
Submitted 23 November 2021
Accepted 3 March 2022
Published 21 March 2022

Corresponding author
Jianbiao Zhang, zjb@bjut.edu.cn

Academic editor
Huiyu Zhou

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj-cs.930

Copyright
2022 Xu et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Towards efficient verifiable multi-
keyword search over encrypted data
based on blockchain
Wanshan Xu1,2, Jianbiao Zhang1,2, Yilin Yuan1,2, Xiao Wang3, Yanhui Liu1,2 and
Muhammad Irfan Khalid1,2

1 Faculty of Information Technology, Beijing University of Technology, Beijing, China
2Beijing Key Laboratory of Trusted Computing, Beijing, China
3Department of Information Science and Technology, Tianjin University of Finance and Economics, Tianjin,
China

ABSTRACT
Searchable symmetric encryption (SSE) provides an effective way to search encrypted
data stored on untrusted servers. When the server is not trusted, it is indispensable
to verify the results returned by it. However, the existing SSE schemes either lack
fairness in the verification of search results, or do not support the verification of
multiple keywords. To address this, we designed a multi-keyword verifiable searchable
symmetric encryption scheme based on blockchain, which provides an efficient multi-
keyword search and fair verification of search results. We utilized bitmap to build a
search index in order to improve search efficiency, and used blockchain to ensure
fair verification of search results. The bitmap and hash function are combined to
realize lightweight multi-keyword search result verification, compared with the existing
verification schemes using public key cryptography primitives, our scheme reduces
the verification time and improves the verification efficiency. In addition, our scheme
supports the dynamic update of files and realizes the forward security in update. Finally,
formal security analysis proves that our scheme is secure against Chosen-Keyword
Attacks (CKA), experimental analysis demonstrations that our scheme is efficient and
viable in practice.

Subjects Distributed and Parallel Computing, Security and Privacy
Keywords Symmetric searchable encryption, Multi-keyword search, Result verification,
Blockchain

INTRODUCTION
With the development of artificial intelligence, the Internet of Things, the Internet of
Vehicles and other emerging technologies, more and more enterprises and individuals
outsource local data to the cloud, thereby reducing storage and management overhead.
However, security and privacy concerns still hinder the deployment of the cloud storage
system. Although data encryption can eradicate such concerns to some extent, it becomes
difficult for users to search over the data.

Searchable symmetric encryption (SSE) provides an efficient mechanism to solve this,
which enables users to search encrypted data efficiently without decryption. Since SSE
was first proposed by Song, Wagner & Perrig (2000), how to perform efficient and versatile

How to cite this article XuW, Zhang J, Yuan Y, Wang X, Liu Y, Khalid MI. 2022. Towards efficient verifiable multi-keyword search over
encrypted data based on blockchain. PeerJ Comput. Sci. 8:e930 http://doi.org/10.7717/peerj-cs.930

https://peerj.com/computer-science
mailto:zjb@bjut.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.930
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.930

search on encrypted data has always been an important research direction. The existing
SSE schemes mainly use linked lists and vectors to build indexes, the cloud server needs
to traverse the whole list or vector to search for matching results during a query, which
incurs high search overhead. In addition to efficient searching, dynamic updates are also
very important in SSE. Zhang, Katz & Papamanthou (2016) has shown that adversaries can
infer the critical information through the file injection attacks during the dynamic update
of the SSE, while the forward-secure SSE can avoid this. Therefore, the forward security of
the scheme must be fully considered when designing the SSE scheme.

Verifiability of the search results is another important research issue for SSE. Since
the cloud server is untrusted, which may returns incorrect or incomplete results due to
system failures or cost savings, so, it is necessary to verify the search results. In 2012, Chai
& Gong (2012) proposed the concept of verifiable SSE (VSSE) and constructed a verifiable
SSE scheme based on word tree. Following this work, a great many VSSE schemes are
proposed Kurosawa & Ohtaki (2012), Sun et al. (2015), Zhu, Liu & Wang (2016), Liu et
al. (2017), Zhang et al. (2019) and Chen et al., 2021). In these schemes, the verification is
mainly performed by users, but the user may forge verification results to save costs, so the
reliability of the verification cannot be guaranteed. To address this, some researchers (Cai et
al., 2018; Hu et al., 2018; Li et al., 2019; Guo, Zhang & Jia, 2020) introduce blockchain into
SSE to verify search results, which guarantees the fairness and reliability of the verification.
Although blockchain achieves fair verification of search results, but the existing schemes are
only for a single keyword, and there is little research on fair verification for multi-keywords.

In this paper, we introduce a verifiable multi-keyword SSE scheme based on blockchain,
which can perform efficient multi-keyword search, ensures the fairness of verification, and
supports the dynamic update of files. To our knowledge, this is the first scheme to verify
the search results of multi-keywords fairly. In general, the contributions of this paper are
summarized as follows:

• Our scheme realizes efficient multi-keyword search and verification of search results,
at the same time, our scheme supports dynamic update of files and achieves forward
security.
• Our scheme utilizes blockchain to verify the search results, ensuring the reliability and
fairness of the verification results. Combining bitmap index and hash function, we
realize lightweight multi-keyword verification to improve verification efficiency.
• We formally prove that our scheme is adaptively secure against CKA, and we conduct a
series of experiments to evaluate the performance of our scheme

RELATED WORKS
Searchable symmetric encryption
Since SSE was proposed, a number of works have been done to improve search efficiency,
rich expression and advanced security. The first SSE scheme (Song, Wagner & Perrig, 2000)
enables users to search keywords through full-text scanning, search time increases linearly
with the size of files, which is impractical and inefficient. To improve efficient, Curtmola
et al. (2006) proposed an inverted index SSE, which achieves sub-linear search time, and

Xu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.930 2/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.930

gives a definition of SSE security, but this scheme does not support dynamic operations.
Wang et al. (2010) expanded the scheme of Curtmola et al. (2006) to support dynamic
operations, and proved that the scheme was adaptively secure against chosen-keyword
attacks (CKA2-secure). For the schemes that support dynamic operation, forward security
is critically crucial. The research of Cash et al. (2013), Cash et al. (2015) and Zhang, Katz
& Papamanthou (2016) indicated that in the SSE scheme without forward security, the
adversary can recover most of the sensitive information in ciphertext at a small cost, their
research shows the importance of forward security.

Multi-keyword search is a crucial means to improve search efficiency. In single-keyword
search scheme (Song, Wagner & Perrig, 2000; Curtmola et al., 2006; Wang et al., 2010;
Kamara, Papamanthou & Roeder, 2012), the server returns some irrelevant results, while the
multi-keyword search (Cash et al., 2013; Lai et al., 2018; Xu et al., 2018; Wang et al., 2018;
Liang et al., 2020; Hozhabr, Asghari & Javadi, 2021; Liang et al., 2021) gains higher search
accuracy andmore accurate results. To further improve search efficiency,Abdelraheem et al.
(2016) proposed an SSE scheme on encrypted bitmap indexes to support multi-keyword
search, but requires two rounds of interactions with the cloud server. Zuo et al. (2019)
proposed a secure SSE scheme based on bitmap index which supports dynamic operations
with forward and backward security, but this scheme lacks the verification of the results.

Verifiable searchable symmetric encryption
In SSE, it is necessary to verify the results since the server is untrusted. Chai & Gong
(2012) proposed the concept of verifiable searchable symmetric encryption (VSSE)
and constructed a VSSE scheme based on word tree. Along this direction, some other
VSSE schemes (Kurosawa & Ohtaki, 2012; Zhu, Liu & Wang, 2016; Liu et al., 2017; Miao
et al., 2019; Ge et al., 2019) are proposed. These schemes are the verification of single
keyword search results, Azraoui et al. (2015) combined polynomial-based accumulators
and Merkle trees to achieve conjunctive keyword verification. Wan & Deng (2016) used
homomorphic MAC to verify the results of multi-keyword search. Li et al. (2021) utilized
bitmap index to gain high efficiency of multi-keyword search, and verified the results by
RSA accumulator. Ge et al. (2021) and Liu et al. (2021) proposed their verifiable schemes
in the Internet of things. These schemes verify the results of multi-keyword search by
public key cryptography primitives, which is computationally expensive and inefficient.
What is more, these multi-keyword search verifiable schemes mainly focus on verifying the
returned files are valid and whether the files really contains the query keywords, but they
didn’t ensure all files containing the query keywords are returned.

Verifiable searchable symmetric encryption based on blockchain
In the existing SSE schemes, the verification of search results is performed by users.
However, users may forge verification results for economic benefits, which damages the
fairness of verification. To solve this, a flexible and feasible method is to adopt blockchain
to verify search results, which uses the non-repudiable property of the blockchain to ensure
the reliability and fairness of verification. Hu et al. (2018) built a distributed, verifiable and
fair ciphertext retrieval scheme based on blockchain. Li et al. (2019) proposed a verifiable

Xu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.930 3/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.930

Table 1 Comparison results with existing schemes.

Schemes Single-keyword Multi-keyword Verification Blockchain-based Forward
security

Kamara, Papamanthou & Roeder, 2012 X × × × ×

Chai & Gong (2012) X × X × ×

Wang et al. (2018) X X X × ×

Li et al. (2021) X X X × ×

Hu et al., 2018 X × X X ×

Guo, Zhang & Jia, 2020 X × X X X

Our scheme X X X X X

1

f1
0

f2
1

f3
0

f4

1w

0 1 1 02w

1 0 1 0

0 1 1 0

AND = 0 0 1 0
f3

Figure 1 The example of bitmap.
Full-size DOI: 10.7717/peerjcs.930/fig-1

scheme combined blockchain and SSE, which can verify the results automatically and
reduce the calculation of users. Guo, Zhang & Jia (2020) used the blockchain to realize
the public authentication of search results, and ensures forward security of dynamic
update. Although these schemes realize the fair verification of search results, but they are
mainly for single keyword search, whereas there is little research on the fair verification of
multi-keyword. Comparison results with existing schemes are shown in Table 1.

PRELIMINARIES
Bitmap
To improve search efficiency,we use the bitmap (Spiegler & Maayan, 1985) to build inverted
index. Bitmap uses a binary string to store a set of information, which can effectively save
storage space, and it has been widely used in the field of ciphertext retrieval. In our scheme,
each keyword wi corresponds to a bitmap, which contains ` bits, ` is the number of files
in the system, if the i−th document contains wi the value of ` in position i is 1, otherwise
0. For example, there are four files (f1, f2, f3, f4) and two keywords (w1, w2), in Fig. 1, w1

is contained in f1 and f3, w2 is contained in f2 and f3, the bitmap of w1 and w2 are 1010
and 0110. If we want to search files that contains both (w1 and w2, we need to do AND
operation on the two bitmaps, i.e., 1010∧0110=0010, that indicates that f3 contains both
w1 and w2.

Blockchain
Blockchain is a distributed database, which is widely used in emerging cryptocurrencies
to store transaction information such as bitcoin. The blockchain has the features of

Xu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.930 4/22

https://peerj.com
https://doi.org/10.7717/peerjcs.930/fig-1
http://dx.doi.org/10.7717/peerj-cs.930

Block Block Block ...

Blockchain

Data owner Data user

3.Authorization request
4.Parameters

Cloud server

6.Search result

Figure 2 Systemmodel.
Full-size DOI: 10.7717/peerjcs.930/fig-2

decentralization, transparency and unforgeability. There is no central server in the
blockchain, all nodes participate in the operation and generate the calculation results,
the information stored on the blockchain can be seen by all nodes in the network. All nodes
of the blockchain share the same data record, under the action of the consensusmechanism,
a single node cannot modify the data stored on the chain. The above characteristics of
blockchain make it suitable to be a trusted third party for fair verification.

METHOD
System model
The system model of our scheme is shown in Fig. 2, there are four entities in the system:
data owner, cloud server, data user, blockchain. For the files F in the system, data owner
extracts all keywords and generates a keyword setW. Data owner encrypts files to a database
T , builds an encrypted index TB and a checklist B, TB and T are sent to cloud server, TB
and B are sent to blockchain. When a data user joins the system, it sends an authentication
request to the data owner, obtains keys and system parameters. During a query, the data
user generates search token TKi,Q according to the keywords to be queried with the help of
keys and system parameters, and then sends it to cloud server and blockchain, respectively.
Cloud server provides storage services for index TB and T . In addition, the cloud server

Xu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.930 5/22

https://peerj.com
https://doi.org/10.7717/peerjcs.930/fig-2
http://dx.doi.org/10.7717/peerj-cs.930

performs ciphertext retrieval according to the search token TKi,Q, and sends the matched
results to blockchain for verification.

To verify the search results of multiple keywords, the blockchain performs two steps:
(1) benchmark. On receiving TKi,Q, the blockchain performs multi-keyword search on the
index TB to get the identifiers ID of files that meets the query, then gets the corresponding
hash valuesH of files from the checklist B according ID, and computes the benchmark Acc
usingH; (2) verification. After receiving the results returned by cloud server, the blockchain
computes the hash values H′ of results and computes the verification value Acc ′, then the
blockchain compares Acc and Acc ′ to generate the proof. The proof and search results are
sent to data user, the verification is completed.

Threat model
Like other verifiable SSE schemes (Soleimanian & Khazaei, 2019), we assume that the cloud
server is malicious, which may return an incorrect or incomplete search result for selfish
reasons, such as saving bandwidth or storage space. In addition, we assume that the data
user is also untrusted, since it may forge the verification results for economic benefits. The
data owner and blockchain are trusted, they execute the protocols in the system honestly.

Algorithm definitions
Our scheme includes eight polynomial time algorithms,

∏
= {KeyGen,Setup,ClientAuth,

TokenGen,Search,Verify,UpdateToken,Update}, and the details are as follows:

• K←KeyGen(1λ), takes system parameter λ as input, and outputs system keys K .
• (T,TB,B)← Setup(K ,W,F), takes system keys K , the keyword set W and the set of

files F as input, outputs a database of encrypted files T , an encrypted index TB and a
checklist B.
• (K1,

∑
)←ClientAuth(Ai), takes the attribute Ai of user as input, outputs secret key K1

and the keyword status
∑

.
• TKi,Q← TokenGen(K1,W), takes secret key K1, a set of keywords to query W=
{w1,w2,...,wt }, outputs the search token TKi,Q.
• (R,Acc)← Search(T,TB,B,TKi,Q), takes search token TKi,Q, the encrypted database T ,

encrypted index TB and the checklist B as input, and outputs the search results R and
the benchmark Acc .
• (R,proof)←Verify(R,Acc), takes the search results R, and the benchmark Acc as input,
outputs the verification proof proof and results R.
• (τs,τb)←UpdateToken(F ,W ′,K), takes the set of files to update F , the set of keywords

W ′ and system keys K ={K1,K2,K3} as input, and outputs the update token (τs,τb).
• (T′,TB

′,B′)←Update(T,TB,B,τs,τb), takes encrypted database T , encrypted index TB
and the update token (τs,τb) as input, outputs the updated database T′, updated index
TB
′ and the updated checklist B′.

Security definitions
We prove the security of our scheme with the random oracle model, which can be executed
by two probabilistic games RealA(λ) and IdealA,S(λ), andwe have the following definitions:

Xu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.930 6/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.930

Definition 1: CKA2-security, for the verifiable multi-keyword search scheme∏
= {KeyGen,Setup,ClientAuth,TokenGen,Search,Verify,UpdateToken,Update}, let

L={Lsetup Lsearch Lupdate} be the leakage function, A is the adversary and S is the
simulator, there are two probabilistic experiments:

RealA(λ): The challenger runs KeyGen(1λ) to generate secret key K = {K1,K2,K3},
the adversary A outputs F and W. The challenger triggers this experiment to run
Setup(K ,W,F), outputs the index TB, T and B, which are sent to A.A generates a
series of adaptive queries Q= {q1,q2,...,qt }, for each qi ∈Q, the challenger generates
search or update tokens,A receives those tokens and generates a bit b as the output of this
experiment.

IdealA,S(λ): The adversary A outputs F and W, the simulator S generates the index
TB, T and B through LSetup, A receives them. A generates a series of adaptive queries
Q= {q1,q2,...,qt } , for each qi ∈Q, the simulator S generates search or update tokens
with LSearch and LUpdate, A receives those tokens and generates a bit b as the output of
this experiment. If for any probabilistic polynomial time (PPT) adversaryA, there exist an
efficient simulator S , which satisfies that:
|Pr[RealA(λ)= 1]−Pr[IdealA,S(λ)= 1] ≤ negl(λ)

we say
∏

is L−secure against CKA2, where negl is an negligible function and λ is the
security parameter.

CONSTRUCTION
In this section, we present the construction of our scheme in detail. We take bitmap as
index structure to achieve efficient search over encrypted data, and use blockchain to verify
the search results. The bitmap is utilized to build the inverted index to achieve the optimal
search time O

(
|q|
)
, where q is the keywords in search and |q| is the number of q.

In our scheme, the blockchain is used to fairly verify the search results. In Setup, the
data owner calculates the hash value of files, generates a checklist B and saves it on the
blockchain. During the verification, the blockchain smart contract computes the hash
values of search results returned by the server and compares them with the existing results
to obtain the verification results.

Specifically, in the single keyword setting, the blockchain stores the corresponding
benchmark directly since the results corresponding to the keywords are determined.
However, it’s impossible in multi-keyword search because the search results are variable,
which can only store the verification value of each file. To ensure the credibility of the search
results, the blockchain also needs to perform multi-keyword search to obtain the search
results. Therefore, we save the index TB on the blockchain. During a query, the blockchain
executes multi-keyword search to get the search results, and read the verification value
hashi of each file in search results to generate the benchmark Acc , then the blockchain
compares Acc with search results returned by cloud server to complete the verification.

Xu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.930 7/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.930

Proposed construction
Our scheme contains eight algorithms

∏
={KeyGen,Setup,ClientAuth,TokenGen,Search,

Verify,UpdateToken,Update}, let F : {0,1}∗→{0,1}m,H : {0,1}∗→{0,1}n, be two Pseudo-
Random Functions (PRFs), the constructions of our scheme are as follows.

K ← KeyGen(1λ): This algorithm is executed by the data owner, given a security
parameter λ ∈ N, this algorithm generates the secret key K = {K1,K2,K3}, where
K1,K2,K3←{0,1}λ , K1,K2 are used to encrypt the bitmap index for each keyword
wi ∈W, K3 is used to encrypt files fi ∈ F and store the hash value of files.

(T,TB,B)← Setup(K ,W ,F): Given a set of files F, a set of keywords W and the
secret keys K , this algorithm builds an encrypted index TB, a checklist B and a ciphertext
database T , as is shown in Algorithm 1. For each file fi ∈ F, idi is the identifier of fi , the
data owner encrypts fi by calculating ci← Enc(K3,fi), and computes the hash value using
hashi←H (ci). Then data owner stores ci and hashi in T[li] and B[li], respectively.

Algorithm 1 Setup
Require: K1,K2,K3,W ,F
Ensure: TB,B,T
1: Data Owner DO:
2: TB←{}, T←{}, B←{}
3: for fi ∈ F do
4: li←H (idi||K3); ci← Enc(K3,fi)
5: hashi←H (ci); B[li]← hashi; T[li]← ci
6: end for
7: for wi ∈W do
8: Generate a bitmap index Bwj for each wj

9: uwi← F(K1,H (wi)); sti
$
←{0,1}λ; twi←H (uwi ||sti)

10: vB←Bwi⊕H (uwi ||sti);TB[twi]← vB;
∑
[wi] = sti

11: end for
12: send (TB,B) to blockchain, send (T,TB) to cloud server

For each keyword wi ∈W, data owner generates a bitmap Bwi , if idj contains keyword
wi, then Bwi[m] = 1 , where m=H (idj ||K3), and the other positions of Bwi are all 0

′s. The
data owner encrypts Bwi through vB←Bwi⊕H (tw ||sti+1), and store vB in TB[tw]. At the
end of the Setup, (TB,B) and ((T),TB) are sent and stored on blockchain and cloud server,
respectively.

(K1,
∑

)← ClientAuth(Ai): It needs to register to the data owner when a new data
user who wants to query files on the cloud server joins the system. The data user submits
attribute Ai to the data owner through this algorithm to obtain the keyword status

∑
and

the key K1.
TKi,Q← TokenGen(K1,W): It takes the key K1 and the set of keywords to query

W= {w1,w2,...,wt } as input, output a search token TKi,Q, as is shown in Algorithm2.
For each keyword wi ∈W, the data user computes the position lwi of wi in index TB as

Xu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.930 8/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.930

lwi←H (uwi ||sti), where uwi← F(K1,H1(wi)), sti←
∑
[wi]. Data user sends TKi,Q to cloud

server and blockchain, respectively.
(R,Acc)← Search(T,TB,B,TKi,Q): This algorithm takes search token TKi,Q, index TB

and ciphertext database T as input, and outputs search results R. On receiving the search
token, the cloud server and blockchain perform the same operations for multi-keyword
search. They all parse out the position lwi of the keyword in the token TKi,Q, and get
the bitmap Bwi through Bwi← vB⊕H (Kwi ||li), vB←TB[lwi]. To achieve multi-keyword
search, they compute B= B1∧B2∧ ...∧Bt , the cloud server gets files in T according
to B with regard to B[i] = 1, and sends them to the blockchain to verify. Similarly, the
blockchain gets hash values {hash1,hash2,...,hashs} of files in B according to B, computes
Acc = hash1⊕hash2⊕···⊕hashs as the benchmark for verification, and the details are
shown in Algorithm 2.

Algorithm 2 Search

Require: K1, W={w1,w2,...,wt }, T, TB, B
Ensure: TKi,Q, R, Acc
1: Data user:
2: for wi ∈W do
3: sti←

∑
[wi]; uwi← F(K1,H (wi)); lwi←H (uwi ||sti)

4: end for
5: return TKi,Q← (lw1,lw2,...,lwt)
6: Send TKi,Q to cloud server and blockchain
7: Server, Blockchain:
8: for lwi ∈TKi,Q do
9: vB←TB[lwi]; Bwi← vB⊕H (lwi)
10: end for
11: B=B1∧B2∧ ...∧Bt

12: Server:
13: gets ciphertext R={c1,c2,...,cs} form T
14: Blockchain:
15: gets checklist L={hash1,hash2,...,hashs} from B with B
16: Acc = hash1⊕hash2⊕···⊕hashs

(R,proof)← Verify(R,Acc): This algorithm takes search results R and benchmark
Acc as input, outputs search results R and proof , and the verify process is shown in
Algorithm 3. To verify the integrity of files, the data owner calculates the hash value of
each file through hashi←H (ci) in the Setup, and adds hashi to the checklist B, then B is
sent to the blockchain. Through algorithm Search, the blockchain gets the search result of
multiple keywords, obtains the hash value of each file in the result from B, and computes
the benchmark Acc . To verify the search results, the blockchain calculates HW of R and
compares it with Acc .

In Algorithm 3, for all ciphertexts ci ∈ R, blockchain computes HW ←HW ⊕H (ci),
where H (ci) denotes the hash value of ci. Blockchain compares HW and Acc , if they are

Xu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.930 9/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.930

Algorithm 3 Verify
Require: R,Acc
Ensure: proof, Result
1: Blockchain:
2: HW←φ

3: for ci ∈R do
4: HW←HW ⊕H (ci)
5: end for
6: if HW =Acc then
7: proof = true, Result←R
8: else
9: proof = false, Result←φ

10: end if
11: sends (proof, Result) to data user

equal, the proof is true, otherwise false. At last, the search results R and proof are sent to
data user. During the verification, Acc is calculated through the hash value stored on the
blockchain, due to the unforgeability of blockchain, thus Acc is unforgeable. In addition,
the verification is completed by the blockchain, so the proof is also unforgeable, which
ensures the fairness of verification.

(τs,τb)←UpdateToken(F,W′,K): The data owner generates an update token through
this algorithm, which takes files F, a keyword set W′ and secret key K as input, and
outputs update token(τs,τb). For files fk ∈ F, the data owner encrypts and calculates the
hash value of fk by ck← Enc(K3,fk) and hashk←H (ck), respectively. For keywords
W ′ = {w1,w2,...,ws} that contained in fk , the data owner generates a bitmap Bwj for
each wj ∈W′, and encrypts Bwj with vB← Bwj ⊕H (lwj ||st), where lwj ←H (uwj ||st),
uwj← F(K1,H (wj)), st← F(K2,st0).

(T′,TB
′,B′)←Update(T,TB,B,τs,τb): This algorithm takes encrypted database T ,

index TB, checklist B, update token (τs,τb) as input, and outputs updated database T′,
updated index T′B and updated checklist B′. The details are shown in Algorithm 4.

Forward security
As described above, dynamic update is the foundation function of an SSE scheme, and
forward security is an indispensable component of dynamic update. In Algorithm 4, when
updating a file fi that contains keyword wj , the data owner retrieves the previous state st0
from the local state store

∑
, and generates a new state st through st← F(K2,st0), where F

is a pseudo random function and K2 is kept in local. To search a keyword wj , the data user
retrieves the current state st0 from

∑
, with st0 data user generates a token to be sent to the

cloud server and blockchain. Without the key K2, the server cannot compute the current
state st from a previous state st0, therefore it cannot get the current token from a previous,
considering that the newly added file fi corresponds to the current token, that means the
previous tokens cannot match fi, then forward security is achieved.

Xu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.930 10/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.930

Algorithm 4 Update

Require: F, K ={K1,K2,K3}, W′, T,TB,B
Ensure: τs,τb,T′,TB

′,B′

1: Data owner:
2: for fk ∈ F do
3: lk←H (idk ||K3), ck← Enc(K3,fk), hashk←H (ck)
4: fk , W′={w1,w2,...,ws}

5: for wj ∈W′ do
6: generates a bitmap index Bwj for wj

7: if
∑
[wj] =φ then, then st0

$
←{0,1}λ

8: else
9: st0←

∑
[wj], st← F(K2,st0)

10: uwj← F(K1,H (wj)), lwj←H (uwj ||st)
11: vB j←Bwj ⊕H (uwj ||st),

∑
[wj] = st

12: end if
13: end for
14: return τs={(lk,ck),(lwj ,vBj)}, τb={(lk,hashk),(lwj ,vBj)}
15: end for
16: Server: T [lk]← ck , TB[lwj]← vB j , T

′
←T , TB

′
←TB

17: Blockchain: B[lk]← hashk , TB[lwj]← vB j , B
′
←B, TB

′
←TB

SECURITY ANALYSIS
In this section, we analysis the security of our scheme. For the scheme

∏
=KeyGen,Setup,

ClientAuth, TokenGen,Search,Verify,UpdateToken,Update with the leakage function
L= {Lsetup,Lsearch,Lupdate}, we prove that our scheme is L− secure against CKA2 by
proving that RealA(λ) and IdealA,S(λ) are computationally indistinguishable.

Theorem 1. Our scheme
∏

is L− secure against CKA2, if the encryption algorithm
is secure against chosen-plaintext attacks and the pseudo-random function F and H are
secure pseudo-random.

Proof: We use a probabilistic polynomial time simulator S to simulate indexes and
a series of tokens. For a PPT adversary A, we prove Theorem 1 by the computational
indistinguishability between RealA(λ) and IdealA,S(λ). In RealA(λ),A gets indexes (TB,T
and B), searches token TKi,Q and updates token (τs, τb) by running Setup, TokenGen and
UpdateToken; in IdealA,S(λ), A gets indexes (T′B, T

′ and B′), searches token TK ′i,Q and
updates token (τs′, τb′) by running LSetup, LSearch, LUpdate . We prove that RealA(λ) and
IdealA,S(λ) are computational indistinguishable by proving that (TB, T , B, TKi,Q, τs, τb)
and (T′B, T

′, B′, TK ′i,Q, τs
′, τb′) are indistinguishable.

Simulating index. S initializes three empty tables: T ′, B′, T′B, which are used to store
file ciphertexts, verification values and bitmaps, respectively. S randomly selects a string
fi′ of length |fi|, and encrypts it through ci′← Enc(K3,fi′), where K3 is randomly sampled
from {0,1}λ.S maintains three mappings: H, U and L, H stores (idi||K3, `i′), U stores

Xu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.930 11/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.930

(H (wi),uwi
′), and the mapping L stores (uwi

′
||sti,twi

′). H, U and L are used and updated
by the generation of search and update token. S computes the hash value hashi′←H (ci′),
ci′ is stored in T′[li′] and hashi′ is stored in B′[li′].S selects a string vB ′ of length |vB|, and
stores it in TB

′
[twi]← vB.

T′, B′ and TB
′ are simulated by S through the leakage LSetup, the difference between

(TB
′, T′, B′) and (TB, T, B) is the generation of (fi′, ci′, vB ′). In ideal environment, (fi′, ci′,

vB ′) are randomly selected, since our encryption algorithm is secure against CKA2, F and
H are secure pseudo-random functions, therefore , the probability that the adversary A
can distinguish between the real environment and the ideal environment is negligible.

Simulating search token. For the keyword wi to query, S gets uwi
′ from the mapping

U through calculating H (wi), S checks whether uwi
′ is contained in U, if so returns the

corresponding entity, otherwise randomly picks a uwi
′ in {0,1}` and stores (H (wi),uwi

′) in
U. Similarly, the experiment gets lwi

′ from L by L[uwi
′
||sti], the search token TKi,Q

′
= lwi

′.
Under the assumption that F and H are secure pseudo-random functions, the adversary
A cannot distinguish TKi,Q and TKi,Q

′ .
Simulating update token. For file fk to be added, S first randomly selects a bit string

ck ′ of length |fk |, and encrypts it through ck ′← Enc(K3,fk ′).S computes the hash value
hashk ′←H (ck ′), ck ′ is stored in T′[lk ′] and hashk ′ is stored in B′[lk ′], where lk ′ is obtained
from the mapping H.S maintains a mapping E, which stores (st0,st), if there is no
corresponding entity for st , it randomly picks a st in {0,1}l , otherwise it returns the
corresponding entity. S gets uwi

′ and lwi
′ as in search token, selects a string vBj

′ of length
|vBj |, and stores it in TB

′
[lwj
′
] ← vBj

′. The update token (τs′ = {(lk ′,ck ′),(lwj
′,vBj

′)},
τb
′
={(lk ′,hashk ′),(lwj

′,vBj
′)}) and (τs={(lk,ck),(lwj ,vBj)}, τb={(lk,hashk),(lwj ,vBj)}) are

indistinguishable for the adversary A.
In such a way, (TB, T, B, TKi,Q, τs, τb) and (TB

′, T′, B′, TKi,Q
′, τs′, τb′) are

indistinguishable for A, and it means for a PPT adversary A, the probability of
distinguishing between RealA(λ) and IdealA,S(λ) is negligible, so we have:

|Pr[RealA(λ)= 1]−Pr[IdealA,S(λ)= 1] ≤ negl(λ)

Therefore, our scheme satisfies CKA2-security.

PERFORMANCE EVALUATION
In this section, we evaluate the performance of our scheme by constructing a series of
experiments, and compared the experimental results with Li et al. (2021) and Guo, Zhang
& Jia (2020). Since Guo, Zhang & Jia (2020) do not support multi-keyword search over
encrypted data, we compared our scheme with (Li et al., 2021) which supports multi-
keyword search. We also compared our scheme with (Guo, Zhang & Jia, 2020) in terms of
dynamic operations.

We deploy our experiments on a local machine with an Intel Core i7-8550U CPU
of 1.80 GHz, 8GB RAM. We use HMAC-SHA-256 for the pseudo-random functions,
SHA-256 for the hash function. We use AES as the encryption algorithm to encrypt files.

Xu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.930 12/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.930

Figure 3 Performance of the setup, files= 3,137.
Full-size DOI: 10.7717/peerjcs.930/fig-3

We implement the algorithms in data owner, data user and server using Python and
construct the smart contract using Solidity, and the smart contract is tested in with the
Ethereum blockchain using a local simulated network TestRPC.

For the dataset, we adopt a real-world dataset, Enron email dataset (WC., 2015), which
contains more than 517 thousand documents. We utilize the Porter Stemmer to extract
more than 1.67 million keywords and filter that meaningless keywords, such as of, the. At
last, we build an inverted index with those keywords to improve the search efficiency of
the experiment.

Evaluation of setup
In setup phase, data owner encrypts the files, calculates the initial verification values
of ciphertexts, generates the bitmap indexes of keywords, stores them in T, B and TB,
respectively.

First, we compare the setup time of our scheme with Li et al. (2021) and Guo, Zhang &
Jia (2020), the setup time is related to the number of files in the index and the number of
keywords included in each file. Figure 3 shows the setup time with different number of
keywords in each file while the number of files is fixed at 3137, Fig. 4 shows the setup time
with different number of files when the number of keywords in each file is fixed at 20. Both
figures show that the setup time is affected by the number of keywords in each file and the
number of files, and the setup time increases linearly concerning the number of keywords
and files.

Furthermore, Figs. 3 and 4 illustrate that our scheme is more efficient than Li et al.
(2021) and Guo, Zhang & Jia (2020) under the same condition in setup time. Since Guo,

Xu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.930 13/22

https://peerj.com
https://doi.org/10.7717/peerjcs.930/fig-3
http://dx.doi.org/10.7717/peerj-cs.930

Figure 4 Performance of the setup, keywords= 20.
Full-size DOI: 10.7717/peerjcs.930/fig-4

Zhang & Jia (2020) utilizes the linked list instead of bitmap to build the index, it requires
more time than the other schemes. Our scheme takes less time than Li et al. (2021), the
reason is that Li et al. (2021) adopts RSA accumulator based on public key encryption
to verify multi-keyword search results, in contrast, our scheme utilizes hash functions to
verify search results, which reduces the computational overhead greatly.

Evaluation of search
For the performance of our scheme, we compare the search time of our scheme with Li et
al. (2021). Moreover, to better evaluate the performance of the scheme in multi-keyword
search, we perform two settings in a query: 5 keywords and 10 keywords, respectively.
In figures, the suffix of the icon indicates the number of keywords in a query, i.e., our
scheme_5 indicates the search time spent in our scheme during a query which contains five
keywords: our scheme_10 indicates the search time spent in our scheme during a query
which contains 10 keywords, similarly, Li et al. (2021)_5 and Li et al. (2021)_10 indicates
the search time spent in Li et al. (2021) during a query which contains five keywords and
10 keywords, respectively.

Figure 5 shows the search time with different number of keywords in each file when the
number of files is fixed at 3,137, and Fig. 6 shows the search time with different number
of files when the number of keywords in each file is fixed at 20. Both figures show that the
search time is affected by the number of keywords in each file and the number of files, and
the search time increases sub-linearly with the number of keywords and files.

From Figs. 5 and 6, we can see that the more keywords included in a query, the more
time it takes, this is because the more keywords, the search algorithm spends more time to

Xu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.930 14/22

https://peerj.com
https://doi.org/10.7717/peerjcs.930/fig-4
http://dx.doi.org/10.7717/peerj-cs.930

Figure 5 Performance of the search, files= 3,137.
Full-size DOI: 10.7717/peerjcs.930/fig-5

Figure 6 Performance of the search, keywords= 20.
Full-size DOI: 10.7717/peerjcs.930/fig-6

Xu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.930 15/22

https://peerj.com
https://doi.org/10.7717/peerjcs.930/fig-5
https://doi.org/10.7717/peerjcs.930/fig-6
http://dx.doi.org/10.7717/peerj-cs.930

Figure 7 Performance of the verification, files= 3,137.
Full-size DOI: 10.7717/peerjcs.930/fig-7

calculate matched files. Another conclusion can be drawn that our scheme is more efficient
than Li et al. (2021) in search, the reason is that the same as the setup algorithm, Li et al.
(2021) takes more time to calculate the verification values.

Evaluation of verify
Here, we evaluate the performance of our scheme in verification, we verify the results of
searching for 5 keywords and 10 keywords respectively, and compares the verification time
with Li et al. (2021), the comparison results are shown in Figs. 7 and 8. Figure 7 shows the
verification time with different number of keywords in each file when the number of files
is fixed at 3,137, and Fig. 8 shows the verification time with different number of files when
the number of keywords in each file is fixed at 20. From those two figures, we can see that
the verification time is affected by the number of keywords in each file and the number of
files, the verification time increases with the number of keyword and files.

Both figures shows that our scheme gains a higher verification efficiency than Li et al.
(2021), the reason is that Li et al. (2021) takes additional time to compute Bfi = yi⊕ui,
where ui= F(Kfi ||ri), Kfi =G(K3,fi). In addition, the initial verification values in Li et al.
(2021) are stored in untrusted server and the verification is performed by the data user,
both the server and the user may forge the verification results, while in our scheme, the
values are stored in blockchain and the verification is performed by blockchain, cannot be
tampered with, hence, our scheme is more fair and secure in verification.

Dynamic update is the important function in SSE, so we evaluate the performance of
our scheme in dynamic update by adding a file containing multiple keywords. Figures 9
and 10 show the performance of our scheme, Li et al. (2021) and Guo, Zhang & Jia (2020)

Xu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.930 16/22

https://peerj.com
https://doi.org/10.7717/peerjcs.930/fig-7
http://dx.doi.org/10.7717/peerj-cs.930

Figure 8 Performance of the verification, keywords= 20.
Full-size DOI: 10.7717/peerjcs.930/fig-8

in update time, _5 and _10 indicate that the update document contains 5 keywords and 10
keywords, respectively. We observe that the update time increases with the number of files,
since the more files, the longer of the bitmap corresponding to a keyword, then the update
algorithm performs more operations when calculating vB←Bwj ⊕H (uwj ||st). Moreover,
the update time is related to the number of keywords contained in the update file, since
the more keywords the file contains, the more indexes to update.

CONCLUSIONS
In this paper, we present an efficient verifiable multi-keyword search SSE scheme based
on blockchain, which accomplishes efficient multi-keyword search and verification. In
our scheme, the yardstick of the file is stored on the blockchain, and the verification of
the search results is also completed by the blockchain, thus the fairness and reliability of
the verification can be ensured. In addition, our solution supports the dynamic update
of files and guarantees forward security during the update. Formal security analysis and
experimental results show that our scheme is CKA2-security and efficient. Our scheme can
bewidely used in cloud storage systems such as data outsourcing, cloud-based IoT (Ge et al.,
2021), medical cloud data (Li et al., 2017), etc., helping to achieve efficient multi-keyword
searches, and ensuring the integrity and credibility of search results.

Xu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.930 17/22

https://peerj.com
https://doi.org/10.7717/peerjcs.930/fig-8
http://dx.doi.org/10.7717/peerj-cs.930

Figure 9 Performance of the update, files= 3,137.
Full-size DOI: 10.7717/peerjcs.930/fig-9

Figure 10 Performance of the update, keywords= 20.
Full-size DOI: 10.7717/peerjcs.930/fig-10

Xu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.930 18/22

https://peerj.com
https://doi.org/10.7717/peerjcs.930/fig-9
https://doi.org/10.7717/peerjcs.930/fig-10
http://dx.doi.org/10.7717/peerj-cs.930

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Natural Science Foundation of Beijing Municipality under
Grant M21039. The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The Natural Science Foundation of Beijing Municipality: M21039.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Wanshan Xu conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables, and
approved the final draft.
• Jianbiao Zhang conceived and designed the experiments, authored or reviewed drafts of
the paper, and approved the final draft.
• Yilin Yuan conceived and designed the experiments, analyzed the data, prepared figures
and/or tables, and approved the final draft.
• Xiao Wang analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the paper, and approved the final draft.
• Yanhui Liu performed the experiments, performed the computation work, authored or
reviewed drafts of the paper, and approved the final draft.
• Muhammad Irfan Khalid conceived and designed the experiments, authored or reviewed
drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available in the Supplementary File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.930#supplemental-information.

REFERENCES
AbdelraheemMA, Gehrmann C, LindströmM, Nordahl C. 2016. Executing boolean

queries on an encrypted bitmap index. In: Proceedings of the 2016 ACM on cloud
computing security workshop. 11–22.

Azraoui M, Elkhiyaoui K, ÖnenM,Molva R. 2015. Publicly verifiable conjunctive
keyword search in outsourced databases. In: 2015 IEEE conference on communications
and network security (CNS). 619–627.

Xu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.930 19/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.930#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.930#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.930#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.930

Cai C,Weng J, Yuan X,Wang C. 2018. Enabling reliable keyword search in encrypted
decentralized storage with fairness. IEEE Transactions on Dependable and Secure
Computing 18(1):131–144.

Cash D, Grubbs P, Perry J, Ristenpart T. 2015. Leakage-abuse attacks against searchable
encryption. In: Proceedings of the 22nd ACM SIGSAC conference on computer and
communications security. 668–679.

Cash D, Jarecki S, Jutla C, Krawczyk H, RoşuM-C, Steiner M. 2013.Highly-scalable
searchable symmetric encryption with support for boolean queries. In: Annual
cryptology conference. 353–373.

Chai Q, Gong G. 2012. Verifiable symmetric searchable encryption for semi-honest-
but-curious cloud servers. In: 2012 IEEE international conference on communications
(ICC). 917–922.

Chen C-M, Tie Z,Wang EK, KhanMK, Kumar S, Kumari S. 2021. Verifiable dynamic
ranked search with forward privacy over encrypted cloud data. Peer-To-Peer
Networking and Applications 14(5):2977–2991 DOI 10.1007/s12083-021-01132-3.

Curtmola R, Garay J, Kamara S, Ostrovsky R. 2006. Searchable symmetric encryption:
improved definitions and efficient constructions. In: Proceedings of the 13th ACM
conference on computer and communications security, CCS 2006, Alexandria, VA, USA,
October 30 - November 3, 2006. 79–88.

Ge X, Yu J, Chen F, Kong F,Wang H. 2021. Toward verifiable phrase search over
encrypted cloud-based IoT data. IEEE Internet of Things Journal 8(16):12902–12918
DOI 10.1109/JIOT.2021.3063855.

Ge X, Yu J, Zhang H, Hu C, Li Z, Qin Z, Hao R. 2019. Towards achieving keyword search
over dynamic encrypted cloud data with symmetric-key based verification. IEEE
Transactions on Dependable and Secure Computing 18(1):490–504.

Guo Y, Zhang C, Jia X. 2020. Verifiable and forward-secure encrypted search using
blockchain techniques. In: ICC 2020-2020 IEEE international conference on commu-
nications (ICC). 1–7.

HozhabrM, Asghari P, Javadi HHS. 2021. Dynamic secure multi-keyword ranked
search over encrypted cloud data. Journal of Information Security and Applications
61:102902 DOI 10.1016/j.jisa.2021.102902.

Hu S, Cai C,Wang Q,Wang C, Luo X, Ren K. 2018. Searching an encrypted cloud meets
blockchain: a decentralized, reliable and fair realization. In: IEEE INFOCOM 2018-
IEEE conference on computer communications. 792–800.

Kamara S, Papamanthou C, Roeder T. 2012. Dynamic searchable symmetric encryption.
In: Proceedings of the 2012 ACM conference on computer and communications security.
965–976.

Kurosawa K, Ohtaki Y. 2012. UC-secure searchable symmetric encryption. In: Interna-
tional conference on financial cryptography and data security. 285–298.

Lai S, Patranabis S, Sakzad A, Liu JK, Mukhopadhyay D, Steinfeld R, Sun S-F, Liu D,
Zuo C. 2018. Result pattern hiding searchable encryption for conjunctive queries.
In: Proceedings of the 2018 ACM SIGSAC conference on computer and communications
security. 745–762.

Xu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.930 20/22

https://peerj.com
http://dx.doi.org/10.1007/s12083-021-01132-3
http://dx.doi.org/10.1109/JIOT.2021.3063855
http://dx.doi.org/10.1016/j.jisa.2021.102902
http://dx.doi.org/10.7717/peerj-cs.930

Li F, Ma J, Miao Y, Jiang Q, Liu X, Choo K-KR. 2021. Verifiable and dynamic multi-
keyword search over encrypted cloud data using bitmap. IEEE Transactions on Cloud
Computing Epub ahead of print July 01 2021 DOI 10.1109/TCC.2021.3093304.

Li H, Tian H, Zhang F, He J. 2019. Blockchain-based searchable symmetric encryption
scheme. Computers & Electrical Engineering 73:32–45
DOI 10.1016/j.compeleceng.2018.10.015.

Li H, Yang Y, Dai Y, Yu S, Xiang Y. 2017. Achieving secure and efficient dynamic
searchable symmetric encryption over medical cloud data. IEEE Transactions on
Cloud Computing 8(2):484–494.

Liang Y, Li Y, Cao Q, Ren F. 2020. VPAMS: verifiable and practical attribute-based
multi-keyword search over encrypted cloud data. Journal of Systems Architecture
108:101741 DOI 10.1016/j.sysarc.2020.101741.

Liang Y, Li Y, Zhang K, Ma L. 2021. DMSE: dynamic multi-keyword search en-
cryption based on inverted index. Journal of Systems Architecture 119:102255
DOI 10.1016/j.sysarc.2021.102255.

Liu Q, Nie X, Liu X, Peng T,Wu J. 2017. Verifiable ranked search over dynamic en-
crypted data in cloud computing. In: 2017 IEEE/ACM 25th international symposium
on quality of service (IWQoS). 1–6.

Liu X, Yang X, Luo Y, Zhang Q. 2021. Verifiable Multi-keyword Search encryption
scheme with anonymous key generation for medical Internet of Things. IEEE
Internet of Things Journal.

Miao Y, Deng RH, Choo K-KR, Liu X, Ning J, Li H. 2019. Optimized verifiable fine-
grained keyword search in dynamic multi-owner settings. IEEE Transactions on
Dependable and Secure Computing 18(4):1804–1820.

Soleimanian A, Khazaei S. 2019. Publicly verifiable searchable symmetric encryption
based on efficient cryptographic components. Designs, Codes and Cryptography
87(1):123–147 DOI 10.1007/s10623-018-0489-y.

Song DX,Wagner D, Perrig A. 2000. Practical techniques for searches on encrypted data.
In: Proceeding 2000 IEEE symposium on security and privacy. S&P 2000. 44–55.

Spiegler I, Maayan R. 1985. Storage and retrieval considerations of binary data bases.
Information Processing & Management 21(3):233–254
DOI 10.1016/0306-4573(85)90108-6.

SunW, Liu X, LouW, Hou YT, Li H. 2015. Catch you if you lie to me: efficient verifiable
conjunctive keyword search over large dynamic encrypted cloud data. In: 2015 IEEE
Conference on Computer Communications (INFOCOM). 2110–2118.

Wan Z, Deng RH. 2016. VPSearch: achieving verifiability for privacy-preserving multi-
keyword search over encrypted cloud data. IEEE Transactions on Dependable and
Secure Computing 15(6):1083–1095.

Wang C, Cao N, Li J, Ren K, LouW. 2010. Secure ranked keyword search over encrypted
cloud data. In: 2010 IEEE 30th international conference on distributed computing
systems. 253–262.

Xu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.930 21/22

https://peerj.com
http://dx.doi.org/10.1109/TCC.2021.3093304
http://dx.doi.org/10.1016/j.compeleceng.2018.10.015
http://dx.doi.org/10.1016/j.sysarc.2020.101741
http://dx.doi.org/10.1016/j.sysarc.2021.102255
http://dx.doi.org/10.1007/s10623-018-0489-y
http://dx.doi.org/10.1016/0306-4573(85)90108-6
http://dx.doi.org/10.7717/peerj-cs.930

Wang J, Chen X, Sun S-F, Liu JK, AuMH, Zhan Z-H. 2018. Towards efficient verifiable
conjunctive keyword search for large encrypted database. In: European symposium on
research in computer security. 83–100.

WCW. 2015. Enron email dataset. Available at http://www.cs.cmu.edu/~enron/.
Xu G, Li H, Dai Y, Yang K, Lin X. 2018. Enabling efficient and geometric range query

with access control over encrypted spatial data. IEEE Transactions on Information
Forensics and Security 14(4):870–885.

Zhang Y, Katz J, Papamanthou C. 2016. All your queries are belong to us: the power
of {File-Injection} attacks on searchable encryption. In: 25th USENIX Security
Symposium (USENIX Security 16). 707–720.

Zhang Z,Wang J, Wang Y, Su Y, Chen X. 2019. Towards efficient verifiable forward
secure searchable symmetric encryption. In: European symposium on research in
computer security. 304–321.

Zhu X, Liu Q,Wang G. 2016. A novel verifiable and dynamic fuzzy keyword search
scheme over encrypted data in cloud computing. In: 2016 IEEE Trustcom/Big-
DataSE/ISPA. 845–851.

Zuo C, Sun S-F, Liu JK, Shao J, Pieprzyk J. 2019. Dynamic searchable symmetric
encryption with forward and stronger backward privacy. In: European symposium
on research in computer security. 283–303.

Xu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.930 22/22

https://peerj.com
http://www.cs.cmu.edu/~enron/
http://dx.doi.org/10.7717/peerj-cs.930

