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ABSTRACT
Feature selection is an independent technology for high-dimensional datasets that has
been widely applied in a variety of fields. With the vast expansion of information, such
as bioinformatics data, there has been an urgent need to investigate more effective and
accurate methods involving feature selection in recent decades. Here, we proposed
the hybrid MMPSO method, by combining the feature ranking method and the
heuristic search method, to obtain an optimal subset that can be used for higher
classification accuracy. In this study, ten datasets obtained from the UCI Machine
Learning Repository were analyzed to demonstrate the superiority of our method. The
MMPSO algorithm outperformed other algorithms in terms of classification accuracy
while utilizing the same number of features. Then we applied themethod to a biological
dataset containing gene expression information about liver hepatocellular carcinoma
(LIHC) samples obtained from The Cancer Genome Atlas (TCGA) and Genotype-
Tissue Expression (GTEx). On the basis of the MMPSO algorithm, we identified a 18-
gene signature that performed well in distinguishing normal samples from tumours.
Nine of the 18 differentially expressed genes were significantly up-regulated in LIHC
tumour samples, and the area under curves (AUC) of the combination seven genes
(ADRA2B, ERAP2, NPC1L1, PLVAP, POMC, PYROXD2, TRIM29) in classifying
tumours with normal samples was greater than 0.99. Six genes (ADRA2B, PYROXD2,
CACHD1, FKBP1B, PRKD1 and RPL7AP6) were significantly correlated with survival
time. The MMPSO algorithm can be used to effectively extract features from a high-
dimensional dataset, which will provide new clues for identifying biomarkers or
therapeutic targets from biological data and more perspectives in tumor research.

Subjects Bioinformatics, Data Mining and Machine Learning
Keywords Feature selection, MMPSO, Biomarkers, ROC, Survival analysis

INTRODUCTION
The dimensionality of data has increased greatly due to the rapid growth in big data (Li,
Wu & Li, 2020; Wainwright, 2019). This condition has also accelerated the development
of high dimensional data processing technology (Li et al., 2016; Saeys, Inza & Larrañaga,
2007). One of the main issues in data mining, pattern recognition, and machine learning
is feature selection for high dimensional data (Chen et al., 2020; Larranaga et al., 2006).
Feature selection is the process of selecting the feature subset that best captures the
characteristics of the original dataset and alters the feature expression of the original
dataset as little as possible. It can be utilized as an important dimensionality reduction
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technique to minimize computing complexity, lower the potential of overfitting as well as
improve the prediction performance (Tao et al., 2015). Feature selection seldom modifies
the original feature space, and the resultant feature subset has clearer physical implications
that can be exploited for subsequent classification or inference (Villa et al., 2021). The
search for the optimal subset of features is typically computationally expensive and has
been demonstrated to be nondeterministic polynomial-hard (NP-hard) (Faris et al., 2018;
Wang, Wang & Chang, 2016). Traditionally, feature selection algorithms are classified
into three categories: filter, wrapper, and embedded methods and these methods can
also be divided into two main categories: feature ranking and feature subset selection
(Van Hulse, Khoshgoftaar & Napolitano, 2011). In the past few years, feature selection based
on high-dimensional datasets has attracted more attention. Because of their simplicity and
efficiency, ranking-based approaches such as ReliefF (Robnik-Šikonja & Kononenko, 2003),
minimum-redundancy maximum-relevancy (mRMR) (Peng, Long & Ding, 2005), Fisher
(Gu, Li & Han, 2012), CFS (Zeng & Cheung, 2010), and others are widely utilized in a
variety of applications. Different from the feature ranking selection, which screens out the
top K highest-scoring features, feature subset selection selects the subset of features that
performwell together. Some heuristic search strategies (Rasheed, 2021) have been proposed
to obtain the global optimal feature subset, such as the genetic algorithm (GA) (Holland,
1975; Stefano, Fontanella & Freca, 2017), particle swarm optimization (PSO) (Chuang et al.,
2008; Eberhart & Kennedy, 1995; Wang et al., 2007), and ant colony optimization (ACC)
(Li, Wang & Song, 2008a). It is worth mentioning that, some methods based on neural
networks which supports higher-dimensional inputs can also be used for feature selection
(Liu, Liu & Zhang, 2022). Feature selection has been widely utilized in bioinformatics to
remove irrelevant features in high-throughput data as an effective method for preventing
the ‘‘curse of dimensionality’’ (Li et al., 2008b). It is appropriate to filter out biomarkers
in the medical field, which can not only help explore disease pathophysiology at the
molecular level but also has advantages in accurate diagnosis. In general, the number
of features in a bioinformatics dataset tends to be very large. It is critical to identify
highly discriminating biomarkers to improve disease diagnosis and prediction accuracy
(Ma et al., 2020). Therefore, there is no doubt that obtaining relevant biomarkers from
high-throughput data is of great significance (Han, Huang & Zhou, 2021). Furthermore,
we realized that there is considerable space for improvement in the feature selection process
by combining feature ranking with feature subset searching. There are several methods
for measuring the specific value of relevance, including the Pearson correlation coefficient
(Obayashi & Kinoshita, 2009), mutual information (MI), and maximum information
coefficient (MIC) (Reshef et al., 2011), and MIC can substitute MI to obtain better mutual
information measurement results in some situations, particularly for continuous data.
Furthermore, feature ranking does not provide a ‘‘golden standard’’ for obtaining the best
feature subset but only the ranking result. Therefore, combining the two methods is a more
promising way (Shreem et al., 2013; Stefano, Fontanella & Freca, 2017).

In this study, we focus on developing a hybrid efficient approach for obtaining
the optimum features by combining the feature ranking method and the heuristic
search method. Specifically, ten datasets were employed to validate our hypothesis first.
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Furthermore, one dataset derived from high-throughput sequencing was used to assess the
effect of the approach at the genetic level. The discussion and conclusion are presented in
the last section.

MATERIALS & METHODS
The mRMR algorithm
The mRMR (Peng, Long & Ding, 2005) algorithm, which uses mutual information to assess
the relevance between features, has been used in bioinformatics (Ding & Peng, 2005; Li et
al., 2012; Mundra & Rajapakse, 2010). Mutual information is widely used to analyze the
correlation between two variables, and it can be expressed as Eq. (1).

I (X ,Y )=
∑
x∈X

∑
y∈Y

p(x,y)log
p
(
x,y

)
p(x)p

(
y
) . (1)

In the Eq. (1), P represents the probability and X, Y represent the feature vector or class
vector. The relevance V and redundancyW of the mRMR can be expressed using Eqs. (2)
and (3).

V =
1
|S|

∑
xi∈S

I (y;xi). (2)

W =
1
|S|2

∑
xi,xj∈S

I (xi;xj). (3)

In the Eqs. (2) and (3), y is the target variable, S is candidate feature set and xi, x j are
arbitrary variables of S. To calculate the final score of relevance, the MIQ can be used, as
shown in Eq. (4).

MIQ : argmax
(
V
W

)
. (4)

Maximal information coefficient
As a measure of dependence for two-variable relationships in a large dataset, MIC has
been widely used in various fields, including global health, gene expression, human gut
microbiota and identify novel relationships due to its ability to capture a wide range of
functional and non-functional associations. The definition of MIC is:

MIC
(
x,y|D

)
=maxi∗j<B(n)

{
I ∗
(
x,y,D,i,j

)
logmin

(
i,j
) }. (5)

In the Eq. (5), x and y are the pairs(x, y) of the dataset and I*(x, y, D, i, j) denotes the
maximum mutual information of D|G with the i-by-j grid, where the default B(n) = n0.6.
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Particle swarm optimization algorithm
The particle swarm optimization (PSO) algorithm is a heuristic search algorithm that
originated from studies of bird predation behavior (Eberhart & Kennedy, 1995). The first
step of PSO is to initialize a group of particles. It then iterates until it finds the best solution.
The particles update themselves in each iteration by tracking two extreme values. The first
is the particle’s determination of the individual extreme value Pbest. The other is called
Gbest, which is determined by the entire particle swarm. After determining the Gbest and
Pbest values, the particle updates its speed and position based on Eqs. (6) and (7).

Vk+1=ωVk+ c1r1(Pbest−Xk)+ c2r2(Gbest−Xk). (6)

Xk+1=Xk+Vk . (7)

In the above equations, k represents the number of iterations; Vk and X k represent the
particle’s current velocity and position, respectively; r1, r2 are random values between
[0, 1]; c1, c2 are the learning factors; ω is the inertia weight, which is used to control the
influence of the last iteration’s speed on the current speed. A smaller and larger ω can
strengthen the PSO algorithm’s local or global search ability, respectively.

The hybrid algorithm for feature selection
In this study, we proposed the MMPSO hybrid method. First, the dataset needed to be
preprocessed. On the one hand, the aim of preprocessing is to remove some features that
contain a large quantity of noisy data, such as features that contain many zeros. On the
other hand, if the proportion of samples is clearly unbalanced, it is necessary to balance
the samples. Here, we employed random oversampling technology to address this issue. A
random over-sampler randomly copies and repeats the minority class samples, eventually
resulting in the minority and majority classes having the same number. The next step was
to rank the features. MIC was used to measure the correlation of two features, resulting
in a more accurate ranking result of features based on the mRMR framework (Cao et
al., 2021). Considering the numerous features and the complexity of MIC, we used the
multithreading method in paper (Tang et al., 2014) to speed up the calculation. After
performing the mRMR based on MIC method, we obtained the ranking features and use
the top K features as the input of the next step to reduce the computational load for
the PSO. The K features were used in the third step to initialize the particle swam and
calculate the fitness of each particle. For the wrapper feature selection algorithm, only the
classification accuracy is used as the fitness function to guide the feature selection process,
which will lead to a larger scale of the selected feature subset (Liu et al., 2011). Therefore,
some studies combine the classification accuracy and the number of selected feature subsets
to form a fitness function (Xue, Zhang & Browne, 2012). Here, the fitness we defined is
shown in Eq. (8). Verror was the error, which is measured by a classification method of
k-nearest neighbor (KNN) (Chen et al., 2021a). Nselected and Nall were the numbers of
selected features and the entire features, respectively. α and β were parameters whose sum
is 1. The larger α is, the more features will be chosen; otherwise, fewer features will be
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chosen. When the specified number of iterations is reached, the PSO program terminates,
and the final selected features will be available.

cost =αVerror+β
Nselected

Nall
. (8)

The validation method
Here, we respectively compared the classification accuracy of the MMPSO method
with the results of other algorithms, including mRMR (Peng, Long & Ding, 2005), ILFS
(Roffo et al., 2017), ReliefF (Liu & Motoda, 2007), Mutinffs (Zaffalon & Hutter, 2002),
FSV (Bradley & Mangasarian, 1999), Fisher (Gu, Li & Han, 2012), CFS (Zeng & Cheung,
2010), UFSOL (Guo et al., 2017), to demonstrate that our method has better classification
accuracy. LIBSVM (Chang & Lin, 2011) is an integrated library, which supports multi-class
classification. Here, we performed classification using LIBSVM to test the accuracy with
k-fold cross validation.

Summary of datasets
A total of eleven datasets were used in this study; the basic information about the datasets
was shown in Table 1. The UCI Machine Learning Repository is a collection of databases,
domain theories, and data generators that are used by the machine learning community
for the empirical analysis of machine learning algorithms (Dua & Graff, 2017). In the
beginning, ten datasets that have different numbers of features, instances and classes were
downloaded from the UCI website, and they were used to evaluate the performance
of our proposed method. Furthermore, we conducted a more thorough analysis to
demonstrate the biological application of our method. Tremendous amount of RNA
expression data has been produced by large consortium projects such as TCGA and GTEx,
creating new opportunities for data mining and deeper understanding of gene functions
(Tang et al., 2017). Thus, the final liver hepatocellular carcinoma (LIHC) dataset was
obtained from UCSC Xean, which contains large-scale standardized public, multiomic
and clinical/phenotype information (Goldman et al., 2020). The LIHC dataset used in the
current study contains RNA expression data of over 60,000 genes in 531 biosamples (371
tumor samples and 160 normal samples, and the latter further containing 50 normal
samples from the TCGA-LIHC cohort and 110 normal tissues from GTEx), and it is
available at https://toil-xena-hub.s3.us-east-1.amazonaws.com/download/TCGA-GTEx-
TARGET-gene-exp-counts.deseq2-normalized.log2.gz.

RESULTS
In this section, we focused on testing the accuracy of our proposed MMPSO method and
compared it with other methods of mRMR, ILFS, ReliefF, Mutinffs, FSV, Fisher, CFS and
UFSOL. All experiments in this study were carried out on a Windows 10 system with
an Intel(R) Xeon(R) CPU E5-2420, 1.9 Ghz processor with 16 GB RAM. Our proposed
algorithm was implemented in MATLAB 2020b, and the PSO parameters were as follows:
population size: 100; number of iterations: 50; c1: 2; c2: 2; ω: 0.9; α: 0.95; β: 0.05.
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Table 1 Basic information of the datasets in this study.

Datasets Instances Features Classes

gina 3468 970 2
gisette 6000 5000 2
hillvalley 1212 100 2
isolet 7797 617 26
madelon 2000 500 2
musk 6598 166 2
scene 2407 294 2
splice 3190 60 3
usps 9298 256 10

Datasets
obtained
from
UCI

waveform 5000 21 3
Biological dataset LIHC 531 60498 2

Notes.
The ten datasets obtained from UCI were analyzed to demonstrate the superiority of MMPSO; the biological dataset was used
as an application of the proposed MMPSO method.

Results of the experiment based on ten datasets
Figure 1 and Table 2 summarized the classification accuracy on the basis of the MMPSO
and the compared methods. Here, we defined the threshold K was 100. When the number
of original features was greater than 100, the top 100 features from the ranking result were
selected as the PSO input for the MMPSO method; otherwise, all features were selected as
the input. In Fig. 1, we obtained the conclusion that our method was superior to the other
methods in terms of classification accuracy based on six datasets including gisette, hillvalley,
isolet, madelon, scene and usps. In the other four datasets, the MMPSO method achieved
the accuracies of top three rankings. Therefore, the MMPSO algorithm was outperformed
other methods with respect to accuracy of classification by utilizing the same number of
features.

Results of the experiment based on the biological dataset
After analyzing the first ten datasets, we employed the MMPSO method on the LIHC
dataset to identify features (gene biomarkers) that can be used to distinguish the tumor
group from the normal group with high accuracy. Different from the previous datasets,
LIHC is an unbalanced dataset containing 371 tumor samples and 160 normal samples.
Therefore, the preprocessing was needed and the number of genes was reduced from over
60,000 to 15,185 after preprocessing. When the genes were ranked by the mRMR based on
MIC method, the top 100 genes were selected and input into PSO to identify the best gene
signatures. Finally, we obtained a signature of 18 genes through theMMPSO algorithm, that
had better classification compared to other methods. The 18 genes were ACTN1, CACHD1,
ERAP2, FAM171A1, FKBP1B,HIST1H2BC, PLVAP, PRKD1, RPL7AP6, ADRA2B,DMKN,
FNDC4, NPC1L1, POMC, PYROXD2, RBP1, TRIM29, and ZBED9, with the relative
expression of the first nine genes significantly increasing in tumors and the last nine genes
decreasing (P < 0.01 in the Wilcoxon rank sum test with continuity correction, Fig. 2).
Principal component analysis (PCA) was then performed using the ‘FactoMineR’ and
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Figure 1 The accuracy of nine algorithms based on ten datasets.
Full-size DOI: 10.7717/peerjcs.933/fig-1

Table 2 Accuracy of algorithms based on the ten datasets.

Datasets MMPSO mRMR ILFS ReliefF Mutinffs FSV Fisher CFS UFSOL

gina 60.32 53.97 52.53 50.79 61.04 54.40 50.79 50.79 59.74
gisette 85.33 84.00 50.00 61.00 50.00 56.75 79.42 50.08 55.08
hillvalley 55.37 53.72 54.13 54.96 50.41 50.41 50.41 53.31 55.37
isolet 92.69 89.80 75.56 55.81 50.10 76.27 50.10 83.13 66.65
madelon 81.50 63.50 50.25 70.25 50.00 51.25 71.75 51.75 68.25
musk 89.61 89.08 89.16 89.39 89.39 89.39 89.39 89.39 90.75
scene 83.16 83.16 82.12 82.12 82.12 82.12 82.12 82.54 82.12
splice 90.13 89.02 90.60 93.10 69.28 81.97 69.28 79.00 90.28
usps 95.37 94.67 89.99 92.90 73.32 92.85 73.32 94.14 72.62
waveform 84.10 83.30 84.70 83.80 81.60 81.60 81.60 83.70 83.70

‘Factoextra’ packages in R version 4.0.2 based on the expression profiles of the candidate
18 genes. As shown in Figs. 3A–3B, Dim 1 and Dim 2 were 15% and 11.9%, respectively.
Figure 3C illustrated the heatmap of all samples based on the 18 gene expression profiling.
The results revealed that the 18-gene signature obtained from MMPSO algorithm could
effectively separate the 531 samples into two groups. Since logistic regression show that
seven biomarkers of ADRA2B, ERAP2, NPC1L1, PLVAP, POMC, PYROXD2 and TRIM29
were significantly associated with Wald and P value, as shown in Table 3. We further
investigated the combined diagnostic efficacy of the seven candidate genes according to
the Eq. (9).

PP =
1

1+e−(constant+
∑n

1 coefficienti∗expressioni)
. (9)
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Figure 2 The relative expressions of the 18 genes in tumor and control groups. The values were dis-
played as floating bars (min to max) with a line at the mean value. The first nine genes increased in tumors
(orange) compared to controls (blue), while the last nine genes decreased in tumors (color in blue) com-
pared to controls (orange). The statistic was performed by Wilcoxon rank sum test with continuity correc-
tion in R.

Full-size DOI: 10.7717/peerjcs.933/fig-2

Table 3 Logistic regression analysis of the independent significance of the 18 genes as diagnostic
biomarkers.

Variable Coefficient Std. Error Wald P value Odds ratio 95% CI

ADRA2B −1.2426 0.46552 7.1249 0.0076 0.2886 0.1159 to 0.7188
ERAP2 0.74916 0.33879 4.8897 0.027 2.1152 1.0889 to 4.1090
NPC1L1 −0.72899 0.34876 4.3691 0.0366 0.4824 0.2435 to 0.9556
PLVAP 3.42399 0.83386 16.8608 <0.0001 30.6915 5.9872 to 157.331
POMC −0.80808 0.32528 6.1715 0.013 0.4457 0.2356 to 0.8432
PYROXD2 −0.64701 0.32983 3.848 0.0498 0.5236 0.2743 to 0.9995
TRIM29 −0.99483 0.49833 3.9853 0.0459 0.3698 0.1392 to 0.9821
Constant 1.81243 8.70136 0.04339 0.8350

In the above Equation, PP was the functional formula for predicting the incidence of
LIHC, i.e., PP-value, and the constant and coefficient were the result of logistic regression
in Table 3. The results of receiver operating characteristic (ROC) curve analysis using
MedCalc software based on the value of PP and classification labels of LIHC dataset was
shown in the Fig. 4, which had an area under the curve (AUC) greater than 0.999 and
P < 0.0001. It demonstrated that the seven genes significantly distinguished tumors from
normal samples in LIHC dataset.

To explore whether the 18 genes are associated with survival time of phenotype
information in LIHC dataset, the Kaplan–Meier (KM) survival curve was performed
by using the ‘‘survival’’ and ‘‘survminer’’ packages in R. For each gene, the cut-off points
obtaining from ‘‘survminer’’ package then divided gene expression values into the high
(high) and the low (low) groups. We identified that higher expression levels of CACHD1,
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Figure 3 PCA and heatmap analysis of the 18 gene signatures obtained fromMMPSOmethod in LIHC
dataset. (A) PCA analysis of tumor and control samples. The PCA analysis was performed by using ‘‘Fac-
toMineR’’ and ‘‘factoextra’’ packages in R; (B) PCA analysis of tumor and control samples, the latter in-
cluding control_GTEx and control_TCGA samples; (C) Heatmap of all the samples based on the 18 gene
expression profiling. The heatmap analysis was performed by using ‘‘pheatmap’’ package in R. DEGs: dif-
ferentially expressed genes. The expression levels of up DEGs were increased in tumors compared to con-
trols, and the down DEGs were decreased.

Full-size DOI: 10.7717/peerjcs.933/fig-3

FKBP1B, PRKD1, and RPL7AP6 were associated with worse overall survival (OS) time,
whereas higher expression levels of ADRA2B, PYROXD2 were associated with better OS,
as shown in Fig. 5.
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Figure 4 The ROC curves of the combination of seven candidate biomarkers (ADRA2B, ERAP2,
NPC1L1, PLVAP, POMC, PYROXD2 and TRIM29).

Full-size DOI: 10.7717/peerjcs.933/fig-4

DISCUSSION
High-dimensional data such as text data, multimedia data, aerospace collection data and
biometric data have become more common in recent years (Li, Wu & Li, 2020; Saeys, Inza
& Larrañaga, 2007; Wainwright, 2019). The need for efficient processing technology for
high-dimensional data has become more urgent and challenging. Feature selection, as
one of the most popular methods for dimension reduction, plays an important role in
high-dimensional data processing, particularly in biological information data (Nguyen,
Xue & Zhang, 2020; Xue et al., 2015).

Generally, features filtered out of the original high-dimensional dataset have more
definite physical meanings, making it more convenient for researchers to carry out
subsequent work. The direct benefits of feature selection are that it reduces the burden
of follow-up work and improves model generalization. Choosing the best subset from
the original features has been shown to be a NP-hard problem. When the number of
features is N, 2N combinations of features must be tried using the greedy strategy, which
is unsustainable for ordinary computer systems, especially when the number of features is
very large (Faris et al., 2018; Xue et al., 2015). As a result, over the last few decades, some
heuristic algorithms have been proposed to find the best subset that can best represent the
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Figure 5 Kaplan–Meier curves for prognostic analysis of six genes, including ADRA2B, PYROXD2,
CACHD1, FKBP1B, PRKD1 and RPL7AP6. (A) The Kaplan–Meier curves based on two down-regulated
genes (ADRA2B, PYROXD2); (B) the Kaplan–Meier curves based on four up-regulated genes (CACHD1,
FKBP1B, PRKD1 and RPL7AP6). The horizontal axis represents the survival time (days), and the vertical
axis represents the overall survival rate.

Full-size DOI: 10.7717/peerjcs.933/fig-5
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feature meanings of the original dataset. A best subset can be used to represent the original
dataset with the least amount of redundancy between features and the highest correlation
between the subset’s features and labels. The mRMR algorithm, as an implementation of
this mind, can obtain the top K ranking features, where the K value must be manually
set and mutual information is used to measure the relevance of two features. The mRMR
algorithm is undoubtedly an excellent feature selection framework, and it has been widely
used in a variety of fields. Despite this, there are still some shortcomings that can be
addressed. On the one hand, mutual information can only handle discrete data, which
means that continuous data must be discretized in advance, resulting in some accuracy loss.
The output of the mRMR, on the other hand, is the top K features, and there is no ‘‘golden
rule’’ to specify a suggested or best K value. To address the above two issues, we proposed
a hybrid method called MMPSO. First, the noisy data were removed using a conventional
method, and the imbalanced data were corrected using random oversampling technology
for preprocessing. Second, we used the MIC (Cao et al., 2021; Reshef et al., 2011) instead
of the MI to obtain a more precise correlation value. Although study (Kinney & Atwal,
2014) has noted that estimates of mutual information are more equitable than estimates of
MIC, there is no denying that MIC has been widely and conveniently used. Furthermore,
rapidMic (Tang et al., 2014), an algorithm that can use multiple threads simultaneously,
was used to reduce the time expenditure of MIC algorithm. Finally, we selected the top K
features from the second step as the input for the PSO algorithm to find the best subset. In
accordance with the preceding thought, we conducted our experiment using ten datasets.
On these datasets, the MMPSO method was applied to compared with the other methods,
including mRMR, ILFS, ReliefF, Mutinffs, FSV, Fisher, CFS, UFSOL. We applied LIBSVM
library to evaluate the performance of the three methods and test the classification accuracy
of the selected features. The experimental results of the ten datasets provided evidences
that the MMPSO method performed better than other feature selection algorithms, when
all the algorithms used the same number of features. It’s worth mentioning that the
mRMR performed similarly to the MMPSOmethod in the previous findings. Here, we still
highlighted the advantages of MMPSO, since it can autonomously select feature subset on
the basis of MIC, which will improve the accuracy of classification.

To investigate the efficacy of our method for biological data, we used the LIHC dataset
(a dataset of RNA expression in liver hepatocellular carcinoma) for further analysis.
After performing the MMPSO algorithm, a signature including 18 genes was identified
as significant biomarkers for distinguishing between tumor and normal groups. The
PCA and ROC analysis results all confirmed that the biomarkers we selected have great
discrimination ability, while six biomarkers were significantly associated with the overall
survival of patients. Furthermore, we need to discuss the significance of these biomarkers
from a biological perspective. Studies (Wang et al., 2014) identified and evaluated tumor
vascular PLVAP as a therapeutic target for treatment of HCC but not in nontumorous
liver tissues, and this result may provide some clues for the development of drugs for
patients with HCC. FNDC4 (Wang et al., 2021) was reported to be an extracellular
factor and played important roles in the invasion and metastasis of HCC in that it
promoted the invasion and metastasis of HCC partly via the PI3K/Akt signaling pathway.
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Wang et al. (2019) discovered that PYROXD2 localizes to the mitochondrial inner
membrane/matrix, and it plays important roles in regulating mitochondrial function of
HCC. TRIM29 plays critical role in many neoplasms. The study (Xu et al., 2018) revealed
that higher TRIM29 expression was associated with higher differentiation grade of HCC
and its depletion promoted liver cancer cell proliferation, clone formation, migration
and invasion. The regulatory role of ACTNs in tumorigenesis has been demonstrated and
ACTN1 was significantly upregulated in HCC tissue and closely related to tumor size,
TNM stage and patient prognoses (Chen et al., 2021b). Based on the above studies, the
majority of the genes identified by our algorithm are promising candidate biomarkers for
the diagnosis or treatment of liver cancer.

CONCLUSION
In this paper, we proposed the MMPSO hybrid algorithm to identify a feature subset for
high-dimensional dataset. The experimental data provided evidences that our method
outperformed others. More importantly, by applying our proposed algorithm to the
biological LIHC dataset, we obtained the gene signatures in classifying tumors and normal
samples with high efficacy. Our study also has several limitations. Despite the fact that
we used rapidMic to accelerate the calculation, the computational complexity for too
many features remains relatively high. In addition, we selected only the top K features as
the PSO input without a theoretical foundation. Therefore, there is still some space for
improvement in selecting a better subset of features for high-dimensional datasets, and we
will advance this in future works.
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