
The rise of obfuscated Android malware
and impacts on detection methods
Wael F. Elsersy, Ali Feizollah and Nor Badrul Anuar

Department of Computer System and Technology/Faculty of Computer Science
and Information Technology, Universiti Malaya, Kuala Lumpur,
Wilayah Persekutuan Kuala Lumpur, Malaysia

ABSTRACT
The various application markets are facing an exponential growth of Android
malware. Every day, thousands of new Android malware applications emerge.
Android malware hackers adopt reverse engineering and repackage benign
applications with their malicious code. Therefore, Android applications developers
tend to use state-of-the-art obfuscation techniques to mitigate the risk of application
plagiarism. The malware authors adopt the obfuscation and transformation
techniques to defeat the anti-malware detections, which this paper refers to as
evasions. Malware authors use obfuscation techniques to generate new malware
variants from the same malicious code. The concern of encountering difficulties in
malware reverse engineering motivates researchers to secure the source code of
benign Android applications using evasion techniques. This study reviews the state-
of-the-art evasion tools and techniques. The study criticizes the existing research gap
of detection in the latest Android malware detection frameworks and challenges the
classification performance against various evasion techniques. The study concludes
the research gaps in evaluating the current Android malware detection framework
robustness against state-of-the-art evasion techniques. The study concludes the
recent Android malware detection-related issues and lessons learned which require
researchers’ attention in the future.

Subjects Data Mining and Machine Learning, Mobile and Ubiquitous Computing, Security and
Privacy, Operating Systems
Keywords Androidmalware, Android security, Evasion techniques,Machine learning, Obfuscation
techniques

INTRODUCTION
Since the advent of Android systems, smartphone devices are seen everywhere with a
market share of 87% (Chau & Reith, 2019). Hence, Android devices have become the most
popular devices for hackers and malware authors to target. With many open-source
libraries in Android, Android application development tools enable young developers to
develop Android malware applications. Therefore, the number of Android malware
increases exponentially. In the Google Android market, Android applications
exponentially grow from 2.8 million as of September 2018 (Statista, 2016, 2021), to
almost double, to reach 3.4 million apps as of the first quarter of 2021 (Statista, 2021).
Nevertheless, Android malware authors attract end-users using cracked games, free
applications, and video downloader applications. They mainly aim to spy on private data
(e.g., contact lists, photos, videos, documents, and account details) or control devices by

How to cite this article Elsersy WF, Feizollah A, Anuar NB. 2022. The rise of obfuscated Android malware and impacts on detection
methods. PeerJ Comput. Sci. 8:e907 DOI 10.7717/peerj-cs.907

Submitted 14 September 2021
Accepted 8 February 2022
Published 9 March 2022

Corresponding authors
Wael F. Elsersy,
wfarouk@siswa.um.edu.my
Nor Badrul Anuar,
badrul@um.edu.my

Academic editor
Muhammad Aleem

Additional Information and
Declarations can be found on
page 46

DOI 10.7717/peerj-cs.907

Copyright
2022 Elsersy et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.907
mailto:wfarouk@�siswa.�um.�edu.�my
mailto:badrul@�um.�edu.�my
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.907
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

remote servers as botnets (Karim et al., 2015). Android applications use Java as a
developing language because Java provides a very flexible code, dynamic code loading
(Liang & Bracha, 1998), and many other features to make Android application
development more accessible and efficient. Likewise, Java uses obfuscation tools (Aonzo
et al., 2020; GuardSquare, 2014) to protect commercial software companies from software
plagiarism issues; professional developers protect their source codes from being stolen
using advanced evasion techniques (Aonzo et al., 2020) as protection mechanisms.
However, malware authors use the above-mentioned advanced Java features and
evasion tools to reproduce more sophisticated Android malware, evading professional
anti-malware (Preda & Maggi, 2016). Google introduced Google Bouncer (Rahman et al.,
2016); however, Android malware successfully defeats Google Bouncer using different
evasion techniques (Maiorca et al., 2015). Furthermore, Google Play Protect (Xu et al.,
2016) service is the default device protection tool available on Google Android from
Version 6.0 onwards; however, the previous versions are deprecated.

The rationale behind this study is the ability of evasion techniques to hinder the analysis
process and thus the detection of Android malware. In 2021, PetaDoid (Karbab &
Debbabi, 2021) proposed Android malware detection using deep learning techniques.
PetaDroid builds static analysis Android malware detection framework using a 10 million
Android apps dataset. PetaDriod addressed obfuscations in his study and concluded in his
experimental results that his trained machine learning model that reaches 99.2% using
static analysis would not detect complex obfuscated malware applications. The complex
obfuscation techniques defeat Android malware detection PetaDroid model, which results
into false detection. Though PetaDroid focused on trivial and some non-trivial obfuscation
techniques. PetaDroid admitted that further deep analysis is required to address the
sophisticated obfuscation techniques. The study focused on several evasion techniques,
such as package transformation, string encryption, bytecode encryption, code obfuscation,
injecting new codes via dynamic code loading, junk/dead code injection, emulation
detection running sandboxing, and user interaction emulation detection. Android
malware modifies the package, developer signature, and other information using the
repacking evasion technique.

Moreover, the availability of various evasion techniques to the malware attackers
increases the fear of developing very advanced obfuscation techniques, as such newly
developed malware applications adopt advanced obfuscation techniques. It creates a
challenge between preventing source code piracy and malicious attacks (Gurulian et al.,
2016; Zhang et al., 2014) and struggling to decompile the malware application packages
for further analysis (Gonzalez et al., 2015). Android malware detection frameworks
(Arp et al., 2015; Elish et al., 2015; Poeplau et al., 2014; Chen et al., 2015) suffer from False
Negative (FN) detection, which means the Android malware detection frameworks fail to
detect some malware applications. The main reason behind FN is the malware evasion
techniques that malware applications adopt to hinder detection. For instance, Arp et al.
(2015) achieved 94% detection accuracy because it fails to detect malware with dynamic
code loading transformation, one of the advanced evasion techniques. Likewise, Elish et al.
(2015) used trigger-based dependence for privileged API calls, but it is unable to detect

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 2/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

malware families with code obfuscation and reflection transformation. Poeplau et al.
(2014) used the call graph methodology to detect malicious code loading, and the native
code dynamically loads the code.

Similarly, Chen et al. (2015) identifies a repackaged application in 10 s using code graph
similarity but is incapable of tracking junk code insertion transformation. You & Yim
(2010) reviewed the obfuscation technique, metamorphic and polymorphic malware types.
They discussed the metamorphic and polymorphic evasion techniques; however, they
neglected transformation and anti-emulation evasions. Furthermore, they merely reviewed
evasion methods and failed to evaluate current evasion detection systems to evaluate
whether they can detect evasive malware. Sharma & Sahay (2014) reviewed polymorphic
and metamorphic malware and discussed their characteristics. They failed to mention
evasion detection methods and evaluate the currently proposed methods. Sufatrio et al.
(2015a) surveyed Android malware detection methods and briefly assessed a handful of
related works in terms of evasion detection.

This study is intended for Android malware detection research highlighting the research
gaps in malware detection caused by different evasion techniques. This study highlights the
obfuscation and transformation techniques that need more attention from the research
authors in future. It also provides guidelines and lesson learned to face this challenge. Due
to the above facts, the authors take the challenge to introduce the following foremost
contributions.

– We present evasion taxonomy, particularly in the Android platform. Our goal is to
systematize the Android malware evasion techniques using a taxonomy methodology,
which clearly shows various evasion techniques and how they affect malware analysis
and detection accuracy.

– We scrutinise Android malware detection academic and commercial frameworks
while a large portion of the past work concentrated on commercial Anti-malware
solutions. This study examines different evasion techniques that hinder detecting
malicious parts of applications and affect detection accuracy by reviewing state-of-
the-art Android malware studies and issues limiting the detection of evasion
techniques. It is worth noting that this work differs from related works that examine
detection methods, as we go through evasion techniques that let malware eludes
detection methods. Given the vast number in this study field, our investigation focuses
on studies written between 2011 and early 2021 and innovative contributions that
appeared in high-ranked journals or conferences such as IEEE, ACM, and Springer,
hence the identified related papers are 511 research papers.

–We highlight the existing problems and gaps in Android malware evasion detection by
examining the previous frameworks and identifying the Android malware evasion
detection research gap.

– We introduce a decent number of recommendations and lessons learned to consider
in future work around research. We also aim to highlight the contribution of each
study, challenges, countermeasures, and open issues for future research.

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 3/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

Table 1 presents the differences between this study and the recent evasions detection
reviews. Vikas (Sihag, Vardhan & Singh, 2021a) evaluated the hardening code obfuscation
tools against the reverse engineering process; however, it focused on development
advantage more than malware detection perspectives. FeCO (Jusoh et al., 2021) focused on
Android application static analysis and Android malware detection using machine
learning and deep learning methods. It highlighted the type of code obfuscations
techniques and previous research obfuscation solutions. AAMO (Preda & Maggi, 2016)
and Droidchameleon (Rastogi, Chen & Jiang, 2013) study the effectiveness of evading
commercial anti-malware applications by using their evaluation tools; Droidchameleon
(Rastogi, Chen & Jiang, 2013) examines trivial transformation, which easily evades the
detection of Android malware using the most popular anti-malware commercial packages.
However, Droidchameleon (Rastogi, Chen & Jiang, 2013) misses studying the effect of
the evasion techniques on current detection accuracy. Likewise, Rastogi continued his
study of Droidchameleon (Rastogi, Chen & Jiang, 2013, 2014) and added more composite
transformation attacks that consist of more than evasion attacks and investigated evasion
chains’ capability for hindering malware detection. Hoffmann develops a tool to thwart
malware detection and evaluates the accuracy of a few typical static and dynamic malware
analysis frameworks and concludes that code obfuscation evasion evades Android malware
detection frameworks (Hoffmann et al., 2016). Nevertheless, Hoffmann excludes some
evasion techniques from the evaluation of malware detection frameworks.

The rest of the paper is organized as follows: the survey methodology and background
section provide essential background information for this study; we explore the Android
operating environment and its weaknesses. Evasion techniques section presents the
evasion techniques taxonomy with regards to different categories of evasions. Android

Table 1 Comparison of the recent reviews.

Related studies Evasion techniques discussion Evasion detection tools
evaluation

This study Encryption, package and code transformation, code obfuscation, anti-
emulation

Commercial + Academic

Droidchameleon (Rastogi, Chen & Jiang,
2013)

Transformation Commercial

Vikas (Sihag, Vardhan & Singh, 2021a) Code Obfuscation, repackaging Academic

FeCO (Jusoh et al., 2021) Code Obfuscation, Encryption Academic

Rastogi (Rastogi, Chen & Jiang, 2014) Encryption + Transformation Commercial

AAMO (Preda & Maggi, 2016) None Commercial

Hoffmann (Hoffmann et al., 2016) Obfuscation Commercial

Tam et al. (Tam et al., 2017) Transformation + Obfuscation None

Nguyen-Vu et al. (Nguyen-Vu et al., 2017) Transformation None

Kim et al. (Kim et al., 2016) Anti-emulation None

Xue et al. (Xue et al., 2017) Encryption Commercial

Bulazel (Bulazel & Yener, 2017) Virtualization and performance case studies Academic

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 4/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

evasion detection frameworks section investigates the current state-of-the-art evasion
detection frameworks and evasion test benches tools. We discuss the lessons learned and
future directions in discussion and lessons learned sections. Finally the last section
represents the conclusion of this study.

SURVEY METHODOLOGY
Methodology
The methodology of retrieving Android malware obfuscation detection related articles is
presented in this section. This study adopted Web-of-Science search engine to carry
over the literature review using search terms with inclusions and exclusion criteria. The
review process consists of four phases; first phase is identification, second phase is
screening, third phase is eligibility, and fourth phase is analysis phase.

Identification
The adopted Web-of-Science search engine covers hundred years of citation data
containing many journals related to computer security, software development, and
network security. Clarivate Analystics established this citation database with ranking
citations measure (citation per paper). Since this study focused on Android malware
obfuscation, we had selected ‘Android malware, ‘malware obfuscation’, and ‘malware
evasion’ as our search terms. The search results in 511 research from journals and
conferences’ proceeding database. The search results mainly records are from IEEE,
journals and conferences distributions as per Table 2.

The list of collected articles represent the Android malware obfuscation and detection
frameworks. It included the three types of the malware analysis techniques static, dynamic
and hybrid techniques in the last decade from 2011 to early 2021. Hence, we collected
Android malware frameworks for the last decade and innovative contributions that
appeared in high-ranked journals or conferences such as IEEE, ACM, and Springer.

Screening
Since, this paper explored the last 10 years’ research to evaluate the Android detection
frameworks against evasion techniques, we focused on experimental malware detection
articles using static, dynamic and hybrid analysis techniques, excluding the unrelated
articles. We excluded articles that are not Android specific malware detection such as IOS
and Windows based operating system. In addition, we excluded all other languages and
include only English language research to avoid translation overhead in future.

Eligibility
As shown in Fig. 1, the review process presented four phases flow diagram, the
identification collect the articles from web of science (WOS) database using above
mentioned search terms, next, screening identified the criteria of article inclusion and
exclusion. After removing the duplicates and excluded the non-related articles, we
categorize Android malware detection by the analysis methodology static, dynamic, and

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 5/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

Table 2 Comparison of the recent reviews.

Article type Full name Publisher

Journals ACM Computing Surveys ACM

ACM Transaction on Computer system ACM

Computers & Security

Digital Investigation

Future Generation Computer Systems

IEEE Transactions on Dependable and Secure Computing

IEEE Access IEEE

IEEE Transactions on Industrial Informatics IEEE

IEEE Transactions on Information Forensics and Security IEEE

IEEE Transactions on Knowledge and Data Engineering

IEEE Transactions on Mobile Computing

IEEE Transactions on Network Science and Engineering

IEEE Transactions on Reliability

Information and Software Technology

Information Sciences

International Journal of Distributed Sensor Networks

International Journal of Information Security

International Journal of Interactive Multimedia & Artificial Intelligence Springer

Journal of Ambient Intelligence and Humanized Computing

Journal of artificial intelligence research

Journal of Computer Virology and Hacking Techniques Springer

Journal of Information Science and Engineering

Journal of Information Security and Applications

Journal of Supercomputing

PLOS ONE

Soft Computing

Security and Communication Networks

Conferences Advanced Computing, Networking and Security IEEE

Artificial Intelligence and Knowledge Engineering (AIKE) IEEE

Inventive Research in Computing Applications (ICIRCA) IEEE

International Arab Conference on Information Technology (ACIT) IEEE

Information Security IEEE

Network Computing and Applications (NCA) IEEE

Computer Software and Applications Conference IEEE

International Conference on Security and Privacy in Communication Systems Springer

International Conference on Security and Privacy in Communication Systems Springer

Seventh ACM on Conference on Data and Application Security and Privacy ACM

The symposium on applied computing ACM

Data and application security and privacy ACM

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 6/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

hybrid features. This paper decides to put metadata analysis out of this research scope.
The screening phase resulted into 342 article from 511 collected in identification phase.
However, we have examined 74 static analysis based frameworks. The number of dynamic
based analysis frameworks are 35, the number of hybrid analysis frameworks is 26.
Hence the total number of examined papers are 135 research paper that this study selected
from top rank journals and conferences.

Data analysis
We scrutinise Android malware detection academic and commercial frameworks while a
large portion of the past work concentrated on commercial anti-malware solutions. This
study examines different evasion techniques that hinder detecting malicious parts of
applications and affect detection accuracy by reviewing state-of-the-art Android malware
studies and issues limiting the detection of evasion techniques. It is worth noting that
this work differs from related works that examine detection methods, as we go through
evasion techniques that let malware evades detection methods.

Figure 1 The review process flow diagram. Full-size DOI: 10.7717/peerj-cs.907/fig-1

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 7/61

http://dx.doi.org/10.7717/peerj-cs.907/fig-1
http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

Android applications and weaknesses
In the section, we discussed the Android application architecture. Subsequently, we
investigate the Android operating system (OS) weaknesses. This background highlights the
seriousness of some drawbacks to rationalize the necessity of establishing this review and
explain the essential terms to support the readers of this study.

Android application
Android application, Android app, or APK refers to the Android application from now on
and throughout this paper. APK is a compressed file; an unzipping program extracts its
files and folders. This segment explains the APK components and their contents, as some
terms are essential in this study. APK developers use development tools that occasionally
require simple programming experience from young developers. The Android app runs
on Dalvik or ART equivalent to Java Virtual Machine (JVM) in a desktop environment.
The APK structure consists of many files and directories; the main file is Classes.dex
Java bytecode; it includes the classes and is packed together in a single .dex file. The
AndroidManifest.xml file contains deployment specifications and the required
permissions from Android OS. Resources .arsc is compiled resources, and Res folder is
un-compiled resources.

The Android system must install the APK file so that the end-user can utilize the
application’s functionalities. The Android system only accepts APK with a valid developer
certificate, called developer identifier. Individual developers keep their certificate keys;
there is no Central Authority (CA) server to maintain developers’ keys, and thus no chain
of trust between app stores and developers.

End-users need to run the installed applications, while other apps run as a service in the
OS background. Therefore, the Android application’s main components are as follows:

a) Activities: The user interface that end-users interact with and that communicates
with other activities using intents.

b) Services: Android application component runs as a background process and bonds or
un-bonds with other Android system components.

c) Broadcast and Receivers Intents: send messages that all other applications or
individual applications receive.

d) Content Providers: It is the intermediate unit to share data between applications.

Android weaknesses
With some insight into the Android applications’ development design, we list the Android
system’s weaknesses and definitions for the readers of this study. The following is a list of
Android flaws and characteristics that malware authors and attackers abuse.

(a) Open Source:

The advantage of Android source code’s openness helps developers’ communities enhance
the OS and add more features. Therefore, the Android community improves Android OS
daily. But, this contradicts with the security concerns when malware writers take this

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 8/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

advantage. It makes their job more straightforward than in closed source firmware, which
commonly triggers new vulnerabilities and malware attacks (Xu et al., 2016).

(b) End-users Security Awareness:

End-users understanding malware’s seriousness plays a vital role in early prevention
and detection when using feedback and reviews. However, the end-users feedback
system is insecure and easily polluted by fake comments (Rashidi, Fung & Tam, 2015).
End-users click on malicious URL links in emails, web browsers, pop-ups, or
Android application dialogues that download and install malicious applications. The
end-users grant permissions to the apps without studying the apps’ actual requirements;
they believe and follow fake advertisements of permissions greedy apps.

(c) Third-party Apps Market:

Android lets end-users download applications from third-party markets and install
such application offline by enabling installations from unknown sources in the phone
settings menu. Several untrusted or well-verified application stores offer Android the
third-party application, such as Amazon, GoApk, Slide ME, and other apps markets. In
addition, there are four Chinese App markets Anzhi, Mumayi, Baidu, and eoe app third
party markets, since Google Play restricted access to the Android Play Store for the
Chinese population (Fsecure, 2013). End-users download mobile applications from any
website to their mobiles devices, personal computers, or laptops via tools such as the
ADB tool in Android SDK, which increases the probability of installing malicious apps
(Sufatrio et al., 2015b; Tan, Chua & Thing, 2015).

(d) The Coarse Granularity of Android Permissions:

The Android system controls the users’ application access using coarse granulated
permissions, i.e., one permission that provides access to entire Internet protocols and all
sites. There is no competent permission administration or sufficient permission
documentation, leading to excess permissions (Fang, Han & Li, 2014).

(e) Developers’ Signatures:

Android application developers have to sign their apps with their developer key before
uploading the developed application to the market. There is no external party to
authenticate developers’ signatures and thus no confidentiality or integrity (Holla &
Katti, 2012). Hence, malware developers clone benign applications and sign the APK
with their developer key after injecting malicious codes (Zhang et al., 2014). Later,
malware developers upload malicious APK to third-party application markets or share
the infected applications directly with their victims.

(f) Application Version Update:

Android applications usually enhance their functionalities in the form of version
updates. The security frameworks analyze the application during installation, and the

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 9/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

update process downloads new services/features without security precautions or checks
(Luyi et al., 2014).

(g) USB Debugging:

USB debugging is a valuable feature for Android Application development; it helps
developers be more productive and efficiently troubleshoot applications. It allows direct
installation of an application to the Android device using Android SDK tools such as the
ADB tool. In addition Expo framework (Zhang, Breitinger & Baggili, 2016) has the
possibility of live reloading and dynamic code loading online. On the other hand,
malware writers utilize live loading features to gain remote access to install malicious
applications using static and dynamic methods. The static method injects JAR (Java) or
�.SO (JNI) files to the application before running, while the dynamic method call
external files during runtime (Zhang, Breitinger & Baggili, 2016).

(h) Dynamic Code Loading (DCL):

DCL is an Android OS feature that enables benign Android applications to call another
APK or malicious code to compile and execute it in real-time. However, malware
developers use this feature to load their malicious codes dynamically after the detection
framework ranked the malicious app as benign.

(i) Inter-application Communication (intent):

Android OS uses the inter-application intent system to deliver a message from and to
applications. Malware developers sniff, modify, or gain knowledge, compromising data
integrity and privacy (Chin et al., 2011). The intent provides flexibility in Android
application development, but it is an entry point for security threats (Feizollah et al.,
2017; Salva & Zafimiharisoa, 2015).

EVASION TECHNIQUES
This section represents our taxonomy of the currently used evasion techniques and
research studies on detecting obfuscated malware. Our taxonomy focuses on classifying the
related studies with the same objectives and goals to harvest a comprehensive collection
of material and comparative conclusions. When scrutinizing many existing studies, we find
it more appropriate to study the evasion detection capabilities of each studied framework
after introducing the evasion techniques that hinder malware analysis and detection.
This section presents the taxonomy of detection techniques for the ground truth relation
between the detection methodology and the evasion ability. Android applications have
powerful tools and techniques to secure and protect their applications from being
reverse-engineered. Conversely, malware authors are using obfuscation tools and
techniques to evade detection. Therefore, evasions, or in other terms, transformation
techniques, are techniques that try to defeat Android malware detection and rank the
malware applications as benign.

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 10/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

As displayed in Fig. 2, we categorize evasion techniques into two main types. The first
category is polymorphism; it transforms the malicious malware code without changing the
original code of the mobile application. The second category is metamorphism, which
mutates the application code, but maintains the same behaviour. Malware authors employ
obfuscation tools, such as Obfuscapk (Aonzo et al., 2020), ProGuard (Lafortune, 2002),
DashO (Wang et al., 2016), KlassMaster (Kuhnel, Smieschek & Meyer, 2015), and
JavaGuard (Sihag, Vardhan & Singh, 2021a) to encrypt their code and decrypt during
runtime; they modify the code itself to evade the heuristic detection and signature analysis
of the malware detection techniques.

Polymorphism
Polymorphic malware is the malware category that keeps changing its characteristics to
generate different malware variants evading malware detectors. Polymorphic malware
encrypts part of the code embedding malicious code. The polymorphic malwares encrypt
itself with variable encryption keys but maintaining the malicious code body unaltered.
Polymorphic malware is an advanced version of oligomorphic malware. The oligomorphic
malware encrypts the malicious code to defeat source code static analysis based malware

Figure 2 Evasion technique taxonomy. Full-size DOI: 10.7717/peerj-cs.907/fig-2

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 11/61

http://dx.doi.org/10.7717/peerj-cs.907/fig-2
http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

detection. Usually, the malware decrypts the malware using the same techniques. However,
the oligomorphic malware decrypts the encrypted malicious code using different deyrptor
to make decryptor analysis more difficult. The static analysis analyze the decryptor to
find the encryption key that enable the detection of the malware. Hence, the static analysis
approach is not effective with oligomorphic malware. Polymorphic malware continuously
change the decryptor technique to make it more difficult to the source code static
analysis approach. These symptoms are indications of the presence of malicious code in an
application. In this section, we discuss the polymorphism evasions subcategories, which
are package transformation and encryption.

Package transformation
In this section, we study types of package transformation, which are Repacking (RPK),
Package Renaming (PKR), and Identifier Renaming (IDR).

(a) Repacking (RPK): It is the process of unpacking the APK file and repacking the
original application files but signing the APK file with a developer security key (Rastogi,
Chen & Jiang, 2013). This way, the code remains unchanged and signed the application
with a different key. To repackage Android application, attackers unzips the APK
file into DEX file, hence, attackers adopts reverse engineering tools to extract Java or
smali code from the DEX file. Using classes, string, and methods rearrangement in
DEX file, attacker modifies the architecture of the DEX arrangement resulting into
defeating signature based Android malware detection. Canfora (Canfora et al., 2015b)
considers a simple repacking evasion technique. It hinders malware detection using
all of the commercial anti-malware that uses signature-based detection techniques.
Thus, with every iteration, the malware’s signature is changed, after which the malware
can evade detection. For instance, one AnserverBot malware sample repackaged and
disguised as a paid application is available on the official Android Market.

(b) Package Renaming (PKR): Every Android application has a unique package name.
For instance, com.android.chrome is the package name of Google Chrome. PKR
uses multilevel techniques to obfuscate the application classes except for the main Class,
for instance, “FlattenPackageHireachey” or “RepackageClass” options (Lafortune,
2002). As shown in Algorithm 1, PKR changes all classes’ names except the
“MyMain” class.

This algorithm is applied relatedly to form the multilevel PKR obfuscation. The GinMaster
family contains a malicious service that can root devices to escalate privileges, steal
confidential information. Later, it receives instructions from a remote server to download
and install applications without user interaction. The malware can successfully avoid
detection by mobile anti-virus software by using polymorphic techniques to hide malicious
code, obfuscating class names for each infected object, and randomizing package names
and self-signed certificates for applications. Therefore, PKR evades the malware detection
technique and causes false negatives, proven by Faruki et al. (2015c) by applying PKR to

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 12/61

http://dx.doi.org/10.7717/peerj-cs.907/supp-1
http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

malware applications and scanned using Virustotal platform. It shows that the repackage
malware detection accuracy dropped to half in all malware categories.

(c) Identifier Renaming (IDR): Identifier is another APK parameter representing the
application developer’s signature. Classes, methods, and fields consider bytecode
identifiers, as a signature is generated based on. Malware authors change developer
identifiers using many obfuscation tools such as ProGuard (Lafortune, 2002) and
DexGuard (GuardSquare, 2014) to appear as a variant application from the previously
detected malicious application, leading to a different signature and evading detection
methods. Real-world malware families that rename identifiers are as follows:
DroidDream, Geinimi, Fakeplayer, Bgserv, BaseBridge, and Plankton.

Encryption transformation
Some Android malware families encrypt data values inside the code, compiled code or
payload, and decrypt the payload whenever desirable. This paper refers to Data Encryption
as DEN, Bytecode Encryption as BEN, and Payload Encryption as PEN. This paper
examines the following types of evasions:

a) Data Encryption (DEN): This evasion technique tends to encrypt specific data vital
for the malicious action and decrypt the encrypted data later, which modifies the
malware application characteristics to evade the detection techniques (Kuhnel,
Smieschek & Meyer, 2015). The data refers to strings or network addresses embedded
in the code. By encrypting such components, the malware can avoid detection
methods (Shrestha et al., 2015), in which the authors extracted strings from APK files
and analyzed the decrypted strings to detect malware. Real-world malware families
that encrypt payload are as follows: DroidDream, Geinimi, Bgserv, BaseBridge, and
Plankton.

b) Bytecode Encryption (BEN): using ProGuard (Lafortune, 2002) or DashO (Maiorca
et al., 2015) obfuscation tools, the BEN evasion hinders reverse engineering by
encrypting original code and makes it almost impossible to read. It divides the code
into two parts, the encrypted and non-encrypted parts. The non-encrypted code part
includes the decryption code for the encrypted part (Faruki et al., 2014; Rastogi, Chen
& Jiang, 2014) during run-time. Therefore, dynamic analysis is required to detect this
decryption process. However, some static analysis-based detection frameworks
propose BEN evasion detection, such as DroidAPIminer (Aafer, Du & Yin, 2013) and
Wang (Wang & Wu, 2015) that successfully detect BEN evasion but fail in DEN or
PEN evasions detection.

c) Payload Encryption (PEN): Malware authors use payload encryption as in
DroidDream (Foremost, 2012) malware to carry malicious payloads inside
applications and install malicious applications at runtime once the system is
compromised. The code is encrypted and decrypted during run time, which calls a
decrypting function (Cho, Yi & Ahn, 2018) and runs it in real-time.

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 13/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

Metamorphism
Metamorphic malware is more complex than polymorphic malware that shows a better
ability to evade detection frameworks. Malware authors adopt metamorphic malware so to
make metamorphic malware detection harder than leveraging polymorphic malware. The
metamorphic malware writes new malicious code that varies in each iteration using the
same encryption and decryption key. For example, Opcode ngrams (Canfora et al., 2015a)
adopts the ngrams feature extraction algorithm to extract the suspected string with n count
in the Opcode. It assumes that the Malware writers rarely develop metamorphic Android
malware variants. Based on that assumption, it ignored the evaluation of the ngrams’
detection framework against metamorphic evasions (Canfora et al., 2015a). Metamorphic
malware rewrites itself in every iteration to evade detection methods.

Code obfuscation
Code obfuscation is an evasion technique initially used to protect applications from piracy
and illegal use by many obfuscation techniques. Conversely, malware authors use code
obfuscation techniques to evade malware detections. In this study, we highlight three types
of code obfuscation the Code Reordering (CRE), Call Indirection (CIN), and Dead Code
Insertion (DCI).

a) Code Reordering (CRE): This transformation changes the order of the code by
inserting the standard “goto” command to maintain the proper program instruction
order.

b) Call Indirections (CIN): CIN is an object-oriented feature used dynamically to
reference specific values inside the code; CIN creates code transformation evasion,
obfuscating the call graph detection techniques (Castellanos et al., 2016; Gascon et al.,
2013). Malware families such as DroidDream, Geinimi, and FakePlayer incorporate
call indirection to evade static analysis based Android malware detection.

c) Dead Code Insertion (DCI): Malware inserts junk code into the sequence of the
application to ruin its semantics. This type of transformation makes the malware
more difficult to analyze (Kwon et al., 2014). AnDarwin (Crussell, Gibler & Chen,
2015) experimented with detecting Android malware based on code similarity. Their
used method is unable to detect dead code insertion transformation (Crussell, Gibler
& Chen, 2015). The code similarity approach uses a distance-vector technique,
representing the distances between the original code or the DCI transformation
representing a distance vector. The far the distance vector, the more complex the
detection of such obfuscation.

Advanced code transformation
This section explains the advanced code transformation techniques that are more
sophisticated in hindering the malware detection frameworks. We include advanced
evasion techniques, such as Native Exploits (NEX), Function Inlining and Outlining
(FIO), Reflection API (REF), Dynamic Code Loading/Modification (DCL/DCM), and
Anti-debugging (ADE).

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 14/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

a) Native Exploits (NEX): Android applications call native libraries to run system-
related functions. The malware uses a native code exploit to escalate the root privilege
while running (Xu et al., 2016). Unfortunately, many exploits’ source code is available
for download. Official Android suppliers are working on a solution using regular
system updates and fixes. Additionally, DroidDream malware (Wu et al., 2015) packs
native code exploits with application payload, bypassing Android security
monitoring and logging systems.

b) Function Inlining and Outlining (FIO): Inlining and outlining are compiler
optimization techniques options. Inlining replaces the function call with the entire
function body, and the outlining function divides the function into smaller functions.
This type of transformation obfuscates the call graph detection technique by
redirecting function calls and creating a maze of calls (Gascon et al., 2013).

c) Reflection API (REF): Reflection API is a technique to initiate a private method or get
a list of parameters from another function or class, whether this class is private or
public. Android developers legitimately use it to provide genericity, maintain
backward compatibility, and reinforce application security. However, malware
authors take advantage of this feature and use it to bypass detection methods.
Reflection evasion facilitates the possibility to call private functions from any
technique outside the main class. Recently few studies highlighted the reflection effect
on code analysis and considered reflection during the analysis process (Kuhnel,
Smieschek & Meyer, 2015; Li et al., 2016).

d) Dynamic Code Loading/Modification (DCL/DCM): Since Java has the capability of
loading code at runtime using class loader methods, Android malware application
dynamically download malicious code using the dynamic code loading (DCL). The
DCL and DCM techniques provide advanced evasion capability to malware authors,
and improper use can make benign applications vulnerable to inject malicious code.
For instance, the Plankton malware family uses dynamic code loading to evade
detection methods. As being the first malware with DCL that stealthy extend its
capabilities on Android devices. It installs an auto-launching background application
or service to the device, collecting device critical information to a server. The server
sends the malicious class payload URL link to the background service using an
HTTP_POST message containing a Dalvik Bytecode jar malicious payload file. In the
following trigger of “init()” event of the main application, the malicious payload is
invoked using the “DexClassLoader” class. Due to the unavailability of the
dynamically loaded code during Android malware static analysis, the DCL and DCM
evasion technique is another transformation technique that is a big challenge for
static analysis (Hsieh, Wu & Kao, 2016; Li et al., 2016). Although some researchers
(Poeplau et al., 2014; Zhang, Luo & Yin, 2015; Zhauniarovich et al., 2015) studied
how DCL evades malware detection, it is still an open issue that needs more
attention. Grab’n run (Falsina et al., 2015) uses code verification techniques to secure
dynamic code loading and protect it from misuse by malware authors and attackers.

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 15/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

e) Anti-debugging (ADE): The malware developer presumes the limitation of Android
that only one debugger can be attached to a process using ptrace functionality
(Zhang, Luo & Yin, 2015). Hence, it prohibits attaching a debugger to the suspected
application. If the malware detects the running debugging tool like Java Debug
Wiring Protocol (JDWP), it discovers the operating environment running under an
Android emulator or physical device. Andro-Dumpsys (Jang et al., 2016) is a hybrid
Android malware analysis framework that claimed that it disables the attachment
of “ptrace” monitoring application service to monitor the running applications,
which lack ADE detection.

Anti-emulation transformation
The primary objective of anti-emulation evasion is to detect the running environment of
the sandbox and benignly masquerade as a clean application instead of launching the
malicious code, which we refer to as Virtual Machine Aware (VMA). Another side of
anti-emulation evasion is detecting automatic user interaction emulation, which refers to
as Programmed Interaction Detection like the monkeyrunner tool used in many
frameworks, for instance, the Droidbox (Desnos & Lantz, 2014) sandbox tool in the
Mobile-Sandbox (Spreitzenbarth et al., 2015).

a) Virtual Machine Aware (VMA): The dynamic analysis requires either an Android
virtual machine emulator or a physical device to install the suspected application.
Scientists studied the possibility of detecting the running environment fingerprints to
differentiate between an emulator and a physical device (Jing et al., 2014; Maier,
Muller & Protsenko, 2014;Maier, Protsenko & Müller, 2015; Vidas & Christin, 2014).
Android.obad (Faruki et al., 2015b; Singh, Mishra & Singh, 2015) is an emulator-
aware malware, which complicates the analysis process. The malware looks for the
“Android.os.build.MODEL” value throughout the code and exits if it matches the
emulator’s model. The malware only runs in an emulator after patching WMA
checks.

b) Programmed Interaction Detection (PID): Android malware is an event-driven
application that needs a particular series of user interactions to launch malicious
actions. Therefore, dynamic analysis requires a running environment user/gesture
interaction. Malware writer refers to PID obfuscation as code coverage. Some
researchers have tried to address code coverage; however, it remains a challenge to
detect it.

We scrutinize the top Android malware detection frameworks against the two main
evasion categories based on the introduced definitions of Android malware evasion
techniques. The first category is polymorphism, which consists of package transformation
and encryption transformation. Package transformation includes Repacking (RPK),
Package Renaming (PKR), and Identifier Renaming (IDR). Encryption transformation
includes Data Encryption (DEN), Bytecode Encryption (BEN), and Payload Encryption
(PEN). The metamorphism subcategories are obfuscation transformation, advanced code

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 16/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

transformation, and anti-emulations transformation. The code obfuscation subcategory
includes Code Reordering (CRE), Call Indirection (CIN), and Dead Code Insertion (DCI).
Advanced code transformation includes Native Exploits (NEX), Function Inlining and
outlining (FIO), Reflection API (REF), Dynamic Code Loading/Modification (DCL/DCM),
and Anti-debugging (ADE) evasion techniques. Last but not least, anti-emulation
transformation includes Virtual Machine Aware (VMA) and Programmed Interaction
Detection (PID).

Android evasion detection frameworks
Many researchers (Apvrille & Apvrille, 2015; Bagheri et al., 2015; Battista et al., 2016;
Chenxiong et al., 2015; Elish et al., 2015; Fratantonio et al., 2016; Gonzalez, Stakhanova &
Ghorbani, 2014; Gurulian et al., 2016; Kuhnel, Smieschek & Meyer, 2015; Lei et al.,
2015; Li et al., 2016; Martín, Menéndez & Camacho, 2016; Preda & Maggi, 2016; Sheen,
Anitha & Natarajan, 2015; Shen et al., 2015; Sun, Li & Lui, 2015; Wang et al., 2016;
Wu et al., 2016; Zhang, Breitinger & Baggili, 2016) examine their frameworks against
different evasion techniques, and they take countermeasures to overcome evasion
techniques, which prevent the anti-malware framework from detecting malicious
applications. These evasions are the leading cause of false negatives, as they allow many
malware applications to penetrate freely into Android smart devices. This section
investigates the latest frameworks with different approaches, finding a robust solution to
detect evasion techniques. We are aiming to discover the gap in this area of research.
We also review the different evasion test benches and tools that researchers and
commercial enterprises use to secure their codes. We review the latest detection
frameworks and their resilience against five different evasion categories and 16 different
subcategories distributed into 56% static analysis, 28% dynamic, and 16% hybrid
frameworks.

Android malware detection techniques
There are three leading techniques for Android malware detection Fig. 3 presents the three
main categories of Android malware detection techniques, the first category is logic-based
techniques (Lee et al., 2014; Zhang, She & Qian, 2015a), based on hard-coded safe lists
and predefined alarms stored in text files or a small database like Amamra (Amamra,
Robert & Talhi, 2015). The second category is signature based malware detection
techniques (Niazi et al., 2015; Tchakounté et al., 2021), it based the malware detection on
comparing the suspicious application with malware application signature. The third
category of Android malware detection uses machine learning (ML) classification
algorithms to classify the application as benign or malware (Afonso et al., 2015; Alzaylaee,
Yerima & Sezer, 2016; Amamra, Robert & Talhi, 2015; Baskaran & Ralescu, 2016; Canfora
et al., 2016; Canfora et al., 2015c; Castellanos et al., 2016; Faruki et al., 2015a; Feizollah
et al., 2015; Fratantonio et al., 2016; Kurniawan, Rosmansyah & Dabarsyah, 2015; Lei et al.,
2015; Lindorfer, Neugschwandtner & Platzer, 2015; Lopez & Cadavid, 2016; Meng et al.,
2016; Nissim et al., 2016; Spreitzenbarth et al., 2015; Spreitzer et al., 2016; Wang & Wu,
2015;Wu et al., 2016; Xu et al., 2016; Yerima, Sezer & Muttik, 2014; Yuan, Lu & Xue, 2016;

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 17/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

Zhang, Breitinger & Baggili, 2016). The ML-based techniques extract the Android devices
feature that represent the Android application characteristics such as the application’s
permission, code hierarchy from reverse engineering process, or monitoring application
behaviour in runtime. The collected feature is a result of static, dynamic, or hybrid analysis
of anlysing Android applications. The collected features are used to build machine learning
classification model that decides whether the application is malware or benign.

Android malware detection methodologies are classified from a different point of
view, as depicted in Fig. 4, defining the Android malware detection taxonomy as
post-installation and pre-installation methods.

Figure 3 The main categories of Android malware detection techniques. Full-size DOI: 10.7717/peerj-cs.907/fig-3

Figure 4 Taxonomy of Android malware detection methodologies.
Full-size DOI: 10.7717/peerj-cs.907/fig-4

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 18/61

http://dx.doi.org/10.7717/peerj-cs.907/fig-3
http://dx.doi.org/10.7717/peerj-cs.907/fig-4
http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

Post-installation detection
This section explains the Android vulnerability check and monitors the system logs after
installing the application. Therefore, post-installation analysis reports the security issues
and malicious activity to the end-users.

a) Vulnerability Check: The vulnerability check method scans all existing Android apps
and Android system versions against common security threats. APSET (Salva &
Zafimiharisoa, 2015) collects the vulnerability pattern using the Android
application’s test case execution framework, which supports receiving exceptions.
However, using more vulnerability patterns or generating more test cases per pattern
improves the APSET malware detection performance.

b) Monitoring Logs: Android systems use process monitoring tools and network
monitoring tools. Mobile-Sandbox (Spreitzenbarth et al., 2015) uses the process trace
monitoring tool and PCAP network monitoring tool to capture the required data for
analyzing the Android applications.

Pre-installation detection
Android malware detection frameworks perform static, dynamic, or hybrid analyses to
analyze features for malware detection techniques, which classify the apps as benign or
malware. Hence, we identify the following application analysis methodologies.

Static analysis
It is a technique to reverse engineer the APK statically without installing it; the analysis
requires reading configuration settings, decompiling executable bytecode, and extracts the
source code for further analysis.

a) Signature-based: This paper classifies the signature-based method under static
analysis detection because the signature-based detection approach builds its
frameworks with static Android application characteristics. As such, DroidAnalytics
(Zheng, Sun & Lui, 2013b) uses a signature-based manner in which it dynamically
collects and creates a signature for each malware and stores malware signature into a
central database. This model has limitations where each of the new malware family
variants needs a different signature. LimonDroid (Tchakounté et al., 2021) proposed
a signature-based database of Android malware signature based on fuzzy hashing
technique. It builds a signature database for literature purposes rather than a malware
detection framework.

b) Permission-based: APK Auditor (Talha, Alper & Aydin, 2015) is a static model that
leverages permission-based detection castoff decompressing the APK package; it
extracts the malicious symptoms using permission and signature matching analysis.
Likewise, Triggerscope (Fratantonio et al., 2016) uses permissions characteristics as
an input to classify the application using different machine learning algorithms
(Abdulla & Altaher, 2015; Alazab et al., 2020; Arora, Peddoju & Conti, 2019;
Dharmalingam & Palanisamy, 2021; Fang, Han & Li, 2014; Glodek & Harang, 2013;

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 19/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

Li et al., 2018; Niazi et al., 2015; Şahin et al., 2021; Shalaginov & Franke, 2014; Talha,
Alper & Aydin, 2015; Tiwari & Shukla, 2018).

c) Source code based Analysis: Arp et al. (2015) extracts features from the application’s
Androidmanifest file and source code; it scrutinizes the code by listing the native
calls, API calls, and URL addresses. It uses machine learning classification to
discriminate between malware and benign apps. Likewise, DroidMat (Wu et al.,
2012) uses the configuration file to get the required permission by the APK and
counts the method that has API calls from the decompiled source code; it uses
1,500 benign APK applications and 238 malware, evaluates the accuracy of the
framework, and achieves 97.87% accuracy. However, Lei et al. (2015) proposed
a probabilistic discriminative model based on decompiled source code with
permissions. It classified apps as benign and malware using machine learning
classification techniques. Hanna et al. (2013) tried to find the code similarity among
Android applications to detect similar code patterns with the same vulnerabilities and
the repackaged or cloned applications in Android markets.

Dynamic analysis
Dynamic analysis is the process of running the suspect app in an isolated Android
environment. It starts by receiving the Android application APK files, either using an
online scanning portal VirusTotal (Google) or a scanning agent on an Android
smartphone/device. Next is opening a suitable Android operating environment in a
physical device or emulator, which we hereafter refer to as a sandbox. The sandbox isolates
the application to protect the analysis device from possible malicious attacks. Later, the
dynamic analysis starts system logging and network monitoring tools and captures the
default system logs.

Once the sandbox and the logging or monitoring tools are ready, the APK installation
follows, and once the installation is successful, the logging system captures all system logs.
Dynamic analysis requires the application to start and run all codes and capture all changes
to the Android system environment. The sandbox captures the system logs before
installing the application and compares the system logs after installing and running the
suspect Android application. The sandbox uses a monkeyrunner tool to randomly emulate
user gestures and cover all the possible alleged code in an Android application. Dynamic
analysis sandboxing techniques install and run Android applications in a virtual
environment, emulator, or physical device and monitor the application’s behaviour. It
considers network traffic, opened ports, and system calls. One of the main issues during
the monitoring process is the user interaction simulation tool, which simulates the user
interaction gestures that must cover all possible interactions. The following are types of
sandboxing: Sandbox Emulator: Most researchers (Afonso et al., 2015; Desnos & Lantz,
2014; Faruki et al., 2015a; Spreitzenbarth et al., 2015) use Android emulators like Droidbox
(Desnos & Lantz, 2014), TantDroid (Chao et al., 2020), and CuckooDroid (Check Point
Software Technologies, 2015), which run an Android image as a virtual machine. Later, the
framework destroys the used OS image and prepares a factory reset Android OS for the

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 20/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

following analysis process. Physical sandbox device: The dynamic analysis algorithm resets
the physical device to factory settings to make sure the analysis captures only the suspected
application’s behaviour. It overcomes the limitations of using emulators and uses physical
devices to analyze suspicious applications (Shrestha et al., 2015) dynamically.

Android malware dynamic analysis faces some challenges; some malware families evade
the dynamic malware analysis environment by halting the malicious download until the
dynamic analysis finishes the monitoring period. The sandbox environment suffers from
the computational time required to load the Android operating system, create log files,
install APK, capture system logs and network traffic, and copy the log files to form
understandable characteristics. User gestures emulation using Android tools, such as
monkeyrunner, is less precise and partially covers the code of an application. Phone calls,
SMS, GPS, and NFC hardware emulation is another challenge in Android malware
dynamic analysis, as they are not as realistic as a physical device. The dynamic analysis kills
the emulator after the dynamic analysis time. Therefore, the dynamic analysis launches a
new emulator instance needs for every App analysis. These challenges prevent the dynamic
analysis from performing effective malware detection. Some studies have considered
dynamic analysis to overcome the limitations of static analysis (Afonso et al., 2015; Amos,
Turner & White, 2013; Desnos & Lantz, 2014; Enck et al., 2014a, 2014b; Lindorfer,
Neugschwandtner & Platzer, 2015; Spreitzenbarth et al., 2015; Wang & Shieh, 2015; Zhao
et al., 2014).

Hybrid analysis
The hybrid-based detection frameworks, like Mobile-Sandbox (Spreitzenbarth et al., 2015),
Droiddetector (Yuan, Lu & Xue, 2016), and Andro-Dumpsys (Jang et al., 2016), combine
the dynamic analysis and static analysis techniques to reconcile the limitations of the static
analysis. The hybrid analysis extracts static features using reverse engineering techniques
(Lim et al., 2016). Static features are apps permissions, code analysis, intent, network
address, string, and hardware features. Likewise, it extracts the dynamic analysis of the
application by capturing the network traffic, system calls, user interaction, and system
components using sandbox methodologies. Later, it combines a group of static and
dynamic features, driving the machine learning algorithms to classify the application to
benign or malware.

Android malware dataset
Most Android malware detection frameworks adopt machine learning algorithms to build
a detection model; hence researchers crawl apps from the official apps market store Google
Play to build its dataset (Arp et al., 2015; Parkour, 2013; Yajin & Xuxian, 2012). It also
crawls sample applications from third-party application stores, such as Soc.io Mall,
Samsung Galaxy apps, SlideME, AppsLib, GetJar, Mobango, Opera Mobile Store, Amazon
Appstore, and 1Mobile markets. To label the crawled applications as benign or malware,
researchers employ online security scanning tools as listed in Table 3. For instance,
Virustotal and AndroTotal, and the online service are used to scan the crawled apps and
cluster the found malware apps into malware families. Researchers label all crawled apps

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 21/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

using VirusTotal to build Android malware detection datasets. Many of the dataset are
published for future academic research such as Drebin (Arp et al., 2015), Genome (Yajin &
Xuxian, 2012), Kharon (Kiss et al., 2016), AMD (Li et al., 2017), AAGM (Lashkari et al.,
2017), PRAGuard (Maiorca et al., 2015), AndroZoo (Allix et al., 2016) datasets.

Machine learning in android malware detection
Based on collected characteristics or so-called features (Feizollah et al., 2015), different
machine learning classification techniques classify APK as benign or malware. However,
deep insight into machine learning techniques is outside the scope of this study.
Android malware detection classifies Android apps into two classes benign and malware.
However, some papers detect Android Ransomware (Andronio, Zanero & Maggi, 2015;
Maiorca et al., 2017) considering three classes benign, malware, and ransomware. Hence, we
briefly explain the evaluation measures of ML classification. Machine learning comprises
three main categories, namely supervised, unsupervised, and reinforcement learning.

(a) Supervised Model:

Supervised machine learning bases its model on a labelled dataset. The framework splits
the dataset into two subsets; first subset is for training and creating the classification
model, and the second subset is for testing and validating the trained classification model.
Most researchers split the data into 70% training and 30% testing subsets, but some split
the data into 50% for training and 50% for testing (Adebayo & AbdulAziz, 2014).

(b) Unsupervised Model:

In the unsupervised model, apps are unlabeled. The unsupervised model recognizes
the class of the applications without knowing which App is malware or benign.
Researchers use unsupervised models to learn the covert pattern of the unlabeled data

Table 3 Online malware scanning frameworks.

Online security scanning Description Started Scanning
rate (app/day)

Services License

VirusTotal (Google, 2011) https://www.virustotal.com 2011 Ignored Web/API Free

AndroTotal (Maggi,
Valdi & Zanero, 2013)
Droydseuss (Coletta, Van
der Veen & Maggi, 2016)

https://andrototal.org/
http://droydseuss.com

2013 Ignored Web Free

ANDRUBIS (Lindorfer
et al., 2014)

https://anubis.iseclab.org
commercialized to
https://www.lastline.com/

2012 3,500 API Free/discontinued–
Paid only

APK Auditor (Talha,
Alper & Aydin, 2015)

http://app.ibu.edu.tr:8080/apkinspectoradmin 2015 Ignored Web Discontinued

NVISO (Hoffmann et al.,
2016)

https://apkscan.nviso.be/ – 2,400 Web/API Free/Pro

Copperdroid http://copperdroid.isg.rhul.ac.uk/copperdroid/ 2015 NA Web NA

Totalhash https://totalhash.cymru.com 10 Web/API Commercial

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 22/61

https://www.virustotal.com
https://andrototal.org/http://droydseuss.com
http://droydseuss.com
https://anubis.iseclab.org
https://www.lastline.com/
http://app.ibu.edu.tr:8080/apkinspectoradmin
https://apkscan.nviso.be/
http://copperdroid.isg.rhul.ac.uk/copperdroid/
https://totalhash.cymru.com
http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

(Akpojaro, Aigbe & Onwudebelu, 2014; Kohout & Pevny, 2015; Tang, Sethumadhavan &
Stolfo, 2014).

(c) Reinforcement Learning:

The machine exposes itself to an environment where it trains itself continually using
trial and error. This machine learns from experience and tries to capture the best
possible knowledge to make accurate business decisions. An example of reinforcement
learning is the Markov Decision Process (Kaelbling, Littman & Moore, 1996).

To understand the supervised model classification performance, ML introduces the
confusion matrix to calculate the performance measures as per Table 4. Let D be the total
number of test apps, which we use to examine the supervised ML model performance that
classifies apps as benign or malware, let M be the number of malware samples, and B the
number of benign samples.

True Positive (TP) represents the number of malware correctly classified.
False Positive (FP) accounts for the number of benign apps classified erroneously as

malware.
True Negative (TN) represents the number of correctly classified benign apps.
False Negative (FN) accounts for the number of malware apps classified erroneously as

benign.
The ML performance measures represent the accuracy of the Android malware

detection classification frameworks. Table 5 explains the ML performance measure
formulas and their direct mathematical relation to the confusion matrix.

The Receiver Operating Characteristic (ROC) curve plots the TPR against FPR where
TRP is the y-axis and FPR is the x-axis. Every point in the ROC curve represents one
confusion; it is all based on TP and FP values. Area Under the Curve (AUC) is the area
under the ROC curve representing the aggregation of the ML trained model (Afifi et al.,
2016; Baskaran & Ralescu, 2016; Feizollah et al., 2015).

Evasion test benches tools
Researchers or commercial companies have developed the evasion test benches to study
the robustness of the currently available anti-malware applications or protect their
software packages from piracy issues. The first test benches trials were ADAM

Table 4 Confusion matrix.

Classified apps

Total samples Malware Benign

True apps Malware - M TP1 FN2

Benign - B FP3 TN4

Notes:
1 TP True Positive.
2 FN False Negative.
3 FP False Positive.
4 TN True Negative.

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 23/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

(Zheng, Lee & Lui, 2013a) and Droidchameleon Rastogi (Rastogi, Chen & Jiang, 2013),
which conclude that there is a detection performance degradation when applying trivial
obfuscation techniques. However, researchers developed evasions tools to evaluate
commercial anti-malware performance, such as PANDORA (Protsenko & Muller, 2013),
Mystique (Meng et al., 2016), AAMO (Preda & Maggi, 2016), ProGuard (Lafortune,
2002), and others as listed in Table 6. Evasion tools were initially aiming to protect
commercial software companies’ applications from piracy, such as DexGuard (GuardSquare,
2014), which is an extension of ProGuard (Lafortune, 2002), and Klassmaster (Klassmaster,
2013). Recently, a pretty good number of researchers develop frameworks targeting
obfuscation and malware variant resiliency. PetaDroid (Karbab & Debbabi, 2021) introduces
the severe first obfuscation dataset, which is a good initial. However, it proves that the
accuracy degrades with time and needs malware variant and obfuscation adaptations.
Dynamic analysis frameworks (Chen et al., 2018; Cho, Yi & Ahn, 2018; De Lorenzo et al.,
2020; Feng et al., 2018; Sihag et al., 2021; Xue et al., 2017) declare the ability to detect all types
of obfuscated malware; however, most of it misses the evaluation report of each obfuscation
technique using obfuscated malware datasets. Researchers who evaluated their framework
against particular evasions are identified by mentioning the detected evasion, which
represents that the respective study either evaluated or presumed its ability to detect the
evasion technique, while “Failed to detected or ignored” means the respective study is
defeated the corresponding evasion technique. The “stared” cell indicates the framework that
ignores the evaluation experiments on evasion techniques or assumptions to that effect, or
the study misses evaluating its framework performance against this evasion technique.

Table 5 ML classification performance measures.

Performance measure Short-form Formulas Description

Recall or Sensitivity TPR =
TP
M

¼ TP
TP þ FP

True Positive Rate

Miss rate FNR =
FN
M

¼ FN
TP þ FP

False Negative Rate

Fall-out FPR =
FP
B

¼ FP
TP þ FN

False Positive Rate

Specificity TNR =
TN
B

¼ TN
TP þ FN

True Negative Rate

Precision PPV =
TP

TP þ FP
Positive Predictive Value

False Discovery Rate FDR =
FP

TP þ FP
False Discovery Rate

False Omission Rate FOR =
FN

TN þ FN
False Omission Rate

Negative Predictive Value NPV =
TN

TN þ FN
Negative Predictive Value

Accuracy ACC =
TP þ TN

D
¼ TP þ TN

TP þ TN þ FP þ FN
Total truly detected apps over total examined apps

F-measure F1 =
2� TP

2� TP þ FN þ FP
The harmonic mean of precision and sensitivity

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 24/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

Table 6 Android malware evasion test benches.

Polymorphism Metamorphism

Package
transformation

Encryption Code obfuscation Advanced code transformation Anti-emulator

Framework (RPK) (PKR) (IDR) (DEN) (BEN) (PEN) (CRE) (CIN) (DCI) (NEX) (FIO) (REF) DCL/
DCM)

(ADE) (VMA) (PID)

ADAM (Zheng,
Lee & Lui,
2013a)

✓ * * ✓ * * ✓ * ✓ * * * * * * *

DroidChameleon
(Rastogi, Chen
& Jiang, 2013)

✓ * * * * * ✓ * * * * ✓ * * * *

ProGuard
(Lafortune,
2002)

* * * ✓ ✓ ✓ * * * * * * * * * *

DexGuard
(GuardSquare,
2014)

* * * ✓ * * ✓ ✓ * * * * * * * *

Klassmaster
(Klassmaster,
2013)

* * * ✓ ✓ * ✓ ✓ * * * * * * * *

Maiorca (Maiorca
et al., 2015)

✓ * * ✓ ✓ ✓ * * * * * ✓ * * * *

Vidas (Vidas &
Christin, 2014)

* * * * * * * * * * * * * * ✓ *

Petsas (Petsas
et al., 2014)

* * * * * * * * * * * * * * ✓ *

Morpheus (Jing
et al., 2014)

* * * * * * * * * * * * * * ✓ *

Garcia (Garcia
et al., 2015)

* ✓ * ✓ ✓ * * ✓ * * * * * * * *

DroidSieve
(Suarez-Tangil
et al., 2017)

* * * ✓ ✓ ✓ * * * * * ✓ ✓ * * *

MysteryChecker
(Jeong et al.,
2014)

✓ * * * ✓ ✓ ✓ ✓ * * * * * * * *

PANDORA
(Protsenko &
Muller, 2013)

* * * ✓ * * * * * * ✓ ✓ * * * *

Mystique (Meng
et al., 2016)

* * ✓ ✓ * * * * * * ✓ * * * * *

Canfora (Canfora
et al., 2015b)

✓ ✓ ✓ ✓ * * ✓ * ✓ * * * * * * *

Hatwar (Hatwar
& Shelke, 2014)

* * * * * * * * * * * * ✓ * * *

AAMO (Preda &
Maggi, 2016)

✓ ✓ * * ✓ * ✓ ✓ ✓ * ✓ ✓ * ✓ * *

(Continued)

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 25/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

EVALUATION OF EVASION DETECTION FRAMEWORKS
We have explored the last 10 years’ research to evaluate the Android detection frameworks
against evasion techniques discussed in evasion techniques section. We studied Android
malware detection frameworks for the last decade from 2011 to early 2021, as listed in
Table 7. We categorize malware detection framework by the analysis methodology static,

Table 6 (continued)

Polymorphism Metamorphism

Package
transformation

Encryption Code obfuscation Advanced code transformation Anti-emulator

Framework (RPK) (PKR) (IDR) (DEN) (BEN) (PEN) (CRE) (CIN) (DCI) (NEX) (FIO) (REF) DCL/
DCM)

(ADE) (VMA) (PID)

Abid (Abaid,
Kaafar & Jha,
2017)

* * * * * * * * * * * * ✓ * * *

EnDroid (Feng
et al., 2018)

* * * * * * * * * * * ✓ ✓ * * *

Bacci (Bacci et al.,
2018)

✓ ✓ ✓ ✓ * * ✓ ✓ ✓ * * * * * * *

DexMoinitor
(Cho, Yi & Ahn,
2018)

* * * ✓ ✓ ✓ * * * * * * * * * *

Kim (Kim et al.,
2019)

* ✓ ✓ ✓ * * * ✓ ✓ * * * * * * *

DAMBA (Zhang
et al., 2020)

* * * ✓ ✓ ✓ * ✓ * * * * ✓ * * *

IMCFN (Vasan
et al., 2020)

✓ ✓ ✓ ✓ * * ✓ * ✓ * * * * * * *

PetaDroid
(Karbab &
Debbabi, 2021)

✓ ✓ ✓ ✓ * ✓ ✓ ✓ ✓ * * ✓ * * * *

BLADE (Sihag,
Vardhan &
Singh, 2021b)

✓ ✓ ✓ ✓ ✓ ✓ ✓ * * * * * * * * *

DANDroid
(Millar et al.,
2020)

* * * ✓ ✓ ✓ * * * * * * * * * *

AndrODet
(Mirzaei et al.,
2019)

✓ ✓ ✓ ✓ * * * ✓ * * * * * * * *

Dadidroid
(Ikram, Beaume
& Kâafar, 2019)

✓ ✓ ✓ ✓ ✓ ✓ * ✓ * * * * * * * *

Obfusifier (Li
et al., 2019)

✓ ✓ ✓ * * * ✓ ✓ ✓ * * * * * * *

Note:
RPK, Repacking; PKR, Package Renaming; IDR, Identifier Renaming; DEN, Data Encryption; BEN, Bytecode Encryption; PEN, Payload Encryption; CRE, Code
Reordering; CIN, Call Indirections; DCI, Dead Code Insertion; NEX, Native Exploits; FIO, Function Inlining and Outlining; API (REF), Reflection; DCL/DCM, Dynamic
code loading/Modification; ADE, Anti-debugging; VMA, Virtual Machine Aware; PID, Programmed Interaction Detection.

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 26/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

dynamic, and hybrid features. This paper decides to put metadata analysis out of this
research scope. We have examined 74 static analysis based frameworks. The number of
dynamic based analysis frameworks are 35. The number of hybrid analysis frameworks is

Table 7 List of examined Android malware detection frameworks.

Detection
techniques

The examined Android malware detection frameworks Number of
frameworks

Static DroidMat (Wu et al., 2012), Juxtapp (Hanna et al., 2013), DroidOLytics (Faruki et al., 2013), Zhou (Zhou et al.,
2013), DroidAPIMiner (Aafer, Du & Yin, 2013), MAMA (Sanz et al., 2013), QuantDroid (Markmann, Gessner
&Westhoff, 2013), Glodek (Glodek & Harang, 2013), ViewDroid (Zhang et al., 2014), Yerima (Yerima, Sezer &
Muttik, 2014), DroidGraph (Kwon et al., 2014), MysteryChecker (Jeong et al., 2014), AdDetect (Narayanan,
Chen & Chan, 2014), ResDroid (Shao et al., 2014), Dendroid (Suarez-Tangil et al., 2014), Wei et al. (Wei et al.,
2015), Poeplau (Poeplau et al., 2014), Chen (Chen et al., 2015), Apk Auditor (Talha, Alper & Aydin, 2015),
Abdulla (Abdulla & Altaher, 2015), Andro-Tracer (Kang et al., 2015), Dempster–Shafe (Du, Wang & Wang,
2015), Dexhunter (Zhang, Luo & Yin, 2015), DroidExec (Wei et al., 2015), AnDarwin and DNADroid (Crussell,
Gibler & Chen, 2015), AndroSimilar (Faruki et al., 2015d), Grab ‘n Run Falsina (Falsina et al., 2015), Ngrams
(Canfora et al., 2015a), SeqMalSpec -Sufatrio (Sufatrio et al., 2015a), DroidEagle (Sun, Li & Lui, 2015),
VulHunter (Chenxiong et al., 2015), COVERT (Bagheri et al., 2015), Sheen (Sheen, Anitha & Natarajan, 2015),
Droidkin (Gonzalez, Stakhanova & Ghorbani, 2014), Shen (Shen et al., 2015), SherlockDroid (Apvrille &
Apvrille, 2015), Kuhnel (Kuhnel, Smieschek & Meyer, 2015), Elish (Elish et al., 2015), Lei (Lei et al., 2015),
Gurulian (Gurulian et al., 2016), TriggerScope (Fratantonio et al., 2016), Wu (Wu et al., 2016), DroidRA (Li
et al., 2016), AAMO (Preda & Maggi, 2016), Wang (Wang et al., 2016), MocDroid (Martín, Menéndez &
Camacho, 2016), Battista (Battista et al., 2016), RAPID Zhang (Zhang, Breitinger & Baggili, 2016), DroidSieve
(Suarez-Tangil et al., 2017), Bhandari et al., (Bhandari et al., 2017), Jin Li (Li et al., 2018), AndrODet (Mirzaei
et al., 2019), PetaDroid (Karbab & Debbabi, 2021), Amin (Amin et al., 2020), Taheri (Taheri et al., 2020),
ProDroid (Sasidharan & Thomas, 2021), Tiwari (Tiwari & Shukla, 2018), GDroid (Gao, Cheng & Zhang,
2021), Millar (Millar et al., 2021), Şahin (Şahin et al., 2021), DGCNDroid (Yang et al., 2021), IntDroid (Zou
et al., 2021), Dharmalingam (Dharmalingam & Palanisamy, 2021), BLADE (Sihag, Vardhan & Singh, 2021b),
Wang (Wang et al., 2020), Pektas (Pektaş & Acarman, 2020), Alazab (Alazab et al., 2020), Jung (Jung et al.,
2018), Tiwari (Tiwari & Shukla, 2018), Maiorca (Maiorca et al., 2017), Alahy (Alahy et al., 2020), Hamming
(Taheri et al., 2020), SEDMDroid (Zhu et al., 2020), Kim Multimodal (Kim et al., 2019), Taha (Taha &
Malebary, 2021), Dadidroid (Ikram, Beaume & Kâafar, 2019), Obfusifier (Li et al., 2019)

74

Dynamic Amos (Amos, Turner & White, 2013), AndroTotal (Maggi, Valdi & Zanero, 2013), Lee & Kim (Lee et al., 2014),
TaintDroid (Enck et al., 2014a), Pektas (Pektas & Acarman, 2014), Soh (Soh et al., 2015), Shabtai (Shabtai et al.,
2014), VetDroid (Yuan et al., 2014b), DroidBarrier (Almohri, Yao & Kafura, 2014), APSET (Salva &
Zafimiharisoa, 2015), Afonso (Afonso et al., 2015), Maier (Maier, Protsenko & Müller, 2015), Singh (Singh,
Mishra & Singh, 2015), Gheorghe (Gheorghe et al., 2015), DwroidDump (Kim, Kwak & Ryou, 2015), Ng (Ng &
Hwang, 2015), GroddDroid (Abraham et al., 2015), Wu (Wu et al., 2015), DynaLog (Alzaylaee, Yerima &
Sezer, 2016), Q-floid (Castellanos et al., 2016), Diao (Diao et al., 2016), Alzaylaee (Alzaylaee, Yerima & Sezer,
2017), (Feng et al., 2018), DE-LADY (Sihag et al., 2021), Wang (Wang & Li, 2021), MLDroid (Mahindru &
Sangal, 2021), Liu (Liu et al., 2021), BPFroid (Agman & Hendler, 2021), DL-Droid (Alzaylaee, Yerima & Sezer,
2020), Droidetec (Ma et al., 2020), Taheri (Taheri et al., 2020), Abuthawabeh (Abuthawabeh & Mahmoud,
2019), Feng (Feng et al., 2020), Wang (Wang et al., 2019), Chen (Chen et al., 2018)

35

Hybrid RiskRanker (Grace et al., 2012), MobSafe (Xu et al., 2013), Shalaginov (Shalaginov & Franke, 2014), ARIGUMA
(Zhong et al., 2013), Petsas (Petsas et al., 2014), Droid-Sec (Yuan et al., 2014a), AMDetector (Zhao et al., 2014),
MARVIN (Lindorfer, Neugschwandtner & Platzer, 2015), Mobile-Sandbox (Spreitzenbarth et al., 2015),
StaDyna (Zhauniarovich et al., 2015), Tap-Wave-Rub (Shrestha et al., 2015), Droiddetector (Yuan, Lu & Xue,
2016), Andro-Dumpsys (Jang et al., 2016), Abaid (Abaid, Kaafar & Jha, 2017), Manto (Mantoo & Khurana,
2020), Chao (Chao et al., 2020), Loreenzo (De Lorenzo et al., 2020), Puerta (de la Puerta et al., 2019),
Surendrean (Surendran, Thomas & Emmanuel, 2020), Lu (Lu et al., 2020), Dhalaria (Dhalaria & Gandotra,
2021), Zhu (Zhu et al., 2021), Nawaz (Nawaz, 2021), Liu (Liu et al., 2021), PNSDroid (Kandukuru & Sharma,
2018), Bacci (Bacci et al., 2018), DAMBA (Zhang et al., 2020)

26

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 27/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

26. Hence, the total number of examined papers are 135 research paper that this study
selected from top rank journals and conferences.

Polymorphism evasion detection
We examine the three main static, dynamic, and hybrid frameworks vs polymorphism
evasions. Table 8 represents static, dynamic, and hybrid analysis based detection; we
scrutinize each framework against polymorphism transformation techniques in the two
categories package transformation and encryption transformation. Each framework uses
various samples of Android malware and benign applications’ datasets in the evaluation
process; each dataset contains a certain number of malware and benign applications.
For instance, APK Auditor (Talha, Alper & Aydin, 2015) tested its framework against 6,909
malware and 1,853 benign applications; a total of 8,762 apps that APK Auditor crawled
from Google play store and other datasets such as Genome Project and Contagio. APK
Auditor achieved 88% malware detection accuracy. As it is signature-based, most of the
evasion techniques prevent the APK Auditor detection framework from detecting malware
applications.

(a) Package Transformation:

– RPK - Repacking Evasion Detection:

Detecting repacking evasion is possible using static analysis and detection techniques;
Dempster–Shafe (Du, Wang & Wang, 2015) investigate repacking characteristics using
a control flow graph and claimed better resistance to code obfuscation techniques.
Likewise, Droidgraph (Kwon et al., 2014) used the hierarchical class levels to determine
the repackaged malicious code to the original payload; it also considered the API calls,
junk code, and code obfuscation. It reduced the code comparison time compared to the
polynomial time-consuming native call graphs algorithm. Though, reflection
successfully evades the detection framework that uses the control flow graph. Other static
detection approaches such as MysteryChecker (Jeong et al., 2014), AnDarwin (Crussell,
Gibler & Chen, 2015), AndroSimilar (Faruki et al., 2015d), ngrams (Canfora et al., 2015a),
DroidEagle (Sun, Li & Lui, 2015), DroidKin (Gonzalez, Stakhanova & Ghorbani, 2014),
DroidOlytics (Faruki et al., 2013), Gurulian (Gurulian et al., 2016), Shen (Shen et al.,
2015), and AAMO (Preda & Maggi, 2016) have indicated their ability to detect RPK
evasions. While studying dynamic analysis papers, we notice that most dynamic studies
provide less attention to this evasion type. Similarly, Soh et al. (2015) and Wu et al.
(2015) stressed that RPK evasion detection could detect RPK evasion, as illustrated in
Table 8. The study spotted 20 papers that scrutinized the RPK evasion using static
analysis, and only two papers scrutinized RPK using dynamic analysis.

– PKR - Package Renaming Detection:

Static analysis frameworks such as DroidoLytics (Faruki et al., 2013) and Droidkin
(Gonzalez, Stakhanova & Ghorbani, 2014) examine their capability in detecting PKR
evasion techniques. However, many other papers insufficiently evaluate its framework

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 28/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

against PKR, such as APK Auditor (Talha, Alper & Aydin, 2015), DroidGraph (Kwon
et al., 2014), Andro-tracer (Kang et al., 2015), Vulhunter (Chenxiong et al., 2015), and
COVERT (Bagheri et al., 2015), as presented in Table 8. Dynamic and Hybrid analysis
frameworks studies incompetently examine its robustness against PKR, except one
research, Shen (Shen et al., 2015) highlighted the issue of PKR and its capability of
detecting it as per Table 8. The study spotted nine papers that scrutinized the PKR
evasion using static analysis, and only one papers scrutinized PKR using dynamic
analysis.

– IDR Identifier Renaming Evasion Detection:

DroidOlytics (Faruki et al., 2013), AndroSimilar (Faruki et al., 2015d), Droidkin
(Gonzalez, Stakhanova & Ghorbani, 2014), Kuhnel (Kuhnel, Smieschek & Meyer, 2015),
Triggerscope (Fratantonio et al., 2016), AAMO (Preda & Maggi, 2016), and Battista
(Battista et al., 2016) claim they can detect IDR evasion by using their static Android
malware detection frameworks as presented in Table 8. Nevertheless, many other
researchers inadequately evaluate its robustness against IDR evasion. Table 8
demonstrates the issue of assuring the Android malware detection frameworks’
robustness against IDR evasion and scrutinizes the researchers’ framework against IDR
evasion techniques.

In summary, most Android malware detection frameworks based on static analysis can
detect package transformation techniques (RPK, PKR, and IDR). However, most
detection frameworks based on dynamic and hybrid analysis inadequately evaluate or
report their resilience against IDR evasion techniques. The study spotted 20 papers
that scrutinized the RPK evasion using static analysis, and only 10 papers scrutinized
IDR. The study spotted nine papers that scrutinized the IDR evasion using static
analysis, and only one paper scrutinized IDR using dynamic analysis.

(b) Encryption Transformation Evasion Detection:

Static analysis detects encryption evasion techniques; many studies, such as DexHunter
(Zhang, Luo & Yin, 2015), DroidKin (Gonzalez, Stakhanova & Ghorbani, 2014),
Sherlockdroid (Apvrille & Apvrille, 2015), Kuhnel (Kuhnel, Smieschek & Meyer, 2015),
and AAMO (Preda & Maggi, 2016), have proved that they detect the three encryption
evasions (DEN, BEN, and PEN). Static based detection studies, such as AndroSimilar
(Faruki et al., 2015d), MysteryChecker (Jeong et al., 2014), DroidKin (Gonzalez,
Stakhanova & Ghorbani, 2014), SherlockDroid (Apvrille & Apvrille, 2015), Kuhnel
(Kuhnel, Smieschek & Meyer, 2015), Shen (Shen et al., 2015), and AAMO (Preda &
Maggi, 2016), are able to detect DEN evasions. Likewise, Soh (Soh et al., 2015) and
Q-floid (Castellanos et al., 2016) claimed robustness against BEN evasion. The dynamic
analysis based detection DwroidDump (Kim, Kwak & Ryou, 2015) used code extraction
executable code from the memory of Dalvik Virtual Machine (DVM) instead of
using a decompilation tool, which is subject to obstruction by the three encryption
evasions techniques as shown in Table 8. Nevertheless, the RiskRanker (Grace et al.,

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 29/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

T
ab
le

8
P
ol
ym

or
ph

is
m

ev
al
ua

ti
on

of
fr
am

ew
or
ks
.

A
n
dr
oi
d
m
al
w
ar
e
de
te
ct
io
n
fr
am

ew
or
ks

St
at
ic

D
yn

am
ic

H
yb
ri
d

P
ol
ym

or
ph

is
m

P
ac
ka
ge

tr
an
sf
or
m
at
io
n

R
ep
ac
ki
ng

(R
P
K
)

D
ro
id
M
at

(W
u
et
al
.,
20
12
),
D
ro
id
O
Ly
ti
cs

(F
ar
uk
i
et
al
.,
20
13
),

V
ie
w
D
ro
id

(Z
ha
ng

et
al
.,
20
14
),
D
ro
id
G
ra
ph

(K
w
on

et
al
.,
20
14
),

M
ys
te
ry
C
he
ck
er

(J
eo
ng

et
al
.,
20
14
),
C
he
n
(C
he
n
et
al
.,
20
15
),

D
em

ps
te
r–
Sh
af
e
(D

u,
W
an

g
&

W
an

g,
20
15
),
D
ro
id
E
xe
c

(W
ei
et
al
.,
20
15
),
A
nD

ar
w
in

an
d
D
N
A
D
ro
id

(C
ru
ss
el
l,
G
ib
le
r
&

C
he
n,

20
15
),
A
nd

ro
Si
m
ila
r
(F
ar
uk
i
et
al
.,
20
15
d)
,N

gr
am

s
(C
an

fo
ra

et
al
.,
20
15
a)
,D

ro
id
E
ag
le
(S
un

,L
i
&

Lu
i,
20
15
),
D
ro
id
ki
n

(G
on
za
le
z,
St
ak
ha
no
va

&
G
ho
rb
an

i,
20
14
),
G
ur
ul
ia
n
(G

ur
ul
ia
n

et
al
.,
20
16
),
A
A
M
O

(P
re
da

&
M
ag
gi
,2
01
6)
,A

nd
ro
D
et

(M
ir
za
ei

et
al
.,
20
19
),
K
ar
ba
b
(K
ar
ba
b
&

D
eb
ba
bi
,2
02
1)
,A

m
in

(A
m
in

et
al
.,
20
20
),
B
LA

D
E
(S
ih
ag

et
al
.,
20
21
),
D
ad
id
ro
id

(I
kr
am

,
B
ea
um

e
&

K
âa
fa
r,
20
19
),
O
bf
us
ifi
er

(L
i
et

al
.,
20
19
)

So
h
(S
oh

et
al
.,

20
15
)

N
A

P
ac
ka
ge

R
en
am

in
g

(P
K
R
)

D
ro
id
M
at

(W
u
et
al
.,
20
12
),
D
ro
id
O
Ly
ti
cs

(F
ar
uk
i
et
al
.,
20
13
),

C
he
n
(C
he
n
et
al
.,
20
15
),
A
nD

ar
w
in

an
d
D
N
A
D
ro
id

(C
ru
ss
el
l,

G
ib
le
r
&

C
he
n,

20
15
),
A
nd

ro
Si
m
ila
r
(F
ar
uk
i
et
al
.,
20
15
d)
,

N
gr
am

s
(C
an

fo
ra

et
al
.,
20
15
a)
,D

ro
id
ki
n
(G

on
za
le
z,
St
ak
ha
no
va

&
G
ho
rb
an

i,
20
14
),
G
ur
ul
ia
n
(G

ur
ul
ia
n
et
al
.,
20
16
),
A
A
M
O

(P
re
da

&
M
ag
gi
,2
01
6)
,B

at
ti
st
a
(B
at
ti
st
a
et
al
.,
20
16
),
O
bs
ifi
er

(L
i
et
al
.,
20
19
),
K
im

(K
im

et
al
.,
20
19
),
D
ad
id
ro
id

(I
kr
am

,B
ea
um

e
&

K
âa
fa
r,
20
19
),
B
al
de

(S
ih
ag

et
al
.,
20
21
),
D
ha
rm

al
in
ga
m

(D
ha
rm

al
in
ga
m

&
Pa

la
ni
sa
m
y,
20
21
),
K
ar
ba
b
(K
ar
ba
b
&

D
eb
ba
bi
,2
02
1)
,A

nd
rO

D
et

(M
ir
za
ei
et
al
.,
20
19
)

So
h
(S
oh

et
al
.,

20
15
)

A
ba
id

(A
ba
id
,K

aa
fa
r

&
Jh
a,

20
17
)

Id
en
ti
fi
er

R
en
am

in
g
(I
D
R
)

D
ro
id
M
at

(W
u
et
al
.,
20
12
),
C
he
n
(C
he
n
et
al
.,
20
15
),
N
gr
am

s
(C
an

fo
ra

et
al
.,
20
15
a)
,S
eq
M
al
Sp
ec

-S
uf
at
ri
o
(S
uf
at
ri
o
et
al
.,
20
15
a)
,

D
ro
id
ki
n
(G

on
za
le
z,
St
ak
ha
no
va

&
G
ho
rb
an

i,
20
14
),
Sh
en

(S
he
n
et
al
.,
20
15
),
K
uh

ne
l(
K
uh

ne
l,
Sm

ie
sc
he
k
&

M
ey
er
,2
01
5)
,

G
ur
ul
ia
n
(G

ur
ul
ia
n
et
al
.,
20
16
),
A
A
M
O

(P
re
da

&
M
ag
gi
,2

01
6)
,

B
at
ti
st
a
(B
at
ti
st
a
et
al
.,
20
16
),
A
nd

rO
D
et

(M
ir
za
ei
et
al
.,
20
19
),

K
ar
ba
b
(K
ar
ba
b
&

D
eb
ba
bi
,2
02
1)
,D

ha
rm

al
in
ga
m

(D
ha
rm

al
in
ga
m

&
Pa

la
ni
sa
m
y,
20
21
),
K
im

(K
im

et
al
.,
20
19
),
D
ad
id
ro
id

(I
kr
am

,B
ea
um

e
&

K
âa
fa
r,
20
19
),
O
bf
us
ifi
er

(L
i
et
al
.,
20
19
)

So
h
(S
oh

et
al
.,

20
15
),

W
u,

20
15

(W
u

et
al
.,
20
15
)

E
nc
ry
pt
io
n

D
at
a
E
nc
ry
pt
io
n

(D
E
N
)

D
ro
id
M
at

(W
u
et
al
.,
20
12
),
M
ys
te
ry
C
he
ck
er

(J
eo
ng

et
al
.,
20
14
),

D
ex
hu

nt
er

(Z
ha
ng
,L

uo
&

Y
in
,2
01
5)
,A

nd
ro
Si
m
ila
r
(F
ar
uk
i
et
al
.,
20
15
d)
,

D
ro
id
ki
n
(G

on
za
le
z,
St
ak
ha
no
va

&
G
ho
rb
an

i,
20
14
),
Sh
en

(S
he
n
et
al
.,
20
15
),

Sh
er
lo
ck
D
ro
id

(A
pv
ri
lle

&
A
pv
ri
lle
,2

01
5)
,K

uh
ne
l(
K
uh

ne
l,
Sm

ie
sc
he
k
&

M
ey
er
,2
01
5)
,A

A
M
O

(P
re
da

&
M
ag
gi
,2
01
6)
,A

nd
rO

D
et

(M
ir
za
ei
et
al
.,
20
19
),

D
ro
id
Si
ev
e
(S
ua

re
z-
T
an

gi
le
t
al
.,
20
17
),
A
nd

rO
D
et

(M
ir
za
ei
et
al
.,
20
19
),

K
ar
ba
b
(K
ar
ba
b
&

D
eb
ba
bi
,2
02
1)
,I
nt
dr
oi
d
(Z
ou

et
al
.,
20
21
),
B
LA

D
E

(S
ih
ag

et
al
.,
20
21
),
A
la
za
b
(A
la
za
b
et
al
.,
20
20
),
K
im

(K
im

et
al
.,
20
19
),

D
ad
id
ro
id

(I
kr
am

,B
ea
um

e
&

K
âa
fa
r,
20
19
)

D
w
ro
id
D
um

p
(K
im

,K
w
ak

&
R
yo
u,

20
15
)

R
is
kR

an
ke
r
(G

ra
ce

et
al
.,

20
12
),

M
ob
ile
-S
an
db

ox
(S
pr
ei
tz
en
ba
rt
h

et
al
.,
20
15
)

B
yt
ec
od

e
E
nc
ry
pt
io
n

(B
E
N
)

D
ro
id
M
at

(W
u
et
al
.,
20
12
),
D
ro
id
A
P
IM

in
er

(A
af
er
,D

u
&

Y
in
,2
01
3)
,

M
ys
te
ry
C
he
ck
er

(J
eo
ng

et
al
.,
20
14
),
M
ys
te
ry
C
he
ck
er

(J
eo
ng

et
al
.,
20
14
),
D
ex
hu

nt
er

(Z
ha
ng
,L

uo
&

Y
in
,2
01
5)
,D

ro
id
ki
n
(G

on
za
le
z,
St
ak
ha
no
va

&
G
ho
rb
an

i,
20
14
),

Sh
er
lo
ck
D
ro
id

(A
pv
ri
lle

&
A
pv
ri
lle
,2

01
5)
,K

uh
ne
l(
K
uh

ne
l,
Sm

ie
sc
he
k
&

M
ey
er
,

20
15
),
A
A
M
O

(P
re
da

&
M
ag
gi
,2

01
6)
,W

an
g
(W

an
g
et
al
.,
20
16
),
D
ro
id
Si
ev
e

(S
ua

re
z-
T
an

gi
le
t
al
.,
20
17
),
In
td
ro
id

(Z
ou

et
al
.,
20
21
),
D
ha
rm

al
in
ga
m

(D
ha
rm

al
in
ga
m

&
Pa

la
ni
sa
m
y,
20
21
),
D
ad
id
ro
id

(I
kr
am

,B
ea
um

e
&

K
âa
fa
r,
20
19
)

D
w
ro
id
D
um

p
(K
im

,K
w
ak

&
R
yo
u,

20
15
)

R
is
kR

an
ke
r
(G

ra
ce

et
al
.,
20
12
),

M
ob
ile
-S
an
db

ox
(S
pr
ei
tz
en
ba
rt
h
et
al
.,
20
15
)

P
ay
lo
ad

E
nc
ry
pt
io
n

(P
E
N
)

D
ro
id
M
at

(W
u
et
al
.,
20
12
),
D
ro
id
O
Ly
ti
cs

(F
ar
uk
i
et
al
.,
20
13
),
D
ex
hu

nt
er

(Z
ha
ng
,

Lu
o
&

Y
in
,2
01
5)
,D

ro
id
ki
n
(G

on
za
le
z,
St
ak
ha
no
va

&
G
ho
rb
an

i,
20
14
),

Sh
er
lo
ck
D
ro
id

(A
pv
ri
lle

&
A
pv
ri
lle
,2

01
5)
,K

uh
ne
l(
K
uh

ne
l,
Sm

ie
sc
he
k
&

M
ey
er
,

20
15
),
A
A
M
O

(P
re
da

&
M
ag
gi
,2

01
6)
,D

ro
id
Si
ev
e
(S
ua

re
z-
T
an

gi
le
t
al
.,
20
17
),

K
ar
ba
b
(K
ar
ba
b
&

D
eb
ba
bi
,2
02
1)
,I
nt
dr
oi
d
(Z
ou

et
al
.,
20
21
),
K
ar
ba
b
(K
ar
ba
b
&

D
eb
ba
bi
,2
02
1)
,D

ad
id
ro
id

(I
kr
am

,B
ea
um

e
&

K
âa
fa
r,
20
19
)

D
w
ro
id
D
um

p
(K
im

,K
w
ak

&
R
yo
u,

20
15
)

R
is
kR

an
ke
r
(G

ra
ce

et
al
.,
20
12
),

M
ob
ile
-S
an
db

ox
(S
pr
ei
tz
en
ba
rt
h
et
al
.,
20
15
)

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 30/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

2012) hybrid based detection framework successfully detected DEN, BEN, and PEN.
Hybrid detection frameworks such as RiskRanker (Grace et al., 2012), AMDetector
(Zhao et al., 2014), MARVIN (Lindorfer, Neugschwandtner & Platzer, 2015), and
Mobile-Sandbox (Spreitzenbarth et al., 2015) evaluated their frameworks against DEN
evasion; they claim the ability to detect BEN evasion techniques. Two dynamic
detections papers evaluate their frameworks against RPK evasion techniques: Soh (Soh
et al., 2015) and Wu 2015 (Wu et al., 2015). Likewise, DwroidDump (Kim, Kwak &
Ryou, 2015) examines its framework against encryption evasion techniques. Kumawat,
Sharma & Kumawat (2017) also developed a system to detect cryptographic
vulnerabilities in Android applications and to detect malware. This study spotted
seven papers that scrutinized the DEN evasion using static analysis, only one paper
scrutinized DEN using dynamic analysis, and two papers scrutinized DEN using hybrid
analysis. However, this study spotted six papers that scrutinized the BEN evasion
using static analysis, only one paper scrutinized BEN using dynamic analysis, and two
papers scrutinized BEN using hybrid analysis. In addition, this study spotted five papers
that scrutinized the PEN evasion using static analysis, only one paper scrutinized
PEN using dynamic analysis, and two papers scrutinized PEN using hybrid analysis.

Metamorphism evasion detection
Table 8 represents static, dynamic, and hybrid-based Android malware detection
frameworks and their robustness against metamorphism evasion detection techniques.

(a) Code Obfuscation Detection:

Code obfuscation consists of CRE, CIN, and DCI; we explain each evasion detection
framework in the following list:

– CRE - Code Reordering Evasion Detection:

ResDroid (Shao et al., 2014), AnDarwin (Crussell, Gibler & Chen, 2015), and
Seqmalspec (Sufatrio et al., 2015a) proposed static analysis based detection and
managed to detect CRE evasion. Likewise, Q-floid (Castellanos et al., 2016) detected
CRE using the dynamic sandboxing methodology. Mobile-Sandbox (Spreitzenbarth
et al., 2015) hybrid based detection frameworks detect CRE evasions. Nonetheless, CRE
evades ngrams (Canfora et al., 2015a) and Elish (Elish et al., 2015) static detection
frameworks, which results in many false negatives (FN), as shown in Table 9. This study
spotted 17 papers that scrutinized the CRE evasion using static analysis, only two papers
scrutinized CRE using dynamic analysis, and four papers scrutinized CRE using
hybrid analysis.

– CIN - Call Indirections Evasion Detection:

As shown in Table 9, the CIN evasion technique successfully evades the call graph based
Android malware detection frameworks (Chenxiong et al., 2015; Poeplau et al., 2014;
Wu et al., 2016). Despite the fact that many static frameworks easily detect CIN evasion

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 31/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

T
ab
le

9
M
et
am

or
ph

is
m

ev
al
ua

ti
on

of
fr
am

ew
or
ks
.

A
n
dr
oi
d
m
al
w
ar
e
de
te
ct
io
n
fr
am

ew
or
ks

St
at
ic

D
yn

am
ic

H
yb
ri
d

M
et
am

or
ph

is
m

C
od

e
ob
fu
sc
at
io
n

C
od

e
R
eo
rd
er
in
g
(C
R
E
)

D
ro
id
O
Ly
ti
cs

(F
ar
uk
i
et

al
.,
20
13
),
D
ro
id
G
ra
ph

(K
w
on

et
al
.,

20
14
),
M
ys
te
ry
C
he
ck
er

(J
eo
ng

et
al
.,
20
14
),
A
dD

et
ec
t

(N
ar
ay
an

an
,C

he
n
&

C
ha
n,

20
14
),
R
es
D
ro
id

(S
ha
o
et
al
.,

20
14
),
A
pk

A
ud

it
or

(T
al
ha
,A

lp
er

&
A
yd
in
,2
01
5)
,D

em
ps
te
r–

Sh
af
e
(D

u,
W
an

g
&

W
an

g,
20
15
),
D
ex
hu

nt
er

(Z
ha
ng
,L

uo
&

Y
in
,2
01
5)
,D

ro
id
E
xe
c
(W

ei
et

al
.,
20
15
),
A
nD

ar
w
in

an
d

D
N
A
D
ro
id

(C
ru
ss
el
l,
G
ib
le
r
&

C
he
n,

20
15
),
A
nd

ro
Si
m
ila
r

(F
ar
uk
i
et

al
.,
20
15
d)
,S
eq
M
al
Sp
ec

-S
uf
at
ri
o
(S
uf
at
ri
o
et

al
.,

20
15
a)
,D

ro
id
E
ag
le
(S
un

,L
i
&

Lu
i,
20
15
),
Sh
en

(S
he
n
et
al
.,

20
15
),
G
ur
ul
ia
n
(G

ur
ul
ia
n
et
al
.,
20
16
),
A
A
M
O

(P
re
da

&
M
ag
gi
,2

01
6)
,W

an
g
(W

an
g
et

al
.,
20
16
),
M
oc
D
ro
id

(M
ar
tí
n,

M
en
én
de
z
&

C
am

ac
ho
,2

01
6)
,B

at
ti
st
a
(B
at
ti
st
a
et
al
.,
20
16
),

D
ro
id
Si
ev
e
(S
ua

re
z-
T
an

gi
le
t
al
.,
20
17
),
A
nd

rO
D
et

(M
ir
za
ei

et
al
.,
20
19
),
K
ar
ba
b
(K
ar
ba
b
&

D
eb
ba
bi
,2
02
1)
,O

bf
us
ifi
er

(L
i

et
al
.,
20
19
),
K
im

(K
im

et
al
.,
20
19
),
D
ad
id
ro
id
(I
kr
am

,B
ea
um

e
&

K
âa
fa
r,
20
19
)

So
h
(S
oh

et
al
.,

20
15
),
Q
-fl
oi
d

(C
as
te
lla
no
s
et
al
.,

20
16
)

R
is
kR

an
ke
r
(G

ra
ce

et
al
.,

20
12
),
M
D
et
ec
to
r

(Z
ha
o
et

al
.,
20
14
),

M
A
R
V
IN

(L
in
do
rf
er
,

N
eu
gs
ch
w
an

dt
ne
r
&

P
la
tz
er
,2

01
5)
,M

ob
ile
-

Sa
nd

bo
x

(S
pr
ei
tz
en
ba
rt
h
et
al
.,

20
15
)

C
al
l
In
di
re
ct
io
ns

(C
IN

)
D
ro
id
O
Ly
ti
cs

(F
ar
uk
i
et

al
.,
20
13
),
D
ro
id
G
ra
ph

(K
w
on

et
al
.,

20
14
),
A
dD

et
ec
t
(N

ar
ay
an

an
,C

he
n
&

C
ha
n,

20
14
),
A
pk

A
ud

it
or

(T
al
ha
,A

lp
er

&
A
yd
in
,2

01
5)
,D

em
ps
te
r–
Sh
af
e
(D

u,
W
an

g
&

W
an

g,
20
15
),
D
ex
hu

nt
er

(Z
ha
ng
,L

uo
&

Y
in
,2
01
5)
,

D
ro
id
E
xe
c
(W

ei
et

al
.,
20
15
),
A
nD

ar
w
in

an
d
D
N
A
D
ro
id

(C
ru
ss
el
l,
G
ib
le
r
&

C
he
n,

20
15
),
A
nd

ro
Si
m
ila
r
(F
ar
uk
i
et
al
.,

20
15
d)
,D

ro
id
E
ag
le
(S
un

,L
i
&

Lu
i,
20
15
),
Sh
en

(S
he
n
et

al
.,

20
15
),
G
ur
ul
ia
n
(G

ur
ul
ia
n
et
al
.,
20
16
),
A
A
M
O

(P
re
da

&
M
ag
gi
,2

01
6)
,W

an
g
(W

an
g
et

al
.,
20
16
),
M
oc
D
ro
id

(M
ar
tí
n,

M
en
én
de
z
&

C
am

ac
ho
,2

01
6)
,B

at
ti
st
a
(B
at
ti
st
a
et
al
.,
20
16
),

D
ro
id
Si
ev
e
(S
ua

re
z-
T
an

gi
le
t
al
.,
20
17
),
A
nd

rO
D
et

(M
ir
za
ei

et
al
.,
20
19
),
K
ar
ba
b
(K
ar
ba
b
&

D
eb
ba
bi
,2
02
1)
,O

bf
us
ifi
er

(L
i

et
al
.,
20
19
)

So
h
(S
oh

et
al
.,

20
15
),
Q
-fl
oi
d

(C
as
te
lla
no
s
et
al
.,

20
16
)

R
is
kR

an
ke
r
(G

ra
ce

et
al
.,

20
12
),
M
D
et
ec
to
r

(Z
ha
o
et

al
.,
20
14
),

M
A
R
V
IN

(L
in
do
rf
er
,

N
eu
gs
ch
w
an

dt
ne
r
&

P
la
tz
er
,2

01
5)

D
ea
d
C
od

e
In
se
rt
io
n

(D
C
I)

D
ro
id
O
Ly
ti
cs

(F
ar
uk
i
et

al
.,
20
13
),
D
ro
id
G
ra
ph

(K
w
on

et
al
.,

20
14
),
A
dD

et
ec
t
(N

ar
ay
an

an
,C

he
n
&

C
ha
n,

20
14
),
A
pk

A
ud

it
or

(T
al
ha
,A

lp
er

&
A
yd
in
,2

01
5)
,D

em
ps
te
r–
Sh
af
e
(D

u,
W
an

g
&

W
an

g,
20
15
),
D
ex
hu

nt
er

(Z
ha
ng
,L

uo
&

Y
in
,2
01
5)
,

D
ro
id
E
xe
c
(W

ei
et

al
.,
20
15
),
A
nd

ro
Si
m
ila
r
(F
ar
uk
i
et
al
.,

20
15
d)
,D

ro
id
E
ag
le
(S
un

,L
i
&

Lu
i,
20
15
),
Sh
en

(S
he
n
et

al
.,

20
15
),
G
ur
ul
ia
n
(G

ur
ul
ia
n
et
al
.,
20
16
)¸

A
A
M
O

(P
re
da

&
M
ag
gi
,2

01
6)
,W

an
g
(W

an
g
et

al
.,
20
16
),
M
oc
D
ro
id

(M
ar
tí
n,

M
en
én
de
z
&

C
am

ac
ho
,2

01
6)
,B

at
ti
st
a
(B
at
ti
st
a
et
al
.,
20
16
),

D
ro
id
Si
ev
e
(S
ua

re
z-
T
an

gi
le
t
al
.,
20
17
),
A
nd

rO
D
et

(M
ir
za
ei

et
al
.,
20
19
),
K
ar
ba
b
(K
ar
ba
b
&

D
eb
ba
bi
,2
02
1)
,O

bf
us
ifi
er

(L
i

et
al
.,
20
19
),
A
la
za
b
(A
la
za
b
et

al
.,
20
20
),
P
ek
ta
s
(P
ek
ta
ş
&

A
ca
rm

an
,2

02
0)

N
o
dy
na
m
ic

fr
am

ew
or
ks

R
is
kR

an
ke
r
(G

ra
ce

et
al
.,

20
12
),
A
R
IG

U
M
A

(Z
ho
ng

et
al
.,
20
13
),

A
M
D
et
ec
to
r
(Z
ha
o

et
al
.,
20
14
),
M
A
R
V
IN

(L
in
do
rf
er
,

N
eu
gs
ch
w
an

dt
ne
r
&

P
la
tz
er
,2

01
5)

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 32/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

T
ab
le

9
(c
on

ti
n
ue
d
)

A
n
dr
oi
d
m
al
w
ar
e
de
te
ct
io
n
fr
am

ew
or
ks

St
at
ic

D
yn

am
ic

H
yb
ri
d

A
dv
an
ce
d
C
od

e
tr
an
sf
or
m
at
io
n

N
at
iv
e
E
xp
lo
it
s
(N

E
X
)

D
ro
id
A
P
IM

in
er
(A
af
er
,D

u
&
Y
in
,2
01
3)
,A

dD
et
ec
t(
N
ar
ay
an

an
,

C
he
n
&

C
ha
n,

20
14
)

D
ro
id
B
ar
ri
er

(A
lm

oh
ri
,Y

ao
&

K
af
ur
a,

20
14
)

M
A
R
V
IN

(L
in
do
rf
er
,

N
eu
gs
ch
w
an

dt
ne
r
&

P
la
tz
er
,2

01
5)

Fu
nc
ti
on

In
lin

in
g
an
d

O
ut
lin

in
g
(F
IO

):
A
A
M
O

(P
re
da

&
M
ag
gi
,2

01
6)

N
o
D
yn
am

ic
fr
am

ew
or
ks

N
o
hy
br
id

fr
am

ew
or
ks

R
efl
ec
ti
on

A
P
I
(R
E
F)

Ju
xt
ap
p
(H

an
na

et
al
.,
20
13
),
D
ro
id
A
P
IM

in
er

(A
af
er
,D

u
&

Y
in
,

20
13
),
D
ex
hu

nt
er

(Z
ha
ng
,L

uo
&

Y
in
,2

01
5)
,S
he
rl
oc
kD

ro
id

(A
pv
ri
lle

&
A
pv
ri
lle
,2

01
5)
,K

uh
ne
l
(K
uh

ne
l,
Sm

ie
sc
he
k
&

M
ey
er
,2

01
5)
,A

A
M
O

(P
re
da

&
M
ag
gi
,2

01
6)
,D

ro
id
Si
ev
e

(S
ua

re
z-
T
an

gi
l
et
al
.,
20
17
),
Y
an
g
(Y
an

g
et
al
.,
20
21
),
B
LA

D
E

(S
ih
ag

et
al
.,
20
21
),
K
ar
ba
b
(K
ar
ba
b
&

D
eb
ba
bi
,2

02
1)

M
ai
er

(M
ai
er
,

P
ro
ts
en
ko

&
M
ül
le
r,
20
15
),

E
nD

ro
id

(F
en
g

et
al
.,
20
18
)

R
is
kR

an
ke
r
(G

ra
ce

et
al
.,

20
12
),
St
aD

yn
a

(Z
ha
un

ia
ro
vi
ch

et
al
.,

20
15
)

D
yn
am

ic
co
de

lo
ad
in
g

(D
C
L)

D
ro
id
A
P
IM

in
er

(A
af
er
,D

u
&

Y
in
,2
01
3)
,Y

er
im

a
(Y
er
im

a,
Se
ze
r

&
M
ut
ti
k,

20
14
),
R
es
D
ro
id

(S
ha
o
et
al
.,
20
14
),
P
oe
pl
au

(P
oe
pl
au

et
al
.,
20
14
),
D
ex
hu

nt
er

(Z
ha
ng
,L

uo
&

Y
in
,2
01
5)
,

G
ra
b
‘n

R
un

Fa
ls
in
a
(F
al
si
na

et
al
.,
20
15
),
D
ro
id
Si
ev
e
(S
ua

re
z-

T
an

gi
le
t
al
.,
20
17
),
Y
an
g
(Y
an

g
et
al
.,
20
21
)

M
ai
er

(M
ai
er
,

P
ro
ts
en
ko

&
M
ül
le
r,
20
15
),

E
nD

ro
id

(F
en
g

et
al
.,
20
18
)

R
is
kR

an
ke
r
(G

ra
ce

et
al
.,

20
12
),
St
aD

yn
a

(Z
ha
un

ia
ro
vi
ch

et
al
.,

20
15
),
A
ba
id

(A
ba
id
,

K
aa
fa
r
&

Jh
a,

20
17
)

A
nt
i-
de
bu

gg
in
g
(A

D
E
)

D
ex
hu

nt
er

(Z
ha
ng
,L

uo
&

Y
in
,2
01
5)

M
A
R
V
IN

(L
in
do
rf
er
,

N
eu
gs
ch
w
an

dt
ne
r
&

P
la
tz
er
,2

01
5)

A
nt
i-
em

ul
at
or

V
ir
tu
al
M
ac
hi
ne

A
w
ar
e

(V
M
A
)

N
o
st
at
ic
fr
am

ew
or
ks

T
ao

(T
ao

et
al
.,

20
12
),

D
ro
id
Sc
op

e
(Y
an

&
Y
in
,2
01
2)
,

P
ek
ta
s
(P
ek
ta
s
&

A
ca
rm

an
,2

01
4)
,

M
ai
er

(M
ai
er
,

P
ro
ts
en
ko

&
M
ül
le
r,
20
15
),

Si
ng
h
(S
in
gh
,

M
is
hr
a
&

Si
ng
h,

20
15
),

G
ro
dd

D
ro
id

(A
br
ah
am

et
al
.,

20
15
),
A
lz
ay
la
ee

(A
lz
ay
la
ee
,

Y
er
im

a
&

Se
ze
r,

20
17
)

R
is
kR

an
ke
r
(G

ra
ce

et
al
.,

20
12
),
P
et
sa
s
(P
et
sa
s

et
al
.,
20
14
),
T
ap
-W

av
e-

R
ub

(S
hr
es
th
a
et
al
.,

20
15
)

P
ro
gr
am

m
ed

In
te
ra
ct
io
n
D
et
ec
ti
on

(P
ID

)

N
o
st
at
ic
fr
am

ew
or
ks

C
ha
ug
ul
e

(C
ha
ug
ul
e,
X
u
&

Z
hu

,2
01
1)
,S
in
gh

(S
in
gh
,M

is
hr
a
&

Si
ng
h,

20
15
),

G
ro
dd

D
ro
id

(A
br
ah
am

et
al
.,

20
15
),
D
ia
o
(D

ia
o

et
al
.,
20
16
)

T
ap
-W

av
e-
R
ub

(S
hr
es
th
a

et
al
.,
20
15
)

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 33/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

(Faruki et al., 2015d; Faruki et al., 2013; Gurulian et al., 2016; Kwon et al., 2014;
Martín, Menéndez & Camacho, 2016; Narayanan, Chen & Chan, 2014;Wei et al., 2015;
Zhang, Luo & Yin, 2015), CIN still defeats other frameworks such as APK Auditor
(Talha, Alper & Aydin, 2015), Andro-Tracer (Kang et al., 2015), ngrams (Canfora et al.,
2015a), Elsih (Elish et al., 2015) and Wu (Wu et al., 2016). Few dynamic analysis based
detection frameworks (Castellanos et al., 2016; Soh et al., 2015) and hybrid detection
frameworks such as (Grace et al., 2012; Lindorfer, Neugschwandtner & Platzer, 2015;
Zhao et al., 2014) can detect-Call Indirections Evasion CIN. Choliy, Li & Gao
(2017) developed a system called ACTS (App topologiCal signature through graphleT
Sampling) in which they detected obfuscated function calls in malware samples.
This study spotted 15 papers that scrutinized the CIN evasion using static analysis,
only two papers scrutinized CIN using dynamic analysis, and three papers scrutinized
CIN using hybrid analysis.

– DCI - Dead Code Insertion Evasion Detection:

AnDarwin (Crussell, Gibler & Chen, 2015) conducted dead code insertion detection
experiments based on code similarity. AnDarwin reported that it is less robust to dead
code insertion transformation (Crussell, Gibler & Chen, 2015) that adopts code’s
similarity approach with semantic analysis, as shown in Table 9. The similarity
approach examines the distance vector values using semantic analysis. The distance
vector increases with the code alteration between the original and after dead code
insertion obfuscation. This study spotted 14 papers that scrutinized the DCI evasion
using static analysis, and four papers scrutinized DCI using hybrid analysis.

In general, the dynamic analysis framework Q-floid (Castellanos et al., 2016) introduces
the Qualitative Data Flow Graph (QDFG) to analyze the dynamic behaviour of a
suspicious app. It states that it detects code obfuscation, basing this assumption on
PC-based malware detection using Q-floid (Castellanos et al., 2016). It detects code
obfuscation transformation using the QDFG (Banescu et al., 2015; Wüchner, Ochoa &
Pretschner, 2015). However, it claims that Q-floid (Castellanos et al., 2016) inadequately
detects Android malware when restricting using monitoring services. MysteryChecker
(Jeong et al., 2014) proposes a novel software-based attestation approach to detect the
repackaged malware with code obfuscation and a randomly selected encryption chain.
Likewise, Gurulian (Gurulian et al., 2016) introduces a DCI evasion resilient framework by
maintaining the attack vector; similarly, DroidOLytics (Faruki et al., 2013) uses statistical
similarity to detect application repackaging and code obfuscation. It builds a signature
repository that changes its length dynamically for code cloning detection. AndroSimilar
(Faruki et al., 2015d) uses signature-based detection and attains 76% accuracy, but its
detection rate of repacking and code obfuscation transformation evasions is relatively low.
Until today, AndrODet (Mirzaei et al., 2019) adopts static analysis to detect Android
malware applications with CRE, CIN, and DCI evasions; however, the average achieved
performance for detection CRE, CIN, and DCI evasions is 63%.

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 34/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

(b) Advanced Code Transformation Detection:

It consists of NEX, FIO, REF, DCL, and ADE evasions explained in this section.

– NEX Evasion Detection:

DroidAPIMiner (Aafer, Du & Yin, 2013) uses static analysis to detect NEX evasion and, as
listed in Table 9, claims success; likewise, the dynamic analysis DroidBarrier (Almohri,
Yao & Kafura, 2014) and hybrid analysis MARVIN (Lindorfer, Neugschwandtner &
Platzer, 2015) claim the same. In contrast, many static frameworks such as AdDetect
(Narayanan, Chen & Chan, 2014), APK Auditor (Talha, Alper & Aydin, 2015),
Andro-Tracer (Kang et al., 2015), and ngrams (Canfora et al., 2015a) stated their
limitations in countermeasures of NEX evasion as shown in Table 9. This study spotted
one paper that scrutinized the CIN evasion using static analysis, one paper scrutinized
CIN using dynamic analysis, and one paper scrutinized CIN using hybrid analysis.

– FIO Evasion Detection:

AAMO (Preda & Maggi, 2016) evaluates anti-virus packages vs function inlining and
outlining FIO evasion, as shown in Table 9. However, dynamic analysis and hybrid
analyses inadequately consider the evaluation of their framework against FIO evasion.
This study spotted one paper that scrutinized the FIO evasion using static analysis, and
two papers scrutinized FIO using dynamic analysis.

– REF Evasion Detection:

As shown in Table 9, many static analysis frameworks examine the robustness of their
detection frameworks against REF evasion, such as DroidAPIMiner (Aafer, Du & Yin,
2013), DexHunter (Zhang, Luo & Yin, 2015), SherLockDroid (Apvrille & Apvrille,
2015), Kuhnel (Kuhnel, Smieschek & Meyer, 2015), DroidRA (Li et al., 2016), and
AAMO. Likewise, Maier (Maier, Protsenko & Müller, 2015), which uses Dynamic
analysis, RiskRanker (Grace et al., 2012), and StaDyna (Zhauniarovich et al., 2015),
which use hybrid analysis, study REF evasion detection using dynamic and hybrid
analysis based detection techniques. This study spotted six papers that scrutinized the
REF evasion using static analysis, only two papers scrutinized REF using dynamic
analysis, and two papers scrutinized REF using hybrid analysis.

– DCL Evasion Detection:

Some Android malware detection frameworks propose and evaluate their methods to
detect DCL evasion, for instance, DroidAPIMiner (Aafer, Du & Yin, 2013), Poeplau
(Poeplau et al., 2014), Dexhunter, Maier (Maier, Protsenko &Müller, 2015), RiskRanker
(Grace et al., 2012), and StaDyna (Zhauniarovich et al., 2015). However, AndroSimilar
(Faruki et al., 2015d) insufficiently evaluates its mechanism against dynamic code
loading, reflection, and other transformation techniques, as shown in Table 9. This
study spotted four papers that scrutinized the DCL evasion using static analysis, only

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 35/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

two papers scrutinized DCL using dynamic analysis, and two papers scrutinized DCL
using hybrid analysis.

ADE Evasion Detection: Only the static analysis DexHunter (Zhang, Luo & Yin, 2015)
considered the ADE evasion technique in evaluating the framework. On the contrary,
the dynamic analysis Q-floid (Castellanos et al., 2016) reported ineffective ADE
evasion detection, as shown in Table 9. This study spotted one paper that scrutinized the
ADE evasion using static analysis.

– Anti-emulation Detection

Anti-emulation evasions consist of VMA and PID evasion techniques; the following is
the insight of detection framework analysis:

– VMA Evasion Detection:

As a countermeasure for the VMA evasion technique, researchers (David & Netanyahu,
2015; Mutti et al., 2015) equip an emulator sandbox with physical devices to
dynamically run the application analyzes.Dietzel (2014),Gajrani et al. (2015), andHu&
Xiao (2014) propose a fake response agent, which feeds the in the dynamic analysis
based testing and a masquerade emulator as a physical device. In late 2015 and the
beginning of 2016, several studies analyze the nature of anti-emulation malware
with false values about the environment request. This study spotted six papers that
scrutinized theWMA using dynamic analysis, and three papers scrutinized WMA using
hybrid analysis.

Singh (Singh, Mishra & Singh, 2015) enhances the dynamic malware detection
robustness, using anti-emulator and user interaction detection. Petsas (Petsas et al., 2014)
proposes countermeasures for different evasion detections, such as anti-emulation using
realistic sensor simulation and IMEI modification. However, it inadequately evaluates
this countermeasure. Dynalog (Alzaylaee, Yerima & Sezer, 2016) proposes a performance-
enhanced Android malware dynamic analysis that uses the emulation tool, subject to
emulation detection evasions. Likewise, Dynalog (Alzaylaee, Yerima & Sezer, 2016)
highlights the issue of dynamic analysis evasion without proposing a solution. To overcome
VMA evasion, Vidas (Vidas et al., 2014) proposes system logs and network traffic
classification features using a physical device A5 instead of emulator evasion techniques.
Some studies only hoist the red flag to indicate that neither enoughmalware samples nor test
benches exist for examining anti-emulation evasion (works such as Chaugule, Xu & Zhu
(2011) and Tao et al. (2012)). Nevertheless,Maier, Protsenko & Müller (2015) studied VWA
evasion and proposed a solution based on comparing the behaviour of the APK when
installing on a physical device and emulator, as shown in Table 9.

– PID Evasion Detection:

Programmed Interaction Detection is fortunate to evade automated dynamic analysis
using the inherent difference between key runner and human interaction patterns

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 36/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

(Diao et al., 2016). Instead of relying on identifying old virtualization or emulation
techniques, Diao et al. (2016) focuses on detecting the automated gesture, which
simulates user input, to conclude whether the application is under analysis or working
under normal conditions, as shown in Table 9. As this anti-emulation evasion targeted
sandboxing, which takes place during the dynamic analysis based detection, most of
the efforts to countermeasure this type of evasion have used dynamic or hybrid analysis
detection frameworks. This study spotted four papers that scrutinized the PID using
dynamic analysis, and one paper scrutinized PID using hybrid analysis.

DISCUSSION
In this section, this paper synthesizes the last decade’s Android malware detection
framework using three methodologies. First is identifying the evasions techniques
requiring more attention from the research community. The second represents the
potential evasion resilient detection techniques by reporting each framework’s number of
considered evasion techniques. The third summarizes the three types of Android
application analysis with the number of frameworks that evaluated evasions techniques by
bubble plot chart. Finally, we provide a to-do list and learned lessons from all the examined
frameworks.

The static analysis radar graph shown in Fig. 5 signifies the evasion detection
capabilities of static based detection. It serves to understand the evaluation of the static
analysis based detection frameworks.

Figure 5 presents the static analysis based Android malware detection frameworks using
the radar graph approach. The radar graph represents the number of frameworks in
circular layers, starting with the outside circle, which means zero frameworks. The second
circular layer represents five frameworks. The inner-circle layer represents the largest
number of frameworks that examined evasion techniques. Each evasion technique is
labelled point such as PID, WMA, ADE, DCL, etc. Besides each point number representing
the number of Android malware detection frameworks that evaluated its proposed model
against this evasion technique or point in the radar graph. For example, 15 malware
detection frameworks consider the RPR evasion technique; thus, the RPK label points to
15, as displayed in Fig. 5. The evasion techniques that avoid Android malware detection
using VMA and PID have zero values besides their points, as shown in Fig. 5.

We selected the Radar graph to demonstrate that static detection studies could detect
package transformation evasions and basic code obfuscation; however, advanced
transformation techniques and anti-emulation were neither studied nor evaluated.
Concerning DCL, Pektas (Pektas & Acarman, 2014), in 2014, detected anti-emulation
evasion by using a dynamic analyzing tool developed just to deal with the DCL evasion
malware samples, which achieved 92% accuracy. Many researchers avoid using
dynamic-based detection techniques because they are time-consuming and risk installing
malware into their testing devices. In Mobile-Sandbox (Spreitzenbarth et al., 2015), the
dynamic analysis required an average of 18 min to accomplish the dynamic analysis tasks.
This time depends on the size of the APK file and the dynamic analysis server hardware
specifications.

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 37/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

Until today, many static analysis researchers depends on permissions (Arora, Peddoju &
Conti, 2019; Dharmalingam & Palanisamy, 2021; Li et al., 2018; Şahin et al., 2021);
however, many are relying on API calls (Alazab et al., 2020; Jung et al., 2018;Maiorca et al.,
2017; Mirzaei et al., 2019; Pektaş & Acarman, 2020; Tiwari & Shukla, 2018; Zhang et al.,
2020; Zhang, Breitinger & Baggili, 2016; Zou et al., 2021) and deep code analysis and other
types of features as discussed earlier in Android evasion detection frameworks section.
Many of examined researches ignored the evasion techniques evaluation. Other
frameworks assumed the impossibility of the evasion detection using static analysis and
advise the research community to use dynamic analysis to detect it. Android Malware
detection frameworks assumed their capability of detecting obfuscation techniques
without evaluating their framework against obfuscated malware datasets. This paper
examined 74 static frameworks, but only 35 research papers consider or evaluate their
framework using at least one evasion technique, as shown in Fig. 6. The dynamic analysis
evasion radar graph demonstrates the capabilities of dynamic analysis based.

Researchers assume that dynamic analysis covers all the simple obfuscations and
transformation techniques. Hence many of the dynamic analysis frameworks
(Abuthawabeh & Mahmoud, 2019; Chen et al., 2018; de la Puerta et al., 2019; De Lorenzo
et al., 2020; Feng et al., 2020; Feng et al., 2018; Pang et al., 2017; Sihag et al., 2021; Wang
et al., 2019) ignored the metamorphic evasion techniques. The overall performance

Figure 5 Evasion techniques radar for static frameworks.
Full-size DOI: 10.7717/peerj-cs.907/fig-5

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 38/61

http://dx.doi.org/10.7717/peerj-cs.907/fig-5
http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

accuracy of the most current malware detection frameworks is measured against randomly
selected malware samples representing certain malware families. If the randomly chosen
malware families overlook evasion techniques, the selected malware insufficiently reflect
the actual robustness of the proposed detection framework against evasion techniques; this
was the main reason behind excluding the accuracy in evaluation tables. This paper
examined 35 Android malware detection using different dynamic techniques. However,
only 14 of 35 dynamic analysis based detection framworks have tried to include
obfuscation into their evaluation processes, as shown in Fig. 7. Figure 8 shows the number
of considered evasion techniques in each research is between 1 and 5 evasions. In its
evaluation, Soh et al. (2015) considered three types of repackaging evasion, indirectly
considered code reordering, and called indirection evasion. It defines many limitations to
its approach and planned to consider the hybrid analysis in its future plan.

However, a few researchers evaluate their frameworks against specific evasion
techniques, as reflected in the radar graph of the hybrid malware detection frameworks, as
shown in Figs. 9 and 10. For instance, four frameworks claimed that their method detected
the CRE and DCI evasions (Grace et al., 2012; Lindorfer, Neugschwandtner & Platzer,
2015; Spreitzenbarth et al., 2015; Zhao et al., 2014), and three frameworks claimed the
detection of CIN (Grace et al., 2012; Spreitzenbarth et al., 2015; Zhao et al., 2014) and
WMA (Grace et al., 2012; Petsas et al., 2014; Yuan, Lu & Xue, 2016). The hybrid based
detection requires enormous effort to collect both static and dynamic characteristics and
logs. RiskRanker (Grace et al., 2012) started highlighting the evasion problems and their
impacts on detection accuracy. However, Petsas (Petsas et al., 2014) in 2014 and Tap-
Wave-Rub (Shrestha et al., 2015) battled anti-emulation evasions and used the device

Figure 6 Static analysis based frameworks and considered evasion.
Full-size DOI: 10.7717/peerj-cs.907/fig-6

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 39/61

http://dx.doi.org/10.7717/peerj-cs.907/fig-6
http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

Figure 7 Dynamic analysis and evasion radar graph. Full-size DOI: 10.7717/peerj-cs.907/fig-7

Figure 8 Dynamic analysis based frameworks and considered evasion.
Full-size DOI: 10.7717/peerj-cs.907/fig-8

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 40/61

http://dx.doi.org/10.7717/peerj-cs.907/fig-7
http://dx.doi.org/10.7717/peerj-cs.907/fig-8
http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

hardware (proximity sensor) to differentiate between maliciously driven actions and
end-user physical interactions.

Most of the recent dynamic analysis researches (Feng et al., 2020; Mahindru & Sangal,
2021; Sihag et al., 2021) confirmed the ability to detect obfuscated Android malware.
Unfortunately, none of dynamic analysis based detection has evaluated their framework
using specific evasion techniques; most of dynamic analysis studies just randomly select
from the publicly available Android malware datasets. For example, Droidetec (Ma et al.,
2020) proposed a dynamic analysis based framework by analyzing the process behavior in
an ordered manner. Still, the evaluation process was generic and included few malware
families that exclude obfuscated malware.

The Hybrid analysis techniques are suggested by many researchers and have been set in
their future plan to overcome the resiliency issue of complex obfuscation techniques.
However, it is a shocking fact that the examined 26 Android malware detection
frameworks using hybrid analysis, that only nine frameworks just consider few evasion
techniques such as RiskRanker (Grace et al., 2012) that has initiated the issue in 2012,
Mobile-Sandbox (Hoffmann et al., 2016), Marvin (Lindorfer, Neugschwandtner & Platzer,
2015). Recently some hybrid analysis based detection Puerta (de la Puerta et al., 2019),
Surendrean (Surendran, Thomas & Emmanuel, 2020), Lu (Lu et al., 2020), Dhalaria
(Dhalaria & Gandotra, 2021), Zhu (Zhu et al., 2021), Nawaz (Nawaz, 2021), Liu (Liu et al.,
2021), PNSDroid (Kandukuru & Sharma, 2018), Bacci (Bacci et al., 2018), DAMBA

Figure 9 Hybrid analysis and evasion radar. Full-size DOI: 10.7717/peerj-cs.907/fig-9

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 41/61

http://dx.doi.org/10.7717/peerj-cs.907/fig-9
http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

(Zhang et al., 2020) has highlighted the complex evasions detection resiliency issue in their
research literature; however, the proposed malware detection methods and experiments of
excluded the obfuscated malware from their evaluation sheets.

The systematic evasion detection map is illustrated in Fig. 11; the horizontal axis
represents each type of evasion in this study. The bubble size represents the accumulative
number of detection techniques developed by the research community to fight each
evasion technique. It is divided into three main categories in the vertical axis: static,
dynamic, and hybrid detection techniques. For instance, the circle with the number “17”
represents static Android malware detection frameworks, which consider CRE evasions on
the framework evaluation process. As per the systematic map, the NEX, FIO, and ADE
need more attention from the research community. Likewise, the overall dynamic analysis
studies that considered evasion evaluation is shallow.

Researchers have concentrated on Android malware static analysis in the last few years,
which requires less time and effort than dynamic analysis. They tried to overcome the
static analysis weaknesses against evasion attacks, which is why many researchers
evaluated their frameworks to check the anti-obfuscation capabilities, as presented in
Fig. 11. Dynamic analysis researchers concentrated on avoiding virtualization detection
and random interaction, which is the main reason for False Negative malware detection.
Figure 11 shows the number of existing Android malware detection frameworks in each
circle, which consider each evasion technique in the framework evaluations. It shows the
necessity of more insights regarding evaluation against all types of evasions, as currently,

Figure 10 Hybrid analysis based frameworks and considered evasion.
Full-size DOI: 10.7717/peerj-cs.907/fig-10

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 42/61

http://dx.doi.org/10.7717/peerj-cs.907/fig-10
http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

available standard malware datasets cover some evasion techniques that are randomly
selected during evaluation. In summary, all the above investigations demonstrate the
absolute need for standard evasion benchmarking tools to evaluate the newly developed
frameworks against all evasion techniques.

LESSONS LEARNED AND FUTURE DIRECTIONS
Android malware development is always one step ahead of malware detection techniques,
which means malware detection still requires many efforts to catch up with malware
development. To achieve this objective, we share several insights drawn from our analysis.

(a) Obfuscation dataset

One of the most important is to keep on updating and standardizing obfuscated
malware datasets. We recommend standardizing this dataset by the research community
trusted institutions and being available upon validated requests for research purposes.
Despite some available obfuscated datasets such as PRAGuard (Karbab & Debbabi, 2021)
sharing ten thousands obfuscated malware by obfuscating MalGnome and the Contagio
MiniDump dataset, however the PRAGuard stopped sharing the dataset starting from
April 2021.

(b) Obfuscation detection framework performance

The performance of the Android malware framework degraded over time since new
malware variants, and obfuscations techniques were generated PetaDroid (Karbab &

Figure 11 Systematic map of accumulative number of detection frameworks vs evasions techniques.
Full-size DOI: 10.7717/peerj-cs.907/fig-11

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 43/61

http://dx.doi.org/10.7717/peerj-cs.907/fig-11
http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

Debbabi, 2021). Hence, we recommend researchers extend their research to keep an eye on
their framework performance over time.

(c) Metamorphism evasion:

Static detection is unable to detect most of the metamorphism evasion techniques
because of the dynamic characteristics of metamorphism. However, there is still a lack of
dynamic and hybrid frameworks to detect metamorphism evasions. It is therefore
beneficial to focus more on developing dynamic and hybrid methods.

(d) Standard Evasion Benchmarking:

We suggest building a comprehensive and collaborative benchmarking framework for
Android malware detection evasion techniques that aims to improve the quality of
research and add to the body of knowledge in Android malware detection studies. The
benchmark consists of a list of evasion techniques based on the detection methods that
have been evaluated. As a result, detection methods are tested against a standardized list of
malware evasion techniques to determine whether they are capable of detecting malware
evasions.

(e) Android Exploits:

As mentioned earlier, Android is based on Linux OS; it has inherited Linux exploits.
Recently, malware authors developed and published the Android exploit code Dirty-Cow
CVE-2016-5195 (Oester, 2016). The Dirty Cow exploit has been existing in Linux since
2007; it affects all Android versions. Existing fixes for Linux exploits are inefficient;
Android fixes are still expected from vendors like Google or Samsung. Researchers must
study such exploits and recommend proper ways to fix newly discovered exploits.
Additionally, researchers need to examine the Android operating system and identify
potential exploits and offer solutions before attackers abuse such exploits.

(f) Code Integrity Verification:

Verification means that the application integrity is authenticated against repackaging by
guaranteed third-party authentication authorities. Vidas & Christin (2013) proposed a
simple mechanism that alleviates the specific problem of verifying the authenticity of an
App to protect the user from repackaged apps that contain malicious code. Their approach
is based on creating a simple public-key infrastructure backed by the domain name system.
This area of research needs more attention compared to others. App integrity significantly
increases the effort required for a successful attack. Under this new model, the attacker
must either obtain the original publisher’s secret signing key, control the publisher’s web
server, or commit a man-in-the-middle (MitM) attack on the publisher’s DNS records and
web server. The attacker must now conduct two successful attacks in all cases, and the
secondary attack requires more effort than application repackaging. It is worth noting that
code verification, and not code analysis, is recommended, as it is necessary to consider the

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 44/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

complexity of the available applications. Code verification does not require much effort, as
it involves checking the code’s integrity by using the public-key infrastructure.

(g) Process Authentication:

Some researchers leverage the process of model authentication to eliminate the need for
an external Certification Authority (CA) that protects the system from many exploits
(Almohri, Yao & Kafura, 2014). However, they are still unable to detect the payload that is
downloaded to install malicious applications. For example, DroidBarrier is designed to
prevent such installations by detecting their unauthenticated processes, thereby foiling this
form of attack. However, DroidBarrier (Almohri, Yao & Kafura, 2014) cannot guarantee
the isolation of hijacked processes described under attacks. Therefore, it is generally
advisable to monitor processes running on the device. If an unauthenticated process is
launched, the process must be isolated to hinder damaging the device and analyze and
detect the malicious application. This way, if a malicious application bypasses the detection
barrier and downloads a malicious payload, it is caught when running an unauthenticated
process to execute that payload.

(h) Triggering Malicious Code Assurance:

The process of ensuring the malicious code runs during the dynamic analysis
sandboxing. TriggerScope (Fratantonio et al., 2016) statically tries to detect suspicious
triggering; however, its limitation as static analysis makes it easy to be evaded by code
obfuscation. Likewise, Groddroid (Abraham et al., 2015) developed a framework to launch
the branches of each function to make sure that the malicious code starts. However, it fails
to follow the components of background services, which misses the main activity.
Groddroid is still an open issue among researchers and is known as code coverage. It is
essential to address this issue by covering possible branches in the source code of the
applications.

CONCLUSIONS
Global evasion techniques make Android malware more advanced and sophisticated, which
was our motivation for this study. We aim to highlight the most critical weaknesses of
Android malware detection frameworks, mainly when malware uses different
evasions techniques. Therefore, this study scrutinizes top Android malware detection
frameworks against 18 evaluation test benches to evaluate the effectiveness of the
evasions detection techniques in Android malware detection frameworks. Therefore, the study
introduces a new evasion taxonomy that categorizes the evasion techniques into
two main groups, polymorphism and metamorphism, where each group has branches;
the polymorphism group includes package transformation, and the encryption
metamorphism group contains code obfuscation, advanced transformation, and anti-
emulation branches. The study also pointed out the lack of research in evaluating the malware
detection against different evasion techniques; hence we scrutinized the frameworks based on
every evasion technique and categorized the evaluations based on the malware detection
methods. Our analysis results conclude a lack of research evaluating the current Android

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 45/61

http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

malware detection framework robustness against state-of-the-art evasion techniques. We also
concluded that static analysis based detection is easily evaded with simple obfuscation.

On the contrary, dynamic and hybrid analyses address advanced code transformation
techniques and other advanced evasions. However, preliminary studies have evaluated
their frameworks against evasion techniques. The missing framework evaluations are due
to the lack of standard benchmark evasion datasets with updated standard malware
datasets and the lack of comprehensive test benches tools to assess the efficiency of the
existing and future frameworks. This study advises the research community to exert more
effort into detecting anti-emulation evasion as indicated in the map of evasions and
detection techniques. We also plan to create a standard evaluation framework to include all
types of evasion techniques and consider the new generation of malware that combines
multiple evasion techniques.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by Fundamental Research Grant Scheme under the Ministry of
Education Malaysia (FRGS/1/2018/ICT03/UM/02/3). The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Fundamental Research Grant Scheme under the Ministry of Education Malaysia: FRGS/1/
2018/ICT03/UM/02/3.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Wael F. Elsersy conceived and designed the experiments, performed the experiments,
analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the
paper, and approved the final draft.

� Ali Feizollah conceived and designed the experiments, analyzed the data, prepared figures
and/or tables, authored or reviewed drafts of the paper, and approved the final draft.

� Nor Badrul Anuar conceived and designed the experiments, authored or reviewed drafts
of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The cited papers (Endnote version 20.1) are available in the Supplemental File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.907#supplemental-information.

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 46/61

http://dx.doi.org/10.7717/peerj-cs.907#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.907#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.907#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

REFERENCES
Aafer Y, Du WL, Yin H. 2013. DroidAPIMiner: mining API-level features for robust malware

detection in Android. Security and Privacy in Communication Networks 2013 127:86–103
DOI 10.1007/978-3-319-04283-1_6.

Abaid Z, Kaafar MA, Jha S. 2017. Quantifying the impact of adversarial evasion attacks on
machine learning based Android malware classifiers. In: 2017 IEEE 16th International
Symposium on Network Computing and Applications (NCA). Piscataway: IEEE, 1–10.

Abdulla S, Altaher A. 2015. Intelligent approach for Android malware detection. KSII
Transactions on Internet and Information Systems 9(8):2964–2983
DOI 10.3837/tiis.2015.08.012.

Abraham A, Andriatsimandefitra R, Brunelat A, Lalande JF, Viet Triem Tong V. 2015.
GroddDroid: a gorilla for triggering malicious behaviors. In: 10th International Conference on
Malicious and Unwanted Software, MALWARE 2015. Piscataway: IEEE, 119–127.

Abuthawabeh MKA, Mahmoud KW. 2019. Android malware detection and categorization based
on conversation-level network traffic features. In: 2019 International Arab Conference on
Information Technology (ACIT). Piscataway: IEEE, 42–47.

Adebayo OS, AbdulAziz N. 2014. Android malware classification using static code analysis and A
priori algorithm improved with particle swarm optimization. In: 2014 Fourth World Congress on
Information and Communication Technologies (WICT). 123–128.

Afifi F, Anuar NB, Shamshirband S, Choo K-KR. 2016. DyHAP: dynamic hybrid ANFIS-PSO
approach for predicting mobile malware. PLOS ONE 11(9):e0162627
DOI 10.1371/journal.pone.0162627.

Afonso VM, de Amorim MF, Grégio ARA, Junquera GB, de Geus PL. 2015. Identifying Android
malware using dynamically obtained features. Journal of Computer Virology and Hacking
Techniques 11(1):9–17 DOI 10.1007/s11416-014-0226-7.

Agman Y, Hendler D. 2021. BPFroid: robust real time Android malware detection framework.
Available at http://arxiv.org/abs/210514344.

Akpojaro J, Aigbe P, Onwudebelu U. 2014. Unsupervised machine learning techniques for
detecting malware applications in wireless devices. Transactions on Machine Learning and
Artificial Intelligence 2:20–29 DOI 10.14738/tmlai.23.206.

Alahy QE, Chowdhury MN-U-R, Soliman H, Chaity MS, Haque A. 2020. Android malware
detection in large dataset: smart approach. In: Future of Information and Communication
Conference. Berlin: Springer, 800–814.

Alazab M, Alazab M, Shalaginov A, Mesleh A, Awajan A. 2020. Intelligent mobile malware
detection using permission requests and API calls. Future Generation Computer Systems
107(4):509–521 DOI 10.1016/j.future.2020.02.002.

Allix K, Bissyandé TF, Klein J, Le Traon Y. 2016. Androzoo: collecting millions of Android apps
for the research community. In: 2016 IEEE/ACM 13th Working Conference on Mining Software
Repositories (MSR). Piscataway: IEEE, 468–471.

Almohri HMJ, Yao D, Kafura D. 2014.DroidBarrier: know what is executing on your Android. In:
4th ACM Conference on Data and Application Security and Privacy, CODASPY 2014. San
Antonio: Association for Computing Machinery, 257–264.

Alzaylaee MK, Yerima SY, Sezer S. 2016.DynaLog: an automated dynamic analysis framework for
characterizing Android applications. In: 2016 International Conference on Cyber Security and
Protection of Digital Services, Cyber Security 2016. Piscataway: IEEE.

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 47/61

http://dx.doi.org/10.1007/978-3-319-04283-1_6
http://dx.doi.org/10.3837/tiis.2015.08.012
http://dx.doi.org/10.1371/journal.pone.0162627
http://dx.doi.org/10.1007/s11416-014-0226-7
http://arxiv.org/abs/210514344
http://dx.doi.org/10.14738/tmlai.23.206
http://dx.doi.org/10.1016/j.future.2020.02.002
http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

Alzaylaee MK, Yerima SY, Sezer S. 2017. Emulator vs real phone: Android malware detection
using machine learning. In: Proceedings of the 3rd ACM on International Workshop on Security
And Privacy Analytics. New York: ACM, 65–72.

Alzaylaee MK, Yerima SY, Sezer S. 2020. DL-Droid: deep learning based Android malware
detection using real devices. Computers & Security 89(5):101663
DOI 10.1016/j.cose.2019.101663.

Amamra A, Robert JM, Talhi C. 2015. Enhancing malware detection for Android systems using a
system call filtering and abstraction process. Security and Communication Networks 8(7):1179–
1192 DOI 10.1002/sec.1073.

Amin M, Tanveer TA, Tehseen M, Khan M, Khan FA, Anwar S. 2020. Static malware detection
and attribution in Android byte-code through an end-to-end deep system. Future Generation
Computer Systems 102(8):112–126 DOI 10.1016/j.future.2019.07.070.

Amos B, Turner H, White J. 2013. Applying machine learning classifiers to dynamic Android
malware detection at scale. In: 2013 9th International Wireless Communications and Mobile
Computing Conference (IWCMC). 1666–1671.

Andronio N, Zanero S, Maggi F. 2015.Heldroid: dissecting and detecting mobile ransomware. In:
International Workshop on Recent Advances in Intrusion Detection. Berlin: Springer, 382–404.

Aonzo S, Georgiu GC, Verderame L, Merlo A. 2020. Obfuscapk: an open-source black-box
obfuscation tool for Android apps. SoftwareX 11(3):100403 DOI 10.1016/j.softx.2020.100403.

Apvrille A, Apvrille L. 2015. SherlockDroid: a research assistant to spot unknown malware in
Android marketplaces. Journal of Computer Virology and Hacking Techniques 11(4):235–245
DOI 10.1007/s11416-015-0245-z.

Arora A, Peddoju SK, Conti M. 2019. Permpair: Android malware detection using permission
pairs. IEEE Transactions on Information Forensics and Security 15:1968–1982
DOI 10.1109/TIFS.2019.2950134.

Arp D, Spreitzenbarth M, Hubner M, Gascon H, Rieck K. 2015. Drebin: efficient and explainable
detection of android malware in your pocket. In: Proceedings of 17th Network and Distributed
System Security Symposium, NDSS.

Bacci A, Bartoli A, Martinelli F, Medvet E, Mercaldo F, Visaggio CA. 2018. Impact of code
obfuscation on Android malware detection based on static and dynamic analysis. In: Proceedings
of the 4th International Conference on Information Systems Security and Privacy (ICISSP 2018).
Setúba: Science and Technology Publications, 379–385.

Bagheri H, Sadeghi A, Garcia J, Malek S. 2015. COVERT: compositional analysis of Android
inter-app permission leakage. In: IEEE Transactions on Software Engineering. 1-1.

Banescu S, Wuchner T, Salem A, Guggenmos M, Pretschner A. 2015. A framework for empirical
evaluation of malware detection resilience against behavior obfuscation. In: 10th International
Conference on Malicious and Unwanted Software (MALWARE). Piscataway: IEEE, 40–47.

Baskaran B, Ralescu A. 2016. A study of Android malware detection techniques and machine
learning. In: 27th Modern Artificial Intelligence and Cognitive Science Conference, MAICS 2016:
CEUR-WS. 15–23.

Battista P, Mercaldo F, Nardone V, Santone A, Visaggio CA. 2016. Identification of android
malware families with model checking. In: International Conference on Information Systems
Security and Privacy, ICISSP 2016. Setúbal: SciTePress, 542–547.

Bhandari S, Jaballah WB, Jain V, Laxmi V, Zemmari A, Gaur MS, Mosbah M, Conti M. 2017.
Android inter-app communication threats and detection techniques. Computers & Security
70(9):392–421 DOI 10.1016/j.cose.2017.07.002.

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 48/61

http://dx.doi.org/10.1016/j.cose.2019.101663
http://dx.doi.org/10.1002/sec.1073
http://dx.doi.org/10.1016/j.future.2019.07.070
http://dx.doi.org/10.1016/j.softx.2020.100403
http://dx.doi.org/10.1007/s11416-015-0245-z
http://dx.doi.org/10.1109/TIFS.2019.2950134
http://dx.doi.org/10.1016/j.cose.2017.07.002
http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

Bulazel A, Yener B. 2017. A survey on automated dynamic malware analysis evasion and counter-
evasion: Pc, mobile, and web. In: Proceedings of the 1st Reversing and Offensive-oriented Trends
Symposium. New York: ACM, 2.

Canfora G, De Lorenzo A, Medvet E, Mercaldo F, Visaggio CA. 2015a. Effectiveness of opcode
ngrams for detection of multi family android malware. In: 2015 10th International Conference on
Availability, Reliability and Security (ARES). Piscataway: IEEE, 333–340.

Canfora G, Di Sorbo A, Mercaldo F, Visaggio CA. 2015b. Obfuscation techniques against
signature-based detection: a case study. In: 1st Mobile Systems Technologies Workshop, MST
2015. Piscataway: IEEE, 21–26.

Canfora G, Medvet E, Mercaldo F, Visaggio CA. 2016. Acquiring and analyzing app metrics for
effective mobile malware detection. In: 2016 2nd ACM International Workshop on Security and
Privacy Analytics, IWSPA 2016. New York: Association for Computing Machinery, 50–57.

Canfora G, Mercaldo F, Moriano G, Visaggio CA. 2015c. Composition-malware: building
android malware at run time. In: 10th International Conference on Availability, Reliability and
Security, ARES 2015. Piscataway: IEEE, 318–326.

Castellanos JH, Wüchner T, Ochoa M, Rueda S. 2016. Q-floid: Android malware detection with
quantitative data flow graphs. In: Roychoudhury A, Mathur A, eds. 1st Singapore-Cybersecurity
R and D Conference, SG-CRC 2016. Amsterdam: IOS Press, 13–25.

Chao W, Qun L, XiaoHu W, TianYu R, JiaHan D, GuangXin G, EnJie S. 2020. An android
application vulnerability mining method based on static and dynamic analysis. In: 2020 IEEE 5th
Information Technology and Mechatronics Engineering Conference (ITOEC). Piscataway: IEEE,
599–603.

Chau M, Reith R. 2019. Smartphone market share. Needham: IDC Corporate USA.

Chaugule A, Xu Z, Zhu S. 2011. A specification based intrusion detection framework for mobile
phones. In: Lopez J, Tsudik G, eds. Applied Cryptography and Network Security. Berlin: Springer,
19–37.

Check Point Software Technologies. 2015. CuckooDroid book. Tel Aviv-Yafo: CPS Technologies
LTD.

Chen K, Wang P, Lee Y, Wang X, Zhang N, Huang H, Zou W, Liu P. 2015. Finding unknown
malice in 10 seconds: mass vetting for new threats at the google-play scale. In: 24th USENIX
Security Symposium (USENIX Security 15). 659–674.

Chen Z, Yan Q, Han H, Wang S, Peng L, Wang L, Yang B. 2018.Machine learning based mobile
malware detection using highly imbalanced network traffic. Information Sciences 433(3):346–
364 DOI 10.1016/j.ins.2017.04.044.

Chenxiong Q, Xiapu L, Yu L, Guofei G. 2015. VulHunter: toward discovering vulnerabilities in
Android applications. IEEE Micro 35(1):44–53 DOI 10.1109/MM.2015.25.

Chin E, Felt AP, Greenwood K, Wagner D. 2011. Analyzing inter-application communication in
Android. In: Proceedings of the 9th International Conference on Mobile Systems, Applications,
and Services. New York: ACM, 239–252.

Cho H, Yi JH, Ahn G. 2018. DexMonitor: dynamically analyzing and monitoring obfuscated
Android applications. IEEE Access 6:71229–71240 DOI 10.1109/ACCESS.2018.2881699.

Choliy A, Li F, Gao T. 2017. Obfuscating function call topography to test structural malware
detection against evasion attacks. In: 2017 International Conference on Computing, Networking
and Communications (ICNC). Piscataway: IEEE, 808–813.

Coletta A, Van der Veen V, Maggi F. 2016. DroydSeuss: a mobile banking trojan tracker-short
paper: financial cryptography and data security. Berlin: Springer.

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 49/61

http://dx.doi.org/10.1016/j.ins.2017.04.044
http://dx.doi.org/10.1109/MM.2015.25
http://dx.doi.org/10.1109/ACCESS.2018.2881699
http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

Crussell J, Gibler C, Chen H. 2015. AnDarwin: scalable detection of Android application clones
based on semantics. IEEE Transactions on Mobile Computing 14(10):2007–2019
DOI 10.1109/TMC.2014.2381212.

David OE, Netanyahu NS. 2015. DeepSign: deep learning for automatic malware signature
generation and classification. In: 2015 International Joint Conference on Neural Networks
(IJCNN). 1–8.

de la Puerta JG, Pastor-López I, Sanz B, Bringas PG. 2019. Network traffic analysis for android
malware detection. In: International Conference on Hybrid Artificial Intelligence Systems. Berlin:
Springer, 468–479.

De Lorenzo A, Martinelli F, Medvet E, Mercaldo F, Santone A. 2020. Visualizing the outcome of
dynamic analysis of Android malware with VizMal. Journal of Information Security and
Applications 50(6):102423 DOI 10.1016/j.jisa.2019.102423.

Desnos A, Lantz P. 2014. Droidbox: an Android application sandbox for dynamic analysis (2011).
Available at https://code.google.com/p/droidbox.

Dhalaria M, Gandotra E. 2021. A hybrid approach for Android malware detection and family
classification. International Journal of Interactive Multimedia & Artificial Intelligence 6(6):174
DOI 10.9781/ijimai.2020.09.001.

Dharmalingam VP, Palanisamy V. 2021. A novel permission ranking system for android malware
detection—the permission grader. Journal of Ambient Intelligence and Humanized Computing
12(5):5071–5081 DOI 10.1007/s12652-020-01957-5.

Diao W, Liu X, Li Z, Zhang K. 2016. Evading android runtime analysis through detecting
programmed interactions. In: 9th ACM Conference on Security and Privacy in Wireless and
Mobile Networks, WiSec 2016. New York: Association for Computing Machinery, 159–164.

Dietzel C. 2014. Porting and improving an Android sandbox for automated assessment of malware.
Darmstadt: Hochschule Darmstadt.

Du Y, Wang X, Wang J. 2015. A static Android malicious code detection method based on
multi-source fusion. Security and Communication Networks 8(17):3238–3246
DOI 10.1002/sec.1248.

Elish KO, Shu X, Yao D, Ryder BG, Jiang X. 2015. Profiling user-trigger dependence for Android
malware detection. Computers and Security 49(1):255–273 DOI 10.1016/j.cose.2014.11.001.

Enck W, Gilbert P, Chun BG, Cox LP, Jung J, McDaniel P, Sheth AN. 2014a. TaintDroid: an
information flow tracking system for real-time privacy monitoring on smartphones.
Communications of the ACM 57(3):99–106 DOI 10.1145/2494522.

Enck W, Gilbert P, Han S, Tendulkar V, Chun BG, Cox LP, Jung J, Mcdaniel P, Sheth AN.
2014b. TaintDroid: an information-flow tracking system for realtime privacy monitoring on
smartphones. ACM Transactions on Computer Systems 32(2):1–29 DOI 10.1145/2619091.

Falsina L, Fratantonio Y, Zanero S, Kruegel C, Vigna G, Maggi F. 2015. Grab’n run: secure and
practical dynamic code loading for Android applications. In: Proceedings of the 31st Annual
Computer Security Applications Conference. New York: ACM, 201–210.

Fang Z, Han W, Li Y. 2014. Permission based Android security: issues and countermeasures.
Computers & Security 43(4):205–218 DOI 10.1016/j.cose.2014.02.007.

Faruki P, Bhandari S, Laxmi V, Gaur M, Conti M. 2015a. Droidanalyst: synergic app framework
for static and dynamic app analysis. In: Studies in Computational Intelligence. Berlin: Springer
Verlag, 519–552.

Faruki P, Bharmal A, Laxmi V, Ganmoor V, Gaur MS, Conti M, Rajarajan M. 2015b. Android
security: a survey of issues, malware penetration, and defenses. IEEE Communications Surveys
and Tutorials 17(2):998–1022 DOI 10.1109/COMST.2014.2386139.

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 50/61

http://dx.doi.org/10.1109/TMC.2014.2381212
http://dx.doi.org/10.1016/j.jisa.2019.102423
https://code.google.com/p/droidbox
http://dx.doi.org/10.9781/ijimai.2020.09.001
http://dx.doi.org/10.1007/s12652-020-01957-5
http://dx.doi.org/10.1002/sec.1248
http://dx.doi.org/10.1016/j.cose.2014.11.001
http://dx.doi.org/10.1145/2494522
http://dx.doi.org/10.1145/2619091
http://dx.doi.org/10.1016/j.cose.2014.02.007
http://dx.doi.org/10.1109/COMST.2014.2386139
http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

Faruki P, Bharmal A, Laxmi V, Gaur M, Conti M, Rajarajan M. 2014. Evaluation of Android
anti-malware techniques against Dalvik Bytecode Obfuscation. In: 2014 IEEE 13th International
Conference on Trust, Security and Privacy in Computing and Communications (TrustCom).
Piscataway: IEEE, 414–421.

Faruki P, Bharmal A, Laxmi V, Gaur MS, Conti M, Rajarajan M. 2015c. Evaluation of android
anti-malware techniques against dalvik bytecode obfuscation. In: 13th IEEE International
Conference on Trust, Security and Privacy in Computing and Communications, TrustCom 2014.
Piscataway: IEEE, 414–421.

Faruki P, Laxmi V, Bharmal A, Gaur MS, Ganmoor V. 2015d.AndroSimilar: robust signature for
detecting variants of Android malware. Journal of Information Security and Applications 22:66–
80 DOI 10.1016/j.jisa.2014.10.011.

Faruki P, Laxmi V, Ganmoor V, Gaur MS, Bharmal A. 2013. DroidOLytics: robust feature
signature for repackaged android apps on official and third party android markets. In: 2nd
International Conference on Advanced Computing, Networking and Security, ADCONS 2013.
Surathkal: IEEE Computer Society, 247–252.

Feizollah A, Anuar NB, Salleh R, Wahab AWA. 2015. A review on feature selection in mobile
malware detection. Digital Investigation 13(6):22–37 DOI 10.1016/j.diin.2015.02.001.

Feizollah A, Anuar NB, Salleh R, Suarez-Tangil G, Furnell S. 2017. AndroDialysis: analysis of
Android intent effectiveness in malware detection. Computers & Security 65(3):121–134
DOI 10.1016/j.cose.2016.11.007.

Feng J, Shen L, Chen Z, Wang Y, Li H. 2020. A two-layer deep learning method for Android
malware detection using network traffic. IEEE Access 8:125786–125796
DOI 10.1109/ACCESS.2020.3008081.

Feng P, Ma J, Sun C, Xu X, Ma Y. 2018. A novel dynamic Android malware detection system with
ensemble learning. IEEE Access 6:30996–31011 DOI 10.1109/ACCESS.2018.2844349.

Foremost J. 2012. DroidDream mobile malware. Available at https://www.virusbulletin.com/
virusbulletin/2012/03/droiddream-mobile-malware (accessed 14 August 2018).

Fratantonio Y, Bianchi A, Robertson W, Kirda E, Kruegel C, Vigna G. 2016. TriggerScope:
towards detecting logic bombs in android applications. In: 2016 IEEE Symposium on Security
and Privacy, SP 2016. Piscataway: IEEE, 377–396.

Fsecure. 2013. Mobile threat report Q1 2013. Helsinki: F-Secure.

Gajrani J, Sarswat J, Tripathi M, Laxmi V, Gaur M, Conti M. 2015. A robust dynamic analysis
system preventing SandBox detection by Android malware. In: Proceedings of the 8th
International Conference on Security of Information and Networks. New York: ACM, 290–295.

Gao H, Cheng S, Zhang W. 2021. GDroid: Android malware detection and classification with
graph convolutional network. Computers & Security 106(6):102264
DOI 10.1016/j.cose.2021.102264.

Garcia J, Hammad M, Pedrood B, Bagheri-Khaligh A, Malek S. 2015. Obfuscation-resilient,
efficient, and accurate detection and family identification of android malware. Department of
Computer Science, George Mason University, Tech. Rep. 202.

Gascon H, Yamaguchi F, Arp D, Rieck K. 2013. Structural detection of Android malware using
embedded call graphs. In: 2013 6th Annual ACM Workshop on Artificial Intelligence and
Security, AISec 2013, Co-located with the 20th ACM Conference on Computer and
Communications Security, CCS 2013. Berlin, 45–54.

Gheorghe L, Marin B, Gibson G, Mogosanu L, Deaconescu R, Voiculescu VG, Carabas M. 2015.
Smart malware detection on Android. Security and Communication Networks 8(18):4254–4272
DOI 10.1002/sec.1340.

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 51/61

http://dx.doi.org/10.1016/j.jisa.2014.10.011
http://dx.doi.org/10.1016/j.diin.2015.02.001
http://dx.doi.org/10.1016/j.cose.2016.11.007
http://dx.doi.org/10.1109/ACCESS.2020.3008081
http://dx.doi.org/10.1109/ACCESS.2018.2844349
https://www.virusbulletin.com/virusbulletin/2012/03/droiddream-mobile-malware
https://www.virusbulletin.com/virusbulletin/2012/03/droiddream-mobile-malware
http://dx.doi.org/10.1016/j.cose.2021.102264
http://dx.doi.org/10.1002/sec.1340
http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

Glodek W, Harang R. 2013. Rapid permissions-based detection and analysis of mobile malware
using random decision forests. In: 2013 IEEE Military Communications Conference, MILCOM
2013. San Diego, 980–985.

Gonzalez H, Kadir AA, Stakhanova N, Alzahrani N, Ghorbani AA. 2015. Exploring reverse
engineering symptoms in Android apps. In: 8th EuropeanWorkshop on System Security, EuroSec
2015. New York: Association for Computing Machinery.

Gonzalez H, Stakhanova N, Ghorbani AA. 2014. Droidkin: lightweight detection of android apps
similarity. In: International Conference on Security and Privacy in Communication Systems.
Berlin: Springer, 436–453.

Google. 2011. VirusTotal. Available at https://virustotal.com/.

Grace M, Zhou Y, Zhang Q, Zou S, Jiang X. 2012. Riskranker: scalable and accurate zero-day
Android malware detection. In: Proceedings of the 10th International Conference on Mobile
Systems, Applications, and Services. New York: ACM, 281–294.

GuardSquare. 2014. DexGuard. Leuven: GuardSquare.

Gurulian I, Markantonakis K, Cavalaro L, Mayes K. 2016. You can’t touch this: consumer-centric
Android application repackaging detection. Future Generation Computer Systems 65:1–9
DOI 10.1016/j.future.2016.05.021.

Hanna S, Huang L, Wu E, Li S, Chen C, Song D. 2013. Juxtapp: a scalable system for detecting
code reuse among Android applications. In: Detection of Intrusions and Malware, and
Vulnerability Assessment. Berlin: Springer, 62–81.

Hatwar MS, Shelke C. 2014. An assess Android antimalware that detects malicious dynamic code
in apps. International Journal of Computer Science and Mobile Computing 3:263.

Hoffmann J, Rytilahti T, Maiorca D, Winandy M, Giacinto G, Holz T. 2016. Evaluating analysis
tools for android apps: status quo and robustness against obfuscation. In: 6th ACM Conference
on Data and Application Security and Privacy, CODASPY 2016. New York: Association for
Computing Machinery, 139–141.

Holla S, Katti MM. 2012. Android based mobile application development and its security.
International Journal of Computer Trends and Technology 3:486–490.

Hsieh WC, Wu CC, Kao YW. 2016. A study of android malware detection technology evolution.
In: 49th Annual IEEE International Carnahan Conference on Security Technology, ICCST 2015.
Piscataway: IEEE, 135–140.

HuW, Xiao Z. 2014. Guess where i am-android: detection and prevention of emulator evading on
Android. In: XFocus Information Security Conference (XCon). Academia Sinica Taipei: HitCon.

Ikram M, Beaume P, Kâafar MA. 2019. Dadidroid: an obfuscation resilient tool for detecting
android malware via weighted directed call graph modelling. Available at https://arxiv.org/abs/
1905.09136.

Jang JW, Kang H, Woo J, Mohaisen A, Kim HK. 2016. Andro-Dumpsys: anti-malware system
based on the similarity of malware creator and malware centric information. Computers &
Security 58(3):125–138 DOI 10.1016/j.cose.2015.12.005.

Jeong J, Seo D, Lee C, Kwon J, Lee H, Milburn J. 2014.MysteryChecker: unpredictable attestation
to detect repackaged malicious applications in Android. In: 9th IEEE International Conference
on Malicious and Unwanted Software, MALCON 2014. Piscataway: IEEE, 50–57.

Jing Y, Zhao Z, Ahn G-J, Hu H. 2014. Morpheus: automatically generating heuristics to detect
Android emulators. In: Proceedings of the 30th Annual Computer Security Applications
Conference. New York: ACM, 216–225.

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 52/61

https://virustotal.com/
http://dx.doi.org/10.1016/j.future.2016.05.021
https://arxiv.org/abs/1905.09136
https://arxiv.org/abs/1905.09136
http://dx.doi.org/10.1016/j.cose.2015.12.005
http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

Jung J, Kim H, Shin D, Lee M, Lee H, S-j Cho, Suh K. 2018. Android malware detection based on
useful API calls and machine learning. In: 2018 IEEE First International Conference on Artificial
Intelligence and Knowledge Engineering (AIKE). Piscataway: IEEE, 175–178.

Jusoh R, Firdaus A, Anwar S, Osman MZ, Darmawan MF, Ab Razak MF. 2021. Malware
detection using static analysis in Android: a review of FeCO (features, classification, and
obfuscation). PeerJ Computer Science 7:e522 DOI 10.7717/peerj-cs.522.

Kaelbling LP, Littman ML, Moore AW. 1996. Reinforcement learning: a survey. Journal of
Artificial Intelligence Research 4:237–285 DOI 10.1613/jair.301.

Kandukuru S, Sharma R. 2018. PNSDroid: a hybrid approach for detection of Android malware.
In: Recent Findings in Intelligent Computing Techniques. Berlin: Springer, 361–367.

Kang H, Jang JW, Mohaisen A, Kim HK. 2015. Detecting and classifying android malware using
static analysis along with creator information. International Journal of Distributed Sensor
Networks 11(6):479174 DOI 10.1155/2015/479174.

Karbab EB, Debbabi M. 2021. Resilient and adaptive framework for large scale android malware
fingerprinting using deep learning and NLP techniques. Available at http://arxiv.org/abs/2105.
13491.

Karim A, Shah SAA, Bin Salleh R, Arif M, Noor RM, Shamshirband S. 2015. Mobile botnet
attacks - an emerging threat: classification, review and open issues. KSII Transactions on Internet
and Information Systems 9(4):1471–1492 DOI 10.3837/tiis.2015.04.012.

Kim D, Kwak J, Ryou J. 2015. DWroidDump: executable code extraction from Android
applications for malware analysis. International Journal of Distributed Sensor Networks
11(9):379682 DOI 10.1155/2015/379682.

Kim M, Lee TJ, Shin Y, Youm HY. 2016. A study on behavior-based mobile malware analysis
system against evasion techniques. In: 2016 International Conference on Information Networking
(ICOIN). Piscataway: IEEE, 455–457.

Kim T, Kang B, Rho M, Sezer S, Im EG. 2019. A multimodal deep learning method for Android
malware detection using various features. IEEE Transactions on Information Forensics and
Security 14(3):773–788 DOI 10.1109/TIFS.2018.2866319.

Kiss N, Lalande J-F, Leslous M, Tong VVT. 2016. Kharon dataset: Android malware under a
microscope. In: The LASER Workshop: Learning from Authoritative Security Experiment Results
(LASER 2016). 1–12.

Klassmaster. 2013. Zelix Klassmaster. Available at http://www.zelix.com/klassmaster/.

Kohout J, Pevny T. 2015. Unsupervised detection of malware in persistent web traffic. In: 2015
IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). 1757–1761.

Kuhnel M, Smieschek M, Meyer U. 2015. Fast identification of obfuscation and mobile advertising
in mobile malware. In: 14th IEEE International Conference on Trust, Security and Privacy in
Computing and Communications, TrustCom 2015. Piscataway: IEEE, 214–221.

Kumawat A, Sharma AK, Kumawat S. 2017. Identification of cryptographic vulnerability and
malware detection in Android. International Journal of Information Security & Privacy 11:15
DOI 10.4018/978-1-7998-8545-0.ch004.

Kurniawan H, Rosmansyah Y, Dabarsyah B. 2015. Android anomaly detection system using
machine learning classification. In: 5th International Conference on Electrical Engineering and
Informatics, ICEEI 2015. Piscataway: IEEE, 288–293.

Kwon J, Jeong J, Lee J, Lee H. 2014. DroidGraph: discovering Android malware by analyzing
semantic behavior. In: 2014 IEEE Conference on Communications and Network Security, CNS
2014. Piscataway: IEEE, 498–499.

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 53/61

http://dx.doi.org/10.7717/peerj-cs.522
http://dx.doi.org/10.1613/jair.301
http://dx.doi.org/10.1155/2015/479174
http://arxiv.org/abs/2105.13491
http://arxiv.org/abs/2105.13491
http://dx.doi.org/10.3837/tiis.2015.04.012
http://dx.doi.org/10.1155/2015/379682
http://dx.doi.org/10.1109/TIFS.2018.2866319
http://www.zelix.com/klassmaster/
http://dx.doi.org/10.4018/978-1-7998-8545-0.ch004
http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

Lafortune E. 2002. ProGuard. Leuven: Guardsquare.

Lashkari AH, Kadir AFA, Gonzalez H, Mbah KF, Ghorbani AA. 2017. Towards a network-based
framework for android malware detection and characterization. In: 15th Annual Conference on
Privacy, Security and Trust (PST). Piscataway: IEEE, 233–23309.

Lee C, Kim J, Cho S-J, Choi J, Park Y. 2014. Unified security enhancement framework for the
Android operating system. Journal of Supercomputing 67(3):738–756
DOI 10.1007/s11227-013-0991-y.

Lei C, Gates CS, Luo S, Ninghui L. 2015. A probabilistic discriminative model for Android
malware detection with decompiled source code. IEEE Transactions on Dependable and Secure
Computing 12(4):400–412 DOI 10.1109/TDSC.2014.2355839.

Li J, Sun L, Yan Q, Li Z, Srisa-An W, Ye H. 2018. Significant permission identification for
machine-learning-based android malware detection. IEEE Transactions on Industrial
Informatics 14(7):3216–3225 DOI 10.1109/TII.2017.2789219.

Li L, Bissyandé TF, Octeau D, Klein J. 2016. DroidRA: taming reflection to support whole-
program analysis of Android apps. In: Roychoudhury A, Zeller A, eds. 25th International
Symposium on Software Testing and Analysis, ISSTA 2016. New York: Association for
Computing Machinery, 318–329.

Li Y, Jang J, Hu X, Ou X. 2017. Android malware clustering through malicious payload mining.
In: International Symposium on Research in Attacks, Intrusions, and Defenses. Berlin: Springer,
192–214.

Li Z, Sun J, Yan Q, Srisa-an W, Tsutano Y. 2019. Obfusifier: obfuscation-resistant Android
malware detection system. In: International Conference on Security and Privacy in
Communication Systems. Berlin: Springer, 214–234.

Liang S, Bracha G. 1998. Dynamic class loading in the Java virtual machine. ACM Sigplan Notices
33(10):36–44 DOI 10.1145/286942.286945.

Lim K, Jeong Y, S-j Cho, Park M, Han S. 2016. An Android application protection scheme against
dynamic reverse engineering attacks. Journal of Wireless Mobile Networks, Ubiquitous
Computing, and Dependable Applications 7(3):40–52.

Lindorfer M, Neugschwandtner M, Platzer C. 2015. MARVIN: efficient and comprehensive
mobile app classification through static and dynamic analysis. In: Huang G, Yang J, Ahamed SI,
Hsiung PA, Chang CK, Chu W, Crnkovic I, eds. 39th IEEE Annual Computer Software and
Applications Conference, COMPSAC 2015. Piscataway: IEEE Computer Society, 422–433.

Lindorfer M, Neugschwandtner M, Weichselbaum L, Fratantonio Y, van der Veen V, Platzer C.
2014. ANDRUBIS-1,000,000 apps later: a view on current Android malware behaviors. In:
Proceedings of the the 3rd International Workshop on Building Analysis Datasets and Gathering
Experience Returns for Security (BADGERS).

Liu Z, Wang R, Japkowicz N, Tang D, Zhang W, Zhao J. 2021. Research on unsupervised feature
learning for Android malware detection based on restricted Boltzmann machines. Future
Generation Computer Systems 120(5):91–108 DOI 10.1016/j.future.2021.02.015.

Lopez CCU, Cadavid AN. 2016. Machine learning classifiers for Android malware analysis. In:
Garcia L, ed. 2016 IEEE Colombian Conference on Communications and Computing, COLCOM
2016. Piscataway: IEEE.

Lu T, Du Y, Ouyang L, Chen Q, Wang X. 2020. Android malware detection based on a hybrid
deep learning model. Security and Communication Networks 2020(6):1–11
DOI 10.1155/2020/8863617.

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 54/61

http://dx.doi.org/10.1007/s11227-013-0991-y
http://dx.doi.org/10.1109/TDSC.2014.2355839
http://dx.doi.org/10.1109/TII.2017.2789219
http://dx.doi.org/10.1145/286942.286945
http://dx.doi.org/10.1016/j.future.2021.02.015
http://dx.doi.org/10.1155/2020/8863617
http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

Luyi X, Xiaorui P, Rui W, Kan Y, XiaoFeng W. 2014. Upgrading your Android, elevating my
malware: privilege escalation through mobile OS updating. In: 2014 IEEE Symposium on Security
and Privacy (SP). 393–408.

Ma Z, Ge H, Wang Z, Liu Y, Liu X. 2020. Droidetec: Android malware detection and malicious
code localization through deep learning. Available at http://arxiv.org/abs/2002.03594.

Maggi F, Valdi A, Zanero S. 2013. AndroTotal: a flexible, scalable toolbox and service for testing
mobile malware detectors. In: Proceedings of the Third ACM Workshop on Security and Privacy
in Smartphones & Mobile Devices. New York: ACM, 49–54.

Mahindru A, Sangal A. 2021. MLDroid—Framework for Android malware detection using
machine learning techniques. Neural Computing and Applications 33(10):5183–5240
DOI 10.1007/s00521-020-05309-4.

Maier D, Muller T, Protsenko M. 2014. Divide-and-conquer: why Android malware cannot be
stopped. In: 9th International Conference on Availability, Reliability and Security, ARES 2014.
Piscataway: IEEE, 30–39.

Maier D, Protsenko M,Müller T. 2015.A game of Droid and mouse: the threat of split-personality
malware on Android. Computers and Security 54(2):2–15 DOI 10.1016/j.cose.2015.05.001.

Maiorca D, Ariu D, Corona I, Aresu M, Giacinto G. 2015. Stealth attacks: an extended insight
into the obfuscation effects on Android malware. Computers and Security 51(1):16–31
DOI 10.1016/j.cose.2015.02.007.

Maiorca D, Mercaldo F, Giacinto G, Visaggio CA, Martinelli F. 2017. R-PackDroid: API
package-based characterization and detection of mobile ransomware. In: Proceedings of the
Symposium on Applied Computing. New York: ACM, 1718–1723.

Mantoo BA, Khurana SS. 2020. Static, dynamic and intrinsic features based Android malware
detection using machine learning. In: Proceedings of ICRIC 2019. Berlin: Springer, 31–45.

Markmann T, Gessner D, Westhoff D. 2013. QuantDroid: quantitative approach towards
mitigating privilege escalation on Android. In: 2013 IEEE International Conference on
Communications (ICC). 2144–2149.

Martín A, Menéndez HD, Camacho D. 2016. MOCDroid: multi-objective evolutionary classifier
for Android malware detection. Soft Computing 21(24):1–11 DOI 10.1007/s00500-016-2283-y.

Meng G, Xue Y, Mahinthan C, Narayanan A, Liu Y, Zhang J, Chen T. 2016. Mystique: evolving
android malware for auditing anti-malware tools. In: 11th ACM Asia Conference on Computer
and Communications Security, ASIA CCS 2016. New York: Association for Computing
Machinery, 365–376.

Millar S, McLaughlin N, del Rincon JM, Miller P. 2021. Multi-view deep learning for zero-day
Android malware detection. Journal of Information Security and Applications 58(3):102718
DOI 10.1016/j.jisa.2020.102718.

Millar S, McLaughlin N, Martinez del Rincon J, Miller P, Zhao Z. 2020. DANdroid: a multi-view
discriminative adversarial network for obfuscated Android malware detection. In: Proceedings of
the Tenth ACM Conference on Data and Application Security and Privacy. 353–364.

Mirzaei O, de Fuentes JM, Tapiador J, Gonzalez-Manzano L. 2019. AndrODet: an adaptive
Android obfuscation detector. Future Generation Computer Systems 90(4):240–261
DOI 10.1016/j.future.2018.07.066.

Mutti S, Fratantonio Y, Bianchi A, Invernizzi L, Corbetta J, Kirat D, Kruegel C, Vigna G. 2015.
Baredroid: large-scale analysis of android apps on real devices. In: 31st Annual Computer
Security Applications Conference, ACSAC 2015. New York: Association for Computing
Machinery, 71–80.

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 55/61

http://arxiv.org/abs/2002.03594
http://dx.doi.org/10.1007/s00521-020-05309-4
http://dx.doi.org/10.1016/j.cose.2015.05.001
http://dx.doi.org/10.1016/j.cose.2015.02.007
http://dx.doi.org/10.1007/s00500-016-2283-y
http://dx.doi.org/10.1016/j.jisa.2020.102718
http://dx.doi.org/10.1016/j.future.2018.07.066
http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

Narayanan A, Chen L, Chan CK. 2014. AdDetect: automated detection of Android ad libraries
using semantic analysis. In: 9th IEEE International Conference on Intelligent Sensors, Sensor
Networks and Information Processing, IEEE ISSNIP 2014. Singapore: IEEE Computer Society.

Nawaz A. 2021. Feature engineering based on hybrid features for malware detection over
Android framework. Turkish Journal of Computer and Mathematics Education (TURCOMAT)
12:2856–2864 DOI 10.17762/turcomat.v12i10.4931.

Ng DV, Hwang JIG. 2015. Android malware detection using the dendritic cell algorithm. In: 13th
International Conference on Machine Learning and Cybernetics, ICMLC 2014. Washington,
D.C.: IEEE Computer Society, 257–262.

Nguyen-Vu L, Chau N-T, Kang S, Jung S. 2017. Android rooting: an arms race between evasion
and detection. Security and Communication Networks 2017(3):1–13
DOI 10.1155/2017/4121765.

Niazi RH, Shamsi JA, Waseem T, Khan MM. 2015. Signature-based detection of privilege-
escalation attacks on Android. In: Conference on Information Assurance and Cyber Security,
CIACS 2015. Piscataway: IEEE, 44–49.

Nissim N, Moskovitch R, BarAd O, Rokach L, Elovici Y. 2016. ALDROID: efficient update of
Android anti-virus software using designated active learning methods. Knowledge and
Information Systems 49(3):1–39 DOI 10.1007/s10115-016-0918-z.

Oester P. 2016. Dirty Cow (CVE-2016-5195). Available at https://dirtycow.ninja/.

Pang Y, Chen Z, Li X, Wang S, Zhao C, Wang L, Ji K, Li Z. 2017. Finding Android malware trace
from highly imbalanced network traffic. In: 2017 IEEE International Conference on
Computational Science and Engineering (CSE) and IEEE International Conference on Embedded
and Ubiquitous Computing (EUC). Piscataway: IEEE, 588–595.

Parkour M. 2013. Contagio Mobile. Mobile malware mini dump. Available at http://contagiodump.
blogspot.my/2011/03/take-sample-leave-sample-mobile-malware.html.

Pektas A, Acarman T. 2014. A dynamic malware analyzer against virtual machine aware malicious
software. Security and Communication Networks 7(12):2245–2257 DOI 10.1002/sec.931.

Pektaş A, Acarman T. 2020. Deep learning for effective Android malware detection using API call
graph embeddings. Soft Computing 24(2):1027–1043 DOI 10.1007/s00500-019-03940-5.

Petsas T, Voyatzis G, Athanasopoulos E, Polychronakis M, Ioannidis S. 2014. Rage against the
virtual machine: hindering dynamic analysis of Android malware. In: 7th European Workshop
on System Security, EuroSec 2014. Amsterdam: Association for Computing Machinery.

Poeplau S, Fratantonio Y, Bianchi A, Kruegel C, Vigna G. 2014. Execute this! analyzing unsafe
and malicious dynamic code loading in android applications. In: Proceedings of the 20th Annual
Network & Distributed System Security Symposium (NDSS).

Preda MD, Maggi F. 2016. Testing android malware detectors against code obfuscation: a
systematization of knowledge and unified methodology. Journal of Computer Virology and
Hacking Techniques 13(3):1–24 DOI 10.1007/s11416-016-0282-2.

Protsenko M, Muller T. 2013. PANDORA applies non-deterministic obfuscation randomly to
Android. In: 8th International Conference on Malicious and Unwanted Software. Fajardo: IEEE
Computer Society, 59–67.

Rahman M, Rahman M, Carbunar B, Chau DH. 2016. Fairplay: fraud and malware detection in
Google play. In: Proceedings of the 2016 SIAM International Conference on Data Mining: SIAM.
99–107.

Rashidi B, Fung C, Tam V. 2015. Dude, ask the experts!: Android resource access permission
recommendation with RecDroid. In: 2015 IFIP/IEEE International Symposium on Integrated
Network Management (IM). 296–304.

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 56/61

http://dx.doi.org/10.17762/turcomat.v12i10.4931
http://dx.doi.org/10.1155/2017/4121765
http://dx.doi.org/10.1007/s10115-016-0918-z
https://dirtycow.ninja/
http://contagiodump.blogspot.my/2011/03/take-sample-leave-sample-mobile-malware.html
http://contagiodump.blogspot.my/2011/03/take-sample-leave-sample-mobile-malware.html
http://dx.doi.org/10.1002/sec.931
http://dx.doi.org/10.1007/s00500-019-03940-5
http://dx.doi.org/10.1007/s11416-016-0282-2
http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

Rastogi V, Chen Y, Jiang X. 2013. DroidChameleon: evaluating Android anti-malware against
transformation attacks. In: 8th ACM SIGSAC Symposium on Information, Computer and
Communications Security, ASIA CCS 2013. Hangzhou, 329–334.

Rastogi V, Chen Y, Jiang X. 2014. Catch me if you can: evaluating Android anti-malware against
transformation attacks. IEEE Transactions on Information Forensics and Security 9(1):99–108
DOI 10.1109/TIFS.2013.2290431.

Şahin DÖ, Kural OE, Akleylek S, Kılıç E. 2021. A novel permission-based Android malware
detection system using feature selection based on linear regression. Neural Computing and
Applications 33:1–16 DOI 10.1007/s00521-021-05875-1.

Salva S, Zafimiharisoa SR. 2015. APSET, an Android aPplication SEcurity Testing tool for
detecting intent-based vulnerabilities. International Journal on Software Tools for Technology
Transfer 17(2):201–221 DOI 10.1007/s10009-014-0303-8.

Sanz B, Santos I, Laorden C, Ugarte-Pedrero X, Nieves J, Bringas PG, Maranon GA. 2013.
Mama: manifest analysis for malware detection in Android. Cybernetics and Systems
44(6–7):469–488 DOI 10.1080/01969722.2013.803889.

Sasidharan SK, Thomas C. 2021. ProDroid—an Android malware detection framework based on
profile hidden Markov model. Pervasive and Mobile Computing 72(4):101336
DOI 10.1016/j.pmcj.2021.101336.

Shabtai A, Tenenboim-Chekina L, Mimran D, Rokach L, Shapira B, Elovici Y. 2014. Mobile
malware detection through analysis of deviations in application network behavior. Computers &
Security 43(2):1–18 DOI 10.1016/j.cose.2014.02.009.

Shalaginov A, Franke K. 2014. Automatic rule-mining for malware detection employing
Neuro-Fuzzy Approach. In: Norsk informasjonssikkerhetskonferanse (NISK).

Shao Y, Luo X, Qian C, Zhu P, Zhang L. 2014. Towards a scalable resource-driven approach for
detecting repackaged android applications. In: 30th Annual Computer Security Applications
Conference, ACSAC 2014. New York: Association for Computing Machinery, 56–65.

Sharma A, Sahay SK. 2014. Evolution and detection of polymorphic and metamorphic malwares: a
survey. Available at http://arxiv.org/abs/1406.7061.

Sheen S, Anitha R, Natarajan V. 2015. Android based malware detection using a multifeature
collaborative decision fusion approach. Neurocomputing 151(1):905–912
DOI 10.1016/j.neucom.2014.10.004.

Shen T, Zhongyang Y, Xin Z, Mao B, Huang H. 2015. Detect android malware variants using
component based topology graph. In: 13th IEEE International Conference on Trust, Security and
Privacy in Computing and Communications, TrustCom 2014. Piscataway: IEEE, 406–413.

Shrestha B, Ma D, Zhu Y, Li H, Saxena N. 2015. Tap-Wave-Rub: lightweight human interaction
approach to curb emerging smartphone malware. IEEE Transactions on Information Forensics
and Security 10(11):2270–2283 DOI 10.1109/TIFS.2015.2436364.

Sihag V, Vardhan M, Singh P. 2021a. A survey of Android application and malware hardening.
Computer Science Review 39(1):100365 DOI 10.1016/j.cosrev.2021.100365.

Sihag V, Vardhan M, Singh P. 2021b. BLADE: robust malware detection against obfuscation in
Android. Forensic Science International: Digital Investigation 38:301176
DOI 10.1016/j.fsidi.2021.301176.

Sihag V, Vardhan M, Singh P, Choudhary G, Son S. 2021. De-LADY: deep learning based
Android malware detection using dynamic features. Journal of Internet Services and Information
Security (JISIS) 11:34–45 DOI 10.22667/JISIS.2021.05.31.034.

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 57/61

http://dx.doi.org/10.1109/TIFS.2013.2290431
http://dx.doi.org/10.1007/s00521-021-05875-1
http://dx.doi.org/10.1007/s10009-014-0303-8
http://dx.doi.org/10.1080/01969722.2013.803889
http://dx.doi.org/10.1016/j.pmcj.2021.101336
http://dx.doi.org/10.1016/j.cose.2014.02.009
http://arxiv.org/abs/1406.7061
http://dx.doi.org/10.1016/j.neucom.2014.10.004
http://dx.doi.org/10.1109/TIFS.2015.2436364
http://dx.doi.org/10.1016/j.cosrev.2021.100365
http://dx.doi.org/10.1016/j.fsidi.2021.301176
http://dx.doi.org/10.22667/JISIS.2021.05.31.034
http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

Singh S, Mishra B, Singh S. 2015. Detecting intelligent malware on dynamic Android analysis
environments. In: 10th International Conference for Internet Technology and Secured
Transactions, ICITST 2015. Piscataway: IEEE, 414–419.

Soh C, Tan HBK, Arnatovich YL, Wang L. 2015. Detecting clones in Android applications
through analyzing user interfaces. In: 23rd IEEE International Conference on Program
Comprehension, ICPC 2015. Washington, D.C.: IEEE Computer Society, 163–173.

Spreitzenbarth M, Schreck T, Echtler F, Arp D, Hoffmann J. 2015. Mobile-Sandbox: combining
static and dynamic analysis with machine-learning techniques. International Journal of
Information Security 14(2):141–153 DOI 10.1007/s10207-014-0250-0.

Spreitzer R, Griesmayr S, Korak T, Mangard S. 2016. Exploiting data-usage statistics for website
fingerprinting attacks on android. In: 9th ACM Conference on Security and Privacy in Wireless
and Mobile Networks, WiSec 2016. New York: Association for Computing Machinery, 49–60.

Statista. 2016. Number of available applications in the Google Play Store from December 2009 to
September 2016. Available at https://wwwstatistacom/statistics/266210/number-of-available-
applications-in-the-google-play-store/.

Statista. 2021. Number of apps available in leading app stores as of first quarter of 2021. Available
at https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
(accessed 2 July 2021).

Suarez-Tangil G, Dash SK, Ahmadi M, Kinder J, Giacinto G, Cavallaro L. 2017. DroidSieve: fast
and accurate classification of obfuscated Android malware. In: Seventh ACM on Conference on
Data and Application Security and Privacy. Scottsdale: ACM, 309–320.

Suarez-Tangil G, Tapiador JE, Peris-Lopez P, Blasco J. 2014. Dendroid: a text mining approach
to analyzing and classifying code structures in Android malware families. Expert Systems with
Applications 41(4):1104–1117 DOI 10.1016/j.eswa.2013.07.106.

Sufatrio, Chua TW, Tan DJJ, Thing VLL. 2015a. Accurate specification for robust detection of
malicious behavior in mobile environments. In: Weippl E, Pernul G, Ryan PYA, eds. 20th
European Symposium on Research in Computer Security, ESORICS 2015. Berlin: Springer Verlag,
355–375.

Sufatrio, Tan DJJ, Chua T-W, Thing VLL. 2015b. Securing Android: a survey, taxonomy, and
challenges. ACM Computing Surveys 47(4):1–45 DOI 10.1145/2733306.

Sun M, Li M, Lui JCS. 2015. DroidEagle: seamless detection of visually similar android apps. In:
8th ACM Conference on Security and Privacy in Wireless and Mobile Networks, WiSec 2015.
New York: Association for Computing Machinery.

Surendran R, Thomas T, Emmanuel S. 2020. A TAN based hybrid model for android malware
detection. Journal of Information Security and Applications 54(3):102483
DOI 10.1016/j.jisa.2020.102483.

Taha AA, Malebary SJ. 2021. Hybrid classification of Android malware based on fuzzy clustering
and the gradient boosting machine. Neural Computing and Applications 33(12):6721–6732
DOI 10.1007/s00521-020-05450-0.

Taheri R, Ghahramani M, Javidan R, Shojafar M, Pooranian Z, Conti M. 2020. Similarity-based
Android malware detection using Hamming distance of static binary features. Future
Generation Computer Systems 105(6):230–247 DOI 10.1016/j.future.2019.11.034.

Talha KA, Alper DI, Aydin C. 2015. APK Auditor: permission-based Android malware detection
system. Digital Investigation 13:1–14 DOI 10.1016/j.diin.2015.01.001.

Tam K, Feizollah A, Anuar NB, Salleh R, Cavallaro L. 2017. The evolution of Android malware
and Android analysis techniques. ACM Computing Surveys 49(4):1–41 DOI 10.1145/3017427.

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 58/61

http://dx.doi.org/10.1007/s10207-014-0250-0
https://wwwstatistacom/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://wwwstatistacom/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/276623/number-of-apps-available-in-leading-app-stores/
http://dx.doi.org/10.1016/j.eswa.2013.07.106
http://dx.doi.org/10.1145/2733306
http://dx.doi.org/10.1016/j.jisa.2020.102483
http://dx.doi.org/10.1007/s00521-020-05450-0
http://dx.doi.org/10.1016/j.future.2019.11.034
http://dx.doi.org/10.1016/j.diin.2015.01.001
http://dx.doi.org/10.1145/3017427
http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

Tan DJ, Chua T-W, Thing VL. 2015. Securing android: a survey, taxonomy, and challenges. ACM
Computing Surveys (CSUR) 47(4):58 DOI 10.1145/2733306.

Tang A, Sethumadhavan S, Stolfo SJ. 2014. Unsupervised anomaly-based malware detection
using hardware features. In: Research in Attacks, Intrusions and Defenses. Berlin: Springer, 109–
129.

Tao F, Ziyi L, Kyeong-An K, Weidong S, Carbunar B, Yifei J, Nguyen N. 2012. Continuous
mobile authentication using touchscreen gestures. In: 2012 IEEE Conference on Technologies for
Homeland Security (HST). 451–456.

Tchakounté F, Ngassi RCN, Kamla VC, Udagepola KP. 2021. LimonDroid: a system coupling
three signature-based schemes for profiling Android malware. Iran Journal of Computer Science
4(2):95–114 DOI 10.1007/s42044-020-00068-w.

Tiwari SR, Shukla RU. 2018. An android malware detection technique based on optimized
permissions and API. In: 2018 International Conference on Inventive Research in Computing
Applications (ICIRCA). Piscataway: IEEE, 258–263.

Vasan D, Alazab M, Wassan S, Naeem H, Safaei B, Zheng Q. 2020. IMCFN: Image-based
malware classification using fine-tuned convolutional neural network architecture. Computer
Networks 171(1):107138 DOI 10.1016/j.comnet.2020.107138.

Vidas T, Christin N. 2013. Sweetening android lemon markets: measuring and combating
malware in application marketplaces. In: Proceedings of the Third ACM Conference on Data and
Application Security and Privacy. New York: ACM, 197–208.

Vidas T, Christin N. 2014. Evading android runtime analysis via sandbox detection. In:
Proceedings of the 9th ACM Symposium on Information, Computer and Communications
Security. New York: ACM, 447–458.

Vidas T, Tan J, Nahata J, Tan CL, Christin N, Tague P. 2014. A5: automated analysis of
adversarial Android applications. In: Proceedings of the 4th ACM Workshop on Security and
Privacy in Smartphones & Mobile Devices. Scottsdale: ACM, 39–50.

Wang C, Shieh SW. 2015. DROIT: dynamic alternation of dual-level tainting for malware analysis.
Journal of Information Science and Engineering 31:111–129 DOI 10.6688/JISE.2015.31.1.6.

Wang S, Chen Z, Yan Q, Ji K, Peng L, Yang B, Conti M. 2020. Deep and broad URL feature
mining for android malware detection. Information Sciences 513(6):600–613
DOI 10.1016/j.ins.2019.11.008.

Wang S, Chen Z, Yan Q, Yang B, Peng L, Jia Z. 2019. A mobile malware detection method using
behavior features in network traffic. Journal of Network and Computer Applications 133(4):15–
25 DOI 10.1016/j.jnca.2018.12.014.

Wang X, Li C. 2021. Android malware detection through machine learning on kernel task
structures. Neurocomputing 435(6):126–150 DOI 10.1016/j.neucom.2020.12.088.

Wang Z, Wu F. 2015. Android malware analytic method based on improved multi-level signature
matching. In: 5th International Conference on Information Science and Technology, ICIST 2015.
Piscataway: IEEE, 93–98.

Wang Z, Li C, Guan Y, Xue Y. 2016. Anti-obfuscation method for detecting similarity of Android
application.Huazhong Keji Daxue Xuebao (Ziran Kexue Ban)/Journal of Huazhong University of
Science and Technology (Natural Science Edition) 44:60–64 DOI 10.13245/j.hust.160312.

Wei TE, Tyan HR, Jeng AB, Lee HM, Liao HYM, Wang JC. 2015. DroidExec: root exploit
malware recognition against wide variability via folding redundant function-relation graph. In:
17th IEEE International Conference on Advanced Communications Technology, ICACT 2015.
Piscataway: IEEE, 161–169.

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 59/61

http://dx.doi.org/10.1145/2733306
http://dx.doi.org/10.1007/s42044-020-00068-w
http://dx.doi.org/10.1016/j.comnet.2020.107138
http://dx.doi.org/10.6688/JISE.2015.31.1.6
http://dx.doi.org/10.1016/j.ins.2019.11.008
http://dx.doi.org/10.1016/j.jnca.2018.12.014
http://dx.doi.org/10.1016/j.neucom.2020.12.088
http://dx.doi.org/10.13245/j.hust.160312
http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

Wu D-J, Mao C-H, Wei T-E, Lee H-M, Wu K-P. 2012. Droidmat: Android malware detection
through manifest and API calls tracing. In: 2012 Seventh Asia Joint Conference on Information
Security (Asia JCIS). Piscataway: IEEE, 62–69.

Wu S, Wang P, Li X, Zhang Y. 2016. Effective detection of Android malware based on the usage of
data flow APIs and machine learning. Information and Software Technology 75:17–25
DOI 10.1016/j.infsof.2016.03.004.

Wu X, Zhang D, Su X, Li W. 2015. Detect repackaged Android application based on HTTP traffic
similarity. Security and Communication Networks 8(13):2257–2266 DOI 10.1002/sec.1170.

Wüchner T, Ochoa M, Pretschner A. 2015. Robust and effective malware detection through
quantitative data flow graph metrics. In: International Conference on Detection of Intrusions and
Malware, and Vulnerability Assessment. Berlin: Springer, 98–118.

Xu J, Yu Y, Chen Z, Cao B, Dong W, Guo Y, Cao J. 2013. MobSafe: cloud computing based
forensic analysis for massive mobile applications using data mining. Tsinghua Science and
Technology 18(4):418–427 DOI 10.1109/TST.2013.6574680.

Xu M, Song C, Ji Y, Shih MW, Lu K, Zheng C, Duan R, Jang Y, Lee B, Qian C, Lee S, Kim T.
2016. Toward engineering a secure android ecosystem: a survey of existing techniques. ACM
Computing Surveys 49(2):1–47 DOI 10.1145/2963145.

Xue Y, Meng G, Liu Y, Tan TH, Chen H, Sun J, Zhang J. 2017. Auditing anti-malware tools by
evolving android malware and dynamic loading technique. IEEE Transactions on Information
Forensics and Security 12(7):1529–1544 DOI 10.1109/TIFS.2017.2661723.

Yajin Z, Xuxian J. 2012. Dissecting Android malware: characterization and evolution. In: 2012
IEEE Symposium on Security and Privacy (SP). 95–109.

Yan L-K, Yin H. 2012. DroidScope: seamlessly reconstructing the OS and Dalvik semantic views
for dynamic Android malware analysis. In: USENIX Security Symposium. 569–584.

Yang Y, Du X, Yang Z, Liu X. 2021. Android malware detection based on structural features of the
function call graph. Electronics 10(2):186 DOI 10.3390/electronics10020186.

Yerima SY, Sezer S, Muttik I. 2014. Android malware detection using parallel machine learning
classifiers. In: 2014 Eighth International Conference on Next Generation Mobile Apps, Services
and Technologies (NGMAST). 37–42.

You I, Yim K. 2010. Malware obfuscation techniques: a brief survey. In: 2010 International
Conference on Broadband, Wireless Computing, Communication and Applications (BWCCA).
Piscataway: IEEE, 297–300.

Yuan Z, Lu Y, Xue Y. 2016. Droiddetector: Android malware characterization and detection using
deep learning. Tsinghua Science and Technology 21(1):114–123
DOI 10.1109/TST.2016.7399288.

Yuan Z, Lu Y, Wang Z, Xue Y. 2014a. Droid-Sec: deep learning in android malware detection.
ACM SIGCOMM Computer Communication Review 44(4):371–372
DOI 10.1145/2740070.2631434.

Yuan Z, Min Y, Zhemin Y, Guofei G, Peng N, Binyu Z. 2014b. Permission use analysis for vetting
undesirable behaviors in Android apps. IEEE Transactions on Information Forensics and
Security 9(11):1828–1842 DOI 10.1109/TIFS.2014.2347206.

Zhang F, Huang H, Zhu S, Wu D, Liu P. 2014. ViewDroid: towards obfuscation-resilient mobile
application repackaging detection. In: 7th ACM Conference on Security and Privacy in Wireless
and Mobile Networks, WiSec 2014. Oxford: Association for Computing Machinery, 25–36.

Zhang H, She D, Qian Z. 2015a. Android root and its providers: a double-edged sword. In: 22nd
ACM SIGSAC Conference on Computer and Communications Security, CCS 2015. New York:
Association for Computing Machinery, 1093–1104.

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 60/61

http://dx.doi.org/10.1016/j.infsof.2016.03.004
http://dx.doi.org/10.1002/sec.1170
http://dx.doi.org/10.1109/TST.2013.6574680
http://dx.doi.org/10.1145/2963145
http://dx.doi.org/10.1109/TIFS.2017.2661723
http://dx.doi.org/10.3390/electronics10020186
http://dx.doi.org/10.1109/TST.2016.7399288
http://dx.doi.org/10.1145/2740070.2631434
http://dx.doi.org/10.1109/TIFS.2014.2347206
http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

Zhang W, Wang H, He H, Liu P. 2020. DAMBA: detecting Android malware by ORGB analysis.
IEEE Transactions on Reliability 69(1):55–69 DOI 10.1109/TR.2019.2924677.

Zhang X, Breitinger F, Baggili I. 2016. Rapid Android parser for investigating DEX files (RAPID).
Digital Investigation 17:28–39 DOI 10.1016/j.diin.2016.03.002.

Zhang Y, Luo X, Yin H. 2015. Dexhunter: toward extracting hidden code from packed Android
applications. In: Computer Security, ESORICS 2015. Berlin: Springer, 293–311.

Zhao S, Li X, Xu G, Zhang L, Feng Z. 2014. Attack tree based Android malware detection with
hybrid analysis. In: 13th IEEE International Conference on Trust, Security and Privacy in
Computing and Communications, TrustCom 2014. Piscataway: IEEE, 380–387.

Zhauniarovich Y, Ahmad M, Gadyatskaya O, Crispo B, Massacci F. 2015. StaDynA: addressing
the problem of dynamic code updates in the security analysis of Android applications. In:
Proceedings of the 5th ACM Conference on Data and Application Security and Privacy. San
Antonio: ACM, 37–48.

Zheng M, Lee PP, Lui JC. 2013a. ADAM: an automatic and extensible platform to stress test
Android anti-virus systems. In: Detection of Intrusions and Malware, and Vulnerability
Assessment. Berlin: Springer, 82–101.

Zheng M, Sun M, Lui JCS. 2013b. Droid analytics: a signature based analytic system to collect,
extract, analyze and associate Android malware. In: 12th IEEE International Conference on
Trust, Security and Privacy in Computing and Communications, TrustCom 2013. Melbourne,
163–171.

Zhong Y, Yamaki H, Yamaguchi Y, Takakura H. 2013. ARIGUMA code analyzer: efficient
variant detection by identifying common instruction sequences in malware families. In: 2013
IEEE 37th Annual Computer Software and Applications Conference (Compsac). 11–20.

Zhou W, Zhou Y, Grace M, Jiang X, Zou S. 2013. Fast, scalable detection of piggybacked mobile
applications. In: Proceedings of the Third ACM Conference on Data and Application Security and
Privacy. New York: ACM, 185–196.

Zhu H, Li Y, Li R, Li J, You Z-H, Song H. 2020. Sedmdroid: an enhanced stacking ensemble of
deep learning framework for android malware detection. IEEE Transactions on Network Science
and Engineering 8(2):984–994 DOI 10.1109/TNSE.2020.2996379.

Zhu H, Wang L, Zhong S, Li Y, Sheng VS. 2021. A hybrid deep network framework for Android
malware detection. IEEE Transactions on Knowledge and Data Engineering 1:1
DOI 10.1109/TKDE.2021.3067658.

Zou D, Wu Y, Yang S, Chauhan A, Yang W, Zhong J, Dou S, Jin H. 2021. IntDroid: Android
malware detection based on API intimacy analysis. ACM Transactions on Software Engineering
and Methodology 30(3):1–32 DOI 10.1145/3442588.

Elsersy et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.907 61/61

http://dx.doi.org/10.1109/TR.2019.2924677
http://dx.doi.org/10.1016/j.diin.2016.03.002
http://dx.doi.org/10.1109/TNSE.2020.2996379
http://dx.doi.org/10.1109/TKDE.2021.3067658
http://dx.doi.org/10.1145/3442588
http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

	The rise of obfuscated Android malware and impacts on detection methods
	Introduction
	Survey methodology
	Evasion techniques
	Evaluation of evasion detection frameworks
	Discussion
	Lessons learned and future directions
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

