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ABSTRACT
Global encoding of visual features in video captioning is important for improving the
description accuracy. In this paper, we propose a video captioning method that
combines Vision Transformer (ViT) and reinforcement learning. Firstly, Resnet-152
and ResNeXt-101 are used to extract features from videos. Secondly, the encoding
block of the ViT network is applied to encode video features. Thirdly, the encoded
features are fed into a Long Short-Term Memory (LSTM) network to generate a
video content description. Finally, the accuracy of video content description is
further improved by fine-tuning reinforcement learning. We conducted experiments
on the benchmark dataset MSR-VTT used for video captioning. The results show
that compared with the current mainstream methods, the model in this paper has
improved by 2.9%, 1.4%, 0.9% and 4.8% under the four evaluation indicators of
LEU-4, METEOR, ROUGE-L and CIDEr-D, respectively.

Subjects Artificial Intelligence, Computer Vision, Natural Language and Speech, Visual Analytics
Keywords Video captioning, Vision transformer, Reinforcement learning, Long short-term
memory network, Computer vision, Natural language processing, Attention mechanism,
Encode-decode, Deep learning

INTRODUCTION
Generating video content description by manual annotation is time-consuming and
inapplicable for large volumes of videos. With the continuous and rapid development of
information technology, short video sharing platforms represented by Tiktok, Kwai
and micro-blog have emerged. These platforms produce a large number of videos with
various views and tendencies in the short term. There may be some videos that have a
negative impact on users, and bring great hidden dangers if these videos contain blood,
pornography, violence and other harmful information without timely review. Therefore, it
is of great significance to adopt automatic means to timely review video content and reject
undesirable videos in real time.

At present, video captioning methods are mainly based on template matching and
deep learning (Guadarrama et al., 2013; Perez-Martin, Bustos & Pérez, 2021; Zhu, Duan &
Yu, 2021). The template matching method first designs a fixed language template
according to the video content structure. Then, the main object (noun), action (verb) and
scene information are detected using target detection algorithms. Finally, the extracted
video information is filled into the language captioning template to complete the
captioning of one or more short videos. For example, Kojima, Tamura & Fukunaga (2002)
establish the mapping relationship between visual objects or actions and specific concepts,
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and determine the corresponding syntactic components. It solves the cross-modal problem
between video image and text description (Perez-Martin, Bustos & Pérez, 2021). With the
help of the and-or diagram template, Gupta et al. (2009) generate a single captioning for
each action according to the movement sequence relationship of the people in the video,
and combines all the single captions based on the simulated video content to form a
paragraph captioning for the video. These methods focus on action semantics and break
through the limitation of only outputting action descriptions based on video content in the
original video action recognition task. However, their captioning of other components lack
flexibility. Therefore, in order to be more consistent with the conventions of natural
language, Rohrbach et al. (2013) imitate machine translation method and construct an
encoding-decoding framework to generate a more flexible captioning. Likewise, Xu et al.
(2015) use Word2Vec to extract the features of the captioning sentence while using a
neural network to encode video features, and jointly embed the visual features and the
captioning features to improve the accuracy of the captioning.

Video captioning methods based on deep learning are inspired by the encoder-decoder
framework used in machine translation research, and many similar video captioning
models have been designed. For example, Yadav & Naik (2021) use Deep-LSTM and
Bahdanau attention mechanism as the encoder and decoder of the model to generate
captions. Alkalouti & Masre (2021) exploit an encoder-decoder structure that combines
two deep learning algorithms, YOLO and LSTM, to automatically generate video
captioning. Later on, on the basis of deep learning, the literatures (Aafaq et al., 2019; Chen
et al., 2019a; Zhang & Peng, 2020; Zhang et al., 2019) extend the research on video content
description by using RNN sequence features and 3D convolution features.

The most existing video captioning methods utilize deep convolutional neural networks
or 3D convolutional neural networks as encoders to extract visual representation vectors.
It decodes its visual representation vector as the input of Recurrent Neural Network
(RNN) to generate serialized natural language expression. For example, Venugopalan et al.
(2015) design a set of S2VT models, extract video features and optical flow features
through the DCNN model, and make use of two LSMT networks for feature encoding and
decoding to generate the final captioning. Based on the S2VT framework, Tang, Wang & Li
(2019) combine the residual mechanism, multi-structure LSTM sequence fusion and visual
feature complementation to further optimize the model. It effectively solves the
redundancy of the CNN features of optical flow frames for modeling video static features
and dynamic sequence features, and improves the expression ability of the model. In
addition, Bin et al. (2016) design a bidirectional LSTM network to extract the time-series
features of the video from the front and rear dimensions and fuse the features and
frame-level sequence features during the training process, which enhances the expressive
ability of the model. However, it is difficult for a single video description task to fully
extract the timing information and logical dynamic information in the video. To tackle this
problem, Pasunuru & Bansal (2017a) propose a multi-task learning method, which uses
video prediction task to learn more video context knowledge and semantic information.
Although this method improves the coherence of description sentences, it has poor
generalization performance for complex multi-scene tasks. Inspired by reinforcement
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learning, Pasunuru et al. use the reward mechanism of reinforcement learning as a
benchmark model to improve the accuracy of video content description and the coherence
of language description. Since then, the literature (He et al., 2019) focuses on improving
the sentence components of the description sentences, and guide the model to generate
words according to the Part-of-Speech (POS). Zheng, Wang & Tao (2020) emphasize the
relevance of subject, predicate and visual scene in sentences, and built a SAATmodel based
on Transformer and verify the validity of the model.

Although the use of feature sequences extracted by RNN to establish a language
description model is successful, 3D convolutional networks can extract both spatial and
temporal features of videos, which can further strengthen the features of static visual
semantic objects and dynamic visual events in videos and improve the robustness of the
model. For example, Yao et al. (2015) apply a 3D convolutional network to extract video
features and introduce an attention mechanism. It assigns weights of 3D spatiotemporal
feature assignments at different time steps to guide descriptive sentence generation
(Yao et al., 2015). Inspired by the human visual tracking mechanism, Yu et al. (2017)
propose an attention network based on gaze tracking coding. The network improves the
description accuracy of the model by integrating the visual tracking mechanism in the
attention model (Yu et al., 2017). However, the model uses GRU to distribute attention
weight in time domain, which easily leads to long-term dependence and semantic
misplacement of multi-modal information. In view of this, Wang et al. (2018) propose a
multi-modal memory model that closely combines visual and linguistic information to
improve the accuracy of words used in generated sentences. Pei et al. (2019) utilize 2D and
3D convolution features of videos and adopt attention mechanism for feature fusion, and
predict words on each time step by constructing GRU network. Similarly, Chen et al.
(2019b) integrate multi-model features including 2D and 3D convolution features and
MFCC (Mel frequency Cepstrum coefficient) audio features to expand the feature
dimension and fully mined video information.

In summary, although the video captioning method based on template matching is
simple and straightforward, these methods depend too much on the preset templates
and rules. It leads to monotonous captioning sentences and poor flexibility. Although the
video captioning method based on deep learning can effectively solve the above problems,
the common video captioning method usually directly takes the final output state of
encoding as the input in the decoding stage, and loses a large number of intermediate
hidden states.

In recent years, inspired by the successful application of Transformer in vision tasks in
natural language processing, a large number of vision tasks also use Visual Transformer
(ViT) as a model encoder to verify the efficiency of the model, such as semantic
segmentation, image editing and entity segmentation. Therefore, the paper proposes a
video content description method integrating vision transformer and reinforcement
learning. It utilizes the transformer encoder provided by ViT as the feature encoder, and
globally encodes the video features combined with the hidden state in the middle of the
encoder. It solves the problem that the traditional encoder loses the information of the
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middle-hidden layer and cannot globally encode the video features. The main work of this
paper is following:

(1) Use an encoder composed of Transformer Encoder blocks to encode video features in a
global view, thereby reducing the loss of intermediate hidden layer information.

(2) Introduce the Policy Gradient reinforcement learning method to improve the accuracy
of the model.

(3) Conduct Experiments on the MSR-VTT dataset to demonstrate the effectiveness of the
video captioning method proposed in this paper.

VIDEO CONTENT CAPTIONING MODEL
Model structure
As shown in Fig. 1, the model includes three modules: feature extraction, video caption
generation and reinforcement learning feedback mechanism. The feature extraction
module extracts the features of the segmented video frame through a convolution neural
network. The video caption generation module adopts an encoding-decoding framework
to encode the features before decoding to generate the caption of the video content.
The reinforcement learning feedback mechanism module takes the model as the agent, the
video data and the real caption as the environment, and optimizes the caption of the video
content based on the CIDEr index.

Feature extraction
Video data is composed of objects, scenes, people and other static elements in the spatial
domain, and its structure is composed of multiple continuous video frames. There are
changes in motion trajectories between frames, which contain rich temporal motion
information (Wang, 2020). Hence, both frame level static features and temporal motion
features of videos need to be extracted.

In deep learning methods, we usually extract richer features by continuously stacking
the number of network layers. However, the accuracy of the model gradually begins to
saturate and rapidly decline as neural networks deepen. It will lead to the disappearance of

Figure 1 Video content captioning model structure. The model includes three parts: feature extraction,
video captioning generation, reward mechanism (Policy Gradient). L is the number of transformer
encoder blocks in the encoder of the model, ws is the word sequence generated by the model, and r(�) is
the reinforcement learning reward function. Full-size DOI: 10.7717/peerj-cs.916/fig-1
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the gradient and the degradation of accuracy. In response to this problem, He Kaiming
et al. designed ResNet network and introduced deep residual learning module (Ioffe &
Szegedy, 2015). It fits the residual mapping by stacking layers, so that the accuracy of the
model increases as the number of network layers increases. In addition, the deeper network
layers will increase the computational complexity of the model. However, ResNeXt
network can effectively solve such defects. To sum up, ResNet and ResNeXt (Xie et al.,
2017) networks are selected to extract static features and temporal motion features in the
video. To be clear, we used the ResNeXt pretraining model trained on Dataset Kinetics
(Carreira & Zisserman, 2017).

Before extracting the video features, we first segment the video data into 224� 224
video frames using FFMPEG tool. We do not limit the number of video frames, but
uniformly process 50 frames of equal length before inputting the reference model. Then, all
video frames are fed into the feature extraction network to obtain the complete features of
the video. Suppose that the video is segmented into N video frames, and the frame
sequence is V ¼ Xi; yf gNi¼1. We extract 2,048-dimensional static feature ri and dynamic
feature ei for each frame respectively. The sum result xi of the two features is used as the
overall feature of the video. The sequence of visual features is xv ¼ x1; x2; x3; � � � ; xNf g,
which is calculated as Eqs. (1)–(3).

ri ¼ frðXiÞ (1)

ei ¼ feðXiÞ (2)

xi ¼ ri þ ei (3)

where ri represents the result of static feature extraction, ei is the result of temporal motion
feature extraction, fr and fe represent static and dynamic feature extraction functions
respectively, Xi 2 RC�H�W represents the i-th video frame, xi 2 Rdvisiual , dvisiual is the
dimension of the video feature. We set the size of dvisiual to 4,096 dimensions. C, H andW
are the number of channels, height, and width of the video frame. Their values are 3, 224,
and 224.

Video captioning generation
The video caption generation phase consists of the encoding and decoding of the video
features, as shown in Fig. 2. In the encoding stage, the embedded feature vectors are
fed into the encoder to encode the video features globally. In the decoding stage, the
encoding result is taken as the input to the decoder, and its output is the video captioning
statement.

Encoder
The vision transformer (ViT) model proposed in 2021 can encode image features with the
global field of view, and tackle the problem that convolution networks are highly sensitive
to the high-frequency information in the image. Inspired by literature (Mubashira &
James, 2020), we use the transformer encoder of ViT as the model encoder, and effectively
use the intermediate state of the encoder to implement the global encoding of video
features.
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The encoder of the benchmark model is made up of a stack of 12 single Vision
Transformer encoding blocks. Each block consists of Multi-Head Attention (MHA) and
MultiLayer Perceptron (MLP) Block, as shown in Fig. 3. To ensure the stability of the
distribution of data features, the data is normalized by Layer Norm (LN) before each block
is executed.

In the x-th time step shown in Fig. 3, it is assumed that the video feature extracted by the
convolution network is C. First, we use MHA function to calculate the normalized
characteristic C of the previous time step. Then, apply the MLP function to calculate the
output of the coding block. Finally, the N features are normalized. The result is expressed
as the final feature of the encoder, and its output size is 1,024 dimensions, which is
calculated as Eqs. (4)–(6).

z0l ¼ MSAðLNðzl�1ÞÞ þ zl�1 l ¼ 1 . . .N (4)

Figure 2 Captioning content generation module structure composed of Transformer and LSTM.
Full-size DOI: 10.7717/peerj-cs.916/fig-2

Figure 3 Encoder block structure in VIT. Specifically, the encoding block first inputs the features into
Layer Norm and Multi-Head Attention, and then sends them to the MLP block.

Full-size DOI: 10.7717/peerj-cs.916/fig-3
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zl ¼ MLPðLNðz0lÞÞ þ z0l l ¼ 1 . . .N (5)

xl ¼ LNðzlÞ l ¼ 1 . . .N (6)

where z0l represents the output of the multi-head attention mechanism, zl is the output of
the multilayer perceptron, xl is the output of the encoder at time l, which is the result of the
global feature encoding. N is the total time step length.

Decoder
Taking into account the timing relationship between video frames, the benchmark model
in this paper uses a multi-layer Long Short-Term Memory neural network (LSTM) to
construct the decoder. The LSTM consists of input gate, forgetting gate, output gate and
memory unit. The network structure of the LSTM unit is shown in Fig. 4. The LSTM
network transmits cell state as well as hidden state in forward propagation. This effectively
solves the problem that the parameters of other recurrent neural networks cannot be
continuously optimized due to the disappearance of gradient in the process of back
propagation (Yang et al., 2018). Therefore, we construct an LSTM decoder to remember
the context timing relationship while retaining the video content information, and
generate a more logical caption.

As shown in Fig. 4, let the coding result of the t time model be 1,024-dimensional vector
xt, the hidden layer feature corresponding to the input feature be ht−1, and the cell memory
unit of the LSTM network be ct. Then the activation function r is used to obtain the
input feature vector it of the LSTM unit. Similarly, the forgetting feature ft and the output
feature ot can be obtained as Eqs. (7)–(12).

it ¼ rðWxixt þWhiht�1 þ biÞ (7)

ft ¼ rðWxf xt þWhf ht�1 þ bf Þ (8)

ot ¼ rðWxoxt þWhoht�1 þ boÞ (9)

gt ¼ fðWxgxt þWhght�1 þ bgÞ (10)

ct ¼ ft � ct�1 þ it � gt (11)

ht ¼ ot � fðctÞ (12)

where � is the Hadamard product operation, it represents the inputs, ft is the forgetting
feature, ot is the output gate, gt is the input modulation gate,W and b are the parameters to

Figure 4 LSTM network model. Full-size DOI: 10.7717/peerj-cs.916/fig-4

Zhao et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.916 7/16

http://dx.doi.org/10.7717/peerj-cs.916/fig-4
http://dx.doi.org/10.7717/peerj-cs.916
https://peerj.com/computer-science/


be optimized. We use the sigmoid activation function and the tanh activation shown in
Eqs. (13) and (14). Adding forget gates and memory gates in the decoding process will
enable the video captioning model to memorize the video content in the time domain, and
generate a more logical caption.

rðxÞ ¼ 1
1þ e�x

(13)

fðxÞ ¼ ex � e�x

ex þ e�x
(14)

The detailed process of the video feature decoding is shown in Table 1.
Furthermore, in order to enable mapping between the decoded result and the text, we

preprocess the captioning text tags corresponding to the video. First, we use the word
embedding method to encode each word in the caption into a 512-dimensional vector
yt 2 Yðy1; y2; y3; . . . ; y512Þ. We use a dataset in which the maximum length of all captions
is 20 words. Therefore, we set the length of the video captioning sentence to 20. When
embedded, captions of less than 20 words are represented by the number 0. Assuming the
caption generated by the model be expressed as y0t 2 Y 0ðy01; y02; y03; . . . ; y0mÞ, then the
conditional probability representation of Y 0 with respect to X is shown in Eq. (15).

PðY 0 X;Yj Þ ¼ Pðy01; � � � ; y0m x1; � � � ; xn; y1; � � � ; ynj Þ ¼
Ym

t¼1

Pðy0t hnþt�1; y
0
t�1

�� Þ (15)

where the conditional probability Pðy0t hnþtÞj represents the probability value of all words in
the corpus corresponding to the softmax layer. We represent the string [END] as the end
of the sentence. The end marker not only prompts the model to switch coding and
decoding in the training stage, but also can be used as a marker to describe the completion
of generation in the test stage.

In summary, at time step t, the model first encodes the video features through the
transformer encoder block, and then sends it to the multi-layer LSTM network to decode
and generate the caption y0t . Each time a caption is generated during the training process,
the model calculates the cross-entropy loss based on the generated sentence and the

Table 1 The detailed process of the video feature decoding.

Algorithm 1: Video feature decoding

Inputs Initialize weights Whi, Wxi and encoded feature xt

1 Calculate the forgetting gate eigenvector ft using Eq. (8);

2 Use Eq. (7) to calculate the input gate feature vector it ;

3 Calculate the input modulation gate feature vector gt using Eqs. (10) and (11), and update ct−1 to ct

4 Calculate the output gate eigenvector Ot using Eq. (9);

5 Repeat steps (1) to (4) until all features are decoded, and the input of the last decoding unit is the
output result of the decoder

Output Decoded feature vector
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real captioning, and continuously updates and optimizes the model parameters. The
calculation is shown in Eqs. (7)–(12).

Reinforcement learning optimization
In order to improve the accuracy of video captioning model, a reinforcement learning
method is introduced to learn the strategy gradient ph, where h represents the model
parameters. Specially, benchmark models were used as Agent, video and captioning as
Environment in reinforcement learning. In each time interval of the model, Agent
generates a word accordingly. When the generated word is the end-of-sequence token
[END], Environment calculates the reward value R(t) nd feeds it back to the Agent. The
model optimization process is shown in Fig. 5.

When optimizing the model with reinforcement learning, let the sequence of words,
status values and rewards generated by a video be s ¼ s1; a1; r1; s2; a2; r2; � � � ; st; at; rtf g,
where st represents the status of the Environment at time t, at is the word generated at time
t. Finally, the model calculates the loss function gradient and optimizes the model
parameters according to the loss value and the reward value as follows:

LðhÞ ¼ � 1
N

X

s

RðsÞ log phðsÞ ¼ �Es � ph ½RðsÞ� (16)

rhLðhÞ ¼ �Es � ph ½RðsÞ � r logphðsÞ� (17)

where phðsÞ is the probability that the model is generated and described as s, and N is the
number of samples. In order to improve the readability and fluency of the generated
captions, we refer to the literature (Pasunuru & Bansal, 2017b) using the method of mixed
loss in reinforcement learning to enhance learning. The proportion of cross entropy loss
Lce and reinforcement learning loss Lrl is adjusted by super parameter c. Reinforcement
learning is expressed as shown in Eq. (18).

Lmix ¼ ð1� cÞLce þ cLrl (18)

In video captioning, traditional reward methods include CIDEr, BLUE and METEROR.
Among them, CIDEr is a weighted evaluation index, which pays more attention to whether
the generated captions contain the focus of the image content. The evaluation index is
more consistent with the human evaluation method. Consequently, that we used cider as
the reward index of reinforcement learning.

Figure 5 Reinforcement Learning network model. Full-size DOI: 10.7717/peerj-cs.916/fig-5
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EXPERIMENTAL RESULTS AND ANALYSIS
Datasets and evaluation indicators
We chose the MSR-VTT dataset commonly used in the field of video captioning,
which contains 10,000 videos. Each video in the dataset contains 20 manually annotated
reference captions, which are partitioned by Xu et al. (2016) before training. Specifically,
it is divided into 6,513 as training data and 497 as verification data, and the rest as test
data. In addition, we extract video features through the concept-v4 network proposed by
Szegedy et al. (2017). The English annotation sentences in the above dataset were selected
for model training.

Four common evaluation indicators of ROUGE-L, METEOR, BLEU-4 and CIDEr-D
were used when evaluating the model (Denkowski & Lavie, 2014; Lin, 2004; Papineni et al.,
2002; Vedantam, Lawrence Zitnick & Parikh, 2015). The ROUGE-L index considers the
order of words in sentences and evaluates the meaning of sentences. The METEOR
indicator is based on the single-precision weighted harmonic average and the single word
recall rate. The evaluation results of this indicator are more relevant to the results of
manual evaluation. Bleu-4 index measures the semantic similarity between the generated
result and the target sentence by defining the number of 4-gram. The CIDEr index is often
set as an evaluation method in the field of image or video captioning. The method
represents a caption generated by the model and a real caption as a word frequency vector
and inverse word frequency vector, and uses cosine similarity to measure the captioning
performance. The evaluation index has higher reference value in the field of video and
image content captioning (He et al., 2020). The higher the percentage score of these four
standard evaluation indicators, the closer the generated captioning semantics to the real
captioning.

Parameter setting
During feature extraction, videos will be randomly segmented into 224� 224 frames. A
feature vector with 4,096 dimensions corresponding to the number of frames will be
obtained. Then process all the feature data into the same dimension 50� 4;096. The LSTM
decoder of the baseline model has a hidden layer size of 1,024. Before inputting the video
features into the model, the 4,096-dimensional feature is mapped to 1,024-dimensional,
and the word embedding is expressed as a 512-dimensional vector. The experiment uses
the Adam optimizer to train the network, and the initial value of the learning rate is set
to 0.0001. It can be reduced with the iteration of training. To prevent overfitting, we
introduce the vertical connection dropout method proposed by Zaremba, Sutskever &
Vinyals (2014), which can achieve the regularization effect. The initial value of all weights
that need gradient update is set to a uniform distribution on the interval [−0.08, 0.08].
The width size of Beam Search is 5 in the testing phase.

Result analysis
In order to verify the efficiency of the video content description model in this paper,
the current mainstream video description models are constructed under the same dataset
and evaluation index system. Among them, the POS-CG uses both a POS sequence
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generator and a description generator. It uses reinforcement learning to optimize the
model end-to-end (Wang et al., 2019). SAAT model strengthens the focus on predicates
and actions in sentences and enhances the recognition of action words. It gives more
consideration to the interaction between objects within the video (Zheng, Wang & Tao,
2020). Therefore, improve the logic and readability of the description. The Cident-RL
model uses a mixture of cross entropy loss and reinforcement learning loss. It adds
Entailment score into the reward mechanism to improve the readability of generated
description (Pasunuru & Bansal, 2017b). The SGN model mines the semantic information
in consecutive video frames and divides the video segments into units of different
information according to the semantics (Ryu et al., 2021). The experimental results are
shown in Table 2.

It can be seen from Table 2 that the method in this paper obtains BLEU-4 of 42.0,
METEOR of 28.8, ROUGE-L of 62.0 and CIDEr-D of 54.2, respectively. Compared with
the best SGN model among all comparison models, the BLEU-4 indicator is improved by
2.9%; Compared to the top-scoring model CIDEnt-RL on metrics such as METEOR,
ROUGE-L and CIDEr-D, our method scores 1.4%, 0.9% and 4.8% higher, respectively.
The reason is that the model in this paper inputs the extracted features into the encoder
composed of Vision Transformer after extracting features from the video using CNN
network. It can pay attention to local information and consider global features. In addition,
the introduction of LSTM networks preserves contextual timing information, which makes
the generated description more logical.

Video content captioning aims to generate more consistent captioning of video content.
Figure 6 shows some examples of our model in the MSR-VTT dataset. Each video data in
the figure lists three manually annotated captions and one model-generated captioning.
The model in this paper has the ability to generate more accurate and more readable

Table 2 Score comparison between models. Transformer-LSTM and Transformer-LSTM-RL denotes
the results implemented by ourselves.

Model B M R C loss

POS-CG (Wang et al., 2019) 38.3 26.8 60.1 43.4 XE

POS-CG (Wang et al., 2019) 39.6 27.5 61.3 50.8 RL

SAAT (Zheng, Wang & Tao, 2020) 40.5 28.2 60.9 49.1 XE

SAAT (Zheng, Wang & Tao, 2020) 39.9 27.7 61.2 51.0 RL

Cross-Entropy (Pasunuru & Bansal, 2017b) 38.6 27.7 59.5 44.6 XE

CIDEr-RL (Pasunuru & Bansal, 2017b) 39.1 28.2 60.9 51.0 RL

CIDEnt-RL (Pasunuru & Bansal, 2017b) 40.5 28.4 61.4 51.7 RL

SGN(G) (Ryu et al., 2021) 37.3 26.8 58.2 41.2 XE

SGN(V) (Ryu et al., 2021) 37.8 27.0 58.3 41.9 XE

SGN(R152) (Ryu et al., 2021) 39.6 27.6 59.6 45.2 XE

SGN(R101+RN) (Ryu et al., 2021) 40.8 28.3 60.8 49.5 XE

Transformer-LSTM 38.6 27.9 60.2 44.6 XE

Transformer-LSTM-RL 42.0 28.8 62.0 54.2 RL

Note:
The best results are in bold.
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captions compared the captions marked manually. The reason is that the model pays more
attention to the global feature of the video, so that it can consider the overall structure of
the video. In addition, manual annotation captions are often limited to personal knowledge
domains, interests, and language skills. As a result, the model can generate better
captioning, which also verifies the effectiveness of the proposed method.

Ablation experiment
In order to verify the advantages of the encoder module and reinforcement learning in the
video content captioning model, we completed an ablation experiment on the MSR-VTT
dataset. In detail, the LSTM-LSTM model generates video content captioning by using
the LSTM network as encoder and decoder. LSTM-LSTM-RL integrates reinforcement
learning on this basis, so that the weight parameters of the model are further optimized.
Compared with the original model LSTM-LSTM, the model has increased by 0.5%,
0.5%, 1.4% and 6.4% respectively under the four evaluation indexes. The experimental
results are shown in Table 3. It proves the effectiveness of reinforcement learning to
optimize video content captioning model. However, both of them have the disadvantage of
directly taking the final hidden layer state of the encoder as the input of the decoder.
The models lose the content of the middle-hidden layer of the encoder, resulting in low
model scores. Transformer LSTM model solves the problem, which replaces the encoder
with vision transformer coding block. The model can globally encode video features
and make full use of coding results in the decoding stage. Compared with the LSTM
network as the encoder, the model with the Vision Transformer coding block as the
encoder has achieved significant better results. The experimental results correspond to the
Transformer-LSTM-RL are shown in Table 3. In summary, updating the encoder and

GT1:a monkey and a cat playing;
GT2:a cat and a monkey are playing;
GT3:a monkey and a car are playing together;
Ours:a monkey and a cat playing together.

GT1:elephants resting in water full of lawn;
GT2:elephant are in the forest;
GT3:elephant is on the middle offorest;
Ours:two elephants are playing.

GT1:a little dog runs across the floor;
GT2:a puppy runs plays and explores;
GT3:a person is playing with a small dog;
Ours:a puppy is running.

GT1:a dog plays with a kitten.
GT2:a dog licking a cat.
GT3:a dog cleaning a kitten.
Ours:a dog plays with a cat.

Figure 6 Visual comparison of video content captioning examples generated by our model.
GT means real annotated captioning. Puppy image source: https://www.youtube.com/watch?
v=AOjL8AoGzIg; Monkey and cat image source: https://www.youtube.com/watch?v=YvF-ZTH28yI;
Elephants image source: https://www.youtube.com/watch?v=t1vzDlYTt1M; Dog and cat image source:
https://www.youtube.com/watch?v=8-24M3tdxe8. Full-size DOI: 10.7717/peerj-cs.916/fig-6
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introducing a reinforcement learning method improves the accuracy of the video content
captioning task.

CONCLUSIONS AND FUTURE WORK
We propose a new video content captioning method based on VIT and reinforcement
learning. We use the Transformer Encoder block of the VIT in the encoder, focusing on
the overall structure of the video content. In addition, we use reinforcement learning
and reward value from environment (captioning text and video) to optimize model
parameters and improve the captioning performance. Multiple experiments on the
MSR-VTT data set demonstrate the effectiveness of the proposed method measured by the
evaluation indicators of METEOR, BLEU, ROUGE-L and CIDEr.

In the video captioning task, the collection and labeling of training data often consumes
a lot of manpower and material resources. Therefore, in the future work, the zero-shot
and few-shot learning techniques can be used to achieve adequate optimization of the
model with less training data.
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