fold (Zbontar et al., 2018; Zhu et al., 2018). However, to achieve high-quality
reconstruction results, the deep neural network requires a large-scale dataset for
compensating the model complexity to prevent an over-fitting phenomenon. This can be
seen as two sides of a coin of the deep learning approaches. The more complex network is,
the more images are needed. Moreover, a medical dataset is harder to establish, not to
mention the large-scale dataset. This is why the Facebook Al Research (FAIR) collaborated
with NYU Langone Health on a research project competition that aimed to investigate the
use of Artificial Intelligence (AI) to make MRI acquisition up to 10 times faster, called
fastMRI. The competition provided good quality and large-scale MRI datasets with their
baseline results from the deep neural network (Zbontar et al., 2018).

This paper introduces the lightweight deep convolution neural network to overcome the
over-fitting problem that continually plagues the deep learning approaches in every
field. The lightweight nature of the network makes it is easy to apply to other medical
problems, e.g., medical image segmentation or another medical image type reconstruction,
etc. The proposed network is based on the well-known encoder-decoder structure (Cho
et al., 2014a, 2014b; Ronneberger, Fischer ¢» Brox, 2015) that is adapted for several
computer vision tasks. The conventional encoder-decoder system provides an easement to
scale the complexity in both encoder and decoder modules. This makes the network very
flexible to adapt and fit the variety of dataset sizes. However, it strives to reconstruct an MR
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image at a high accelerator. This is because the raw MR data, k-space, contains a lot of
high-frequency signals, which the conventional encoder-decoder method cannot
comprehend. The proposed network is added with additional modules between encoder
and decoder modules to address this challenge. The extra module is called the Multi-Level
Pooling module. This is also a source of the network name, Multi-Level Pooling Encoder—
Decoder Net (MLPED Net). The proposed network is trained and evaluated with the
fastMRI dataset (Zbontar et al., 2018).

First, a brief introduction to MR imaging techniques is provided in “Introduction” and
background knowledge and related works are reviewed in “Background and Related
Work”. Next, the proposed MLPED Net is explained in “Proposed Method”, followed by
experiments in “Experimental Results” and the experiment’s discussion in “Discussion”.
Finally, the conclusion and acknowledgment are in “Conclusion” and “Acknowledgment”,
respectively.

BACKGROUND AND RELATED WORK

Parallel imaging

MRI acquisitions can be a very time-consuming process since raw data in the frequency
domain, k-space, are typically acquired line by line until the MR image contains a full field
of view (FOV). The acquisition process uses an RF coil in an old generation of a single-coil
MRI system. Then, the MR image can be obtained by applying an inverse Fourier
transform function (# ~!) to the sampled k-space data. The basis image in the Cartesian
space x € CM is connected to the sampled k-space in the Cartesian space k € CM as below.

k=F(x)+a (1)

where « is the measurement noise (Baert, 2007; Sriram et al., 2020).

Nowadays, modern MRI systems support multi-RF coil systems that can simultaneously
scan different object parts. Each sampled k-space is modulated by its coil sensitivity to
the MR signal. Each coil sensitivity is different because it depends on the distance between
the object and each coil location. So the sampled MR images which already transformed
will look like a set of diverse images with inhomogeneous brightness. The k-space data,
which is acquired by the i-th coil, is described below.

ki:ﬁ(six)—i—oc,-,i:l,Z,...,N (2)

where i is coil numbered i-th, N is a total number of coils, and §; is a i-th coil sensitivity
matrix that is measured every time before the scanning begins. Then every coiled-MR
images are combined together by a reconstruction algorithm as below.

N
Irecon =R (Z kz) (3)
i=1

where I, is a reconstructed MR image, and Z is a reconstruction algorithm.
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Image reconstruction

Reducing the number of k-space lines generates results as an acceleration of the acquisition
time. However, when under-sampling k-space data is transformed back to an image
domain results in images that contain alias artifacts (Hamilton, Franson & Seiberlich,
2017). Hence, modern MR scanners come with the state of the art image reconstruction
algorithm. The algorithms will take under-sampled k-space or under-sample MR images,
depending on each algorithm, then return a reconstructed image that contains fewer

or no alias artifacts as a result by using redundancies in k-space data points. The
reconstruction methods can be divided into two broad classes as SENSE and GRAPPA.

SENSE

SENSitivity Encoding for fast MRI (SENSE) is the reconstruction method that operates in
the image space and utilizes encoded coil sensitivity information from every RF coil for
reconstruction. Since the acceleration process creates the aliased image, which contains
pixels from the fully sampled image, these pixels fold onto the same pixel in the aliased
image. Therefore, the SENSE reconstructs the MR image by unfolding superimposed pixels
in the aliased MR image, based on extra information from the encoded coil sensitivity
(Pruessmann et al., 1999; Blaimer et al., 2004; Hamilton, Franson ¢ Seiberlich, 2017; Baert,
2007). A matrix inversion can describe the SENSE process as below.

ay $1,1---S1,N f1
= : : )
an SN1---SNN fN

where a are pixels in the aliased MR image of coil i-th, s are the encoded coil sensitivities at
coil number i-th and the aliased pixel number i-th, f are pixels in the fully sampled

MR image, and N is a total number of RF coils. So a reconstructed MR image, fully
sampled, can be retrieved after applying the Eq. (4) all over the aliased MR images.
From the Eq. (4), it is also indicated that the SENSE process can reconstruct aliased MR
images as long as an acceleration factor does not exceed a total number of RF coils. The
SENSE reconstruction is as F = invert(S) x A, where S must be invertible or det(S) is not
equal to zero.

GRAPPA

Generalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) is the
reconstruction method synthesizing the missing information on the under-sampling
k-space. Unlike the SENSE method that is processed in the image domain. For GRAPPA,
the data correction is processed first, then the reconstruction is done later (Griswold et al.,
2002; Blaimer et al., 2004; Hamilton, Franson ¢ Seiberlich, 2017; Baert, 2007). Like the
SENSE method, the GRAPPA also uses the redundant k-space data. First, a central area of
k-space is sampled fully to use as an Auto Calibration Signal (ACS). This is because the
central information in the k-space corresponds to low spatial frequency information,
which is reconstructed into the structure of the MR image. The ACS is used to calculate a
GRAPPA weight (W) which can be expanded with a linear combination through every
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scan line to estimate the missing data. This can be described as a convoluted equation as
below.

K, =W=xK (5)

where K,,, is the missing k-space data, and K is the known k-space data. After the missing
k-space data is filled in every coils’ k-spaces, the inverse Fourier transform (% ~!) is used
for converting all k-space images back to the image space. Then, the MR images are
combined into the final MR image using a sum of squares method.

Compressed sensing

Compressed sensing (CS) is a set of traditional signal processing methods for accelerated
MR data acquisition based on a semi-random and incomplete sampling of k-space data. A
final image is created through an iterative optimization process using non-Fourier
transformation and thresholding of intermediately reconstructed images (Lustig et al.,
2008; Geethanath et al., 2013; Donoho, 2006). A successful method of CS has three major
requirements, which are:

e Incoherent Under-sampling: The artifacts caused by under-sampling k-space should be
incoherent in the sparsifying transform domain.

e Sparsifying Transformation: The desired image should have a sparse representation in a
known transform domain or be compressed by transform coding.

e Non-linear Iterative Reconstruction: The image should be reconstructed by a set of the
non-linear method.

Encoder—decoder network
In the last few years, machine learning methods are very popular in solving computer
vision hard problems such as object classification (Redmon ¢ Farhadi, 2017, 2018; He
et al., 2017; Liu et al., 2016), medical images segmentation (Ronneberger, Fischer ¢ Brox,
2015; Milletari, Navab & Ahmadi, 2016; Zhou et al., 2018; Gu et al., 2019), or image super-
resolution (Dong et al., 2015; Li et al., 2019; Zhang et al., 2018), especially the deep
learning-based approaches which are the most efficient and flexible methods. Also, many
proposed techniques try to solve a reconstruction problem both in general and medical
(Hammernik et al., 2018; Zhu et al., 2018; Schlemper et al., 2017; Jin et al., 2017) fields. The
reconstruction problem can be seen as an inverse problem because the final result is
known, but a state to transform input data into the final result is unknown. The previously
mentioned advantages of the deep learning approaches make them well fits for the
reconstruction problem. Because to overcome the inverse problem, the network needs to
learn key features and separate them from bad signals. Then the extracted good signal
features are used for formulating another network structure to restore the image.
Therefore, the network needs to be flexible and easy to adapt.

From the above conditions, a type of deep neural network that stands out from others
for image reconstruction is an encoder-decoder convolution neural network. The
encoder—decoder is a type of deep convolution neural network that can be separated into
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Figure 1 Illustration of a general structure of the encoder-decoder network.
Full-size K&l DOT: 10.7717/peerj-cs.934/fig-1

two main parts, encoder and decoder parts (Ronneberger, Fischer ¢» Brox, 2015; Zbontar
et al., 2018). Typically the encoder-decoder network consists of a four-level structure
which means four encoder and decoder modules. The encoder module acts as an image
feature extractor. In each level of the encoder part, the input image features are extracted
and decreased their sizes by half. Then the outputs are sent to a lower level encoder module
and shipped to a decoder module at the same level for extra information. The decoder
module acts as a feature selector and reconstruction unit. After receiving extracted features
from a previous lower level decoder module and an exact level encoder module, the
network learns to select only good signals and uses them for image reconstruction to
transform the current image size into two-times larger size.

In summary, the encoder part can decrease the input image size by eight-times smaller
to extract more abstract features. The decoder part expands the input image back to
the original size by using knowledge from extracted features. This makes the encoder-
decoder network can learn to reconstruct the image at the abstract level. An example of the
encoder—-decoder network’s structure is shown in Fig. 1.

PROPOSED METHOD

Multi-level pooling encoder—decoder net

The Multi-Level Pooling Encoder-Decoder Net (MLPED Net) is an encoder—decoder
convolution neural network that takes an aliased MR image as an input and outputs a
reconstructed MR image. Figure 2A shows an architecture of the MLPED Net that
contains three major parts. First, the five-level encoder modules act as a feature
extractor in consecutive order that receives all coils combined with input data. Since the
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Figure 2 Illustration of the MLPED Net’s diagram (A) and a legend of the MLPED Net diagram (B).

Full-size K&l DOT: 10.7717/peerj-cs.934/fig-2

under-sampled k-space from each coil depends on their coil sensitivity, it makes under-
sampled MR images contain inhomogeneous brightness. To unite all multi-coil k-space
data into full-resolution real-value MR image, the inverse Fourier transform (Z ') is
applied into each coil k-space to convert back to the spatial domain. Then, a root sum-of-
squares (RSS) operation combines all under-sampled MR images into a single full-
resolution MR image as below.

1/2

N
Xcombine = Z |xn |2 (6)
i=1

where x,, is MR image from coil # and N is a total number of coils. The encoder module
also decreases the input data size by half in every level for the abstract information
extraction consecutively. This helps the network to learn the abstract feature information
of an MR image. Next, the four multi-level pooling modules in four levels receive the
extracted features from the encoder module and select good signals from the abstract
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information. Then, the selected signals are passed through the next part, i.e., the decoder
module, at the same level. The decoder module takes the selected signals and decoded
signals from the previous decoder module. Then, the abstract data type is transformed
back to the normal image data. This also increases its size by half. Finally, the last decoder
module outputs the reconstructed MR image at its original size.

Based on the data flow (including encoding, selecting, and decoding) of MLPED Net, it
enables the network to learn to acquire as much feature data as possible in consecutive
levels. Then, the selection helps the network discards irrelevance signals and keeps only
good signals for the decoding to reconstruct a high-quality image. Another key benefit
from the selection is it significantly decreases the network training time for a convergence
and number of the network trainable parameters. This is because the selection discards
noise and less impactful signals in each training epoch. Then, excellent and high-quality
signals are accumulated by increasing the number of training epochs. Finally, the decoding
reconstructs an MR image with fewer noises and artifacts. The whole process of the
MLPED Net that contains three significant parts can be summarized as an equation below.

Xreconstructed — D * (M * (E(xcombined,undersampled))) (7)

where E, M, and D represent the encoder, the multi-level pooling, the and decoder parts,
respectively. Xcombined,undersampled 15 the single undersampled MR image and X,econstructed 18
the reconstructed MR image.

Consequently, MLPED Net needs a small filter number and less trainable parameters to
reconstruct a high-quality MR image compared with other networks. One of the critical
benefits of a smaller network is that it is easy to adapt to the inference task. Usually, a
machine used for inference comes with less powerful computation power when compared
with the training machine. Another strength of a smaller type network is it can be trained
with a smaller dataset, especially a medical image dataset that usually contains fewer
training images when compared with other types of datasets and results in an over-fitting
phenomenon. This also shows a promising of the filtering module type for the improving
performance of the convolution neural network in reconstruction problems.

Encoder module

The encoder module is a feature extraction module of MLPED Net. MR image features are
extracted in various scales, and half reduces the input image size in consecutive order. The
quality of extracted features depends on the number of feature extractor filters in each
level. But if the number of feature extractor filter are too many, it can make the network
struggle to fit into the input data convergently. And also, the network training time is
increased by the number of trainable parameters. This can be concluded as the right
amount of filter number significantly affects network performance. Therefore, MLPED’s
encoder module in each level is constructed based on a trade-off between the performance
and the training time to prevent overfitting. Figure 3, shows the structure of each
encoder module and its flow of data. It consists of two 3 x 3 convolutions, two
normalizations, two Leaky ReLU activations, and two dropouts. This structure is designed
for network simplification and scalability. The encoder module’s convolution with a 3 x 3
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Figure 3 Illustration of the encoder module structure. Full-size Bl DOI: 10.7717/peerj-cs.934/fig-3

kernel contains 32 filter numbers in the first level of the network, then are increased to 64,
128, and 256 consecutively.

The pair of normalization help the module to normalize the extracted feature data
because the minimum and maximum values are very different. The Leaky ReLU activation
transforms the extracted feature data from the linear to the non-linear space. This lets the
network learn the abstraction information of the MR image features. And the abstract
information is a key to deep neural network performance. Finally, the dropouts filter
out the weak extracted signals in the training process. After each encoder module, the
input image’s size is decreased by half with the average pooling as shown in Fig. 2A.
Figure 2A also indicates that the output from the previous encoder module is passed to the
multi-level pooling module along with the lower level of the encoder module.

Multi-level pooling module

The multi-level pooling module (MLP module) is placed between the encoder and the
decoder inside MLPED Net as shown in Fig. 2A. The mlp module helps the network
select a good quality of extracted features at various scales from the encoder output at the
same level. And selected features are passed to the decoder module for reconstruction.
In Fig. 4, it shows that the mlp module contains two major components and integrates with
residual input to output a selected feature. A first component is a group of multi-size
feature pooling called Residual Multi-Kernel Pooling (RMP). It acts as a gate to pick out
high signal features at a specific size. The RMP was developed by Gu et al. (2019) and has
been used in the medical image segmentation neural network with impactful results.
Figure 5 shows the RMP structure that consists of four different size kernels: 2 x 2, 3 x 3,
5 x 5,and 6 x 6. The four kernels encode global information and output feature maps with
various sizes. Then, it is followed by a 1 x 1 convolution for a dimension reduction and
concatenated to the residual feature map.
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The second component is a future knowledge unit called Zoom-In/Zoom-Out. The
Zoom-In/Zoom-Out is a group of three convolution layers. The Zoom-In decreases the
size of features at the second convolution, where the Zoom-Out reduces the size of features
mimicking the encoder module, which is then passed to the third convolution for up-
sampling the feature size. The up-sampled feature mimics the decoder module explained
in the following section. The Zoom-In/Zoom-Out helps the network to learn future
knowledge about the decreased size and up-sampled feature, which are the essential
parts of the encoder-decoder type network. A zoom factor is defined to determine how
much the feature is resized. This enables the Zoom-In/Zoom-out to learn more than one
level. For example, if the zoom factor equals 4, it can learn about the smaller features in
two levels below it. Therefore, new ways to increase network complexity are opened by
letting the network know more than two levels below or above the feature information.
Figure 6 shows the diagram of the Zoom-In/Zoom-Out structure.

For the simplicity of the network, RMP is adapted by combing with the Zoom-In/
Zoom-Out that uses the zoom factor of 2. So, the number of trainable parameters of the
MLPED net will not exceed the number of trainable parameters of the standard encoder-
decoder network by a significant margin.

Decoder module

The decoder module is a part of the network that processes the selected encoded features
for image reconstruction and increases their resolution. Figure 7, shows the decoder
module structure that consists of two additional layers, including a pixel shuffle and a
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convolution, beside the encoder module. The pixel shuffle, which is a particular layer, is
used for increasing the feature’s size instead of a convolution transpose or bi-linear
interpolation like other techniques (Ronneberger, Fischer ¢ Brox, 2015; Gu et al., 2019;
Zhou et al., 2018). Then, the additional convolution layer and the encoder module are used
for the reconstruction. One benefit of using the same encoder module structure as a part of
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the decoder module is that it can make the network easily reconstruct MR images from
encoded features.

Pixel shuffle operation is proposed by Shi et al. (2016) for an image and video super-
resolution. Unlike the bi-cubic or linear interpolation that is usually used for increasing a
feature size, the pixel shuffle uses additional channels from the filters to expand the
feature size as shown in Fig. 8. Since the pixel shuffle operation uses information from
the filters to expand the feature size, it can achieve better image reconstruction than
interpolation methods or a transpose convolution. This is because the filters inside the
network are trained in the training process. The network can learn to select the right
signals from all channels to up-sampling the feature size. Consequently, the network that
uses the pixel shuffle tends to output an image with fewer artifacts.

EXPERIMENTAL RESULTS

Details about the dataset

The MLPED net was trained on a machine with 4 NVIDIA Ampere A100 40 GB

GPUs using the data-parallel operation to delegate image batches for all cards. All
experiments are operated on the multi-coil knee MR images from the fastMRI dataset
(Zbontar et al., 2018). The fastMRI’s multi-coil knee dataset consists of raw fully sampled
k-space data from 1,594 scans of four different MRI machines. Each MRI machine
contains 15 coil channels that output 15 channels of k-space data. Figure 9A shows
examples of 15 channels k-space of the same object and their spatial MR images after
applying the inverse Fourier transform in Fig. 9B.

The multi-coil knee dataset includes k-space from two pulse sequences, including
coronal proton-density weighting with fat suppression (PDEFS, 798 scans) and without fat
suppression (PD, 796 scans). Sample MR images of PDES and PD scan can be seen in
Figs. 10A and 10B. One major challenge of using both pulse sequences is fat suppression
noise in both foreground and background (Fig. 10B). This will affect the network
performance. This is because the network must learn to separate noise signals from the
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Figure 9 Illustration of 15 coils k-space (A) and 15 coils MR image (B). Full-size K&l DOTI: 10.7717/peerj-cs.934/fig-9

Figure 10 Illustration of PD MR image (A) and PDFS MR image (B).
Full-size K&l DOT: 10.7717/peerj-cs.934/fig-10
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Figure 11 Illustration of the training process diagram. Full-size K] DOT: 10.7717/peerj-cs.934/fig-11

good signals before the reconstruction process. As can be seen in the sample images, each
fat suppression noise has small pixel counts compared with a knee object. However, it
spreads across all over the MR image.

Training details
In Fig. 11, the flow of the training process is demonstrated, starting from the preparation of
input images until the step of the final reconstructed MR image. The raw multi-coil
k-space data from fastMRI dataset is used as input data, but an under-sampling technique
is required to simulate the MRI machine sampling acceleration. That is why a masking
method is used in the fastMRI baseline process. Two types of masks are made optional to
generate under-sampled k-space the way MRI machine does, including equispaced and
random type with acceleration factor. The equispaced mask mimics the kind of under-
sampling k-space data required by the SENSE and the GRAPPA, unlike the CS technique
that requires under-sampling k-space data with random type. Masking can mimic the MRI
acquisition process by dropping some of the information columns.

Figures 12A-12D show examples of random and equispaced masked k-space with both
4- and 8-fold accelerations. Only random type masks with both 4- and 8-fold are used in
the experiments for this research. So, the MLPED net aims to use the type of under-
sampling k-space data the CS technique used. Then the masked k-space data are
transformed back to the spatial domain by the inverse Fourier transform, resulting in
aliased multi-coil knee MR images. Before the aliased knee MR images are passed into the
MLPED Net, the RSS technique combines multi-coil aliased MR images into a single
aliased MR image with a homogeneous brightness level. Then RSS images are cropped
with only the center part of a size 320 x 320 pixels. After the training process is finished,
the MLPED Net will output a reconstructed MR image to mimic the fully-sampled MR
image from the MRI machine.

The MLPED Net was trained with the RMSProp optimizer to minimize L1 losses below.

M(xrecom xgt) = erecon - xgt‘ ’1 (8)

where X, is the reconstructed MR image and x,, is the ground truth MR image.
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Figure 12 Illustration of 4-fold masked k-space with random (A) and equispaced (B) type. And
illustration of 8-fold masked k-space with random (C) and equispaced (D) type.
Full-size K&l DOT: 10.7717/peerj-cs.934/fig-12

Table 1 Comparison between the proposed method and the fastMRI baseline network performance
for the multi-coil knee task on the validation dataset.

Model Acceleration Channels NMSE PSNR SSIM

PD PDFS PD PDFS PD PDFS
MLPED Net 4-fold 32 0.00496 0.01094 37.99 36.52 0.9316 0.8671
fastMRI network 256 0.00540 0.01120 37.58 36.39 0.9287  0.8655
MLPED Net 8-fold 32 0.00938 0.01603 35.19 34.77 0.8939 0.8294
fastMRI network 256 0.01200 0.01810 34.12 34.23 0.8915 0.8286

The network was trained for 100 epochs with a learning rate of 0.001. The data-parallel is
also utilized to distribute the input data across all GPUs.

Results

Experimental results are shown in Table 1, which are comparisons between the proposed
network with the fastMRI baseline results using three metrics: (1) normalized mean
squared error (NMSE), (2) peak signal-to-noise ratio (PSNR), and (3) structural similarity
(SSIM). The table indicates that the proposed network outperforms the fastMRI baseline
network in every category, including pulse sequences and 4- and 8-fold accelerations.
Table 2 compares all metrics across five training attempts in both 4- and 8-fold
accelerations to test the proposed network’s stability. The results are consistent on all
training attempts with minimal deviations.

Since the fastMRI competition only provides ground-truth images for the training and
validation datasets, the following reconstructed images are based only on the fastMRI’s
validation dataset. Examples of reconstructed MR images are shown in Figs. 13-20 for 4-
and 8-fold accelerations with both pulse sequences at four difference slices respectively.
Figures 13-20 also show the ground truth MR images, fully-sample MR images, with the
evaluated metrics for a comparison.
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Table 2 Stability evaluation of the proposed network based on five training attempts with the
validation set of the fastMRI dataset.

Acceleration Channels NMSE PSNR SSIM
PD PDEFS PD PDEFS PD PDEFS
4-fold 32 0.00496 0.01094 37.99 36.52 0.9316 0.8671
0.00550 0.01138 37.52 36.32 0.9271 0.8643
0.00558 0.01147 37.46 36.29 0.9268 0.8640
0.00536 0.01128 37.64 36.37 0.9283 0.8652
0.00548 0.01141 37.54 36.32 0.9272 0.8643
Average 0.00522 0.01118 37.77 36.42 0.9294 0.8657
8-fold 32 0.00938 0.01603 35.19 34.77 0.8939 0.8294
0.00958 0.01634 35.09 34.72 0.8925 0.8286
0.00964 0.01634 35.07 34.71 0.8921 0.8285
0.00957 0.01618 35.10 34.72 0.8925 0.8287
0.00959 0.01621 35.09 34.72 0.8926 0.8286
Average 0.00958 0.01628 35.09 34.72 0.8926 0.8286

NMSE: 0.0070, PSNR: 35.58, SSIM: 0.8534 NMSE: 0.0147, PSNR: 32.73, SSIM: 0.7568
NMSE: 0.0113, PSNR: 32.63, SSIM: 0.7478 NMSE: 0.0032, PSNR: 37.96, SSIM: 0.9235

Figure 13 Four examples of 4-fold reconstructed images with the MLPED Net at slice number 10 of
32 slices along with evaluated metrics. The left image represents the reconstructed image, and the right
means the ground truth. Full-size K&l DOT: 10.7717/peerj-cs.934/fig-13

Another way to measure the proposed network performance is to test the unknown
dataset. In that case, the fastMRI’s multi-coil knee test dataset is used for measuring the
proposed network performance by comparing it with the public fastMRI pre-trained
network. The public fastMRI pre-trained network is based on the traditional U-Net
structure with the 256 filter numbers in the first layer, as shown in Table 1. Figure 21 show
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NMSE: 0.0135, PSNR: 31.39, SSIM: 0.7120

NMSE: 0.0112, PSNR: 30.65, SSIM: 0.6731 NMSE: 0.0024, PSNR: 41.81, SSIM: 0.9588

Figure 14 Four examples of 4-fold reconstructed images with the MLPED Net at slice number 15 of
32 slices along with evaluated metrics. The left image represents the reconstructed image, and the right
means the ground truth. Full-size K&l DOT: 10.7717/peerj-cs.934/fig-14

NMSE: 0.0107, PSNR: 34.60, SSIM: 0.8343

NMSE: 0.0117, PSNR: 31.83, SSIM: 0.7156 NMSE: 0.0027, PSNR: 40.86, SSIM: 0.9497

Figure 15 Four examples of 4-fold reconstructed images with the MLPED Net at slice number 20 of
32 slices along with evaluated metrics. The left image represents the reconstructed image, and the right
means the ground truth. Full-size K&l DOT: 10.7717/peerj-cs.934/fig-15

comparisons between the proposed network and the publicly available fastMRI pre-trained
network. Unfortunately, the fastMRI’s multi-coil knee test datasets do not have ground-
truth images. So the evaluation metrics cannot be measured.
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NMSE: 0.0096, PSNR: 31.08, SSIM: 0.7535 NMSE: 0.0128, PSNR: 34.43, SSIM: 0.8355
; j l
NMSE: 0.0124, PSNR: 30.02, SSIM: 0.6751 NMSE: 0.0034, PSNR: 35.68, SSIM: 0.8957

Figure 16 Four examples of 4-fold reconstructed images with the MLPED Net at slice number 25 of
32 slices along with evaluated metrics. The left image represents the reconstructed image, and the right

means the ground truth. Full-size K&l DOT: 10.7717/peerj-cs.934/fig-16
NMSE: 0.0099, PSNR: 34.08, SSIM: 0.8190 NMSE: 0.0229, PSNR: 30.79, SSIM: 0.6846
u
NMSE: 0.0167, PSNR: 30.96, SSIM: 0.6885 NMSE: 0.0063, PSNR: 35.02, SSIM: 0.8804

Figure 17 Four examples of 8-fold reconstructed images with the MLPED Net at slice number 10 of
32 slices along with evaluated metrics. The left image represents the reconstructed image, and the right
means the ground truth. Full-size Kl DOI: 10.7717/peerj-cs.934/fig-17

DISCUSSION

The experimental results show promise on both scenarios of 4- and 8-fold accelerations. In
Table 1, it is evident that the MLPED Net outperforms the fastMRI baseline network

in every evaluation metric, especially on the NMSE. The MLPED Net exceeds the fastMRI
baseline network on both 4- and 8-fold accelerations with fewer channels by eight times.
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NMSE: 0.0137, PSNR: 32.68, SSIM: 0.7986 NMSE: 0.0191, PSNR: 29.89, SSIM: 0.6463

NMSE: 0.0160, PSNR: 29.11, SSIM: 0.5962 NMSE: 0.0048, PSNR: 38.72, SSIM: 0.9302

Figure 18 Four examples of 8-fold reconstructed images with the MLPED Net at slice number 15 of
32 slices along with evaluated metrics. The left image represents the reconstructed image, and the right
means the ground truth. Full-size K&l DOT: 10.7717/peerj-cs.934/fig-18

NMSE: 0.0156, PSNR: 32.97, SSIM: 0.7842

NMSE: 0.0170, PSNR: 30.21, SSIM: 0.6399 NMSE: 0.0049, PSNR: 38.29, SSIM: 0.9216

Figure 19 Four examples of 8-fold reconstructed images with the MLPED Net at slice number 20 of
32 slices along with evaluated metrics. The left image represents the reconstructed image, and the right
means the ground truth. Full-size Kl DOI: 10.7717/peerj-cs.934/fig-19

With a significantly smaller network’s size, the MLPED Net is easy and takes a
smaller amount of time to train the network when compared with the fastMRI baseline
network, as shown in Table 3. The table also indicates that the MLPED Net contains
fewer trainable parameters when compared with the fastMRI baseline network (27 times
fewer), even though they are both based on the same encoder-decoder neural network
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NMSE: 0.0155, PSNR: 28.98, SSIM: 0.6702 NMSE: 0.0216, PSNR: 32.16, SSIM: 0.7707

NMSE: 0.0191, PSNR: 28.14, SSIM: 0.5703 NMSE: 0.0063, PSNR: 32.98, SSIM: 0.8450
Figure 20 Four examples of 8-fold reconstructed images with the MLPED Net at slice number 25 of

32 slices along with evaluated metrics. The left image represents the reconstructed image, and the right
Full-size K&l DOT: 10.7717/peerj-cs.934/fig-20

means the ground truth.

Figure 21 Six examples of the reconstructed images on the knee multi-coil test dataset. Each example

shows a comparison between the MLPED Net on the Left and the fastMRI pre-trained U-Net compe-
Full-size K&] DOT: 10.7717/peerj-cs.934/fig-21

tition version on the Right.
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Table 3 Comparison between the proposed method and the fastMRI baseline network on the
training process’s performance with the 973 training images per epoch for 100 epochs.

Model Channels Number of trainable Training time
parameters (million) per epoch (minute)
MLPED Net 32 8 14
fastMRI network 256 214.16 120*
Note:

Measured by running the fastMRI public baseline source code.

type. Both networks are trained with the same 973 training images per epoch for

100 epochs. This finally leads to a significantly less training time per epoch. One significant
benefit of a smaller neural network is preventing an over-fitting phenomenon on a smaller
dataset. This helps a lot with the problems that do not have large datasets. Therefore,
the MLPED Net can adapt to other issues quickly.

One key advantage of the deep neural network, compared with the traditional machine
learning methods, is achieving a higher performance on the unknown dataset. This is
because, typically, the deep neural networks contain a lot of trainable parameters with
complex layer graphs that make them more flexible to adjust to the unknown data. Since
the MLPED Net includes a small number of trainable parameters and a streamlined
structure, a test on the anonymous dataset is necessary to measure the network
performance to confirm that the MLPED Net exceeds or stays at the same level as the
fastMRI baseline network.

However, the fastMRI does not provide ground-truth images for the test dataset,
so the performance metrics cannot be measured on the testing dataset. And only a
competition version of the pre-trained network is provided by the fastMRI, which uses
both the train and validation datasets to form a large-scale dataset for a training process.
That is also a different version from the published version from the Zbontar et al. (2018).
This is beyond the scope of this research that has to use the validation dataset for
measuring inside the training process. Therefore, examples of reconstructed images
that are demonstrated in Figs. 21A-21F are comparisons between the MLPED Net
performance on the unknown dataset with the normal training process and the
competition version of the fastMRI pre-trained network with the combined dataset
training process.

CONCLUSION

In this paper, the MLPED Net is introduced for an MRI reconstruction. The MRI
reconstruction is a challenging problem due to the complexity of low and high-frequency
information acquired during the acquisition process. Then the frequency information is
transformed back to spatial domains to form up the MR images. But the acquired
frequencies are not entirely received due to the acceleration process inside the MRI
machine. Therefore, the transforming process required extra techniques to make sure that
the final MR image is close to the original object as much as possible. The proposed
MLPED Net could address this transforming process by using the strength of the

deep neural network. A structure of the MLPED Net is based on the well-known
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encoder-decoder type of network that performs well on the reconstruction or
enhancement problems. Besides the traditional encoder—decoder system, the MLPED Net
also includes multi-layer pooling between encoder and decoder modules in every layer.
This helps the network eliminate the irrelevance information and could result in a faster
training process with a significantly smaller network size when compared with the
existing encoder—decoder network with a larger size. Since an under-sampled MR image
contains a lot of noise and artifacts, the network that can discard noise efficiently can
reconstruct a better result image.

Reconstruction results of the proposed network on a multi-coil knee validation dataset
outperform the U-net baseline network in every metric, including NMSE, PSNR, and
SSIM. From the reconstructed images, it can be seen that even tiny details look similar to
ground truth images. These show the strength of the proposed MLPED Net, which can
preserve small amounts of information that are usually hard to reconstruct.
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