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ABSTRACT
The semantic interaction process seeks to elicit a user’s mental model as they interact
with and query visualizations during a sense-making activity. Semantic interaction
enables the development of computational models that capture user intent and
anticipate user actions. Deep learning is proving to be highly effective for learning
complex functions and is, therefore, a compelling tool for encoding a user’s
mental model. In this paper, we show that deep contrastive learning significantly
enhances semantic interaction in visual analytics systems. Our approach does
so by allowing users to explore alternative arrangements of their data while
simultaneously training a parametric algorithm to learn their evolving mental model.
As an example of the efficacy of our approach, we deployed our model in Z-Explorer,
a visual analytics extension to the widely used Zotero document management system.
The user study demonstrates that this flexible approach effectively captures users’
mental data models without explicit hyperparameter tuning or even requiring prior
machine learning expertise.

Subjects Data Mining and Machine Learning, Visual Analytics
Keywords Semantic interaction, Deep learning, Visual analytics, Natural language processing

INTRODUCTION
The proliferation of data far outpaces our ability to analyze it. Using fully autonomous
machine learning methods for data analysis is difficult in applications such as clustering,
where domain knowledge and subjective cluster preferences are challenging to encode.
Human-in-the-loop machine learning has emerged as a great paradigm to combine a
user’s insight into model inference. Human-in-the-loop models can be steered and tuned
within a tight loop in response to changing perspectives, preferences, or to take into
account domain knowledge. Within visual analytics systems, semantic interaction (SI) is
the human-in-the-loop machine learning approach that aims to empower users to
manipulate the internal parameters of a parametric projection algorithm solely via
interactions with a 2D visualization (Bradel, North & House, 2014; Dowling et al., 2018b;
Sacha et al., 2016). To do so, SI systems learn to translate user interaction (in our case users
re-position points on the 2D canvas), as users re-position points on the 2D canvas, into
valuable training information. SI systems most often accomplish this objective by inverting
their models to transform user input (changes to the layout) into parametric feedback
(updates to the input); this process is known as model steering.
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Methods such as t-distributed stochastic neighbor embedding (t-SNE) (Van der Maaten
& Hinton, 2008) and uniform manifold approximation and projection (UMAP) (Becht
et al., 2019) are two of the most popular techniques for visualizing higher dimensional data
in a 2D space and for clustering in visual analytics. UMAP finds a lower-dimensional
representation of data with similar topological properties as the high dimensional space by
measuring the distance of points across a neighborhood graph of the high dimensional
data and therefore using optimization to find the closest topological structure in a lower-
dimensional space (McInnes, Healy & Melville, 2018). Despite UMAP’s and t-SNE’s
efficacy, SI systems typically use simple and interpretable linear models, such as LDA
(Latent Dirichlet Allocation) (Blei, Ng & Jordan, 2003) and PCA (Principal Component
Analysis) (Abdi & Williams, 2010), to deliver a bidirectional pipeline that can project a
document’s feature representation on a canvas, and update the model parameters based on
how an analyst repositions a document, thus incorporating their intent in the model. This
bidirectionality is particularly difficult to implement in algorithms such as t-SNE and
UMAP, since these are not invertible, meaning that they cannot seamlessly transform
user input (changes to the layout) into parametric feedback (Espadoto, Hirata & Telea,
2020).

In spite of their advantages, deep learning algorithms are difficult to optimize without
considerable expertise or extensive annotated datasets (LeCun, Bengio & Hinton, 2015).
Self-supervised learning has recently emerged as a promising method to train deep
learning models by relying on data generated from the raw input, thus circumventing the
time-consuming and costly process of data annotation. A self-supervised approach,
contrastive learning uses small transformations on raw data to create training data that is
then used to maximize the similarities of positive pairs (e.g., documents about similar
topics) while minimizing the similarities of negative ones Chen et al. (2020). We use
this idea to generate training data from documents laid out by a user on a canvas and
leverage this data to train a model to layout new documents in a way that reflects the user’s
mental model.

In this paper, we propose a method that combines SI with contrastive models to
allow non-experts to guide deep learning by using contrastive models to mimic state-of-
the-art dimensionality reduction methods. This paper will begin by introducing prior work
in SI, emphasizing the need and challenges to provide functions to not only project
data onto a 2D canvas, but also an inverse function to transform the input following
updates the layout on the canvas (“Basic Assumptions of the Model”). We will also
review work in contrastive models to show how their properties make them useful in SI
systems (“Addition of an Embedding Mean Square Error Objective”). With that
grounding, we will then explain our contrastive model’s approach in SI (“Z-Explorer User
Study”) and describe a specific implementation of our approach in Z-Explorer, a custom
tool for the visual exploration of document collections. Finally, we will conclude with a
summary of the findings of our user study.
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RELATED WORK
Semantic interaction pipelines: the inverse computation problem
Visual analytics workflows (Endert, Bradel & North, 2013; Shneiderman, 2003; Moreland,
2012; Endert, 2014) use an iterative process that mirrors the steps present in the sense-
making loop of Pirolli & Card (2005) to transform raw data into visualizations. Existing
visual analytics pipelines have converged towards a general pipeline that comprises the
following four primary steps (Cao & Cui, 2016) depicted in Fig. 1: (1) feature extraction,
(2) input transformation, (3) dimensionality reduction and clustering, and (4) visual
representation. The first block (A) focuses on converting raw data into vectors suitable for
machine learning. The resulting abstract vectors are subsequently transformed in the
second block (B) into human interpretable representations.

In semantic interaction (Endert, 2014; Bradel, North & House, 2014; Jeong et al.,
2009) users manipulate the system by intuitively interacting with the visual representation
of the data (such as clicking on data points and re-positioning them). These natural
interactions allow users to remain in their cognitive zone and enhance their analysis
efficiency (Wenskovitch & North, 2017). In SI, users generate a new spatialization (block 5
in Fig. 1) that forces the underlying data analytics algorithm to learn new parameters to
semantically interpret these interactions. As depicted in block 6, existing SI systems
commonly need to invert the computation of the underlying pipeline to enable the user’s
semantic interactions to be communicated to the model as parametric feedback (arrow
between blocks 6 and 2). Parametric feedback describes the mechanism used to adjust a
model’s parameters based on a user’s abstract interactions with the visual representation.
The SI paradigm does not specify how parametric feedback should be computed. This
turns out to be one of the major limitations of the general approach for semantic
interaction (Leman et al., 2013). While visual analytics often uses efficient but uninvertible
“black-box” dimensionality reduction and clustering methods like t-SNE (Van der Maaten
& Hinton, 2008), UMAP (McInnes, Healy & Melville, 2018), or H-DBSCAN (McInnes,
Healy & Astels, 2017), SI systems rely principally on rudimentary models (Leman et al.,

Figure 1 (A–B) Sense-making loop and steps comprising a visual analytics pipeline.
Full-size DOI: 10.7717/peerj-cs.925/fig-1
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2013; Self et al., 2015; House, Leman & Han, 2015; Sacha et al., 2016; Dowling et al., 2018a)
for which an inverse computation, and, hence, parametric feedback, can be easily derived.

Recent work described in (Bian & North, 2021a, González Martinez et al., 2020a)
argues that the ability of SI systems to infer an analysts’ precise intent depends on the
underlying data representation (quadrant A in Fig. 1). This work showcased the use of
Deep Learning for the Feature Extraction and Transformation steps of the pipeline. The
work presented in (González Martinez et al., 2020b) focuses on the parametric feedback by
proposing a surrogate model to transverse the dimensionality reduction, clustering, and
visual representation steps of the pipeline (quadrant B). This paper extends the latter
approach by demonstrating how contrastive learning is a more effective approach for
realizing the potential of SI.

Contrastive learning
Deep Contrastive Learning (DCL) is an efficient method for learning desirable embeddings
of high-dimensional data (Chen et al., 2020; Giorgi et al., 2020; Khosla et al., 2020; Li et al.,
2020; Arisdakessian et al., 2021). Consider, for example, a siamese deep neural network
architecture, which consists of two identical artificial neural networks (feedforward
perceptrons) that work in parallel to learn the hidden semantic similarity between the
projected representations of a pair of input vectors (Bromley et al., 1993; Chicco, 2021).
Combined with a contrastive optimization objective, siamese neural networks can learn a
nonlinear function to map high dimensional input data to a low dimensional
representation (Hadsell, Chopra & LeCun, 2006).

Models using DCL do not require an explicit similarity metric to be computed on
the entire input dataset. Compared to Weighted Multi-Dimensional Scaling (WMDS)
(Young & Harris, 1983), which are commonly used in SI, DCL provides two clear
benefits: First, it allows the model to be trained on subsets of the data, thereby reducing
complexity and enabling the close to real-time processing speeds needed in these human-
in-the-loop systems (González Martinez et al., 2020a). Second, DCL enables categorical
relationships to be learned on the fly based on the user’s domain knowledge,
communicated to the model by manipulations of a data visualization. The ability of DCL
models to learn complicated nonlinear input transformations and to map out-of-sample
data efficiently makes them ideal for capturing users’ mental models as they interact with
data. Lastly, the smooth and coherent mapping generated by the function makes this
modeling approach especially attractive to apply at the last step of a SI pipeline for
obtaining more interpretable visualizations.

Existing research has shown that DCL is an effective method for clustering data. For
example, our previous work showed that DCL could attain 94% clustering accuracy on the
BBC News articles dataset (González Martinez et al., 2020a). More broadly, neural
networks can efficiently mimic the embeddings of various dimensionality reduction
algorithms, including UMAP (Espadoto, Hirata & Telea, 2020). According to Zhang et al.
(2021), DCL outperforms state-of-the-art approaches on eight key benchmark datasets,
including Google News and Twitter datasets, which cover 152 and 89 categories,
respectively. Specifically, the authors report that DCL can yield clustering accuracy results
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up to 11% better than alternative methods on short texts, as well as better intra- and inter-
cluster distances, which are crucial in semantic interaction.

PROPOSED APPROACH: CONTRASTIVE LEARNING FOR
SEMANTIC INTERACTION
We will first elaborate on the basic assumptions of our model (“Participants and
Experimental Dataset”). Then we will describe how we maintain the positions of the
clustered documents in the visualization space as the DCL is fed new semantic interaction
input (“Procedure”).

Basic assumptions of the model
The model described herein borrows heavily from that described in Hadsell, Chopra &
LeCun (2006), Wooton (2020). The general architecture of a Siamese neural network
employing a contrastive loss function can be formally specified as follows: given a labeled
dataset of N input/output pairs, wherein each input is a D-dimensional vector of real-
valued features, and each output is one of the k-class labels, the goal is to learn a parametric
dimensionality reduction function with d � D and with the following properties:

1. For any two inputs with the same output label, the Euclidean distance in lower-
dimensional space between the reduced outputs is as close to 0 as possible.

2. For any two inputs with different output labels, the Euclidean distance in lower-
dimensional space between the reduced outputs is as close as possible to a chosen
margin m > 0.

Ideally, the transformation function should be differentiable with respect to the set of
parameters (W) of the DCL, allowing backpropagation with gradient descent to be
used for finding the optimal parameters W satisfying constraints 1 and 2 above. We
assume that the high dimensional input representations of two documents xi and xj that
belong to the same class y are similar to one another based on some abstract notion of
similarity perceived by the annotator. That is, two points xi and xj are similar if and only if
their labels yi and yj are identical. In an interactive human-in-the-loop context (such as
shown from our user study discussed below), the expertise of a human analyst can be
leveraged on-the-fly to provide such a labelling when labels yi are unavailable. This labeling
is entirely dependent upon the human analyst’s understanding of the relationships present
in the data. The margin m can be understood as a scaling factor and should be chosen
based on the desired level of spatial distance between disparate points in the embedding
space. In this paper, we chose m = 1 to prevent the scale of the embedding space from
growing arbitrarily large.

Given a labeled dataset and a chosen margin m, a corresponding contrastive dataset
C ¼ fðxi; xj; ri; rj; yi; yj; cÞpgP is produced such that:

cp ¼ 0 if yip ¼ yjp
m otherwise

�
(1)
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with cp representing the target Euclidean distance between inputs xip, xjp, and 1 ≤ p ≤ P
≤ N2 where P represents the number of unique pairs in the contrastive dataset. Initial
values of the target Euclidean distance (cp) can be computed between documents that were
randomly laid out on the canvas, or that were arranged using a lower-dimensional
representation of the data (e.g., using UMAP). The set of pairwise-distance between
documents is re-computed in subsequent iterations using the document layout created by
the user. Note that we also include the reduced representations ri, rj and class labels yi, yj as
outputs in each contrastive seven-tuple. Including the class label y was motivated by
the need to capture the cluster labels applied by the user when organizing the data visually
with semantic interaction. The motivation for including the reduced points r as outputs is
more subtle and will be explained in “Addition of an Embedding Mean Square Error
Objective”.

The full model architecture used in this study is illustrated in Fig. 2 and further
described in “Deep Learning Model” and in Wooton (2020). This model contains twin
copies of a feed-forward neural network Fw, with shared weightsW, each of which operate
on one of the two input vectors x in a contrastive tuple (xi, xj, ri, rj, yi, yj, c)p (See
“Deep Learning Model” for more details). For a given input pair (xi, xj)p this model first
produces a pair of points of reduced dimensionality (ri, rj)p using the learned mapping
Fw encoded in each of the twin networks. A prediction of the target distance ĉp ¼ jjrip�
rjpjj2 is then computed on these reduced points. Additionally, a softmax cluster label
prediction yi, yj is also computed by passing the reduced representations r to a k-
dimensional softmax layer. Given this specification, the task of finding the optimal
parameters W of Fw involves minimizing the following loss function:

Ltotal ¼ Lcontrastive þLclassifier þLembeddingÞ

The three component terms of this total loss are defined by the following equations:

Lcontrastive ¼ MSE ¼ 1
P

X
p¼1

Pðcp � ĉpÞ2

Figure 2 Architecture of the neural network. See “Deep Learning Model” for more details.
Full-size DOI: 10.7717/peerj-cs.925/fig-2
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Lclassifier ¼ 1
P

XP
p¼1

X
k

ðyiklogðŷikÞ þ yjklogðŷjkÞÞp

Lembedding ¼ 1
P

XP
p¼1

ðrip � r̂ipÞ2 þ ðrjp � r̂jpÞ2

In order to fine-tune the contribution of each of these terms to Ltotal, weight
hyperparameters α, β, and γ were introduced to adjust the loss contribution, yielding a
weighted loss function of:

Ltotal ¼ a �Lcontrastive þ bLclassifier þ cLembeddingÞ

In our user study, parameter values of α = 0.25, β = 0.25, and γ = 0.5 were chosen such
that the embedding loss would account for 50% of Ltotal.

Addition of an embedding mean square error objective
As mentioned previously, the inclusion of the embeddings r as model outputs is subtle, and
the motivation for doing so requires clarification. In an interactive setting, deep contrastive
learning has the additional key requirement of maintaining the relative inter-cluster
positions specified by the user between model updates. Since the contrastive loss does not
determine how the function Fw positions clusters in the visual space, the inter-cluster
layout specified by the user may change following model updates, as illustrated in Fig. 3.

In order to avoid cluster positions being lost between model updates, an embedding loss
Lembedding is added to the model. As a consequence, embeddings that differ substantially
from the original embeddings are penalized. Specifically, contrastive learning is applied to
the dataset containing r = (ri, rj), the user’s original 2D positions, and embeddings /hat[r]
that minimize L[embedding] are predicted for every input x.

It may be difficult for the model to optimize both Lcontrastive and Lembedding

simultaneously when the points in clusters are close together. Nevertheless, we assume

Figure 3 Graphical diagram summarizing the motivation behind adding a position-based
embedding objective to the model. On the left-hand side, the user U organized the points in the
visualization V into separate clusters of blue, red, and green points and decides to initiate a model update
cycle. The model parameters are then adjusted based on the user feedback. In the absence of Lembedding,
the model keeps the blue, red, and green points well clustered in the updated visualization (right-hand
side) but fails to maintain the relative cluster positions (the blue points have migrated to the top half of
the visualization, and the relative left-right ordering of the green and red clusters has been flipped), thus
perturbing the user’s mental model, particularly in the presence of a large number of clusters, and leading
to confusion. Full-size DOI: 10.7717/peerj-cs.925/fig-3
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here that the users’ motivation is to organize data, i.e., to group similar documents and to
separate out those that aren’t. Therefore, it is reasonable to assume that clusters would be
spatially separated in a manner that wouldn’t impede the simultaneous optimization of
Lcontrastive and Lembedding.

After reorganizing the visual space, the user submits the newly labeled dataset to fine-
tune the model inferred from previous steps. The training is described in See “Deep
Learning Model”.

Since there are currently no existing feedback mechanisms for updating UMAP
parameters based on user interactions, a comparison between the utility of UMAP and
DCL in SI was not necessary.

Z-EXPLORER USER STUDY
To evaluate the efficacy of our model to end-users, we designed and performed a user
study using Z-Explorer- our visual analytics tool plug-in for the Zotero reference
management software (González Martinez et al., 2020a) (Fig. 4-picture of actual Z-
Explorer). Z-Explorer uses the contrastive learning-based SI approach described above to
let users interactively refine existing clusters of documents (represented as dots in a scatter
plot). These user-initiated updates, i.e., semantic interactions, inform our model and
enable new documents to be clustered in a way that best supports a user’s mental model.

Using Z-Explorer, we conducted a study to answer two questions:

� Q1: Is the deep contrastive method capable of spatially organizing the documents in a
way that is congruent with the user’s mental model? Answering this question will allow
us to validate the efficacy of DCL in leveraging user interaction with the data to
capture their mental model.

Figure 4 The figure shows the Z-Explorer interface at an intermediate step in one of the studies. The
interface consists of an interactive scatter plot where each paper is encoded as a circle. Similar documents
are closer that distant ones. Users can drag individual documents and assign labels to create custom
groupings like those shown in the figure. Participants can browse a document’s abstract by hovering over
its circle. Full-size DOI: 10.7717/peerj-cs.925/fig-4
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� Q2: How does the goodness of clustering compare between Z-Explorer and UMAP in a
steerable context? This question was designed to assess whether using UMAP, a state-of-
the-art projection algorithm, in a supervised way to learn from the users’ cluster
arrangements prior to predicting documents’ positions would outperform the approach
implemented in Z-Explorer.

� Q3: Do users manually cluster documents into similar or distinct clusters? We
hypothesize that manually clustering a set of documents is a subjectivity activity and that
a users’ experience may determine how they cluster a set of documents. In that case,
human-in-the-loop is beneficial for clustering, since it allows users to determine how
data should be clustered without doing the work of manually clustering it.

Participants and experimental dataset
Fourteen computer science students (Five PhDs, Seven Masters and Two undergraduates)
participated in the study. The experimental dataset comprised 52 abstracts from computer
science papers (These papers won Best Paper awards at the CHI, AAAI, SIGCOMM,
SP, KDD conferences since 1996) (Huang, 2020). This dataset covers a diversity of
computer science topics, making it ideal for answering Question Q2, i.e., whether users’
computational background would yield similar or distinct clusters for the same
documents. The University of Hawaii at M�anoa granted ethical approval to conduct this
study within its facilities (application # 2020-00412). All participants in our study provided
written informed consent.

Procedure
The abstracts were converted intro vectors suitable for machine learning using the
BERT model. Specifically, the BERT model (Devlin et al., 2018) was used to sequentially
encode a sentence’s input tokens. The hidden state of the CLS token added by the
BERT WordPiece Tokenizer was used as the sentence embedding Feng et al. (2020). A
paragraph’s embedding was calculated simply by averaging its sentences’ embeddings.

Due to COVID-19 restrictions, all studies were conducted via recorded video
conferencing sessions (using Zoom). To establish an initial baseline, every user was
given an arrangement of documents. In order to avoid influencing the users’ perception of
how documents should be arranged, the initial set of documents has been placed randomly
on the canvas. The decision was communicated to users.

In each step of the study, users were asked to use Z-Explorer to read and organize a
subset of the documents represented as 2D points in a scatter plot. Then over five
additional steps, documents were introduced in batches of ten documents at a time.
Each step consisted of two phases (see Fig. 5). In the first phase (Interactive Phase),
participants were asked to manually re-cluster the documents (if necessary) in the scatter
plot. We did not restrict the number of clusters the participants could create, including
allowing them to create single document clusters. The interactions performed in this phase
were interpreted by Z-Explorer to create its internal representation of the user’s mental
model. In the second phase (In-Context Phase), new documents were added to the
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scatter plot and automatically clustered based on Z-Explorer’s learned mental model of the
user.

Participants were then asked to review the newly introduced documents and describe
how well or poorly the system performed the new clustering. We repeated this procedure
five times, adding different sets of documents at each step until all 52 papers were
incorporated. On average, users took 60 minutes to complete the study, and due to time
restrictions, five users did not complete all five steps.

Data collected
To answer our three research questions, our research study focused on collecting both
quantitative and qualitative survey data. Specifically, to answer question Q1 (whether the
approach presented here is capable of learning the users’ mental model), we recorded the
individual document movements per step of the study to show how well our model
performed when positioning the new documents in each step. We enhanced our
quantitative data collection with qualitative data collection where participants were asked
to explain why they chose to create or modify clusters and why they chose to reposition or
not reposition specific documents.

We compared Z-Explorer to UMAP in order to answer Q2 and determine
whether steerable models are advantageous for users compared with a state-of-the-art
dimensionality reduction technique such as UMAP. Although the UMAP algorithm is
primarily used for unsupervised dimension reduction, its significant flexibility allows it to
easily be extended to other tasks such as supervised dimensionality reduction and metric
learning (?). To mimic a steerable context, we benchmarked Z-Explorer’s goodness of
clustering against that of UMAP in supervised learning mode.

Figure 5 Depiction of the phases of a single step in the study. This two-phase process was completed
up to 5 times with each participant. Full-size DOI: 10.7717/peerj-cs.925/fig-5
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To answer Q3 (whether users would create different groupings in the same dataset),
we recorded the number of clusters created in each study and the users’ document to
cluster assignments, which were compared across users and steps. To ensure a fair
comparison, we only used the data from the eight study participants who examined all
52 documents and for whom the document-to-cluster assignments were recorded. We
calculated the V-measure score, an entropy-based external cluster evaluation used to
measure homogeneity and completeness (Rosenberg & Hirschberg, 2007), across the
eligible studies to determine the clusters’ similarity across users. The data is only shown for
nine of the participants. See “Model Training” for more information.

Computational analysis
The model was implemented using TensorFlow (Abadi et al., 2015) in Python, while the
user interface was implemented using the Angular JavaScript framework (Jain, Bhansali &
Mehta, 2014). In each iteration, the model is retrained with all the data to minimize
the intra-cluster distances between points while maintaining the inter-cluster distance
across documents as close to the margin value as possible (‘m’ = 1). To minimize the wait
time between updates, the model is fitted for 10 epochs using the Adam optimizer with a
learning rate of α = 0.1. The server implementation of the model (SageBrain) and the
accompanying user interface (zotAngular) are provided as a reference at linked to from the
following GitHub repository (https://github.com/whatwehaveunlearned/zExplorer).

RESULTS AND DISCUSSION
Q1: Does the contrastive learning-based model faithfully represent the
user’s mental model?
Our hypothesis was that the model trained on the users’ interactions would reflect the
users’ mental model by positioning new documents in a manner that is consistent with
their groupings. This can be measured by either 1-tracking the number of document
movements, which we assume should be low if the model accurately predicts cluster
assignments, by 2-comparing the difference between the model-generated cluster
predictions and user-generated cluster predictions at each step or 3-by explicitly asking
the users to rate the system. The results for these three queries are described below.

1-Tracking the number of document movements: Figures 6 and 7 show the number of
movements for all the documents and for only newly introduced documents. Each stacked
bar of the chart describes the proportion of document movements made by one of the
participants who completed at least 3 steps. In both figures, the number of document
movements is decreasing with each step, which indicates that the model becomes better at
predicting the appropriate position of a document, thus reducing user intervention. At
steps 1 and 5, the average number of movements was respectively 12 and 3.9, suggesting a
reduction of 67.5% in the number of movements.

2-Comparison of model-generated and user-generated cluster predictions: A
comparison of the model’s cluster predictions vs the users’ preferred cluster assignments is
shown in Fig. 8. This figure is a 2D array of confusion matrices. This confusion matrix
shows the number of documents assigned by the model vs those assigned by the user

Belcaid et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.925 11/21

https://github.com/whatwehaveunlearned/zExplorer
http://dx.doi.org/10.7717/peerj-cs.925
https://peerj.com/computer-science/


(y-axis). Diagonal elements represent documents assigned to the same cluster by the model
and user. Figure 8 shows an increasing concordance between predicted and user-assigned
clusters with the number of steps, indicating an increasing ability for the model to
accurately match users’ preferred placement more closely. A step-wise confusion matrix
for all user studies is provided in Fig. S1.

3-Using a questionnaire to understand user satisfaction and trust: Participants rated
Z-Explorer based on questions that generally reflect their satisfaction with document
positioning (see Fig. 9) and their trust in its reliability and flexibility (Fig. 10). According to
both figures, users were satisfied with the Z-Explorer clusters and ease of use (average
rating of 4.42 out of 5) and trusted the system could accommodate alternative ways of
organizing documents (average rating of 4.28).

Q2: How does the goodness of clustering compare between Z-Explorer
and UMAP in a steerable context?
We compared Z-Explorer and UMAP for their goodness of clustering as measured by
silhouette score (Rousseeuw, 1987). At the end of step i-1, we updated the Z-Explorer
parameters if any document positions had changed, and we trained de-novo UMAP using
the cluster labels that a user had provided to describe the documents on the canvas.
Then, in step i, we projected new documents with Z-Explorer and UMAP and calculated

Figure 6 Document movement by study step where steps 1 and 2 are shades blue, and the last three
steps are shades of purple. The figure shows that most point movements (y-axis) were made in the initial
steps (blue region), and participants (x-axis) tended to move documents less in the later steps (purple
region). Full-size DOI: 10.7717/peerj-cs.925/fig-6

Figure 7 Document movement for only newly introduced documents by study step. Steps 1 and 2 are
shades of blue, and the last three steps are shades of purple. For new documents, most movements
(y-axis) were performed in the first steps (blue regions) for all participants (x-axis) compared to later
steps (purpleregions). Full-size DOI: 10.7717/peerj-cs.925/fig-7
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Figure 8 The model’s cluster predictions against the users’ clusters for study participants 11 (A) and 13 (B). The x-axis shows the predicted
cluster labels and y-axis shows actual cluster labels for documents introduced at a given step. As illustrated by the brighter cells along the diagonal
(higher concordance between predicted and actual labels), the model is increasingly more accurate at predicting the correct cluster as new documents
are presented after each step. The complete figure is presented in Fig. S1. Full-size DOI: 10.7717/peerj-cs.925/fig-8

Figure 9 Participants’ average rating of the Z-Explorer system based on the following questions:
1. During each step, how well did the system assign new documents to existing clusters? 2. How
well does the model represent how you understand the relationships between these documents?
3. How easy was it to utilize the system to organize these documents?

Full-size DOI: 10.7717/peerj-cs.925/fig-9
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their silhouette scores, taking the revised solution given by the user at step i to represent the
ground truth. The results of the experiment are summarized in Fig. 11.

As the figure shows, Z-Explorer silhouette scores were at least 1.3 times larger than
those obtained by projecting using UMAP. While the precise cause of this cannot be
determined precisely, we hypothesize that Z-Explorer benefits from recalling past
interactions that resulted in re-parameterization. On the other hand, being de-novo
retrained at each step i with the solution revised by the user at step i − 1 (ground truth),
UMAP does not retain adjustments through subsequent steps. Analysis of the corrected
positions suggested this to be the case. As a consequence of the embedding loss imposed
by the model, documents clustered ambiguously by Z-Explorer (e.g., placed halfway
between two clusters) but later manually moved closer to a specific cluster remained in

Figure 10 Participants’ average trust rating of the Z-Explorer system based on the following
questions: 1. Is the system flexible enough to accommodate changes in your preferences for the
grouping of documents? 2. Would you reorganize the document differently in retrospect?
3. Would the system be able to adjust to accommodate alternative ways of organizing the
documents? Full-size DOI: 10.7717/peerj-cs.925/fig-10

Figure 11 The ratio between the mean Z-Explorer and UMAP silhouette scores for user studies 4
through 14. Each boxplot illustrates the distribution of the silhouette score across all study steps.
Compared to UMAP, Z-Explorer improves the goodness of clustering by at least 1.3 times, as measured
by the silhouette score. Full-size DOI: 10.7717/peerj-cs.925/fig-11
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subsequent interactions close to the cluster to which they had been assigned. However,
UMAP failed to maintain prior manual assignments, which contributed to lower silhouette
scores.

Q3 : Do participants create different cluster configurations?
This question was designed to discover whether participants clustered data differently,
establishing whether a “one-size-fits-all” approach to clustering is sufficient for organizing
documents. This was determined by 1-comparing the number of clusters across
participants and 2-assessing the concordance between clusters to determine if differences
in the number of clusters were restricted to a few documents, or if they were substantial.

1-Comparing the number of clusters across participants: Figure 12 shows that the
number of clusters created by participants varied between four and 10 (for a fair
comparison, we only include the results of 11 participants who examined all 52
documents). This confirms that the clustering solutions diverged at least in the number of
clusters.

2-Comparing the number of clusters across participants: Figure 13 shows the pairwise
V-Measures, which determine the homogeneity of clusters across different studies; as
previously stated, those were the users who reviewed all 52 documents and for whom
we successfully stored the model outputs. The V-Measure scores were all computed with
β = 1.0, which weighs homogeneity and completeness equally. V-Measure values range
from 0 (no similarity) to 1 (identical clusters). In the figure, the value for most cells is below
0.5, suggesting that participants clustered the documents differently.

The results confirm that participants created different clusters, both in number and in
the degree of overlap, to organize the same dataset. This emphasizes the importance of
semantic interaction and the inadequacy of a one-size-fits-all solution for clustering
documents.

The target Euclidean distance (cp) utilized in our user studies was computed from
documents placed at random on the canvas. The approach is ideal for small datasets
since it leaves it up to the users to decide the initial layout that will be refined in future
iterations. However, manually producing an initial setup may be labor-intensive with large
datasets. Thus, it may be worthwhile to precompute an initial layout, using for instance,

Figure 12 Number of clusters created by users that completed all five steps and reviewed all 52
documents. The results show that the number of clusters vary across participants, ranging between
four in Participant 4 and 10 for Participants 6 and 12. Full-size DOI: 10.7717/peerj-cs.925/fig-12
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UMAP to produce a 2D representation of the data. Whether the initial placement is
random or precomputed using UMAP, users are likely to rearrange the data as they see fit,
so the only advantage of the precomputed layout remains convenience.

Lastly, the model proposed here is relatively small (approximately 200 k parameters)
when compared to models such as DeepSI (Bian & North, 2021b), which fine-tune BERT
base model (110 M parameters), and can be trained using a subset of the data (e.g.,
randomly selected pairs of documents), thus reducing training complexity and enabling
close to real-time processing speeds needed for such human-in-the-loop systems (Zhang
et al., 2021).

CONCLUSION
This paper proposes a new technique for enhancing semantic interaction in visual analytics
systems using deep learning. Our approach provides a computationally efficient surrogate
deep contrastive learning model for the dimensionality reduction problem via semantic
interaction. By doing so, it enables non-expert users to tune this flexible deep learning
model, thus conveying their beliefs, preferences, or domain expertise about data
organization by simply rearranging the data in a lower-dimensional representation. Our
research shows that the properties of the deep contrastive learning model, together with
our proposed parametric feedback for updating model parameters based on user
interaction, make the proposed model a viable solution for the SI pipeline.

We provide evidence of the efficacy and utility of our approach by:

1. Developing a proof-of-concept system that illustrates how a contrastive learning-based
model can be used to support SI.

Figure 13 Pairwise V-Measure-score across eight studies (Participants who examined all 52
documents and for whom the document-to-cluster assignments were recorded). Lighter colors
depict higher scores. Diagonal shows a perfect score when comparing a study to itself. As seen in the
figure, the value is lower than 0.5 for most of the cells (darker cells), which correlates with our hypothesis
that the participants did create different clusters. Full-size DOI: 10.7717/peerj-cs.925/fig-13
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2. Demonstrate through a user-study that the SI + DCL paradigm can capture user-specific
cluster preferences with fewer steps than manual clustering of the data, thus
underscoring the necessity and value of incorporating user feedback in AI-enhanced
analytics applications.

3. Confirming that the approach can be usefully integrated into an application, namely
Z-Explorer- a visual document analysis add-on tool for Zotero.

Although Z-Explorer, our example application, focused on text document analytics, our
approach can be broadly applied to other data types and applications that value involving
the user in the loop during an analytical process.

DEEP LEARNING MODEL
Model architecture
Architecture of the neural network. Each of the twin networks ðFð1Þ

W and Fð2Þ
W Þ consists of

four dense layers (D1 through D4) and a final embedding layer E. Each dense layer
computes the forward pass, where the input is the output of the previous dense layer. The
layers of these twin networks share their weights and implement the same parameterized
function. Each twin network transforms the inputs into 2D embeddings fed to the
k-dimensional softmax layers to yield cluster predictions. Additionally, the predicted
contrastive distance is computed on the output projections. These aforementioned outputs
are then fed to the three loss heads of the model.

Model training
After reorganizing the visual space, the user submits the newly labeled dataset to fine-tune
the model inferred from previous steps. The new training data is selected to consist of a
small subset of input pairs that were randomly selected from the newly labeled dataset.
Given that in each iteration, users update the positions of a relatively small number of
documents, we have used a fine-tuning training approach to allow models to retain the
weight learned from previous steps. In our tests, we found that fine-tuning the model
instead of training de-novo reduced training time, minimized over-fitting, and improved
performance.

The contrastive model was developed using the Python Keras deep learning framework.
Each fully connected layer Dl of Fig. 2 in the model utilizes dropout and batch
normalization to minimize overfitting, and ensure that parameter tuning is made as
efficient as possible. In our tests, we observed that training the model on 30% of all possible
pairs over 10 epochs using the Adam optimizer with a learning rate of g = 0.1 provided the
best results. This large learning rate was chosen to compensate for the relatively small
number of epochs. Model implementation details and default parameters are available in
the ‘encoder.py’ file which can be found in the project GitHub repository.

Effective number of study participants
Unfortunately, two participants ran out of time and could not complete more than two
steps. As such, we decided to exclude the results of participants who did not complete at
least three steps to ensure the results were fairly comparable across participants. During
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the course of the study, we realized that it may be useful to record Z-Explorer’s predicted
cluster assignment for each document and compare it to the participants’ assignments.
However, by then, we had already completed six studies, and, therefore, were only able to
capture this data for nine participants. We nevertheless present the results of those nine
participants as they do yield insightful results (Fig. 8).
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