
Towards a component-based system model
to improve the quality of highly
configurable systems
Tehseen Abbasi1, Yaser Hafeez1, Sohail Asghar2, Shariq Hussain3,
Shunkun Yang4 and Sadia Ali1

1University Institute of Information Technology, PMAS Arid Agriculture University, Rawalpindi,
Punjab, Pakistan

2 Department of Computer Science, COMSATS University Islamabad, Islamabad, Pakistan
3 Department of Software Engineering, Foundation University Islamabad, Islamabad, Pakistan
4 School of Reliability and Systems Engineering, Beihang University, Beijing, China

ABSTRACT
Due to ever-evolving software developments processes, companies are motivated to
develop desired quality products quickly and effectively. Industries are now focusing
on the delivery of configurable systems to provide several services to a wide range
of customers by making different configurations in a single largest system.
Nowadays, component-based systems are highly demanded due to their capability of
reusability and restructuring of existing components to develop new systems.
Moreover, product line engineering is the major branch of the component-based
system for developing a series of systems. Software product line engineering (SPLE)
provides the ability to design several software modifications according to customer
needs in a cost-effective manner. Researchers are trying to tailor the software
product line (SPL) process that integrates agile development technologies to
overcome the issues faced during the execution of the SPL process such as delay in
product delivery, restriction to requirements change, and exhaustive initial planning.
The selection of suitable components, the need for documentation, and tracing
back the user requirements in the agile-integrated product line (APL) models still
need to improve. Furthermore, configurable systems demand the selected features to
be the least dependent. In this paper, a hybrid APL model, quality enhanced
application product line engineering (QeAPLE) is proposed that provides support for
highly configurable systems (HCS) by evaluating the dependency of features
before making the final selection. It also has a documentation and requirement
traceability function to ensure that the product meets the desired quality. Two-fold
assessments are undertaken to validate the suggested model, with the proposed
model being deployed on an active project. After that, we evaluated the proposed
model performance and effectiveness using after implementing it in a real-world
environment and compared the results with an existing method using statistical
analysis. The results of the experimental study proofs that the proposed model is
practically and statistically significant as compared to the existing method in terms of
effectiveness and participants’ performance. Hence, the statistical results of the
comparative analysis show that the proposed model improved ease of understanding
and adaptability, required effort, high-quality achievement, and version management
are significant i.e., more the 50% as compared to the exiting method i.e., less than
50%. The proposed model offers to assist in the development of a highly configurable
system that achieves the needed quality. Therefore, the proposed model manages the

How to cite this article Abbasi T, Hafeez Y, Asghar S, Hussain S, Yang S, Ali S. 2022. Towards a component-based system model to
improve the quality of highly configurable systems. PeerJ Comput. Sci. 8:e912 DOI 10.7717/peerj-cs.912

Submitted 15 December 2021
Accepted 10 February 2022
Published 7 March 2022

Corresponding author
Shunkun Yang, ysk@buaa.edu.cn

Academic editor
Noor Jhanjhi

Additional Information and
Declarations can be found on
page 25

DOI 10.7717/peerj-cs.912

Copyright
2022 Abbasi et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.912
mailto:ysk@�buaa.�edu.�cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.912
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

variation identification, versions control, components dependency for correct
selection of components, and validation activities from domain engineering to
application engineering.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Software Engineering
Keywords Agile software development, Highly configurable systems, Quality and process
improvement, Software product lines, Variability management

INTRODUCTION
Software development is a complex activity that involves knowledge management, fast
product development, a competitive market, multiple industrial aspects, and quick
advancement in technologies (Clarke et al., 2016; Giray, 2021). As a means of dealing with
all these complexities, using resources efficiently, and establishing control, software
development organizations mostly select those methods that help in the execution of the
software product development process within a given time. There are many methods
available for software development which includes traditional software development life
cycles like the waterfall method. The main problem with these methods is that they are not
flexible to changes and required more time for documentation and initial planning.
This significantly disturbs the time-to-market and may result failing of the software
product. On the other hand, agile ensures shorter releases, faster functionality delivery and
feedback, timely delivery, and increases quality (Dove, Schindel & Hartney, 2017; Camacho
et al., 2021). The development that would be carried with agile improves the pace of
adaptability and development, which is most important to satisfy market demands
(Klünder et al., 2019).

Software product line (SPL) engineering supports reusable common software resources
by following a predefined architecture and plan. The reuse of different predefined features
enables product tailoring to make it fit for customer needs (Aggarwal & Mani, 2019;
Camacho et al., 2021; Al-Hawari, Najadat & Shatnawi, 2021). SPL becomes a vital
paradigm for companies as it favors usability, cost, productivity, quality, and time (Krueger
& Clements, 2017, 2019; Chacón-Luna et al., 2019; Bolander & Clements, 2021). Variability
is the capacity of the product framework to be changed, re-configured, expanded, and
arranged for use in a particular context, hence becoming a central concern for researchers
and practitioners (Krueger & Clements, 2018; Carvalho et al., 2019; Wu et al., 2021; Ali
et al., 2021a). SPL aims to develop a time-efficient and cost-effective methodology for the
HCS by reusing its assets (Dintzner, van Deursen & Pinzger, 2018; Carvalho et al., 2019;
Ter Beek et al., 2020). Usually, standalone products adopt the whole variability model,
yet most of the features are different (Abal et al., 2018).

Nowadays, agile software development and SPL have become more popular in the
software development industry and both approaches are an authentic way of software
development (Hohl et al., 2016; Hayashi & Aoyama, 2018; Aggarwal & Mani, 2019;
Oriol et al., 2020; Kasauli et al., 2021; Kiani et al., 2021). The agile manifesto provides a

Abbasi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.912 2/29

http://dx.doi.org/10.7717/peerj-cs.912
https://peerj.com/computer-science/

better architecture to SPL with integrated methods along with SPLE (Chacón-Luna et al.,
2019; Klünder et al., 2019; Kiani et al., 2021). Recently, many researchers tried to
investigate both paradigms (Haidar, Kolp & Wautelet, 2017; Hayashi & Aoyama, 2018;
Krueger & Clements, 2018; Klünder et al., 2019) because both approaches share some
common goals like customer satisfaction, limiting costs, reduced time to market, quality,
and improved software productivity (Hanssen & Fægri, 2008; Aggarwal & Mani, 2019;
Klünder et al., 2019). After combining both methods, the researchers named them agile
product line engineering (APLE) (Hohl et al., 2018). APLE, the hybrid process model
having mutual benefits, satisfies the customers with their common objectives and needs.
Moreover, SPL handles variability identification, variability management, and selection of
the features. On the other hand, agile just need requirements to deliver the required
product (Mohan, Ramesh & Sugumaran, 2010; Abal et al., 2018; Chacón-Luna et al., 2019;
Kiani et al., 2021). These approaches are correspondingly categorized as reactive and
proactive software engineering approaches. Hence, both approaches have the same
objective of improving software development efficiency.

The main issues are dynamic variation and configuration which causes irrelevant
selection of components and variability management for reuse and restructuring due to
lack of documentation and component repository management during HCS development
based on APLE. Therefore, the objective of this research is to address the issues identified
from the existing literature and described in this section like the adaption of automatic
documentation of the initial document and the code. Moreover, the selection of the
components or features to reduce the dependency between the features and ensure the
quality of the final product variant by using test-driven development and requirement
tracing functionality, and finally the configuration of both processes to be suitable for HCS
development.

Research contributions
To overcome the mentioned problems, we develop and present a hybrid process model
preserving the benefits of both i.e., Agile-SPL and HCS. Following are the contributions of
this paper:

� A significant review of literature has been carried out to understand the existing studies
about agile SPLE and HCS. The review described that there is a need for a component-
based system model consisting of SPL-based features and developed under agile
methodology to improve the quality of HCS during verification identification, version
control, and management for reuse of components during development.

� To improve quality and productivity of HCS for SPL based component-based system a
QeAPLE Model is proposed for APLE for HCS based SPL to manage variabilities and
relevant selection of components depending on user feedback and reusability for
identification, managing, and selection of variation and their relevant components for
reuse and version control.

� To automate the QeAPLEmodel developed a prototype based on the designed algorithm
for the correct and relevant selection of components for reuse to manage variability

Abbasi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.912 3/29

http://dx.doi.org/10.7717/peerj-cs.912
https://peerj.com/computer-science/

during the development of SPL-based HCS products. The implemented in a real-world
environment to evaluate the performance of prototype and practice theory into practice.

� To evaluate the effectiveness of the proposed model, an empirical study is performed by
the practitioners with the help of the prototype in the real scenario for a practical
implication of the QeAPLE model.

� After that performed a comparative analysis in an empirical study to evaluate the
effectiveness of the QeAPLE model in terms of commonalities and variabilities
management in HCS with the existing method. We also evaluated the performance of
participants using the QeAPLE model as compared to existing methods. The existing
model which we used for comparative analysis selected from literature i.e., Arkendi
model (Mollahoseini Ardakani, Hashemi & Razzazi, 2018).

� The QeAPLE model provide guidelines and directions for researchers and industrialists
during dynamic variability management and selection of components for reuse and
restructuring in APLE during HCS development.

The rest of the paper is structured as follows: “Related Work” discusses the literature
review. Furthermore, it also discusses the research gap identified in the existing work.
“Quality Ensured Agile Product Line Engineering Process Model” provides the details
about the proposed process model and its components. It also describes the functioning of
the proposed model and its post and preconditions. “Experimental Evaluation” describes
the evaluation of the proposed model and a comparison of the experimental results
with the existing method. Finally, “Conclusion and Future Work” concludes the research
work and provides the possible future directions.

RELATED WORK
There are several research studies found in the literature that tends to integrate agile
software development with product line engineering to gain the benefits of both processes.
In Hohl et al. (2016) led a subjective study about integrating the agile process with SPLs
which is helpful for organizations to incorporate the end-user changes rapidly and launch
the software to the market in a timely fashion. Furthermore, they distinguish that the
advancement procedure can be improved by transparency, cooperation, adaptability,
productivity inside the developers’ group, and software quality grounded by the reuse
within the profit range. The highly configurable system requires the integration of the
features that are least dependent upon each other and could be modular as high as much
(Meinicke et al., 2016; Abal et al., 2018; Ter Beek et al., 2020). The agile SPL model should
be capable of providing the product with such characteristics. The quality of HCS is
difficult to analyze because of multiple variations of a single product. Consequently, a
comprehensive testing mechanism is required for the achievement of product quality
(Parejo et al., 2016; Abal et al., 2018; Kasauli et al., 2021). Yoder (2002) provided a tailoring
approach to manage the new variant according to the product line variant, and then
integration, as well as delivery of the final variant is carried out using an agile development
process. The main limitation in this approach is that the documentation part and the
component selection parts are not clearly described. It also does not address the HCS.

Abbasi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.912 4/29

http://dx.doi.org/10.7717/peerj-cs.912
https://peerj.com/computer-science/

Similarly, in Ghanam & Maurer (2010), the researchers tend to alter the variation
integration mechanism using the code refactoring method. The main problem with the
proposed method was that the mechanism is not optimized for the selection of the
independent features. Carbon et al. (2008) in their work improved the integration by test-
driven development (TDD) addition. This ensures the quality of the new variant. However,
it does not provide the mechanism to check component dependency, and development of
the configuration system at the time of feature selection. The researchers in existing
literature provide a comprehensive solution for the adoption of the integrated APLEmodel
(Haidar, Kolp &Wautelet, 2017;Hayashi, Aoyama & Kobata, 2017;Hohl et al., 2018; Kiani
et al., 2021). Haidar, Kolp & Wautelet (2017), proposed a comprehensive model for the
agile product line engineering process, still, it does not support feature selection or
components to make software highly modular. The proposed model not only provides
test-driven development for quality assurance but also provides insights into
documentation and variation management. The key issues in this approach are the
negligence of feature selection before using them in TDD, and incompatibility with HCS.
To solve these issues, a comprehensive method is required which will not only select the
least dependent component but also deliver the automatic documentation along with
requirement analysis for better variation management. The focus of this research is the
execution of comprehensive steps required to use agile techniques in iterative. The
approach used is reactive, which considers both application engineering AE and domain
engineering DE. The main limitation of this research work is that it doesn’t talk about the
quality of the end product. Moreover, it doesn’t discuss highly configurable systems
support in the proposed approach. Similarly, other works discussed above (Yoder, 2002;
Carbon et al., 2008; Ghanam & Maurer, 2010), have the same common issues in their
contributions. Hohl et al. (2018) and Kiani et al. (2021) identified that the application
engineering process doesn’t provide detailed feedback to the domain engineering phase,
which is mainly responsible for version management. The researcher improved the APLE
process by making it semi-automatic and allowing the application engineering process to
send feedback to the domain engineering process. The main limitation of the existing
approach is that it cannot improve end-product quality. check the feature dependency
while selecting the features for the new product. To improve the APLE model, a scoping
mechanism for the APLE process is proposed (da Silva, 2012). It allows improved version
management and provides better version control. The main limitation of this study is that
the process is not favorable for HCS, as HCS requires an improved feature selection
process by first checking their dependency. Moreover, it does not talk about achieving the
quality of the end-product to get the most useful information from the application
engineering process, to aid the domain engineering process (Tian, 2014). It has been
determined that domain engineering requires much information to improve version
control. The main drawback of this mechanism is that it doesn’t ensure the quality of the
end product. Moreover, it doesn’t talk about feature dependency checks while selecting
features for the new product. O’Leary et al. (2012) mainly focused on the application
engineering part of APLE rather than domain engineering. The main aim of the proposed
mechanism was to ensure product quality. The mechanism tends to improve testing of the

Abbasi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.912 5/29

http://dx.doi.org/10.7717/peerj-cs.912
https://peerj.com/computer-science/

product to ensure the quality of the end product. The proposed mechanism’s main
limitation is that it does not talk about version control, and the feature selection process is
also faulty that needs much improvement. Cardoso et al. (2012) identified the need for the
APLE model to produce a security surveillance system. To address the problem, the
researcher proposed the APLE model for security surveillance system production. The
main limitation of this research work is that it doesn’t properly focus on the application
engineering process and tends to achieve quality by test-driven development. Moreover,
the feature dependency is also needed to be analyzed while configuring them to make a
new product. Similarly, Abal et al. (2018) proposed the APLE framework for large
production units and industries. The researcher identified that the existing APLE models
are only configured for small and medium enterprises. It needed to be re-tailored for large
industries. The proposed framework doesn’t support the quality achievement of the
product and it doesn’t identify the feature dependency while making their selection for a
new product variant. In another work, Hohl et al. (2018), performed an analysis for the
proposition of the APLE model for the automobile variants. Researchers analyzed that the
application engineering process for automobiles is very important compared to the
domain engineering process. To provide a comprehensive APLEmodel, the researcher first
identified the appropriate recommendations, and then based on these recommendations,
they proposed a novel model for the automobile industry. The main problem with the
proposed mechanism is that the mechanism doesn’t support quality assurance and
variability management. Moreover, the feature dependency check was also missing in the
proposed mechanism.

Improvement of version management is also an important aspect. Ghanam & Maurer
(2010) mainly focused on the improvement of version management for the APLE process.
The main improvement they introduced was the refactoring process that provides the
classified information for each of the versions. The main drawbacks include the quality
check of the product being ignored while the feature dependency is also neglected while
selecting the components for a new product variant. Besides version management,
improvement in the APLE process to make it fast in the initial planning is also desired.
The possible improvement in the APLE process identified in different studies and
improves the initial planning of the product. Along with that, the quality checking of the
work is also done and highlighted that the proposed mechanism is not able to provide
comprehensive version management and feature dependency check.

Apart from providing the APLE model in the automotive industry and surveillance
camera production units, literature identified the need for the APLE process for enterprise
systems that is relatively complex to handle. Researchers in this research proposed an
APLE model for enterprise industries (Dove, Schindel & Hartney, 2017; Hohl et al., 2017;
Klünder, Hohl & Schneider, 2018; Uysal & Mergen, 2021). The main limitation of this
research work is that it doesn't check the feature dependency while selecting new products.
In Hayashi, Aoyama & Kobata (2017), Klünder, Hohl & Schneider (2018) and Kiani et al.
(2021) integrated APLE process. This process is typically comprised of the scrum as an
iterative application engineering process. The main limitation of the proposed approach is
that it doesn’t provide much feedback and nor is there any automatic documentation

Abbasi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.912 6/29

http://dx.doi.org/10.7717/peerj-cs.912
https://peerj.com/computer-science/

module. Furthermore, there is a high need to maintain version control, which depends on
the feedback that came from the application engineering process. da Silva et al. (2014),
Klünder et al. (2019), Kasauli et al. (2021) and Camacho et al. (2021) emphasized that there
is currently no APLE model that completely provides all the details of the integrated
process. To address the identified problem, researchers proposed a new, fully
comprehensive APLE model with all necessary steps required to produce a new variant
iteratively. Still there is limitation of lack of a dependency check while selecting the
features. The requirement of a transformation model for converting the production from a
traditional SPLE process to an agile SPLE process is significant. Klünder, Hohl & Schneider
(2018) proposed a new transformation model that helps the industry to follow the
APLE model for the production of new variants. The main limitation of the proposed
approach is that there was no definition of version control and quality achievement
module. Furthermore, the feature dependency check is also a must, which is missing in the
proposed approach.

These features are very useful, and hence they are more user centric. The model is built
on a merge algorithm to make the feature model more comprehensive and efficient.
The main limitation of the proposed approach is that the model does not provide the
quality achievement of the final product. Moreover, the proposed model also fails to
provide feature dependency and analysis checks before their integration into the new
product. da Silva et al. (2014) presented a new agility-based approach for scoping the
product line details. These details are gathered using communication and interviews with
the customer and more focus on user involvement to help the developer to deliver the
product of the required quality. The main limitation of the proposed approach is that it
doesn’t talk about the quality of the product. Moreover, feature dependency is also not
checked while selecting the features for the new product variant.

The key issues in this approach are the negligence of feature selection before using them
for validation after variation are irrelevant, and incompatible with HCS. Therefore,
variation identification, variation management, and mapping are important to manage
version control and relevant selection reuse components with proper documentation,
repository management, and valid identification of test cases of selected reuse components.
To solve these issues, a comprehensive method is required which will not only select the
least dependent component but also deliver the automatic documentation along with
requirement analysis for better variation management. The summary of a literature review
is discussed in Table 1. Therefore, in proposed model resolves the identified problems by
correct variation identification, accurate dependency of selected components, and
validation of reuse components for variation in a new product.

QUALITY ENSURED AGILE PRODUCT LINE ENGINEERING
PROCESS MODEL
A novel agile-enabled software product line engineering model is introduced based on the
scrum process presented in Mollahoseini Ardakani, Hashemi & Razzazi (2018), and the
frameworks proposed in Mellado, Fernández-Medina & Piattini (2010). This model will
provide support for the configuration and development of highly configurable systems.

Abbasi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.912 7/29

http://dx.doi.org/10.7717/peerj-cs.912
https://peerj.com/computer-science/

The architectural representation of the proposed model is shown in Fig. 1. The Proposed
Model is explained in detail with valid Component selection along with its algorithm
and prototype based on variability management using reusability and user feedback.
Therefore, the proposed model bridges gaps from the user requirements identification and
validation in a system based on reuse and restricting with complete documentation to
manage variability. This helps in managing the complexity and resources of HCS during
developing a series of HCS products from requirements to validation.

Thus, the proposed model is composed of two processes as in any other SPLE process
i.e., domain engineering and application engineering. Domain engineering controls the
development and maintenance of the domain and its related product development aspects
like designs, features, and variability management. Moreover, all the aspects of the domain
are managed in this process. On the other hand, the application engineering process
controls the application-related tasks and aspects. The analysis of the application strategies
like business goals and marketing strategies is also considered. After that, the application
designing, implementation, and testing of the software variant are done in this process.
The main components in the proposed model include dependency evaluation, variation
management, documentation, and traceability testing. The problems identified in the
previous versions include the lack of documentation for the component’s selection and test
suitcases pickups along with the end-user requirements. These requirements help the
developers to provide the software of desired quality by tracking the requirements back to
ensure the existence of all the functional and non-functional requirements in the system.

Moreover, the proposed model provides the classification of identified variations and
commonalities based on their dependencies. These dependencies provide the list of the

Table 1 Summary of literature review.

References [16] [17] [18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28]

Documentation ■■ ■■ ◻◻ ■◻ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■
Variation management ■◻ ◻◻ ■◻ ■◻ ■■ ■◻ ■◻ ■◻ ◻◻ ■■ ■■ ■■ ■■
Domain knowledge ■◻ ■◻ ■■ ■■ ■■ ◻◻ ■◻ ■■ ■■ ■◻ ■◻ ◻◻ ■■
Commonalities ■◻ ■◻ ■■ ■◻ ■◻ ■◻ ■◻ ■◻ ■■ ■◻ ■◻ ■◻ ◻◻

Version control ■◻ ■◻ ■■ ■◻ ■◻ ■◻ ◻◻ ■◻ ■◻ ■■ ■◻ ■◻ ■◻

Work synchronization ◻◻ ◻◻ ◻◻ ■◻ ■■ ■◻ ◻◻ ■■ ■■ ■■ ■■ ■◻ ■◻

Lack of knowledge reusability ◻◻ ◻◻ ■■ ■■ ■■ ◻◻ ■◻ ■◻ ■◻ ■■ ■■ ■◻ ■■
Configuration Management (HCS) ■■ ■◻ ■◻ ■◻ ■■ ■■ ◻◻ ■■ ■■ ■■ ■■ ■◻ ■◻

Component selection ■◻ ■■ ◻◻ ◻◻ ■■ ■◻ ■■ ■■ ■◻ ■■ ■■ ■■ ■◻

Component testing ◻◻ ■◻ ■■ ◻◻ ■■ ◻◻ ◻◻ ■◻ ◻◻ ■■ ■■ ■◻ ■■
Task allocation for teams ■■ ◻◻ ■◻ ■◻ ■■ ■■ ■■ ◻◻ ◻◻ ■■ ■■ ■■ ■■
Component validation ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■ ■■
Tool availability ◻◻ ◻◻ ■■ ■◻ ■■ ■■ ■◻ ■■ ■■ ◻◻ ◻◻ ■■ ■◻

Information sharing ■■ ■■ ■■ ■■ ■■ ■■ ■◻ ■■ ■◻ ■■ ■■ ■◻ ■◻

Mentioned = ■■ Partially mentioned = ■◻ Not mentioned = ◻◻

Abbasi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.912 8/29

http://dx.doi.org/10.7717/peerj-cs.912
https://peerj.com/computer-science/

dependent features for the selected component. A detailed discussion about the
components of the proposed model is given below.

Main entities of proposed process model
This section discusses the entities that are part of the proposed model. These entities are
important to understand the complete working of the proposed mechanism. We used
QeAPLE as a basic tool for component selection and validation. For task allocation, design,
and development work synchronization as well as team coordination and communication
and documentation version management, we have used a team server foundation
repository with a prototype repository to align all the activities of the proposed model.

Application requirements

When a new product or its variant is going to be developed, the very first thing is
requirement gathering. These requirements are the instructions from the end-user or from
the market that must be incorporated in the software going to be developed. For
correctness and completeness, we consider the diverse perspective of stakeholders and
involve stakeholders during requirements analysis and prioritization. Whenever the new
requirements are gathered from the users, these requirements are checked in the
domain assets repository based on cased based reasoning steps i.e., to identify new
requirements based on domain expert review and experience, to find similar requirements
for reuse and restricting from a repository, modified requirements according to a new
system and refine non-similar requirements to get complete and correct requirements.
This improves the relevant selection of components for reuse and restructuring of

Figure 1 Proposed model. Full-size DOI: 10.7717/peerj-cs.912/fig-1

Abbasi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.912 9/29

http://dx.doi.org/10.7717/peerj-cs.912/fig-1
http://dx.doi.org/10.7717/peerj-cs.912
https://peerj.com/computer-science/

components with high productivity. After the selection of the components and features,
the components are checked for their dependency. The component with the least
dependency is selected from the list of identified components against each requirement.

Common reference architecture
Any company offering or maintaining the SPLE process has a generic architecture that
includes all the core functionalities. These functionalities or features are then tailored
according to the requirements of the end-user to make a new variant of the existing
domain. This will help the developers to tackle the new product more efficiently. The
architecture is also used for the identification of commonalities and variations for the new
product. These variations are done in the form of classes and stored in the documentation
of that particular product.

Variation and commonalities identification
When the requirements for the new product variants are received from the end-users,
these requirements are then moved towards the generic domain architecture and product
domain version control. From these modules, the variation and commonalities from
the previous versions are identified. The identification for these variations is very
important as these provide the identification face to the various versions of the product
domain.

Component selection
According to the received requirements, the components need to be selected from the
database of the domain assets. These lists of components are then further sorted into single
components list. These components have a list of features’ information related to the
product domain. These features are allowed to be reused in every variant corresponding
to that product domain. We used steps of “case-based reasoning” which were adopted
from the study (Ali, Iqbal & Hafeez, 2018; Ali et al., 2021b). The interfaces are of the
QeAPLE prototype tool is depicted in Figs. 2 and 3. These interfaces of the prototype
describe the functionalities of the component selection after identification of changes in
HCS based SPL systems using case-based reasoning steps as explained earlier with the
involvement of experts and stakeholders.

Dependency evaluation
This is one of the major portions of the proposed process model in this research work.
This module ensures and provides details about the dependency of the most suited
component to the requirements with other selected components in the software. The main
objective of this module is to clear the dependency of the most suited component or
feature. This module finds the most suited component of the least dependency of the assets
and then forwards the component to the next phase.

Component testing
The selected components then undergo the testing phase before the integration of these
components to form a final product. The tests are selected from the test suits, a big
repository, for the retesting of the components. The main objective of this module is to

Abbasi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.912 10/29

http://dx.doi.org/10.7717/peerj-cs.912
https://peerj.com/computer-science/

ensure the desired quality of the product. According to the requirement and component,
the suitable test suit is extracted and applied to the component. If the component does not
conform to the required functionalities, the component is then rejected otherwise it is
selected for the integration.

Test suit cases repository
This is another repository for the particular product domain. This repository is mainly
composed of the test cases corresponding to the components of the product domain. These
test cases are classified according to the level of non-functional requirements of the
end-users and the type of functionality it offers. These test cases are selected on the go
when a new component needs to be entered into the product. The interface is of the
QeAPLE prototype tool is mentioned in Fig. 4.

Documentation
This is the second most important module in the proposed process model. The
documentation provides the facility to store the initial details of the new variant of the

Figure 2 App prototype 1. Full-size DOI: 10.7717/peerj-cs.912/fig-2

Figure 3 App prototype 2. Full-size DOI: 10.7717/peerj-cs.912/fig-3

Abbasi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.912 11/29

http://dx.doi.org/10.7717/peerj-cs.912/fig-2
http://dx.doi.org/10.7717/peerj-cs.912/fig-3
http://dx.doi.org/10.7717/peerj-cs.912
https://peerj.com/computer-science/

product. Along with that it automatically includes the technical details about the products.
Furthermore, this documentation helps to ensure the existence of all requirements in the
product variant.

Flow of the proposed process model
This section discusses the flow of the proposed model to elaborate on the beneficial
outcomes of the proposed model. The complete state transition diagram of the proposed
process model is shown in Fig. 1.

The process starts with gathering the requirements. Furthermore, to remove the
ambiguity these requirements are made clear by using any of the best requirement
gathering methods one of which is proposed by (Geogy & Dharani, 2016). After the
collection of the requirements, these requirements are further provided to the generic
domain architecture and the domain asset repository. The generic domain architecture
provides the detailing of the functional and non-functional properties of the domain
product, and this helps in the extraction of the design of the new variant going to be
developed. Furthermore, it also helps the identification of the commonalities and
variations for the new variant.

After the identification of variants, these variations are further moved to the variation
management and version control module where the new version under the corresponding
class is stored. After that, the requirements and the variations for the new product
variant are added to the documentation maintained for that particular product version.
This will help the developer to maintain the software and provide a valid update according
to the market needs and requirements.

For the selection of the most suitable components and features that conform to the new
requirements for the new product variant, the domain asset repository is used. In that
repository, the most suitable components are filtered out among the lists of the
components. After the selection of the most suitable components and features, the selected
components are provided to the dependency checker module that confirms the

Figure 4 App prototype 3. Full-size DOI: 10.7717/peerj-cs.912/fig-4

Abbasi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.912 12/29

http://dx.doi.org/10.7717/peerj-cs.912/fig-4
http://dx.doi.org/10.7717/peerj-cs.912
https://peerj.com/computer-science/

dependency of the selected module. This process continues in the iteration, and each
component with the least dependency is finally selected at this stage.

After the selection of the least dependent components and features, the next step is the
integration of these components to provide the desired software. But before the integration
of these components, there is a phase where these selected components are get tested
using the predefined test cases. These test cases are provided by the test case repository.
This repository provides the test cases based on not only the functional properties of the
product but also encounter the non-function aspect of the new product variant. Thus,
it ensures the desired quality of the product. Afterward, the tested components are allowed
to integrate while misfit or failed modules are again turned back and for them, replacement
is arranged.

After the completion of the product, the used components and their corresponding test
cases are stored in the documentation that is maintained for that particular product
variant.

EXPERIMENTAL EVALUATION
This section provides a discussion about the empirical evaluation of the proposed model.
For that, an experiment is conducted in which the proposed approach is evaluated. The
evaluation is made regarding the ease with which the proposed approach can understand
and adapt by the practitioners, expected effort required to execute the proposed model,
quality achievement of end-product achieved by using the proposed model, complexity
reduced by the model for maintenance of end-product variant and improved version
management for variants. The experimental details, conducted for the validation of the
proposed approach are discussed below.

Experiment design
The main objective of this evaluation is to know how it affects the development process
of SPL; the experiment is conducted to compare the proposed model with one that is
closely related to our approach (Mollahoseini Ardakani, Hashemi & Razzazi, 2018). The
reason to select a single model for comparison is that mostly followed and adopted by
researchers and industrialists respectively. And have lacked some of the main features in
the selected model relevant HCS variability management by mapping requirements and
validation activities after the identification of a relevant selection of components.

In this experiment, the proposed process model is used by the treatment group and the
previously proposed process model e.g. (Mollahoseini Ardakani, Hashemi & Razzazi,
2018) by the control group. The comparison of both models will allow a better
understanding of the improvement of the proposed model with the previous one. The
selection of the previously proposed approach is based on the following reasons.

Practical Relevance: The process model proposed in Mollahoseini Ardakani,
Hashemi & Razzazi (2018), resembles the proposed process model in the sense that it also
provides the integration of agile in the AE of the SPL process. The comparison will provide
validations about the practitioners’ aspect from adopting the proposed process model.

Abbasi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.912 13/29

http://dx.doi.org/10.7717/peerj-cs.912
https://peerj.com/computer-science/

Time Limitation: There are some other SPLE based frameworks and models, but due to
the shortage of time, this research work is confined to the comparison with only one
proposed work.

The Goal, Research Questions, and Hypotheses: The goal of this experiment is the
comparison of a proposed process model with one of the existing process models
(Mollahoseini Ardakani, Hashemi & Razzazi, 2018) based on the ease in understandability,
required effort, desired quality achievement, required maintenance complexity, and
improved version management matrices. Depending on these comparison scales, the
following research questions are derived.

RQ1: Does the ease of adaption and understandability is improved?

RQ2: Does reducing the effort required to execute different phases is reduced?

RQ3: Does the development of desired quality product variant is achieved?

RQ4: Does the maintenance cost and effort of the developed product are minimized?

RQ5: Does the variation management of the product is increased?

The next step is the formulation of the hypotheses required to be approved or
disapproved based on the experimental results. The null hypotheses of the experiment
states that there is no difference between both proposed models based on the degree of
ease, required effort, desired quality achievement, maintenance complexity, and improved
version manageability. The definition of the null hypotheses for the defined research
questions is given in Table 2.

Independent and dependent variables
In any empirical experimentation, there are two types of variables definition i.e., dependent
variable and independent variable. The change is done in the dependent variable and its
effect is measured in the independent variable. As the name suggests, the dependent
variables are the variables that are dependent on treatment and show some behavior on
getting change. The deviation of this change is measured on independent variables. In this
experiment, the dependent variable is dependency evaluation while selecting the
component, automatic initial documentation of user stories, traceability orientation testing
of end-product, and dependency matrices-based version management of components.
Independent components in these experiments are ease of adaptability and understanding,

Table 2 Null hypothesis.

RQs Hypothesis

RQ1 H0: There is no difference between the existing and proposed model with respect to ease of adaptability and understandability.

RQ2 H0: There is no difference between the two models based on the required effort to execute various phases of model.

RQ3 H0: There is no difference between the existing and proposed models with respect to the achievement of desired quality product variant.

RQ4 H0: There is no difference between the two models corresponding to the maintenance complexity.

RQ5 H0: There is no difference between the proposed and the existing models based on the improvement in the version management of the product
variant.

Abbasi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.912 14/29

http://dx.doi.org/10.7717/peerj-cs.912
https://peerj.com/computer-science/

required effort, ability to achieve desired quality product variant, maintenance complexity,
and version management of the product variants. The selected dependent and independent
variables are shown in Tables 3 and 4 respectively.

Experiment case
A case is a contemporary phenomenon for a better explanation in its real-life context
(Geogy & Dharani, 2016). In this research work, a case is a course project conducted at
COMSATS University Islamabad, Pakistan with two groups of students. These are the
students who have studied the courses including the knowledge of coding, architecture,
agile methodologies, and have some knowledge about the product line engineering
processes and HCS. To remove the biasness, these students were all provided with definite
classes in SPL and a HCS. Each group is composed of 30 students. The group of the first
30 students is named group A and the group of other 30 students is named group B.
Group A is a control group while group B is the treatment group. A control group is a
group that is used to measure the effect of change when the newly proposed approach is
applied to the treatment group. Group A apply existing method on the given requirements
of projects for new HCS product development based on APLE with complete previous
version information. Similarly, group B developed product based on the steps of proposed
model. All the participants were trained according to their methods which they apply
during the development of HCS for a high-quality product. After the training of all the
students, they applied their methods based on APLE on HCS development. Further,
15 subgroups were formed in each group i.e., 2 students per group. Each group was given
the same domain line project idea of developing and maintaining the inventory system
product line. Group A followed the existing process model to manage the domain and to
generate a new variant. While group B was given the proposed process model to develop
and maintain the product line and its corresponding variant.

Table 3 Independent variables.

NO# Independent variables

1 Ease of adaptability and understanding

2 Required effort

3 Ability to achieve desired quality product variant

4 Maintenance complexity

5 Version management of the product variant

Table 4 Dependent variables.

NO# Dependent variables

1 Dependency evaluation while selecting the component

2 Automatic initial documentation of user stories

3 Traceability orientation testing of end-product

4 Dependency matrices-based version management of components

Abbasi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.912 15/29

http://dx.doi.org/10.7717/peerj-cs.912
https://peerj.com/computer-science/

Summarizing the above discussion, the case is an activity that is performed in this
experiment to check the worth of the proposed process model based on the matrices
selected as the independent variables mentioned below:

� Ease of adaptability and understanding

� Required effort

� Ability to achieve desired quality product variant

� Maintenance complexity

� Version management of the product variants

Experimental process
The main steps of the experiment are described in Fig. 5. The first step is to provide the
students and team of selected organization project requirements are collected and
transferred to every member of the company using various tools like Microsoft Teams,
Cooja, etc., for the basic details about the tasks they must perform. The reason to adopt
various methods for communication used instead of single platforms is that the team
and students participating in the experiment were distributed location-wise and have
different communication languages and use a different medium for communications. After
providing them with the required knowledge, the total number of 60 students was divided
into two groups labeled (30 in each group) as i.e. A (treatment group) and B (control
group). The next step after the division of the group is the provision of the details about the
existing SPLE process and model to the control group and the proposed process model
to the treatment group. After all the initial setup and provision of details, students are
allowed to develop and maintain an inventory management system as a domain product
and to allow the extraction of the various product variants. The domain development
and maintenance are lengthy tasks. So, to provide the students with ease, an already
developed domain product was taken as a test-bed. This domain product line is provided
by a software company named Alachisoft located in Islamabad. After that, each group was
asked to provide a new product variant from the domain assets using both models.

Participants
There are some constraints during the selection of the participants for the software
experiment. It is difficult to receive relevant outcomes if the experiment has insufficient
participants and if the sample is not representative enough, then test effects can be debated.
Ro & Kubickova (2013) suggest that in various disciplines students are used as an
experimental subject and lots of debates are taking place for many years among the
scientific community of using the student as a research subject. It is an extended debate in
the research network for treating students as subjects in case studies and experiments.
Participants selected for the execution of the experiment were third-year students who
have studied agile development methods, software engineering, and software architecture.
Along with that these students also have special courses for the knowledge of SPLE and
HCS. The required tasks for the execution of the experiment are provided to the students
in the fall semester from Sept 16, 2019, to Nov 28, 2019.

Abbasi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.912 16/29

http://dx.doi.org/10.7717/peerj-cs.912
https://peerj.com/computer-science/

To remove the biasness, the selection of the students was made randomly, and it is
ensured that all the students have the approximately same skill set. According to the setup,
the control group experimented, using the existing process model, and the treatment group
experimented using the proposed process model. For the evaluation of the skill level
and experience of the students selected as participants, a questioner was used. Most of the
participants undergo their BS final projects. Among 60, 32 students were involved in
industrial projects, 18 students performed excellence in their bachelor’s degree and were
awarded medals. Furthermore, these students were also asked if any of them has
undergone any open-source project. In which six students admitted that they have
performed open-source projects. Finally, the students were asked to mention their level of
expertise between beginner, mediator, and experience in software engineering. Among
them, 26 students went with beginners, 22 students said they are a mediator, and the
remaining 12 students go with experienced. Student demographic information is shown in
Table 5.

Algorithm
The purpose of the algorithm is to identify the parameters like selecting suitable
components. This algorithm helps practitioners in the selection of less dependent
components. Developed a tool as a prototype for the QeAPLE in which this algorithm is
implemented. Requirements are the input for the algorithm and the list of the least

Figure 5 Experimental process. Full-size DOI: 10.7717/peerj-cs.912/fig-5

Abbasi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.912 17/29

http://dx.doi.org/10.7717/peerj-cs.912/fig-5
http://dx.doi.org/10.7717/peerj-cs.912
https://peerj.com/computer-science/

dependent module is the output of the algorithm. At the initial stage, dependent variables
are initialized to null values. The steps of the algorithm are mentioned below:

Analysis of experimental data
This section contains a discussion about the statistical analysis of the data gathered from
the experiment by filling questioner from students. The questioner helps in collecting
and analyzing data after experimenting to evaluate the effectiveness of the proposed model
and performance of participants of both groups using the proposed model and existing
model. The effectiveness of the proposed model was used to analyze whether the identified

Table 5 Student demographics information.

Courses Academic projects Industry projects Open-source projects Experience level

ASE, SDLC, HCS, SPLE Less than 3 (28 Students) No project (19 Students) No projects (37 Students) Expert (5 Students)

ASE, SDLC, HCS, SPLE More than 3 or less than 8 (22 Student) Between 1 and 5 (35 Students) One to five (21 Students) Mediate (40 Students)

ASE, SDLC, HCS, SPLE More than 8 (10 Students) More than 5 (6 Students) More than 5 (2 Students) Beginner (15 Students)

Algorithm 1 Selection of suitable components.

Input: RQS List of Requirements

Output: MLD List of Least Dependent Module

1. RQS: {R1, R2, R3, …, Rn}

2. Modules: {M1, M2, M3,…, Mm}

3. Modular_Dep ← N //Assign Dependency Value

4. MSuit ← Ø

5. MSel ← Ø

6. MLD ← Ø

7. For each r ∈ RQS

8. For each m ∈ Modules

9. if (r ⊆ m)

10. then MSuit ← MSuit ⋃ m

11. End For

12. End For

13. For each s ∈ MSuit

14. if (s ≤ Modular_Dep)

15. then MSel ← MSel ⋃ s

16. End For

17. For each x ∈ MSel

18. For each y ∈ MLD

19. if x < y

20. then MLD ← MLD ⋃ x

21. MLD ← y

22. End For

23. End For

24. Return MLD

Abbasi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.912 18/29

http://dx.doi.org/10.7717/peerj-cs.912
https://peerj.com/computer-science/

problems from the literature were resolved. Similarly, the performance of participants
helps in proofing satisfaction level of the participants in terms of understandability, effort,
time, and cost. To evaluate the results, a quantitative analysis procedure is adopted. The
analysis of the data starts with the data normality check. For this purpose, several empirical
tests including qqnorm, qqline, Shapiro wilk, and Anderson darling test are executed.
The p-value obtained from the tests is shown in Table 6. As the p-value is less than the
significance level, which shows that the data is not normal. So, to validate such data, the
Mann–Whitney U test is executed for the comparison of the independent variables
(Ghasemi & Zahediasl, 2012).

RQ1: easy to adapt and understand
The experimental data obtained for easy understandability and adaptability is normally
distributed as shown in Table 6. Therefore, to test the hypothesis formulated for RQ1, the
Mann–Whitney U test is applied, and to find the direction of change, the A12 test is
applied (Narasimhan et al., 1986). The results of these tests are clearly described in Table 6.
As shown in Table 6, the p-value for group A and group B are 0.00032 and 0.0019 for
the variable easy to understand. Furthermore, the graphical representation of these results
is shown in Fig. 6.

According to the results of the test, there is a significant difference between the existing
and the proposed process model based on the ease of understandability and adaptability.
This shows the superiority of the proposed process model over the previous one.
Along with A12, the mean values were also calculated by filling the questioner from the
subjects, which also supports the arguments about the excellence of the proposed process
model. Finally, the null hypothesis formulated for RQ1 is rejected and as a result, the
alternative hypothesis is accepted.

RQ2: expected effort
To calculate the effort required to follow the process model, the total time consumed
for executing the proposed model is selected as a parameter. The total time required to
follow for each activity is calculated and then added to get the overall time. After the
execution of the experiment, the subjects are asked to fill the questioner to get their

Table 6 P value.

Measure Data normality Null hypothesis P-value A12 Cohens D

Group A (P-value) Group B (P-value)

Easy to understand 0.00032 0.0019 0.01 0.64 0.51

Effort required 0.0005 3.931e-05 0.03858 0.62 0.47

Better quality achievement 5.095e−05 0.00037 0.00681 0.67 0.67

Maintain complexity 0.000667 0.00335 0.031 0.64 0.51

Improved version management 0.00049 0.00093 0.03803 0.625 0.46

Notes:
A12: In comparison between Group A (Control Group) and Group B (Treatment Group) where P-value < 0.5, If A12 < 0.5 then Group A is better than Group B else if A12
> 0.5 than Group B is better than Group A.
Cohens D (d): If d >= 0.8 than significance is large, if d <= 0.5 than significance is medium and if d < 0.2 than significance will be small.

Abbasi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.912 19/29

http://dx.doi.org/10.7717/peerj-cs.912
https://peerj.com/computer-science/

opinions. After getting the responses from the subjects, the normality test is applied to it
which finds out that the data is not normally distributed. To evaluate the proposed
hypothesis for RQ2, the non-parametric test i.e., Mann–Whitney U, is applied to the data.

The result obtained from the statistical tests is shown in Fig. 7 and describes the time
required to complete different tasks. To find the direction of the significance for both
the process models, the A12 test is applied, the result of which is shown in Table 6. To find
the magnitude of the difference the Cohens-D test is applied, the result of which is shown

Figure 7 Expected effort. Full-size DOI: 10.7717/peerj-cs.912/fig-7

Figure 6 Ease of understandability and adaptability. Full-size DOI: 10.7717/peerj-cs.912/fig-6

Abbasi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.912 20/29

http://dx.doi.org/10.7717/peerj-cs.912/fig-7
http://dx.doi.org/10.7717/peerj-cs.912/fig-6
http://dx.doi.org/10.7717/peerj-cs.912
https://peerj.com/computer-science/

in Table 6. The test results of Cohens-D show that there is a medium difference between
both the process models. Finally, the results of the experiments reject the null hypothesis
and thus the alternative hypothesis is accepted.

RQ3: Better quality achievement
To calculate the degree to which the quality of the product variant is achieved for both the
process model, the specifications of the parameters were collected and shown to the
practitioners, practitioners filled the questioner after reviewing the requirements for the
product and the new product variant. To check the normality of the data, the normality
test was applied which provides the details about the normality of the data. To evaluate
the hypothesis proposed for the RQ3, the non-parametric test was applied to the data
whose p-value is shown in Table 6. The result obtained from the statistical tests is shown in
Fig. 8.

Furthermore, to find the direction of the significance, the A12 test is applied which
shows that the proposed process model is more effective and good as compared to the
existing one. After finding the direction, the next check was the evaluation of the
magnitude of the difference between both the process models. For this purpose, the
Cohens-D test was applied, which proves that there is a medium difference between both
the models. Therefore, the null hypothesis is straight-away rejected, and the alternative
hypothesis is accepted.

RQ4: Maintenance complexity
To evaluate the total amount of complexity for the maintenance and updating of the
product, every group was asked to make some changes in the newly developed product
variant. Here they first need to identify the corresponding change, then selection of the
proper component, and finally the testing and integration. The evaluation parameter

Figure 8 Achievement of desired quality. Full-size DOI: 10.7717/peerj-cs.912/fig-8

Abbasi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.912 21/29

http://dx.doi.org/10.7717/peerj-cs.912/fig-8
http://dx.doi.org/10.7717/peerj-cs.912
https://peerj.com/computer-science/

selected for the validation of maintenance complexity was the total time, taken by the
groups to maintain or incorporate updates in the newly developed product variant. To get
the statistical data, the questionnaire was filled by the subjects, and the total time taken for
the incorporation of updates was recorded as shown in Fig. 9. The incorporation of
practitioner’s advice is important here to acknowledge the accuracy with which the
updates are performed in the developed system. The mean values gathered from the test
undergoes for the normality test. The normality test provides the information that the data
is not normally distributed and thus for the evaluation of the hypothesis, the non-
parametric test will be used.

After checking the normality of the data, the Mann–Whitney U test was applied whose
result is shown in Table 6. This shows that there is a difference between both approaches
as the p-value is less than 0.5. To find the direction of the magnitude, the A12 test is
applied which shows that the proposed process model is better than the existing model.
Further to check the significance of the difference, the Cohens-D test is applied which
shows that there is a medium difference between both the process models. Based on the
analysis, the null hypothesis proposed for the RQ4 is rejected and the alternative
hypothesis is accepted.

The values obtained from the experiment were then checked for normality. The
normality test shows that the experimental data is not normally distributed. To check and
validate the hypothesis the non-parametric test i.e., Mann Whitney U test is performed
on the experimental data. The result of this data is shown in Table 6. As the results describe
the value of p-value is lower than 0.5, which means there is a difference between both
the process models. To check the direction of the magnitude of change, the A12 test is
applied. A12 shows that the proposed process model is better than the existing process

Figure 9 Maintainance complexity. Full-size DOI: 10.7717/peerj-cs.912/fig-9

Abbasi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.912 22/29

http://dx.doi.org/10.7717/peerj-cs.912/fig-9
http://dx.doi.org/10.7717/peerj-cs.912
https://peerj.com/computer-science/

model. To check the significance of the difference, the Cohens-D test is applied which
shows that there is a medium difference between the two-process model.

Based on these findings, the null hypothesis proposed for RQ5 is rejected and as a result,
the alternative hypothesis is accepted.

All the experiment is based on the questionnaire which is attached in Appendix A. For
the reliability of the questionnaire, we performed reliability statistical analysis using the
SPS tool by Appling reliability test to check data biasness and accuracy. For the reliability
test, we use SPSS 23 tool and automatically extract the results. The participants’
information and the result of the statistical test are in Table 6.

Threats to validity
This section aims to discuss the threats to the validity of the experiment performed
according to guidelines provided in Heck & Zaidman (2018), Lindohf et al. (2021) and
Kiani et al. (2021).

Construct validity
The main focus of this threat is the ability to measure the required facility operationally
without error. In this experiment, the main objective is to measure the efficiency of both
process models. Therefore, the same evaluation factors are defined for both models.
Furthermore, the subjects are clarified that this activity will not perform any role in the
grading of any subject. So that it would not cause any biasness. To make the experimental
hypotheses private, the information about the experimental hypotheses is kept hidden
from the subject to avoid any type of biasness with the researcher. Hence, to avoid error
and biasness during experiment while using both methods. The participants of the
proposed model and existing model were fully trained before the execution of methods
during development of HCS.

Internal validity
The main aim of this threat is the problem of biasness caused by the casual relationship
between the experiment subject and the researcher. To make a clear evaluation of the
proposed model, the experiment is done very carefully by providing all the necessary
tutorials and labs to the experiment subject. Furthermore, to overcome the biasness,
complete random groups were designed and further the students were advised to actively
participate without being afraid of any grade manipulation. To ensure the complete
presence of the students they are also asked to further provide their values and opinion
about how the process can be improved further. The participants performance was not
influenced with any type of relations and participants of both groups separately
performed development activities without knowing each other’s in different times and
environments.

External validity
The main concern of this threat is the generalization of the results concluded from the
experiment. The experiment was conducted using the students belonging to COMSATS

Abbasi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.912 23/29

http://dx.doi.org/10.7717/peerj-cs.912/supp-2
http://dx.doi.org/10.7717/peerj-cs.912
https://peerj.com/computer-science/

University. Therefore, the participants used for the execution of the experiment are not
professionals. The reason behind the selection of students as an experimental subject lies in
the least availability of professionals from the industry. Furthermore, most of the
empirical research in software engineering uses student and experimental subjects for the
execution of the experiment. Finally, the nature of the experiment doesn’t require the
professional to be part of the experiment.

Conclusion validity
Violating the statistical test assumption may result in a conclusion not much accurate. The
experimental data is on an interval scale that could be a risk for statistical tests for the
achievement of better results. The non-parametric Mann–Whitney U test is used for
making these assumptions. Our sample size fulfills the criteria for the statistical test but is
not too large because of large sample size increases the power of the test.

CONCLUSION AND FUTURE WORK
Many software development process models are described in the literature that tends to
join the SPL and APL to provide the comprehensive end product variant in large
industries. These process models lack the proper documentation, not ensuring the quality
of the components and details about the selection of the features based on the required
specification. To address these problems, a hybrid APL model, QeAPLE is proposed that
provides support for HCS by evaluating the dependency of features before making the
final selection. It provides a comprehensive way for the selection of the components
that are least dependent upon each other. Moreover, it also provides well-detailed
documentation along with the testing of the selected components to clinch the quality of
software and sparing time of the post-testation of the released product variant.

The main augmentation of this research effort comprises of:

� The presentation of innovatory knowledge about the agile, SPL, and their integration for
the development of systems especially for HCS systems.

� The proposition of the new hybrid process model allows the incorporation of SPL and
agile processes together with the development support for HCS using the least
dependent component selection.

� The evaluation of the proposed approach using the use case study and practitioner
close-ended interviews along with the empirical evaluation executed using students as
subjects.

The possible future works could be:

� The main future direction could be the shortness of the time taken for the selection of
the components.

� Could be the introduction of AI technology result in better selection of component
that is least dependent and highly effective for the required requirements of a
variant.

Abbasi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.912 24/29

http://dx.doi.org/10.7717/peerj-cs.912
https://peerj.com/computer-science/

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The work reported in this manuscript was supported by the National Natural Science
Foundation of China under Grant 61672080. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Natural Science Foundation of China: 61672080.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Tehseen Abbasi conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables, and
approved the final draft.

� Yaser Hafeez conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

� Sohail Asghar conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the paper, and approved the final
draft.

� Shariq Hussain analyzed the data, authored or reviewed drafts of the paper, and
approved the final draft.

� Shunkun Yang performed the experiments, authored or reviewed drafts of the paper,
and approved the final draft.

� Sadia Ali performed the experiments, prepared figures and/or tables, and approved the
final draft.

Data Availability
The following information was supplied regarding data availability:

The code, developed in Mango schema (as component library) and library in Node.js,
used for this study, is available in the Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.912#supplemental-information.

REFERENCES
Abal I, Melo J, Stănciulescu Ş, Brabrand C, Ribeiro M, Wąsowski A. 2018. Variability bugs in

highly configurable systems: a qualitative analysis. ACM Transactions on Software Engineering
and Methodology 26(3):1–34 DOI 10.1145/3149119.

Abbasi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.912 25/29

http://dx.doi.org/10.7717/peerj-cs.912#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.912#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.912#supplemental-information
http://dx.doi.org/10.1145/3149119
http://dx.doi.org/10.7717/peerj-cs.912
https://peerj.com/computer-science/

Aggarwal AK, Mani VS. 2019. Using product line engineering in a globally distributed agile
development team to shorten release cycles effectively. In: 2019 ACM/IEEE 14th International
Conference on Global Software Engineering (ICGSE). Montreal: IEEE, 58–61.

Al-Hawari A, Najadat H, Shatnawi R. 2021. Classification of application reviews into software
maintenance tasks using data mining techniques. Software Quality Journal 29(3):667–703
DOI 10.1007/s11219-020-09529-8.

Ali A, Hafeez Y, Ali S, Hussain S, Yang S, Jamal Malik A, Afzaal Abbasi A. 2021a. A data mining
technique to improve configuration prioritization framework for component-based systems: an
empirical study. Information Technology and Control 50(3):424–442
DOI 10.5755/j01.itc.50.3.27622.

Ali S, Hafeez Y, Hussain S, Yang S, Jamal M. 2021b. Requirement prioritization framework using
case-based reasoning: a mining-based approach. Expert Systems 38(8):491
DOI 10.1111/exsy.12770.

Ali S, Iqbal N, Hafeez Y. 2018. Towards requirement change management for global software
development using case base reasoning.Mehran University Research Journal of Engineering and
Technology 37(3):639–652 DOI 10.22581/muet1982.1803.17.

Bolander WJ, Clements PC. 2021. Key issues of organizational structure and processes with
feature-based product line engineering. INSIGHT 24(1):42–46 DOI 10.1002/inst.12327.

Camacho MC, Álvarez F, Collazos CA, Leger P, Bermúdez JD, Hurtado JA. 2021. A
collaborative method for scoping software product lines: a case study in a small software
company. Applied Sciences 11(15):6820 DOI 10.3390/app11156820.

Carbon R, Knodel J, Muthig D, Meier G. 2008. Providing feedback from application to family
engineering - the product line planning game at the testo AG. In: 2008 12th International
Software Product Line Conference. Limerick: IEEE, 180–189.

Cardoso N, Rodrigues P, Ribeiro O, Cabral J, Monteiro J, Mendes J, Tavares A. 2012. An agile
software product line model-driven design environment for video surveillance systems. In:
Proceedings of 2012 IEEE 17th International Conference on Emerging Technologies & Factory
Automation (ETFA 2012). Krakow: IEEE, 1–8.

Carvalho L, Garcia A, Assunção WKG, Bonifácio R, Tizzei LP, Colanzi TE. 2019. Extraction of
configurable and reusable microservices from legacy systems: an exploratory study. In:
Proceedings of the 23rd International Systems and Software Product Line Conference. Vol. A.
Paris: ACM, 26–31.

Chacón-Luna AE, Ruiz EG, Galindo JA, Benavides D. 2019. Variability management in a
software product line unaware company: towards a real evaluation. In: Proceedings of the 23rd
International Systems and Software Product Line Conference - SPLC ’19. Vol. B. Paris: ACM
Press, 1–8.

Clarke P, Mesquida A-L, Ekert D, Ekstrom JJ, Gornostaja T, Jovanovic M, Johansen J, Mas A,
Messnarz R, Villar BN, O’Connor A, O’Connor RV, Reiner M, Sauberer G, Schmitz K-D,
Yilmaz M. 2016. An investigation of software development process terminology. In: Clarke PM,
O’Connor RV, Rout T, Dorling A, eds. Software Process Improvement and Capability
Determination. Communications in Computer and Information Science. Cham: Springer
International Publishing, 351–361.

da Silva IF. 2012. An agile approach for software product lines scoping. In: Proceedings of the 16th
International Software Product Line Conference on - SPLC ’12. Vol. 1. Salvador: ACM Press.

da Silva IF, da Mota Silveira Neto PA, O’Leary P, de Almeida ES, de Meira SRL. 2014. Software
product line scoping and requirements engineering in a small and medium-sized enterprise: an

Abbasi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.912 26/29

http://dx.doi.org/10.1007/s11219-020-09529-8
http://dx.doi.org/10.5755/j01.itc.50.3.27622
http://dx.doi.org/10.1111/exsy.12770
http://dx.doi.org/10.22581/muet1982.1803.17
http://dx.doi.org/10.1002/inst.12327
http://dx.doi.org/10.3390/app11156820
http://dx.doi.org/10.7717/peerj-cs.912
https://peerj.com/computer-science/

industrial case study. Journal of Systems and Software 88(8):189–206
DOI 10.1016/j.jss.2013.10.040.

Dintzner N, van Deursen A, Pinzger M. 2018. FEVER: an approach to analyze feature-oriented
changes and artefact co-evolution in highly configurable systems. Empirical Software
Engineering 23(2):905–952 DOI 10.1007/s10664-017-9557-6.

Dove R, Schindel W, Hartney RW. 2017. Case study: Agile hardware/firmware/software product
line engineering at Rockwell Collins. In: 2017 Annual IEEE International Systems Conference
(SysCon). Montreal: IEEE, 1–8.

Geogy M, Dharani A. 2016. A Scrutiny of the software requirement engineering process. Procedia
Technology 25:405–410 DOI 10.1016/j.protcy.2016.08.125.

Ghanam Y, Maurer F. 2010. Extreme product line engineering – refactoring for variability: a test-
driven approach. In: Sillitti A, Martin A, Wang X, Whitworth E, eds. Agile Processes in Software
Engineering and Extreme Programming. Lecture Notes in Business Information Processing.
Berlin: Springer, 43–57.

Ghasemi A, Zahediasl S. 2012. Normality tests for statistical analysis: a guide for non-statisticians.
International Journal of Endocrinology and Metabolism 10(2):486–489 DOI 10.5812/ijem.3505.

Giray G. 2021. A software engineering perspective on engineering machine learning systems: state
of the art and challenges. Journal of Systems and Software 180(4):111031
DOI 10.1016/j.jss.2021.111031.

Haidar H, Kolp M, Wautelet Y. 2017. Agile product line engineering: the AgiFPL method. In:
Proceedings of the 12th International Conference on Software Technologies. Madrid:
SCITEPRESS - Science and Technology Publications, 275–285.

Hanssen GK, Fægri TE. 2008. Process fusion: an industrial case study on agile software product
line engineering. Journal of Systems and Software 81(6):843–854 DOI 10.1016/j.jss.2007.10.025.

Hayashi K, Aoyama M. 2018. A multiple product line development method based on variability
structure analysis. In: Proceedings of the 22nd International Systems and Software Product Line
Conference. Vol. 1. Gothenburg: ACM, 160–169.

Hayashi K, Aoyama M, Kobata K. 2017. Agile tames product line variability: an Agile
development method for multiple product lines of automotive software systems. In: Proceedings
of the 21st International Systems and Software Product Line Conference. Vol. A. Sevilla: ACM,
180–189.

Heck P, Zaidman A. 2018. A systematic literature review on quality criteria for agile requirements
specifications. Software Quality Journal 26(1):127–160 DOI 10.1007/s11219-016-9336-4.

Hohl P, Ghofrani J, Münch J, Stupperich M, Schneider K. 2017. Searching for common ground:
existing literature on automotive Agile software product lines. In: Proceedings of the 2017
International Conference on Software and System Process. Paris: ACM, 70–79.

Hohl P, Münch J, Schneider K, Stupperich M. 2016. Forces that prevent Agile adoption in the
automotive domain. In: Abrahamsson P, Jedlitschka A, Nguyen Duc A, Felderer M, Amasaki S,
Mikkonen T, eds. Product-Focused Software Process Improvement. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 468–476.

Hohl P, Stupperich M, Munch J, Schneider K. 2018. Combining Agile development and software
product lines in automotive: challenges and recommendations. In: 2018 IEEE International
Conference on Engineering, Technology and Innovation (ICE/ITMC). Stuttgart: IEEE, 1–10.

Kasauli R, Knauss E, Horkoff J, Liebel G, de Oliveira Neto FG. 2021. Requirements engineering
challenges and practices in large-scale agile system development. Journal of Systems and
Software 172(6):110851 DOI 10.1016/j.jss.2020.110851.

Abbasi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.912 27/29

http://dx.doi.org/10.1016/j.jss.2013.10.040
http://dx.doi.org/10.1007/s10664-017-9557-6
http://dx.doi.org/10.1016/j.protcy.2016.08.125
http://dx.doi.org/10.5812/ijem.3505
http://dx.doi.org/10.1016/j.jss.2021.111031
http://dx.doi.org/10.1016/j.jss.2007.10.025
http://dx.doi.org/10.1007/s11219-016-9336-4
http://dx.doi.org/10.1016/j.jss.2020.110851
http://dx.doi.org/10.7717/peerj-cs.912
https://peerj.com/computer-science/

Kiani AA, Hafeez Y, Imran M, Ali S. 2021. A dynamic variability management approach working
with agile product line engineering practices for reusing features. The Journal of Supercomputing
77(8):8391–8432 DOI 10.1007/s11227-021-03627-5.

Klünder JA, Hohl P, Prenner N, Schneider K. 2019. Transformation towards agile software
product line engineering in large companies: a literature review. Journal of Software: Evolution
and Process 31(5):e2168 DOI 10.1002/smr.2168.

Klünder J, Hohl P, Schneider K. 2018. Becoming Agile while preserving software product lines: an
Agile transformation model for large companies. In: Proceedings of the 2018 International
Conference on Software and System Process. Gothenburg: ACM, 1–10.

Krueger C, Clements P. 2017. Enterprise feature ontology for feature-based product line
engineering and operations. In: Proceedings of the 21st International Systems and Software
Product Line Conference. Vol. A. Sevilla: ACM, 227–236.

Krueger C, Clements P. 2018. Feature-based systems and software product line engineering with
gears from BigLever. In: Proceedings of the 22nd International Systems and Software Product Line
Conference. Vol. 2. Gothenburg: ACM, 1–4.

Krueger C, Clements P. 2019. An enterprise feature ontology for feature-based product line
engineering. INSIGHT 22(2):34–42 DOI 10.1002/inst.12244.

Lindohf R, Krüger J, Herzog E, Berger T. 2021. Software product-line evaluation in the large.
Empirical Software Engineering 26(2):30 DOI 10.1007/s10664-020-09913-9.

Meinicke J, Wong C-P, Kästner C, Thüm T, Saake G. 2016. On essential configuration
complexity: measuring interactions in highly-configurable systems. In: Proceedings of the 31st
IEEE/ACM International Conference on Automated Software Engineering. Singapore: ACM,
483–494.

Mellado D, Fernández-Medina E, Piattini M. 2010. Security requirements engineering framework
for software product lines. Information and Software Technology 52(10):1094–1117
DOI 10.1016/j.infsof.2010.05.007.

Mohan K, Ramesh B, Sugumaran V. 2010. Integrating software product line engineering and
Agile development. IEEE Software 27(3):48–55 DOI 10.1109/MS.2010.31.

Mollahoseini Ardakani MR, Hashemi SM, Razzazi M. 2018. Adapting the scrum methodology
for establishing the dynamic inter-organizational collaboration. Journal of Organizational
Change Management 31(4):852–866 DOI 10.1108/JOCM-07-2016-0135.

Narasimhan S, Mah RSH, Tamhane AC, Woodward JW, Hale JC. 1986. A composite statistical
test for detecting changes of steady states. AIChE Journal 32:1409–1418
DOI 10.1002/(ISSN)1547-5905.

O’Leary P, McCaffery F, Thiel S, Richardson I. 2012. An agile process model for product
derivation in software product line engineering. Journal of Software: Evolution and Process
24(5):561–571 DOI 10.1002/smr.498.

Oriol M, Martínez-Fernández S, Behutiye W, Farré C, Kozik R, Seppänen P, Vollmer AM,
Rodríguez P, Franch X, Aaramaa S, Abhervé A, ChoraśM, Partanen J. 2020.Data-driven and
tool-supported elicitation of quality requirements in agile companies. Software Quality Journal
28(3):931–963 DOI 10.1007/s11219-020-09509-y.

Parejo JA, Sánchez AB, Segura S, Ruiz-Cortés A, Lopez-Herrejon RE, Egyed A. 2016. Multi-
objective test case prioritization in highly configurable systems: a case study. Journal of Systems
and Software 122(3):287–310 DOI 10.1016/j.jss.2016.09.045.

Ro H, Kubickova M. 2013. The use of student subjects in hospitality research: insights from
subjective knowledge. Journal of Quality Assurance in Hospitality & Tourism 14(4):295–320
DOI 10.1080/1528008X.2013.802624.

Abbasi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.912 28/29

http://dx.doi.org/10.1007/s11227-021-03627-5
http://dx.doi.org/10.1002/smr.2168
http://dx.doi.org/10.1002/inst.12244
http://dx.doi.org/10.1007/s10664-020-09913-9
http://dx.doi.org/10.1016/j.infsof.2010.05.007
http://dx.doi.org/10.1109/MS.2010.31
http://dx.doi.org/10.1108/JOCM-07-2016-0135
http://dx.doi.org/10.1002/(ISSN)1547-5905
http://dx.doi.org/10.1002/smr.498
http://dx.doi.org/10.1007/s11219-020-09509-y
http://dx.doi.org/10.1016/j.jss.2016.09.045
http://dx.doi.org/10.1080/1528008X.2013.802624
http://dx.doi.org/10.7717/peerj-cs.912
https://peerj.com/computer-science/

Ter Beek MH, Legay A, Lafuente AL, Vandin A. 2020. A framework for quantitative modeling
and analysis of highly (re)configurable systems. IEEE Transactions on Software Engineering
46(3):321–345 DOI 10.1109/TSE.2018.2853726.

Tian K. 2014. Adding more Agility to software product line methods: a feasibility study on its
customization using Agile practices. International Journal of Knowledge and Systems Science
5:17–34 DOI 10.4018/IJKSS.

Uysal MP, Mergen AE. 2021. Smart manufacturing in intelligent digital mesh: integration of
enterprise architecture and software product line engineering. Journal of Industrial Information
Integration 22(1–2):100202 DOI 10.1016/j.jii.2021.100202.

Wu Q, Li X, Xie X, Jia W, Li Y, Qi T, Xu R, Li L. 2021. Research on software reuse for satellite
control software based on product-line technology. In: Wang Y, Xu L, Yan Y, Zou J, eds. Signal
and Information Processing, Networking and Computers. Lecture Notes in Electrical Engineering.
Singapore: Springer, 199–207.

Yoder JW. 2002. Workshop on software reuse and agile approaches. In: Gacek C, ed. Software
Reuse: Methods, Techniques, and Tools. Lecture Notes in Computer Science. Berlin: Springer, 336.

Abbasi et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.912 29/29

http://dx.doi.org/10.1109/TSE.2018.2853726
http://dx.doi.org/10.4018/IJKSS
http://dx.doi.org/10.1016/j.jii.2021.100202
http://dx.doi.org/10.7717/peerj-cs.912
https://peerj.com/computer-science/

	Towards a component-based system model to improve the quality of highly configurable systems
	Introduction
	Related work
	Quality Ensured Agile Product Line Engineering Process Model
	Experimental evaluation
	Conclusion and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

