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ABSTRACT
It is a challenging problem to classify multi-dimensional data with complex intrinsic
geometry inherent, such as human gesture recognition based on videos. In partic-
ular, manifold structure is a good way to characterize intrinsic geometry of multi-
dimensional data. The recently proposed sparse coding on Grassmann manifold shows
high discriminative power in many visual classification tasks. It represents videos on
Grassmannmanifold using Singular Value Decomposition (SVD) of the data matrix by
vectorizing each image in videos, while vectorization destroys the spatial structure of
videos. To keep the spatial structure of videos, they can be represented as the form of
data tensor. In this paper, we firstly represent human gesture videos on product Grass-
mann manifold (PGM) by Higher Order Singular Value Decomposition (HOSVD) of
data tensor. Each factor manifold characterizes features of human gesture video from
different perspectives and can be understood as appearance, horizontal motion and
verticalmotion of human gesture video respectively.We then propose a weighted sparse
coding model on PGM, where weights can be understood as modeling the importance
of factor manifolds. Furthermore, we propose an optimization algorithm for learning
coding coefficients by embedding each factor Grassmann manifold into symmetric
matrices space. Finally, we give a classification algorithm, and experimental results on
three public datasets show that our method is competitive to some relevant excellent
methods.

Subjects Computer Vision, Data Mining and Machine Learning, Multimedia
Keywords Product Grassmann manifold, Sparse coding, Video classification, Human gesture
recognition

INTRODUCTION
Human action/gesture recognition (Pareek & Thakkar, 2021) is a hot research area due to
its wide applications such as human–computer interaction, robot control, security and
survillance, sign language assistance, education, medical, etc. Roughly speaking, human
actions /gestures convey intentional information by physical movement of body parts.
Usually, the term ‘‘action’’ is considered with a higher complexity level comparing to the
term ‘‘gesture’’ (Zhu et al., 2016). Researches for human gesture recognition are mainly
divided into two categories: wearable device based techniques (Jung et al., 2015) and
vision-based techniques (Ji et al., 2012). However, wearing devices requires users to carry
special designed wearable sensors and sensors are usually quite expensive. For vision-based
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approaches, videos carry more information for gesture recognition than still images.
Moreover, the number of available videos on the Internet significantly increased with
the development of acquisition and storage device. Hence, video-based human gesture
recognition (Ji et al., 2012; Chakraborty et al., 2018; Patil & Subbaraman, 2019) attracts
more and more attentions.

For video-based human gesture recognition, each video is assigned to a class label
and videos of the same class maybe acted by different person in different environment. It
becomes more difficult for gesture recognition due to large variations, such as illumination,
appearance, pose and scale. There exist variations even though for the same person.
Therefore it is a challenging problem for video-based human gesture recognition. Basically,
the key problems of video-based human gesture recognition are learning discriminative
feature representations for a gesture video and designing an effective recognition method.

For feature representation, some researches focused on handcrafted approaches, such
as HOG-3D (Klaser, Marszałek & Schmid, 2008), space–time interest point (Laptev, 2005),
pose-based techniques (Carreira et al., 2016), motion-based techniques (Paul, Haque
& Chakraborty, 2013), shape-based techniques (Vishwakarma & Kapoor, 2015). Some
researches focused on learning-based approaches which can be roughly divided into non-
neural network and neural network learning approaches. The latter approaches received
good recognition performances because it is designed to mimic human nervous system
biologically, such as 3D ConvNets (Baccouche et al., 2011; Tran et al., 2015; Feichtenhofer,
Pinz & Wildes, 2016) and variational autoencoder(VAE) (Spurr et al., 2018; Chen et al.,
2019). Millions of parameters need to be learned by training networks and large amounts
of data are often required. For non-neural network learning approaches, subspace is a
robust representation and had received good performance for many problems in computer
vision field (Le et al., 2011; Sheng et al., 2019). The reason is that most data often have
intrinsic subspace structure and can be regarded as samples of subspace. Moreover,
subspace-based feature representation method can learn features directly from image
or video data without hand-designed local feature. For investigating and representing
the underlying intrinsic subspace structure, many subspace methods were proposed,
such as linear subspace learning (PCA (Wold, Esbensen & Geladi, 1987), FLDA (Belhumeur,
Hespanha & Kriegman, 1997;Mohammadzade, Sayyafan & Ghojogh, 2018)) and non-linear
manifold learning (Isomap (Pless, 2003), LLE (Ge, Yang & Lee, 2008), LE (Luo, 2011)). As an
excellent representative, Grassmann manifold received widely applications such as activity
classification (Turaga & Chellappa, 2009), action recognition (Rahimi, Aghagolzadeh &
Ezoji, 2019), face recognition (Huang et al., 2015) and so on.

For recognition methods, sparsity representation classification (SRC) had been shown
to deliver notable results for various visual-based tasks, such as face recognition (Wright et
al., 2008;Wright et al., 2010), subspace clustering (Elhamifar & Vidal, 2013). Furthermore,
some weighted forms for sparse coding were proposed for various applications, such
as image denoising (Xu, Zhang & Zhang, 2018), visual tracking (Yan & Tong, 2011) and
saliency detection (Li, Sun & Yu, 2015). Although the SRCmethod and its extendedmodels
had good performance in many applications, they assumed data come from linear space.
However, many multi-dimensional data may reside in a non-linear manifold space. So it is
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desire to explore the latent non-linear manifold structure of data. Recently, for Grassmann
manifold representation of videos/image sets, many researches had been proposed for
kinds of applications and received good performance. For instance, Harandi et al. (2015)
proposed a sparse coding algorithm on Grassmann manifold for classification tasks
such as gesture classification, scene analysis and dynamic texture classification; Wang et
al. (2020) proposed a self-expression learning framework on Grassmann manifolds for
video/image-set subspace clustering; Verma & Choudhary (2020) did Grassmann manifold
discriminant analysis for hand gesture recognition from depth data; Souza et al. (2020a)
proposed an enhanced Grassmann discriminant analysis framework for classifying motion
sequences.

Although the Grassmann manifold can well reflect the non-linear structure of data,
the single space representation methods lose some important information by vectorizing
each image in videos. Naturally, video and image set can be represented in the form
of data tensor. Tensor computing had been successfully applied to many visual-based
application (Kim & Cipolla, 2008). Lui (2012) factorized a data tensor using Higher Order
Singular Value Decomposition (HOSVD) and imposed each factorized element on a
Grassmann manifold, then a video can be represented as a point on product Grassmann
manifold (PGM). This representation yielded a very discriminating structure for action
recognition.Wang et al. (2016) proposed a low rank representation model on PGM, which
received good performance for clustering of videos or image sets. Wang et al. (2018)
proposed an extrinsic least square regression on PGM for video-based recognition.

In this paper, we represent a human gesture video as a point on PGM. In brief, there
are three factor Grassmann manifolds which can reflect appearance, horizontal motion
and vertical motion of human gesture video respectively. In addition, the importance of
these three aspects should be considered. Hence, we explore a weighted sparse coding
method on PGM for video-based human gesture recognition. It is solved by minimizing
the reconstruction error with a l1−norm regularizer.

Our main contributions lie in the following three aspects:

(1) Extending SRC model on Grassmann manifold into product Grassmann manifold to
deal with multi-dimensional data such as videos and image-sets.

(2) Discussing the different importance of three factor manifolds and proposing a
weighted sparse coding model.

(3) Comparing with several classification methods on three datasets to show the
effectiveness of our proposed method.

The rest of this paper is organized as follows: ‘Product Grassmann Manifold
Representation for Data’ introduces product Grassmann manifold representation for data;
‘Weighted Sparse Coding on Product Grassmann Manifold’ gives a weighted sparse coding
model on PGM; ‘Experiments’ shows experiments on different datasets, and experiment
results show that the proposed method achieves considerable accuracy; ‘Computational
Complexity’ analyzes the computational complexity of our proposed method; ‘Main
Findings and Future Directions’ gives main findings and future directions.
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PRODUCT GRASSMANN MANIFOLD REPRESENTATION
FOR DATA
In the following paper, we use the mathematical symbols in Table 1 which are commonly
used.

Product Grassmann manifold
A point on Grassmann manifold G(p,d) is a p-dimensional subspace of Rd (Absil,
Mahony & Sepulchre, 2009). That means it can be spanned by any orthonormal basis
X= [x1|x2|···|xp] ∈Rd×p and it is denoted as span(X). For the sake of convenience, we use
the same symbolX to represent span(X). The distance of two pointsX and Y on Grassmann
manifold can be defined as

dg (X,Y)=‖5(X)−5(Y)‖F =‖XXT
−YYT

‖F

where embedding mapping 5 :G(p,d)→ Sym(d) is defined as 5(X)=XXT , and Sym(d)
is the symmetric matrices space with order d (refer to Harandi et al., 2015). Product
Grassmann manifold (PGM) PG(p1,...,pM | d1,...,dM ) is defined as

PG(p1,...,pM |d1,...,dM )=G(p1,d1)×···×G(pM ,dM )

where the symbol × denotes Cartesian product, G(pi,di) (i= 1,...,M ) is called factor
manifold and pi(i= 1,··· ,M ) is called dimension of each factor manifold. A point on PGM
is denoted as [X] = (X1,...,XM ). The distance between two points [X] = (X1,...,XM )
and [Y] = (Y1,...,YM ) on PGM is defined as weighted average distance of each factor
Grassmann manifold

dPG([X],[Y])=

√√√√ M∑
m=1

ωmd2g (Xm,Ym)

where each weight ωm(≥ 0) represents the importance of factor manifold G(pm,dm) and
M∑

m=1
ωm= 1.

Data representation on PGM
In the real world, there exists many data with multi-dimensional structure. For example,
video can be represented as tensorA∈RJ1×J2×J3 , where J1, J2 and J3 represent height, width
and length of video respectively; Image set can be represented as tensor A ∈RJ1×J2×J3 ,
where J1, J2 and J3 represent height, width and number of image set respectively; Light
field can be represented as tensor A∈RJ1×J2×J3×J4 (Wang & Zhang, 2020), where J1 and
J2 represent angular resolution of light field, J3 and J4 represent spatial resolution of light
field.

Before introducing data representation on PGM,we give a schematic ofmatrix unfolding
for a third tensor in Fig. 1. The reader can refer to Kolda & Bader (2009) for more theory
on tensor operation. For ease of understanding we give a corresponding example of
two videos described by tensor in Fig. 2. We find that the corresponding unfolding
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Table 1 Mathematical symbols in this paper.

Symbol Description

X,Y,... a matrix
x,y,... a vector
X ,Y,... a tensor
N ,M ,d,p,... scalar
xi,... the ith column of matrix X
xij ,... the (i,j)-th element of matrix X
XT the transpose of matrix X
Tr(·) sum of the diagonal elements of a matrix
‖·‖F ‖X‖F =

√
Tr(XTX)

‖·‖1 ‖X‖1=
∑

i,j |xij |

Figure 1 A schematic of matrix unfolding for a video tensor. J1, J2 and J3 represent height, width and
length of video respectively.

Full-size DOI: 10.7717/peerjcs.923/fig-1

Figure 2 A visual example of matrix unfolding. Two videos with different labels are shown for comparison, which come from Ballet datasets (it
will be discussed in ‘Experiments’). The two dashed frames show overlay horizontal motion, vertical motion and appearance of video 1 and video 2
respectively.

Full-size DOI: 10.7717/peerjcs.923/fig-2
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matrix is discriminative for two videos with different labels, hence the multi-dimensional
information of video tensor is worth mining for classification task.

In the following, we discuss the way to represent multi-dimensional data on PGM. The
variation for each mode of a tensor A∈RJ1×···×JM can be captured by HOSVD (followed
as Lui, 2012), which factorize tensor A using the orthogonal matrices in the following
equation:

A=S×1V(1)
×2 ···×MV(M )

where V(m)
∈RJm×dm (m=1 ,...,M ) are orthogonal matrices spanning the row space with

the first Jm rows associated with non-zero singular values from the unfolded matrices
respectively, S ∈Rd1×···×dM is a core tensor, dm=

∏
i6=mJi, and ×m(m =1 ,. . . ,M ) denotes

mode- m multiplication. Each V(m)T
∈Rdm×Jm is a tall orthogonal matrix. We take the

first pm (pm ≤ Jm) columns of V(m)T and denote it as U(m)
∈Rdm×pm . Hence, U(m) is a

point on Grassmann manifold G(pm,dm). And then (U(1),...,U(M )) is a point on PGM
G(p1,d1)×···×G(pM ,dM ).

Remark: The value of parameter pm(m=1 ,...,M ) reflects the principal information
of data. In brief, the information of data may be redundant if the value of pm is too large
and the information of data may be insufficient if the value of pm is too small. Hence it is
important to select the parameters pm(m=1 ,...,M ) and we will discuss this problem in
details in our experiments.

WEIGHTED SPARSE CODING ON PRODUCT GRASSMANN
MANIFOLD
Weighted sparse coding model on PGM
Let {[X1],...,[XN ]} be the training set which includes N samples, where [Xi] =

(X1
i ,...,X

M
i )∈PG(p1,...,pM |d1,...,dM ) is a point on product Grassmann manifold. Let

[Y] = (Y1,...,YM )∈PG(p1,. . . ,pM |d1,. . . ,dM ) be a query sample on product Grassmann
manifold. The sparse coding model on PGM is formulated as follows:

min
α

d2PG([Y],
⊎N

i=1
αi�[Xi])+λ‖α‖1

where α= (α1,...,αN )T is the sparse representation coefficient, the abstract symbols⊎N
i=1and � are used to simulate ‘‘linear’’ combination defined on PGM, i.e., addition

and scalar-mulitplication. dPG([Y],
⊎N

i=1αi� [Xi]) measures the distance between
reconstruction

⊎N
i=iαi�[Xi] and the query sample [Y]. To get the sparse coding model

on PGM, proper definitions of distance and combination operator should be specified.
According to the geometric property of Grassmann manifold, we use the embedded
distance and linear combination on the space of symmetric matrices. Hence, we construct
the weighted sparse coding model on PGM as follows,

min
α

M∑
m=1

ωm‖YmYmT
−

N∑
i=1

αi(Xm
i X

m
i
T )‖2F+λ‖α‖1. (1)
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Algorithm for the weighted sparse coding on PGM
In this subsection, we show how to solve the optimization Eq. (1). We have

min
α

M∑
m=1

ωm‖YmYmT
−

N∑
i=1

αi(Xm
i X

m
i
T )‖2F

=min
α

M∑
m=1

ωm
{
Tr(YmTYmYmTYm)+

N∑
i,j=1

αiαjTr(Xm
i
TXm

j X
m
j
TXm

i )

−2
N∑
i=1

αiTr(Xm
i
TYmYmTXm

i )
}
.

For simplicity, we define a matrix Km(X) and a vector Km(X,Y) as following, i.e., their
elements are
[Km(X)]ij =ωmTr(Xm

i
TXm

j X
m
j
TXm

i ), i,j=1 ,...,N
[Km(X,Y)]i=ωmTr(Xm

i
TYmYmTXm

i ), i= 1,...,N
Hence the model Eq. (1) becomes

min
α

M∑
m=1

{
αTKm(X)α−2αTKm(X,Y)

}
+λ‖α‖1

=min
α
αT

( M∑
m=1

Km(X)

)
α−2αT

( M∑
m=1

Km(X,Y)

)
+λ‖α‖1.

The symemetric matrix
M∑

m=1
Km(X) is positive semidefinite since for all v =

(v1,v2,...,vN )T ∈RN :

vT
( M∑
m=1

Km(X)

)
v

=

M∑
m=1

N∑
i=1

N∑
j=1

ωmvivjTr(Xm
i
TXm

j X
m
j
TXm

i )

=

M∑
m=1

ωmTr

 N∑
i=1

N∑
j=1

vivjXm
i
TXm

j X
m
j
TXm

i


=

M∑
m=1

ωm‖

N∑
i=1

viXm
i X

m
i
T
‖
2
F ≥ 0.

Therefore, the problem is convex and can be solved by a vectorized sparse coding problem.

In detail, let U6UT be the SVD of
M∑

m=1
Km(X), then the problem is equal to

min
α
‖Y∗−Aα‖2+λ‖α‖1 (2)

where A=61/2UT and Y∗=6−1/2UT
( M∑
m=1

Km(X,Y)
)
. The pseudo-code for performing

the proposed weighted sparse coding on PGM is summarized in Algorithm 1, which is
simply called WSC-PGM.
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Algorithm 1Weighted sparse coding on product Grassmann manifold (WSC-PGM)
Require:
Training data includes N samples on PGM: [Xi] = (X1

i ,X
2
i ,...,X

M
i ), i= 1,2,...,N and

Xm
i ∈ G(pm,dm),m= 1,2,...,M ; the query sample on PGM: [Y] = (Y1,Y2,...,YM ) and

Ym
∈G(pm,dm),m=1,2,...,M .

Ensure:
The sparse code α∗

form= 1 :M do
for i= 1 :N do
for j = 1 :N do
[Km(X)]ij =ωmTr(Xm

i
TXm

j X
m
j
TXm

i ) /* compute matrix Km(X)
end for
[Km(X,Y)]i=ωmTr(Xm

i
TYmYmTXm

i ) /* compute vector Km(X,Y)
end for

end for
M∑

m=1
Km(X)=U6UT /* compute SVD of

M∑
m=1

Km(X)

A←61/2UT

Y∗←6−1/2UT
( M∑
m=1

Km(X,Y)
)

α∗= argmin
α
‖Y∗−Aα‖2+λ‖α‖1 /* the solution of model (2)

return α∗

Classification rule and algorithm
When model Eq. (1) is minimized, the optimal coefficient α∗ can be used for classification.
Following the idea of the Sparse Representation Classification (SRC) (Wright et al., 2008),
the query sample can be classified by it’s codes α∗ of these labeled training samples [Xi]i
=(1 ,2,...,N ).

In details, let (α∗1δ(l1−k),α∗2δ(l2−k),...,α∗N δ(lN −k))T be the class- k sparse codes,
where li(i =1 ,2,...,N ) is the class label of training sample [Xi] and δ(x) is the discrete
Dirac function.

δ(x)=

{
1 x = 0
0 else

.

The residual error of a query sample [Y] =(Y1,Y2,...,YM ) by using the samples associated
to class k is defined as

εk([Y])=
M∑

m=1

ωm‖YmYmT
−

N∑
i=1

α∗i (X
m
i X

m
i
T )δ(li−k)‖2F . (3)

Then the estimated class of the query Y is determined by

Label([Y])= argmin
k
εk([Y]). (4)

The procedure of sparse representation classification on product Grassmann manifold is
summarized in Algorithm 2.
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Algorithm 2Weighted sparse representation classification on product Grassmann mani-
fold (WSRC-PGM)
Require:
Training data [Xi] = (X1

i ,X
2
i ,...,X

M
i ),i=1,2,...,N belonging to c classes; the query

[Y] = (Y1,Y2,...,YM )
Ensure:
The class label Label([Y]) of the given test sample [Y]
Compute α∗ as Algorithm 1
Compute residual εk([Y]) by using equation (3)
Compute the class label by using equation (4)
return Label([Y])

EXPERIMENTS
In this section, we show performance of the proposed method against some state-of-the-art
methods on three kinds of datasets. In the following experiments, all video data can be
regarded as points on PGM G(p1,d1)×G(p2,d2)×G(p3,d3) and the parameter λ is all
chosen as 0.1 by experience.

Cambridge hand gesture datasets
The Cambridge hand gesture datasets (Kim & Cipolla, 2008) contains 900 video sequences
with 9 classes and it is divided into 5 sets according to different illuminations. The 9
classes are flat-leftward (FL), flat-rightward (FR), flat-contract (FC), spread-leftward (SL),
spread-rightward (SR), spread-contract (SC), V-shape-leftward (VL), V-shape-rightward
(VR) and V-shape-contract (VC) respectively. We follow the experimental protocol in
paper (Kim & Cipolla, 2008), set 5 (normal illumination) is considered for training while
the remaining sequences (with different illumination characteristics) are used for testing.
In this experiment, the original sequences are converted to grayscale and resized to
20×20×20. Obviously, experiment results depend on the selection of parameters, so we
firstly discuss the parameter setting in the following.

Parameter setting
In this subsection, we discuss the parameter setting including dimensions (p1,p2,p3) of three
factorGrassmannmanifolds and their weights (ω1,ω2,ω3). In fact, we haveω1+ω2+ω3= 1
in model Eq. (1). Hence, we jointly determine the parameters (p1,p2,p3,ω1,ω2). For this
datasets, p1,p2,p3 are optimized all in the range of 2 to 20 by step 2, and ω1,ω2 are
optimized in the range as Table 2. We perform 5-fold cross validation on Set5 and find the
optimal (p∗1,p

∗

2,p
∗

3,ω
∗

1,ω
∗

2) to obtain the best experimental results. Each time we leave one
cross validation set as testing and the other four folds for training. Recursively, we perform
experiments and record the correct recognition rate (CRR) of each fold.

Maximizing the average CRRs of five results to have good discrimination, there exist 33
optional parameter combinations. Meanwhile, we expect the data representation carrying
more information to better fit the testing data. Hence, among the 33 combinations
we choose the top 5 % combinations making p1+ p2+ p3 larger. We list the selected
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Table 2 The range of ω1,ω2.

ω1 \ ω2 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.1 (0.1, 0.1) (0.1, 0.2) (0.1, 0.3) (0.1, 0.4) (0.1, 0.5) (0.1, 0.6) (0.1, 0.7) (0.1, 0.8)
0.2 (0.2, 0.1) (0.2, 0.2) (0.2, 0.3) (0.2, 0.4) (0.2, 0.5) (0.2, 0.6) (0.2, 0.7)
0.3 (0.3, 0.1) (0.3, 0.2) (0.3, 0.3) (0.3, 0.4) (0.3, 0.5) (0.3, 0.6)
0.4 (0.4, 0.1) (0.4, 0.2) (0.4, 0.3) (0.4, 0.4) (0.4, 0.5)
0.5 (0.5, 0.1) (0.5, 0.2) (0.5, 0.3) (0.5, 0.4)
0.6 (0.6, 0.1) (0.6, 0.2) (0.6, 0.3)
0.7 (0.7, 0.1) (0.7, 0.2)
0.8 (0.8, 0.1)

Table 3 The top 5% combinations of parameter on Cambridge hand gesture datasets.

Parameter p∗1 p∗2 p∗3 ω∗1 ω∗2 ω∗3

combination 1 8 18 12 0.3 0.3 0.4
combination 2 20 10 12 0.2 0.4 0.4
combination 3 14 12 12 0.2 0.4 0.4

combinations of parameters (p1,p2,p3,ω1,ω2,ω3) in Table 3. Table 4 shows the CRRs of
the five folds of Set5 with the combinations of parameter in Table 3. In order to illustrate
the above parameter selection process, Figs. 3–5 show the slice of CRR’s variation with
each dimension of parameter corresponding to the optimal combinations listed in Table 3,
respectively.

Experiment result on testing sets
In this experiment, the parameter λ is set as 0.1. With the three combinations of
parameters (p1,p2,p3,ω1,ω2), the samples of Set1-Set4 are represented as points on
PG(8,18,12|400,400,400), PG(20,10,12|400,400,400) and PG(14,12,12|400,400,400)
respectively. Table 5 summarizes the correct recognition rate for Set1-Set4 and the average
correct recognition rate which followed by the standard deviation. As Table 5 shows,
WSRC-PGM has superior performance compared with TCCA (Kim & Cipolla, 2008), PM
(Lui, 2012), gSC and kgSC (Harandi et al., 2015), DMD+SC(SCCD2) (Singh et al., 2021).

The confusionmatrix of our proposed approach on the four testing sets under parameter
combination 1 are given in Fig. 6. Naturally, confusion matrices for combination 2 and 3
can be discussed similarly and they are omitted here. From Fig. 6 see, the most misclassified
class is SL and most of the misclassified samples with lable SL were misassigned to the SC
class. The second most misclassified class is SC and most of the misclassified samples with
lable SC were misassigned to the VC class.

Ballet datasets
The Ballet dataset contains 44 videos including 8 complex motion patterns from 3 persons
(Fathi & Mori, 2008). In detail, the actions are ‘‘left-to-right hand opening’’, ‘‘right-to-
left hand opening’’, ‘‘standing hand opening’’, ‘‘leg swinging’’, ‘‘jumping’’, ‘‘turning’’ ,
‘‘hopping’’ and ‘‘standing still’’ . Main challenge of this dataset is large variations among
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Table 4 CRR of the five cross validation sets on Cambridge hand gesture datasets.

Cross validation sets 1 2 3 4 5

CRR of combination 1 100% 100% 100% 97.22% 100%
CRR of combination 2 100% 100% 100% 97.22% 100%
CRR of combination 3 100% 100% 100% 97.22% 100%

Figure 3 The two graphs show the slice of CRR’s variation with each parameter with combination 1
on the Cambridge Hand Gesture Datasets. (A) The solid line shows the variation of CRR with varying p1
while (p2,p3) are fixed as (18,12), and the optimal p1 is 8 in this slice. The dotted line shows the variation
of CRR with varying p2 while (p1,p3) are fixed as (8,12), and the optimal p2 is 18 in this slice. The dash-
dot line shows the variation of CRR with varying p3 while (p1,p2) are fixed as (8,18), and the optimal p3
is 12 in this slice. (B) The heatmap reflects the variation of CRR with different (ω1,ω2) and the optimal
(ω1,ω2) is (0.3,0.3).

Full-size DOI: 10.7717/peerjcs.923/fig-3

Table 5 Recognition results on the Cambridge hand-gesture dataset.

Method Set1 Set2 Set3 Set4 Overall

TCCA (Kim & Cipolla, 2008) 81 81 78 86 82± 3.5%
PM (Lui, 2012) 93 89 91 94 91.7± 2.3%
gSC (Harandi et al., 2015) 93 92 93 94 93.3± 0.9%
kgSC (Harandi et al., 2015) 96 92 93 97 94.4± 2.0%
HOG3DVV+GGDA (Verma & Choudhary, 2018) 86 93 87 93 89.7
WSRC-PGM (combination 1) 98 92 96 97 95.6± 2.8%
WSRC-PGM (combination 2) 99 91 94 96 95.0± 3.5%
WSRC-PGM (combination 3) 99 89 94 96 94.3± 4.2%

classes such as speed, clothing and motion paths. The frame images are normalized and
centered in a fixed size of 20×20. We extract total 2400 sub-videos by randomly sampling
6 frames from original video that exhibited the same action and then images are converted
to grayscale. We randomly select 1200 samples as training set and the remainder as testing
set.
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Figure 4 The two graphs show the slice of CRR’s variation with each parameter with combination 2
on the Cambridge Hand Gesture Datasets. (A) The solid line shows the variation of CRR with varying p1
while (p2,p3) are fixed as (10,12), and the optimal p1 is 20 in this slice. The dotted line shows the variation
of CRR with varying p2 while (p1,p3) are fixed as (20,12), and the optimal p2 is 10 in this slice. The dash-
dot line shows the variation of CRR with varying p3 while (p1,p2) are fixed as (20,10), and the optimal p3
is 12 in this slice. (B) The heatmap reflects the variation of CRR with different (ω1,ω2), and the optimal
(ω1,ω2) is (0.2,0.4).

Full-size DOI: 10.7717/peerjcs.923/fig-4

Figure 5 The two graphs show the slice of CRR’s variation with each parameter with combination 3
on the Cambridge Hand Gesture Datasets. (A) The solid line shows the variation of CRR with varying p1
while (p2,p3) are fixed as (12,12), and the optimal p1 is 14 in this slice. The dotted line shows the variation
of CRR with varying p2 while (p1,p3) are fixed as (14,12), and the optimal p2 is 12 in this slice. The dash-
dot line shows the variation of CRR with varying p3 while (p1,p2) are fixed as (14,12), and the optimal p3
is 12 in this slice. (B) The heatmap reflects the variation of CRR with different (ω1,ω2) and the optimal
(ω1,ω2) is (0.2,0.4) in this slice.

Full-size DOI: 10.7717/peerjcs.923/fig-5

Similar to the discussion for parameter setting of experiment on Cambridge hand gesture
dataset, we jointly determine the parameters (p1,p2,p3,ω1,ω2) by 5-fold cross validation
on training set, where p1,p2 are all in the range of {2 : 2 : 20}, p3 is in the range of {1 : 1 : 6}
and ω1,ω2 are in the range as Table 2. The top 5 % optional parameter combinations of
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Figure 6 The confusionmatrix of combination 1 on the Cambridge hand-gesture dataset.
Full-size DOI: 10.7717/peerjcs.923/fig-6

Table 6 The top 5% combinations of parameter on Ballet dataset.

Parameter p∗1 p∗2 p∗3 ω∗1 ω∗2 ω∗3

combination 1 10 6 2 0.2 0.2 0.6
combination 2 10 4 4 0.2 0.2 0.6
combination 3 10 2 6 0.2 0.2 0.6

(p1,p2,p3,ω1,ω2,ω3) are listed in Table 6. And the samples on testing set are represented
on PG(10,6,2|120,120,400), PG(10,4,4|120,120,400) and PG(10,2,6|120,120,400)
respectively in experiments. Table 7 summarizes the average correct recognition rate.
The results show that our algorithm has superior performance compared with some
state-of-the-art methods. And the confusion matrix of our proposed approach on the
testing set under the three parameter combinations are given in Fig. 7.

UMD Keck body-gesture datasets
The UMDKeck Body-Gesture Datasets contains 14 naval body gestures acquired from both
static and dynamic backgrounds. The subjects and the camera remain stationary in the
static backgrounds, the subjects and the camera are moving in the dynamic backgrounds.
126 videos and 168 videos are collected from the static scene and the dynamic environment
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Table 7 Correct recognition rate on the Ballet dataset.

Method CRR

(Fathi & Mori, 2008) 51%
DBoWs (Iosifidis, Tefas & Pitas, 2014) 91.1%
S-CTM (Wang & Mori, 2009) 91.36%
kgSC-dic (Harandi et al., 2015) 83.53± 0.8%
kgLC-dic (Harandi et al., 2015) 86.94± 1.1%
DMD+SC (SCCD2) (Singh et al., 2021) 96.25
WSRC-PGM (Combination 1) 98.9
WSRC-PGM (Combination 2) 99.9
WSRC-PGM (Combination 3) 99.9

Figure 7 The confusionmatrix of three combinations on Ballet datasets. The class labels ‘‘1-8’’ represent actions ‘‘left-to-right hand opening’’,
‘‘right-to-left hand opening’’, ‘‘standing hand opening’’, ‘‘leg swinging’’, ‘‘jumping’’, ‘‘turning’’ , ‘‘hopping’’ and ‘‘standing still’’ respectively.

Full-size DOI: 10.7717/peerjcs.923/fig-7

respectively. The 14 body gestures are turn left, turn right, attention left, attention right,
flap, stop left, stop right, stop both, attention both, start, go back, close distance, speed up
and come near respectively.

We follow the experimental setting proposed in paper (Lin, Jiang & Davis, 2009). In
the static background, we adopt Leave One Out Cross Validation (LOOCV). For dynamic
background, the gestures acquired from the static background are used for training, while
the gestures in dynamic background are used for testing.

In our experiment, videos are firstly cropped by tracking the region of interest through
a simple correlation filter, and then all videos are resized to 32×24×45. The videos whose
frames are less than 45 are appended with the last frame added some Gaussian noise.
Similar to the previous discussion, we jointly determine the parameters (p1,p2,p3,ω1,ω2)
by 5-fold cross validation on training set, where p1 is in the range of {2 : 4 : 32}, p2 is in
the range of {2 : 4 : 24}, p3 is in the range of {10 : 4 : 45} and (ω1,ω2) are in the range as
Table 2. The top 5 % optional parameter combinations of (p1,p2,p3,ω1,ω2,ω3) are listed
in Table 8. And the samples on testing set are represented onPG(6,22,14|1080,1440,768).
Table 9 shows that WSRC-PGM has higher performance compared with TB (Lui, 2011),
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Table 8 The top 5% combinations of parameter on UMDKeck body-gesture dataset.

Parameter p∗1 p∗2 p∗3 ω∗1 ω∗2 ω∗3

combination 1 6 22 14 0.2 0.4 0.4

Table 9 Correct recognition rate on the UMDKeck Body-Gesture datasets.

Method CRR of static CRR of dynamic

TB (Lui, 2011) 92.1% 91.1%
Prototype-Tree (Lin, Jiang & Davis, 2009) 95.2% 91.1%
PM (Lui, 2012) 94.4% 92.3%
WSRC-PGM 98.4% 92.3%

Figure 8 The confusionmatrix of combination 1 on UMDKeck Body-Gesture datasets.
Full-size DOI: 10.7717/peerjcs.923/fig-8

Prototype-Tree (Lin, Jiang & Davis, 2009) and PM (Lui, 2012). The confusion matrix of
our proposed approach with parameter combination 1 are given in Fig. 8.

Discussion
Through above experiments, we conclude that the proposed method is effective for
video-based human gesture recognition. In experiments, the selection of parameters is a
key step. We jointly selected optional parameters (p∗1,p

∗

2,p
∗

3,ω
∗

1,ω
∗

2,ω
∗

3) on grid parameter
set, through maximizing the average CRRs of 5-fold cross validation on training set. The
parameter selection process is time-consuming because of the high dimension of parameter.
This limitation may be solved by alternative iterations of optimization, through setting
rational initial values based on prior information of data distribution. The reason is that
the dimensions of parameter for each iteration can be reduced.

COMPUTATIONAL COMPLEXITY
We analyze the time complexity of WSC-PGM algorithm in this section. The algorithm
focus on improving the correct recognition rate by sparse coding on product Grassmann
manifold. Compared with sparse coding on single Grassmann manifold named as gSC
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Table 10 Time complexity(in seconds) for classifying testing sets on three datasets respectively.

Cambridge hand gesture Ballet UMDKeck

PGM size PG(8,18,12|400,400,400) PG(8,18,12|120,120,400) PG(6,22,14|1080,1440,768)
Train size 180 1200 126
Test size 720 1200 168
Time 4.85 19.08 2.31

(Harandi et al., 2015), we discuss the computation efficiency of WSC-PGM algorithm in
the following.

Same as the notations of algorithm WSC-PGM, the WSC-PGM algorithm requires
O(N (d1p21+d2p

2
2+d3p

2
3)) flops for computing Km(X,Y). The gSC algorithm (Harandi et

al., 2015) requires O(Ndp2) flops for computing ‖ZTDj‖
2
F (j =1 ,...,N ), where span(Z),

span(Dj)∈ G(p,d) while other steps of the two algorithms have the same computational
complexity. To make it easier for the readers to understand, we take the Cambridge Hand
Gesture Dataset as an example, we set d1 = d2 = d3 = 400,p1 = 8,p2 = 18,p3 = 12 of
combination 1 in our experiment and d = 400,p= 50 are chosen in gSC (Harandi et al.,
2015). We can see that d1p21+d2p

2
2+d3p

2
3= 212800� dp2= 1000000. However, the CRR

of WSC-PGM algorithm is higher than that in gSC (Harandi et al., 2015).
We further evaluate the execution time of our WSC-PGM for classification in Table 10.

And all experiments are executed on Intel(R) Core(TM) i7-10700 CPU with 32GB RAM.

MAIN FINDINGS AND FUTURE DIRECTIONS
Subject to video-based human gesture recognition, we proposed a novel weighted sparse
coding model on product Grassmann manifold. A video can be viewed as a third order
tensor and then represented as a point on product Grassmann manifold by factorizing
the tensor through HOSVD. This representation can characterize the multi-dimensional
information including appearance, horizontal motion, vertical motion from video data and
also can efficiently take advantage of the nonlinear manifold structure of video data. Based
on PGM representation of videos, we proposed a sparse coding method by embedding the
product Grassmann manifold to the product space of symmetric matrices. Meanwhile,
an efficient algorithm WSC-PGM and the corresponding classification algorithm WSRC-
PGM are proposed. The method of this paper improves the correct recognition rate
and meanwhile it reduces the time complexity comparing with sparse coding on single
Grassmann manifold. Experiments on three kinds of public datasets show that our method
performs very well.

In future work, we would like to study the product Grassmann manifold representation
method combing with time series model in tensor form, in order to enhance the
discriminant performance of videos.
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