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ABSTRACT

The various application markets are facing an exponential growth of Android
malware. Every day, thousands of new Android malware applications emerge.
Android malware hackers adopt reverse engineering and repackage benign
applications with their malicious code. Therefore, Android applications developers
tend to use state-of-the-art obfuscation techniques to mitigate the risk of application
plagiarism. The malware authors adopt the obfuscation and transformation
techniques to defeat the anti-malware detections, which this paper refers to as
evasions. Malware authors use obfuscation techniques to generate new malware
variants from the same malicious code. The concern of encountering difficulties in
malware reverse engineering motivates researchers to secure the source code of
benign Android applications using evasion techniques. This study reviews the state-
of-the-art evasion tools and techniques. The study criticizes the existing research gap
of detection in the latest Android malware detection frameworks and challenges the
classification performance against various evasion techniques. The study concludes
the research gaps in evaluating the current Android malware detection framework
robustness against state-of-the-art evasion techniques. The study concludes the
recent Android malware detection-related issues and lessons learned which require
researchers’ attention in the future.

Subjects Data Mining and Machine Learning, Mobile and Ubiquitous Computing, Security and
Privacy, Operating Systems

Keywords Android malware, Android security, Evasion techniques, Machine learning, Obfuscation
techniques

INTRODUCTION

Since the advent of Android systems, smartphone devices are seen everywhere with a
market share of 87% (Chau ¢ Reith, 2019). Hence, Android devices have become the most
popular devices for hackers and malware authors to target. With many open-source
libraries in Android, Android application development tools enable young developers to
develop Android malware applications. Therefore, the number of Android malware
increases exponentially. In the Google Android market, Android applications
exponentially grow from 2.8 million as of September 2018 (Statista, 2016, 2021), to
almost double, to reach 3.4 million apps as of the first quarter of 2021 (Statista, 2021).
Nevertheless, Android malware authors attract end-users using cracked games, free
applications, and video downloader applications. They mainly aim to spy on private data
(e.g., contact lists, photos, videos, documents, and account details) or control devices by
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remote servers as botnets (Karim et al., 2015). Android applications use Java as a
developing language because Java provides a very flexible code, dynamic code loading
(Liang & Bracha, 1998), and many other features to make Android application
development more accessible and efficient. Likewise, Java uses obfuscation tools (Ao#nzo
et al., 2020; GuardSquare, 2014) to protect commercial software companies from software
plagiarism issues; professional developers protect their source codes from being stolen
using advanced evasion techniques (Aonzo et al., 2020) as protection mechanisms.
However, malware authors use the above-mentioned advanced Java features and
evasion tools to reproduce more sophisticated Android malware, evading professional
anti-malware (Preda ¢ Maggi, 2016). Google introduced Google Bouncer (Rahman et al.,
2016); however, Android malware successfully defeats Google Bouncer using different
evasion techniques (Maiorca et al., 2015). Furthermore, Google Play Protect (Xu et al.,
2016) service is the default device protection tool available on Google Android from
Version 6.0 onwards; however, the previous versions are deprecated.

The rationale behind this study is the ability of evasion techniques to hinder the analysis
process and thus the detection of Android malware. In 2021, PetaDoid (Karbab ¢
Debbabi, 2021) proposed Android malware detection using deep learning techniques.
PetaDroid builds static analysis Android malware detection framework using a 10 million
Android apps dataset. PetaDriod addressed obfuscations in his study and concluded in his
experimental results that his trained machine learning model that reaches 99.2% using
static analysis would not detect complex obfuscated malware applications. The complex
obfuscation techniques defeat Android malware detection PetaDroid model, which results
into false detection. Though PetaDroid focused on trivial and some non-trivial obfuscation
techniques. PetaDroid admitted that further deep analysis is required to address the
sophisticated obfuscation techniques. The study focused on several evasion techniques,
such as package transformation, string encryption, bytecode encryption, code obfuscation,
injecting new codes via dynamic code loading, junk/dead code injection, emulation
detection running sandboxing, and user interaction emulation detection. Android
malware modifies the package, developer signature, and other information using the
repacking evasion technique.

Moreover, the availability of various evasion techniques to the malware attackers
increases the fear of developing very advanced obfuscation techniques, as such newly
developed malware applications adopt advanced obfuscation techniques. It creates a
challenge between preventing source code piracy and malicious attacks (Gurulian et al.,
20165 Zhang et al., 2014) and struggling to decompile the malware application packages
for further analysis (Gonzalez et al., 2015). Android malware detection frameworks
(Arp et al., 2015; Elish et al., 2015; Poeplau et al., 2014; Chen et al., 2015) suffer from False
Negative (FN) detection, which means the Android malware detection frameworks fail to
detect some malware applications. The main reason behind FN is the malware evasion
techniques that malware applications adopt to hinder detection. For instance, Arp et al.
(2015) achieved 94% detection accuracy because it fails to detect malware with dynamic
code loading transformation, one of the advanced evasion techniques. Likewise, Elish et al.
(2015) used trigger-based dependence for privileged API calls, but it is unable to detect
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malware families with code obfuscation and reflection transformation. Poeplau et al.
(2014) used the call graph methodology to detect malicious code loading, and the native
code dynamically loads the code.

Similarly, Chen et al. (2015) identifies a repackaged application in 10 s using code graph
similarity but is incapable of tracking junk code insertion transformation. You ¢ Yim
(2010) reviewed the obfuscation technique, metamorphic and polymorphic malware types.
They discussed the metamorphic and polymorphic evasion techniques; however, they
neglected transformation and anti-emulation evasions. Furthermore, they merely reviewed
evasion methods and failed to evaluate current evasion detection systems to evaluate
whether they can detect evasive malware. Sharma ¢» Sahay (2014) reviewed polymorphic
and metamorphic malware and discussed their characteristics. They failed to mention
evasion detection methods and evaluate the currently proposed methods. Sufatrio et al.
(2015a) surveyed Android malware detection methods and briefly assessed a handful of
related works in terms of evasion detection.

This study is intended for Android malware detection research highlighting the research
gaps in malware detection caused by different evasion techniques. This study highlights the
obfuscation and transformation techniques that need more attention from the research
authors in future. It also provides guidelines and lesson learned to face this challenge. Due
to the above facts, the authors take the challenge to introduce the following foremost
contributions.

- We present evasion taxonomy, particularly in the Android platform. Our goal is to
systematize the Android malware evasion techniques using a taxonomy methodology,
which clearly shows various evasion techniques and how they affect malware analysis
and detection accuracy.

- We scrutinise Android malware detection academic and commercial frameworks
while a large portion of the past work concentrated on commercial Anti-malware
solutions. This study examines different evasion techniques that hinder detecting
malicious parts of applications and affect detection accuracy by reviewing state-of-
the-art Android malware studies and issues limiting the detection of evasion
techniques. It is worth noting that this work differs from related works that examine
detection methods, as we go through evasion techniques that let malware eludes
detection methods. Given the vast number in this study field, our investigation focuses
on studies written between 2011 and early 2021 and innovative contributions that
appeared in high-ranked journals or conferences such as IEEE, ACM, and Springer,
hence the identified related papers are 511 research papers.

- We highlight the existing problems and gaps in Android malware evasion detection by
examining the previous frameworks and identifying the Android malware evasion
detection research gap.

— We introduce a decent number of recommendations and lessons learned to consider
in future work around research. We also aim to highlight the contribution of each
study, challenges, countermeasures, and open issues for future research.
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Table 1 Comparison of the recent rev

iews.

Related studies Evasion techniques discussion Evasion detection tools
evaluation

This study Encryption, package and code transformation, code obfuscation, anti- Commercial + Academic

emulation
Droidchameleon (Rastogi, Chen ¢ Jiang, Transformation Commercial
2013)

Vikas (Sihag, Vardhan ¢ Singh, 2021a) ~ Code Obfuscation, repackaging Academic

FeCO (Jusoh et al., 2021) Code Obfuscation, Encryption Academic

Rastogi (Rastogi, Chen & Jiang, 2014) Encryption + Transformation Commercial

AAMO (Preda & Maggi, 2016) None Commercial

Hoffmann (Hoffmann et al., 2016) Obfuscation Commercial

Tam et al. (Tam et al., 2017) Transformation + Obfuscation None

Nguyen-Vu et al. (Nguyen-Vu et al., 2017) Transformation None

Kim et al. (Kim et al., 2016) Anti-emulation None

Xue et al. (Xue et al., 2017) Encryption Commercial

Bulazel (Bulazel ¢ Yener, 2017) Virtualization and performance case studies Academic

Table 1 presents the differences between this study and the recent evasions detection
reviews. Vikas (Sihag, Vardhan & Singh, 2021a) evaluated the hardening code obfuscation
tools against the reverse engineering process; however, it focused on development
advantage more than malware detection perspectives. FeCO (Jusoh et al., 2021) focused on
Android application static analysis and Android malware detection using machine
learning and deep learning methods. It highlighted the type of code obfuscations
techniques and previous research obfuscation solutions. AAMO (Preda ¢» Maggi, 2016)
and Droidchameleon (Rastogi, Chen & Jiang, 2013) study the effectiveness of evading
commercial anti-malware applications by using their evaluation tools; Droidchameleon
(Rastogi, Chen ¢ Jiang, 2013) examines trivial transformation, which easily evades the
detection of Android malware using the most popular anti-malware commercial packages.
However, Droidchameleon (Rastogi, Chen ¢ Jiang, 2013) misses studying the effect of
the evasion techniques on current detection accuracy. Likewise, Rastogi continued his
study of Droidchameleon (Rastogi, Chen ¢ Jiang, 2013, 2014) and added more composite
transformation attacks that consist of more than evasion attacks and investigated evasion
chains’ capability for hindering malware detection. Hoffmann develops a tool to thwart
malware detection and evaluates the accuracy of a few typical static and dynamic malware
analysis frameworks and concludes that code obfuscation evasion evades Android malware
detection frameworks (Hoffmann et al., 2016). Nevertheless, Hoffmann excludes some
evasion techniques from the evaluation of malware detection frameworks.

The rest of the paper is organized as follows: the survey methodology and background
section provide essential background information for this study; we explore the Android
operating environment and its weaknesses. Evasion techniques section presents the
evasion techniques taxonomy with regards to different categories of evasions. Android
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evasion detection frameworks section investigates the current state-of-the-art evasion
detection frameworks and evasion test benches tools. We discuss the lessons learned and
future directions in discussion and lessons learned sections. Finally the last section
represents the conclusion of this study.

SURVEY METHODOLOGY
Methodology

The methodology of retrieving Android malware obfuscation detection related articles is
presented in this section. This study adopted Web-of-Science search engine to carry
over the literature review using search terms with inclusions and exclusion criteria. The
review process consists of four phases; first phase is identification, second phase is
screening, third phase is eligibility, and fourth phase is analysis phase.

Identification

The adopted Web-of-Science search engine covers hundred years of citation data
containing many journals related to computer security, software development, and
network security. Clarivate Analystics established this citation database with ranking
citations measure (citation per paper). Since this study focused on Android malware
obfuscation, we had selected ‘Android malware, ‘malware obfuscation’, and ‘malware
evasion’ as our search terms. The search results in 511 research from journals and
conferences’ proceeding database. The search results mainly records are from IEEE,
journals and conferences distributions as per Table 2.

The list of collected articles represent the Android malware obfuscation and detection
frameworks. It included the three types of the malware analysis techniques static, dynamic
and hybrid techniques in the last decade from 2011 to early 2021. Hence, we collected
Android malware frameworks for the last decade and innovative contributions that
appeared in high-ranked journals or conferences such as IEEE, ACM, and Springer.

Screening

Since, this paper explored the last 10 years’ research to evaluate the Android detection
frameworks against evasion techniques, we focused on experimental malware detection
articles using static, dynamic and hybrid analysis techniques, excluding the unrelated
articles. We excluded articles that are not Android specific malware detection such as IOS
and Windows based operating system. In addition, we excluded all other languages and
include only English language research to avoid translation overhead in future.

Eligibility

As shown in Fig. 1, the review process presented four phases flow diagram, the
identification collect the articles from web of science (WOS) database using above
mentioned search terms, next, screening identified the criteria of article inclusion and
exclusion. After removing the duplicates and excluded the non-related articles, we
categorize Android malware detection by the analysis methodology static, dynamic, and
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Table 2 Comparison of the recent reviews.

Article type Full name Publisher
Journals ACM Computing Surveys ACM
ACM Transaction on Computer system ACM

Computers & Security
Digital Investigation
Future Generation Computer Systems

IEEE Transactions on Dependable and Secure Computing

IEEE Access IEEE
IEEE Transactions on Industrial Informatics IEEE
IEEE Transactions on Information Forensics and Security IEEE

IEEE Transactions on Knowledge and Data Engineering

IEEE Transactions on Mobile Computing

IEEE Transactions on Network Science and Engineering

IEEE Transactions on Reliability

Information and Software Technology

Information Sciences

International Journal of Distributed Sensor Networks

International Journal of Information Security

International Journal of Interactive Multimedia & Artificial Intelligence Springer
Journal of Ambient Intelligence and Humanized Computing

Journal of artificial intelligence research

Journal of Computer Virology and Hacking Techniques Springer
Journal of Information Science and Engineering

Journal of Information Security and Applications

Journal of Supercomputing

PLOS ONE

Soft Computing

Security and Communication Networks

Conferences Advanced Computing, Networking and Security IEEE
Artificial Intelligence and Knowledge Engineering (AIKE) IEEE
Inventive Research in Computing Applications (ICIRCA) IEEE
International Arab Conference on Information Technology (ACIT) IEEE
Information Security IEEE
Network Computing and Applications (NCA) IEEE
Computer Software and Applications Conference IEEE
International Conference on Security and Privacy in Communication Systems Springer
International Conference on Security and Privacy in Communication Systems Springer
Seventh ACM on Conference on Data and Application Security and Privacy ACM
The symposium on applied computing ACM
Data and application security and privacy ACM

Elsersy et al. (2022), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.907 6/61


http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

PeerJ Computer Science

[ Identification of studies via Web-of-Science databases ]
(o
c
19
® Records identified from Web-Of-
o .
&= Science Databases
= (n=511)
a2
~—
Y Records excluded
Excluded using the screening
Records screened | criteria of non-experimental and
_E’ (h=342) non English language articles (n
S =169)
e
O
n
—
M A 4
> X Reports excluded:
£ Reports sought for retrieval " The excluded articles that did
5 (n=203) not focus on Obfuscation
= detection (n =139 )
w
—
o
3
i Studies included in review
S (n=135)
=
—
Figure 1 The review process flow diagram. Full-size ] DOT: 10.7717/peerj-cs.907/fig-1

hybrid features. This paper decides to put metadata analysis out of this research scope.
The screening phase resulted into 342 article from 511 collected in identification phase.
However, we have examined 74 static analysis based frameworks. The number of dynamic
based analysis frameworks are 35, the number of hybrid analysis frameworks is 26.
Hence the total number of examined papers are 135 research paper that this study selected
from top rank journals and conferences.

Data analysis

We scrutinise Android malware detection academic and commercial frameworks while a
large portion of the past work concentrated on commercial anti-malware solutions. This
study examines different evasion techniques that hinder detecting malicious parts of
applications and affect detection accuracy by reviewing state-of-the-art Android malware
studies and issues limiting the detection of evasion techniques. It is worth noting that
this work differs from related works that examine detection methods, as we go through
evasion techniques that let malware evades detection methods.
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Android applications and weaknesses

In the section, we discussed the Android application architecture. Subsequently, we
investigate the Android operating system (OS) weaknesses. This background highlights the
seriousness of some drawbacks to rationalize the necessity of establishing this review and
explain the essential terms to support the readers of this study.

Android application

Android application, Android app, or APK refers to the Android application from now on
and throughout this paper. APK is a compressed file; an unzipping program extracts its
files and folders. This segment explains the APK components and their contents, as some
terms are essential in this study. APK developers use development tools that occasionally
require simple programming experience from young developers. The Android app runs
on Dalvik or ART equivalent to Java Virtual Machine (JVM) in a desktop environment.
The APK structure consists of many files and directories; the main file is Classes.dex
Java bytecode; it includes the classes and is packed together in a single .dex file. The
AndroidManifest.xml file contains deployment specifications and the required
permissions from Android OS. Resources .arsc is compiled resources, and Res folder is
un-compiled resources.

The Android system must install the APK file so that the end-user can utilize the
application’s functionalities. The Android system only accepts APK with a valid developer
certificate, called developer identifier. Individual developers keep their certificate keys;
there is no Central Authority (CA) server to maintain developers’ keys, and thus no chain
of trust between app stores and developers.

End-users need to run the installed applications, while other apps run as a service in the
OS background. Therefore, the Android application’s main components are as follows:

a) Activities: The user interface that end-users interact with and that communicates
with other activities using intents.

b) Services: Android application component runs as a background process and bonds or
un-bonds with other Android system components.

c) Broadcast and Receivers Intents: send messages that all other applications or
individual applications receive.

d) Content Providers: It is the intermediate unit to share data between applications.

Android weaknesses

With some insight into the Android applications’ development design, we list the Android
system’s weaknesses and definitions for the readers of this study. The following is a list of
Android flaws and characteristics that malware authors and attackers abuse.

(a) Open Source:

The advantage of Android source code’s openness helps developers’ communities enhance
the OS and add more features. Therefore, the Android community improves Android OS
daily. But, this contradicts with the security concerns when malware writers take this
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advantage. It makes their job more straightforward than in closed source firmware, which
commonly triggers new vulnerabilities and malware attacks (Xu et al, 2016).

(b) End-users Security Awareness:

End-users understanding malware’s seriousness plays a vital role in early prevention
and detection when using feedback and reviews. However, the end-users feedback
system is insecure and easily polluted by fake comments (Rashidi, Fung ¢» Tam, 2015).
End-users click on malicious URL links in emails, web browsers, pop-ups, or
Android application dialogues that download and install malicious applications. The
end-users grant permissions to the apps without studying the apps’ actual requirements;
they believe and follow fake advertisements of permissions greedy apps.

(c) Third-party Apps Market:

Android lets end-users download applications from third-party markets and install
such application offline by enabling installations from unknown sources in the phone
settings menu. Several untrusted or well-verified application stores offer Android the
third-party application, such as Amazon, GoApk, Slide ME, and other apps markets. In
addition, there are four Chinese App markets Anzhi, Mumayi, Baidu, and eoe app third
party markets, since Google Play restricted access to the Android Play Store for the
Chinese population (Fsecure, 2013). End-users download mobile applications from any
website to their mobiles devices, personal computers, or laptops via tools such as the
ADB tool in Android SDK, which increases the probability of installing malicious apps
(Sufatrio et al., 2015b; Tan, Chua & Thing, 2015).

(d) The Coarse Granularity of Android Permissions:

The Android system controls the users” application access using coarse granulated
permissions, i.e., one permission that provides access to entire Internet protocols and all
sites. There is no competent permission administration or sufficient permission
documentation, leading to excess permissions (Fang, Han ¢ Li, 2014).

(e) Developers’ Signatures:

Android application developers have to sign their apps with their developer key before
uploading the developed application to the market. There is no external party to
authenticate developers’ signatures and thus no confidentiality or integrity (Holla ¢
Katti, 2012). Hence, malware developers clone benign applications and sign the APK
with their developer key after injecting malicious codes (Zhang et al., 2014). Later,
malware developers upload malicious APK to third-party application markets or share
the infected applications directly with their victims.

(f) Application Version Update:

Android applications usually enhance their functionalities in the form of version
updates. The security frameworks analyze the application during installation, and the
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update process downloads new services/features without security precautions or checks
(Luyi et al., 2014).

(g) USB Debugging:

USB debugging is a valuable feature for Android Application development; it helps
developers be more productive and efficiently troubleshoot applications. It allows direct
installation of an application to the Android device using Android SDK tools such as the
ADB tool. In addition Expo framework (Zhang, Breitinger ¢» Baggili, 2016) has the
possibility of live reloading and dynamic code loading online. On the other hand,
malware writers utilize live loading features to gain remote access to install malicious
applications using static and dynamic methods. The static method injects JAR (Java) or
*.SO (JNI) files to the application before running, while the dynamic method call
external files during runtime (Zhang, Breitinger ¢» Baggili, 2016).

(h) Dynamic Code Loading (DCL):

DCL is an Android OS feature that enables benign Android applications to call another
APK or malicious code to compile and execute it in real-time. However, malware
developers use this feature to load their malicious codes dynamically after the detection
framework ranked the malicious app as benign.

(i) Inter-application Communication (intent):

Android OS uses the inter-application intent system to deliver a message from and to
applications. Malware developers sniff, modify, or gain knowledge, compromising data
integrity and privacy (Chin et al., 2011). The intent provides flexibility in Android
application development, but it is an entry point for security threats (Feizollah et al.,
2017; Salva & Zafimiharisoa, 2015).

EVASION TECHNIQUES

This section represents our taxonomy of the currently used evasion techniques and
research studies on detecting obfuscated malware. Our taxonomy focuses on classifying the
related studies with the same objectives and goals to harvest a comprehensive collection
of material and comparative conclusions. When scrutinizing many existing studies, we find
it more appropriate to study the evasion detection capabilities of each studied framework
after introducing the evasion techniques that hinder malware analysis and detection.
This section presents the taxonomy of detection techniques for the ground truth relation
between the detection methodology and the evasion ability. Android applications have
powerful tools and techniques to secure and protect their applications from being
reverse-engineered. Conversely, malware authors are using obfuscation tools and
techniques to evade detection. Therefore, evasions, or in other terms, transformation
techniques, are techniques that try to defeat Android malware detection and rank the
malware applications as benign.
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Figure 2 Evasion technique taxonomy.

Full-size K&l DOT: 10.7717/peerj-cs.907/fig-2

As displayed in Fig. 2, we categorize evasion techniques into two main types. The first
category is polymorphism; it transforms the malicious malware code without changing the
original code of the mobile application. The second category is metamorphism, which
mutates the application code, but maintains the same behaviour. Malware authors employ
obfuscation tools, such as Obfuscapk (Aonzo et al., 2020), ProGuard (Lafortune, 2002),
DashO (Wang et al., 2016), KlassMaster (Kuhnel, Smieschek ¢ Meyer, 2015), and
JavaGuard (Sihag, Vardhan ¢ Singh, 2021a) to encrypt their code and decrypt during
runtime; they modify the code itself to evade the heuristic detection and signature analysis
of the malware detection techniques.

Polymorphism

Polymorphic malware is the malware category that keeps changing its characteristics to
generate different malware variants evading malware detectors. Polymorphic malware
encrypts part of the code embedding malicious code. The polymorphic malwares encrypt
itself with variable encryption keys but maintaining the malicious code body unaltered.
Polymorphic malware is an advanced version of oligomorphic malware. The oligomorphic
malware encrypts the malicious code to defeat source code static analysis based malware
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detection. Usually, the malware decrypts the malware using the same techniques. However,
the oligomorphic malware decrypts the encrypted malicious code using different deyrptor
to make decryptor analysis more difficult. The static analysis analyze the decryptor to
find the encryption key that enable the detection of the malware. Hence, the static analysis
approach is not effective with oligomorphic malware. Polymorphic malware continuously
change the decryptor technique to make it more difficult to the source code static
analysis approach. These symptoms are indications of the presence of malicious code in an
application. In this section, we discuss the polymorphism evasions subcategories, which
are package transformation and encryption.

Package transformation
In this section, we study types of package transformation, which are Repacking (RPK),
Package Renaming (PKR), and Identifier Renaming (IDR).

(a) Repacking (RPK): It is the process of unpacking the APK file and repacking the
original application files but signing the APK file with a developer security key (Rastogi,
Chen ¢ Jiang, 2013). This way, the code remains unchanged and signed the application
with a different key. To repackage Android application, attackers unzips the APK

file into DEX file, hence, attackers adopts reverse engineering tools to extract Java or
smali code from the DEX file. Using classes, string, and methods rearrangement in
DEX file, attacker modifies the architecture of the DEX arrangement resulting into
defeating signature based Android malware detection. Canfora (Canfora et al., 2015b)
considers a simple repacking evasion technique. It hinders malware detection using
all of the commercial anti-malware that uses signature-based detection techniques.
Thus, with every iteration, the malware’s signature is changed, after which the malware
can evade detection. For instance, one AnserverBot malware sample repackaged and
disguised as a paid application is available on the official Android Market.

(b) Package Renaming (PKR): Every Android application has a unique package name.
For instance, com.android.chrome is the package name of Google Chrome. PKR

uses multilevel techniques to obfuscate the application classes except for the main Class,
for instance, “FlattenPackageHireachey” or “RepackageClass” options (Lafortune,
2002). As shown in Algorithm 1, PKR changes all classes’ names except the
“MyMain” class.

This algorithm is applied relatedly to form the multilevel PKR obfuscation. The GinMaster
family contains a malicious service that can root devices to escalate privileges, steal
confidential information. Later, it receives instructions from a remote server to download
and install applications without user interaction. The malware can successfully avoid
detection by mobile anti-virus software by using polymorphic techniques to hide malicious
code, obfuscating class names for each infected object, and randomizing package names
and self-signed certificates for applications. Therefore, PKR evades the malware detection
technique and causes false negatives, proven by Faruki et al. (2015¢) by applying PKR to
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malware applications and scanned using Virustotal platform. It shows that the repackage
malware detection accuracy dropped to half in all malware categories.

(c) Identifier Renaming (IDR): Identifier is another APK parameter representing the
application developer’s signature. Classes, methods, and fields consider bytecode
identifiers, as a signature is generated based on. Malware authors change developer
identifiers using many obfuscation tools such as ProGuard (Lafortune, 2002) and
DexGuard (GuardSquare, 2014) to appear as a variant application from the previously
detected malicious application, leading to a different signature and evading detection
methods. Real-world malware families that rename identifiers are as follows:
DroidDream, Geinimi, Fakeplayer, Bgserv, BaseBridge, and Plankton.

Encryption transformation

Some Android malware families encrypt data values inside the code, compiled code or
payload, and decrypt the payload whenever desirable. This paper refers to Data Encryption
as DEN, Bytecode Encryption as BEN, and Payload Encryption as PEN. This paper
examines the following types of evasions:

a) Data Encryption (DEN): This evasion technique tends to encrypt specific data vital
for the malicious action and decrypt the encrypted data later, which modifies the
malware application characteristics to evade the detection techniques (Kuhnel,
Smieschek ¢ Meyer, 2015). The data refers to strings or network addresses embedded
in the code. By encrypting such components, the malware can avoid detection
methods (Shrestha et al., 2015), in which the authors extracted strings from APK files
and analyzed the decrypted strings to detect malware. Real-world malware families
that encrypt payload are as follows: DroidDream, Geinimi, Bgserv, BaseBridge, and
Plankton.

b) Bytecode Encryption (BEN): using ProGuard (Lafortune, 2002) or DashO (Maiorca
et al., 2015) obfuscation tools, the BEN evasion hinders reverse engineering by
encrypting original code and makes it almost impossible to read. It divides the code
into two parts, the encrypted and non-encrypted parts. The non-encrypted code part
includes the decryption code for the encrypted part (Faruki et al., 2014; Rastogi, Chen
¢ Jiang, 2014) during run-time. Therefore, dynamic analysis is required to detect this
decryption process. However, some static analysis-based detection frameworks
propose BEN evasion detection, such as DroidAPIminer (Aafer, Du ¢ Yin, 2013) and
Wang (Wang ¢ Wu, 2015) that successfully detect BEN evasion but fail in DEN or
PEN evasions detection.

c) Payload Encryption (PEN): Malware authors use payload encryption as in
DroidDream (Foremost, 2012) malware to carry malicious payloads inside
applications and install malicious applications at runtime once the system is
compromised. The code is encrypted and decrypted during run time, which calls a
decrypting function (Cho, Yi ¢ Ahn, 2018) and runs it in real-time.
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Metamorphism

Metamorphic malware is more complex than polymorphic malware that shows a better
ability to evade detection frameworks. Malware authors adopt metamorphic malware so to
make metamorphic malware detection harder than leveraging polymorphic malware. The
metamorphic malware writes new malicious code that varies in each iteration using the
same encryption and decryption key. For example, Opcode ngrams (Canfora et al., 2015a)
adopts the ngrams feature extraction algorithm to extract the suspected string with n count
in the Opcode. It assumes that the Malware writers rarely develop metamorphic Android
malware variants. Based on that assumption, it ignored the evaluation of the ngrams’
detection framework against metamorphic evasions (Canfora et al., 2015a). Metamorphic
malware rewrites itself in every iteration to evade detection methods.

Code obfuscation

Code obfuscation is an evasion technique initially used to protect applications from piracy
and illegal use by many obfuscation techniques. Conversely, malware authors use code
obfuscation techniques to evade malware detections. In this study, we highlight three types
of code obfuscation the Code Reordering (CRE), Call Indirection (CIN), and Dead Code
Insertion (DCI).

a) Code Reordering (CRE): This transformation changes the order of the code by
inserting the standard “goto” command to maintain the proper program instruction
order.

b) Call Indirections (CIN): CIN is an object-oriented feature used dynamically to
reference specific values inside the code; CIN creates code transformation evasion,
obfuscating the call graph detection techniques (Castellanos et al., 2016; Gascon et al.,
2013). Malware families such as DroidDream, Geinimi, and FakePlayer incorporate
call indirection to evade static analysis based Android malware detection.

c) Dead Code Insertion (DCI): Malware inserts junk code into the sequence of the
application to ruin its semantics. This type of transformation makes the malware
more difficult to analyze (Kwon et al., 2014). AnDarwin (Crussell, Gibler & Chen,
2015) experimented with detecting Android malware based on code similarity. Their
used method is unable to detect dead code insertion transformation (Crussell, Gibler
& Chen, 2015). The code similarity approach uses a distance-vector technique,
representing the distances between the original code or the DCI transformation
representing a distance vector. The far the distance vector, the more complex the
detection of such obfuscation.

Advanced code transformation

This section explains the advanced code transformation techniques that are more
sophisticated in hindering the malware detection frameworks. We include advanced
evasion techniques, such as Native Exploits (NEX), Function Inlining and Outlining
(FIO), Reflection API (REF), Dynamic Code Loading/Modification (DCL/DCM), and
Anti-debugging (ADE).
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a) Native Exploits (NEX): Android applications call native libraries to run system-
related functions. The malware uses a native code exploit to escalate the root privilege
while running (Xu et al., 2016). Unfortunately, many exploits’ source code is available
for download. Official Android suppliers are working on a solution using regular
system updates and fixes. Additionally, DroidDream malware (Wu et al., 2015) packs
native code exploits with application payload, bypassing Android security
monitoring and logging systems.

b) Function Inlining and Outlining (FIO): Inlining and outlining are compiler
optimization techniques options. Inlining replaces the function call with the entire
function body, and the outlining function divides the function into smaller functions.
This type of transformation obfuscates the call graph detection technique by
redirecting function calls and creating a maze of calls (Gascon et al., 2013).

c) Reflection API (REF): Reflection API is a technique to initiate a private method or get
a list of parameters from another function or class, whether this class is private or
public. Android developers legitimately use it to provide genericity, maintain
backward compatibility, and reinforce application security. However, malware
authors take advantage of this feature and use it to bypass detection methods.
Reflection evasion facilitates the possibility to call private functions from any
technique outside the main class. Recently few studies highlighted the reflection effect
on code analysis and considered reflection during the analysis process (Kuhnel,
Smieschek & Meyer, 2015; Li et al., 2016).

d) Dynamic Code Loading/Modification (DCL/DCM): Since Java has the capability of
loading code at runtime using class loader methods, Android malware application
dynamically download malicious code using the dynamic code loading (DCL). The
DCL and DCM techniques provide advanced evasion capability to malware authors,
and improper use can make benign applications vulnerable to inject malicious code.
For instance, the Plankton malware family uses dynamic code loading to evade
detection methods. As being the first malware with DCL that stealthy extend its
capabilities on Android devices. It installs an auto-launching background application
or service to the device, collecting device critical information to a server. The server
sends the malicious class payload URL link to the background service using an
HTTP_POST message containing a Dalvik Bytecode jar malicious payload file. In the
following trigger of “init()” event of the main application, the malicious payload is
invoked using the “DexClassLoader” class. Due to the unavailability of the
dynamically loaded code during Android malware static analysis, the DCL and DCM
evasion technique is another transformation technique that is a big challenge for
static analysis (Hsieh, Wu ¢ Kao, 2016; Li et al., 2016). Although some researchers
(Poeplau et al., 2014; Zhang, Luo & Yin, 2015; Zhauniarovich et al., 2015) studied
how DCL evades malware detection, it is still an open issue that needs more
attention. Grab’n run (Falsina et al., 2015) uses code verification techniques to secure
dynamic code loading and protect it from misuse by malware authors and attackers.
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e) Anti-debugging (ADE): The malware developer presumes the limitation of Android
that only one debugger can be attached to a process using ptrace functionality
(Zhang, Luo & Yin, 2015). Hence, it prohibits attaching a debugger to the suspected
application. If the malware detects the running debugging tool like Java Debug
Wiring Protocol (JDWP), it discovers the operating environment running under an
Android emulator or physical device. Andro-Dumpsys (Jang et al., 2016) is a hybrid
Android malware analysis framework that claimed that it disables the attachment
of “ptrace” monitoring application service to monitor the running applications,
which lack ADE detection.

Anti-emulation transformation

The primary objective of anti-emulation evasion is to detect the running environment of
the sandbox and benignly masquerade as a clean application instead of launching the
malicious code, which we refer to as Virtual Machine Aware (VMA). Another side of
anti-emulation evasion is detecting automatic user interaction emulation, which refers to
as Programmed Interaction Detection like the monkeyrunner tool used in many
frameworks, for instance, the Droidbox (Desnos ¢ Lantz, 2014) sandbox tool in the
Mobile-Sandbox (Spreitzenbarth et al., 2015).

a) Virtual Machine Aware (VMA): The dynamic analysis requires either an Android
virtual machine emulator or a physical device to install the suspected application.
Scientists studied the possibility of detecting the running environment fingerprints to
differentiate between an emulator and a physical device (Jing et al., 2014; Maier,
Muller & Protsenko, 2014; Maier, Protsenko & Miiller, 2015; Vidas ¢ Christin, 2014).
Android.obad (Faruki et al., 2015b; Singh, Mishra ¢ Singh, 2015) is an emulator-
aware malware, which complicates the analysis process. The malware looks for the
“Android.os.build. MODEL” value throughout the code and exits if it matches the
emulator’s model. The malware only runs in an emulator after patching WMA
checks.

b) Programmed Interaction Detection (PID): Android malware is an event-driven
application that needs a particular series of user interactions to launch malicious
actions. Therefore, dynamic analysis requires a running environment user/gesture
interaction. Malware writer refers to PID obfuscation as code coverage. Some
researchers have tried to address code coverage; however, it remains a challenge to
detect it.

We scrutinize the top Android malware detection frameworks against the two main
evasion categories based on the introduced definitions of Android malware evasion
techniques. The first category is polymorphism, which consists of package transformation
and encryption transformation. Package transformation includes Repacking (RPK),
Package Renaming (PKR), and Identifier Renaming (IDR). Encryption transformation
includes Data Encryption (DEN), Bytecode Encryption (BEN), and Payload Encryption
(PEN). The metamorphism subcategories are obfuscation transformation, advanced code

Elsersy et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.907 16/61


http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

PeerJ Computer Science

transformation, and anti-emulations transformation. The code obfuscation subcategory
includes Code Reordering (CRE), Call Indirection (CIN), and Dead Code Insertion (DCI).
Advanced code transformation includes Native Exploits (NEX), Function Inlining and
outlining (FIO), Reflection API (REF), Dynamic Code Loading/Modification (DCL/DCM),
and Anti-debugging (ADE) evasion techniques. Last but not least, anti-emulation
transformation includes Virtual Machine Aware (VMA) and Programmed Interaction
Detection (PID).

Android evasion detection frameworks

Many researchers (Apvrille & Apvrille, 2015; Bagheri et al., 2015; Battista et al., 2016;
Chenxiong et al., 2015; Elish et al., 2015; Fratantonio et al., 2016; Gonzalez, Stakhanova &
Ghorbani, 2014; Gurulian et al., 2016; Kuhnel, Smieschek & Meyer, 2015; Lei et al.,

2015; Li et al., 2016; Martin, Menéndez ¢ Camacho, 2016; Preda & Maggi, 2016; Sheen,
Anitha & Natarajan, 2015; Shen et al., 2015; Sun, Li ¢ Lui, 2015; Wang et al., 2016;

Wu et al., 2016; Zhang, Breitinger ¢ Baggili, 2016) examine their frameworks against
different evasion techniques, and they take countermeasures to overcome evasion
techniques, which prevent the anti-malware framework from detecting malicious
applications. These evasions are the leading cause of false negatives, as they allow many
malware applications to penetrate freely into Android smart devices. This section
investigates the latest frameworks with different approaches, finding a robust solution to
detect evasion techniques. We are aiming to discover the gap in this area of research.
We also review the different evasion test benches and tools that researchers and
commercial enterprises use to secure their codes. We review the latest detection
frameworks and their resilience against five different evasion categories and 16 different
subcategories distributed into 56% static analysis, 28% dynamic, and 16% hybrid
frameworks.

Android malware detection techniques

There are three leading techniques for Android malware detection Fig. 3 presents the three
main categories of Android malware detection techniques, the first category is logic-based
techniques (Lee et al., 2014; Zhang, She ¢ Qian, 2015a), based on hard-coded safe lists
and predefined alarms stored in text files or a small database like Amamra (Amamra,
Robert & Talhi, 2015). The second category is signature based malware detection
techniques (Niazi et al., 2015; Tchakounté et al., 2021), it based the malware detection on
comparing the suspicious application with malware application signature. The third
category of Android malware detection uses machine learning (ML) classification
algorithms to classify the application as benign or malware (Afonso et al., 2015; Alzaylaee,
Yerima & Sezer, 2016; Amamra, Robert & Talhi, 2015; Baskaran ¢ Ralescu, 2016; Canfora
et al., 2016; Canfora et al., 2015c; Castellanos et al., 2016; Faruki et al., 2015a; Feizollah
et al., 2015; Fratantonio et al., 2016; Kurniawan, Rosmansyah & Dabarsyah, 2015; Lei et al.,
2015; Lindorfer, Neugschwandtner & Platzer, 2015; Lopez ¢ Cadavid, 2016; Meng et al.,
2016; Nissim et al., 2016; Spreitzenbarth et al., 2015; Spreitzer et al., 2016; Wang ¢ Wu,
2015; Wu et al., 2016; Xu et al., 2016; Yerima, Sezer & Muttik, 2014; Yuan, Lu ¢ Xue, 2016;
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Zhang, Breitinger ¢ Baggili, 2016). The ML-based techniques extract the Android devices
feature that represent the Android application characteristics such as the application’s
permission, code hierarchy from reverse engineering process, or monitoring application
behaviour in runtime. The collected feature is a result of static, dynamic, or hybrid analysis
of anlysing Android applications. The collected features are used to build machine learning
classification model that decides whether the application is malware or benign.

Android malware detection methodologies are classified from a different point of
view, as depicted in Fig. 4, defining the Android malware detection taxonomy as
post-installation and pre-installation methods.
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Post-installation detection

This section explains the Android vulnerability check and monitors the system logs after
installing the application. Therefore, post-installation analysis reports the security issues
and malicious activity to the end-users.

a) Vulnerability Check: The vulnerability check method scans all existing Android apps
and Android system versions against common security threats. APSET (Salva ¢
Zafimiharisoa, 2015) collects the vulnerability pattern using the Android
application’s test case execution framework, which supports receiving exceptions.
However, using more vulnerability patterns or generating more test cases per pattern
improves the APSET malware detection performance.

b) Monitoring Logs: Android systems use process monitoring tools and network
monitoring tools. Mobile-Sandbox (Spreitzenbarth et al., 2015) uses the process trace
monitoring tool and PCAP network monitoring tool to capture the required data for
analyzing the Android applications.

Pre-installation detection

Android malware detection frameworks perform static, dynamic, or hybrid analyses to
analyze features for malware detection techniques, which classify the apps as benign or
malware. Hence, we identify the following application analysis methodologies.

Static analysis

It is a technique to reverse engineer the APK statically without installing it; the analysis
requires reading configuration settings, decompiling executable bytecode, and extracts the
source code for further analysis.

a) Signature-based: This paper classifies the signature-based method under static
analysis detection because the signature-based detection approach builds its
frameworks with static Android application characteristics. As such, DroidAnalytics
(Zheng, Sun ¢ Lui, 2013b) uses a signature-based manner in which it dynamically
collects and creates a signature for each malware and stores malware signature into a
central database. This model has limitations where each of the new malware family
variants needs a different signature. LimonDroid (Tchakounté et al., 2021) proposed
a signature-based database of Android malware signature based on fuzzy hashing
technique. It builds a signature database for literature purposes rather than a malware
detection framework.

b) Permission-based: APK Auditor (Talha, Alper ¢» Aydin, 2015) is a static model that
leverages permission-based detection castoff decompressing the APK package; it
extracts the malicious symptoms using permission and signature matching analysis.
Likewise, Triggerscope (Fratantonio et al., 2016) uses permissions characteristics as
an input to classify the application using different machine learning algorithms
(Abdulla & Altaher, 2015; Alazab et al., 2020; Arora, Peddoju & Conti, 2019;
Dharmalingam & Palanisamy, 2021; Fang, Han & Li, 2014; Glodek ¢ Harang, 2013;
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Li et al., 2018; Niazi et al., 2015; Sahin et al., 2021; Shalaginov ¢ Franke, 2014; Talha,
Alper & Aydin, 2015; Tiwari & Shukla, 2018).

c) Source code based Analysis: Arp et al. (2015) extracts features from the application’s
Androidmanifest file and source code; it scrutinizes the code by listing the native
calls, API calls, and URL addresses. It uses machine learning classification to
discriminate between malware and benign apps. Likewise, DroidMat (Wu et al.,
2012) uses the configuration file to get the required permission by the APK and
counts the method that has API calls from the decompiled source code; it uses
1,500 benign APK applications and 238 malware, evaluates the accuracy of the
framework, and achieves 97.87% accuracy. However, Lei et al. (2015) proposed
a probabilistic discriminative model based on decompiled source code with
permissions. It classified apps as benign and malware using machine learning
classification techniques. Hanna et al. (2013) tried to find the code similarity among
Android applications to detect similar code patterns with the same vulnerabilities and
the repackaged or cloned applications in Android markets.

Dynamic analysis

Dynamic analysis is the process of running the suspect app in an isolated Android
environment. It starts by receiving the Android application APK files, either using an
online scanning portal VirusTotal (Google) or a scanning agent on an Android
smartphone/device. Next is opening a suitable Android operating environment in a
physical device or emulator, which we hereafter refer to as a sandbox. The sandbox isolates
the application to protect the analysis device from possible malicious attacks. Later, the
dynamic analysis starts system logging and network monitoring tools and captures the
default system logs.

Once the sandbox and the logging or monitoring tools are ready, the APK installation
follows, and once the installation is successful, the logging system captures all system logs.
Dynamic analysis requires the application to start and run all codes and capture all changes
to the Android system environment. The sandbox captures the system logs before
installing the application and compares the system logs after installing and running the
suspect Android application. The sandbox uses a monkeyrunner tool to randomly emulate
user gestures and cover all the possible alleged code in an Android application. Dynamic
analysis sandboxing techniques install and run Android applications in a virtual
environment, emulator, or physical device and monitor the application’s behaviour. It
considers network traffic, opened ports, and system calls. One of the main issues during
the monitoring process is the user interaction simulation tool, which simulates the user
interaction gestures that must cover all possible interactions. The following are types of
sandboxing: Sandbox Emulator: Most researchers (Afonso et al., 2015; Desnos & Lantz,
2014; Faruki et al., 2015a; Spreitzenbarth et al., 2015) use Android emulators like Droidbox
(Desnos e~ Lantz, 2014), TantDroid (Chao et al., 2020), and CuckooDroid (Check Point
Software Technologies, 2015), which run an Android image as a virtual machine. Later, the
framework destroys the used OS image and prepares a factory reset Android OS for the
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following analysis process. Physical sandbox device: The dynamic analysis algorithm resets
the physical device to factory settings to make sure the analysis captures only the suspected
application’s behaviour. It overcomes the limitations of using emulators and uses physical
devices to analyze suspicious applications (Shrestha et al., 2015) dynamically.

Android malware dynamic analysis faces some challenges; some malware families evade
the dynamic malware analysis environment by halting the malicious download until the
dynamic analysis finishes the monitoring period. The sandbox environment suffers from
the computational time required to load the Android operating system, create log files,
install APK, capture system logs and network traffic, and copy the log files to form
understandable characteristics. User gestures emulation using Android tools, such as
monkeyrunner, is less precise and partially covers the code of an application. Phone calls,
SMS, GPS, and NFC hardware emulation is another challenge in Android malware
dynamic analysis, as they are not as realistic as a physical device. The dynamic analysis kills
the emulator after the dynamic analysis time. Therefore, the dynamic analysis launches a
new emulator instance needs for every App analysis. These challenges prevent the dynamic
analysis from performing effective malware detection. Some studies have considered
dynamic analysis to overcome the limitations of static analysis (Afonso et al., 2015; Amos,
Turner & White, 2013; Desnos ¢ Lantz, 2014; Enck et al., 2014a, 2014b; Lindorfer,
Neugschwandtner & Platzer, 2015; Spreitzenbarth et al., 2015; Wang ¢ Shieh, 2015; Zhao
et al., 2014).

Hybrid analysis

The hybrid-based detection frameworks, like Mobile-Sandbox (Spreitzenbarth et al., 2015),
Droiddetector (Yuan, Lu ¢ Xue, 2016), and Andro-Dumpsys (Jang et al., 2016), combine
the dynamic analysis and static analysis techniques to reconcile the limitations of the static
analysis. The hybrid analysis extracts static features using reverse engineering techniques
(Lim et al., 2016). Static features are apps permissions, code analysis, intent, network
address, string, and hardware features. Likewise, it extracts the dynamic analysis of the
application by capturing the network traffic, system calls, user interaction, and system
components using sandbox methodologies. Later, it combines a group of static and
dynamic features, driving the machine learning algorithms to classify the application to
benign or malware.

Android malware dataset

Most Android malware detection frameworks adopt machine learning algorithms to build
a detection model; hence researchers crawl apps from the official apps market store Google
Play to build its dataset (Arp et al., 2015; Parkour, 2013; Yajin ¢ Xuxian, 2012). It also
crawls sample applications from third-party application stores, such as Soc.io Mall,
Samsung Galaxy apps, SlideME, AppsLib, Get]Jar, Mobango, Opera Mobile Store, Amazon
Appstore, and 1Mobile markets. To label the crawled applications as benign or malware,
researchers employ online security scanning tools as listed in Table 3. For instance,
Virustotal and AndroTotal, and the online service are used to scan the crawled apps and
cluster the found malware apps into malware families. Researchers label all crawled apps
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Table 3 Online malware scanning frameworks.

Online security scanning Description Started Scanning Services License
rate (app/day)

VirusTotal (Google, 2011) https://www.virustotal.com 2011 Ignored Web/API  Free

AndroTotal (Maggi, https://andrototal.org/ 2013 Ignored Web Free

Valdi & Zanero, 2013) http://droydseuss.com

Droydseuss (Coletta, Van

der Veen & Maggi, 2016)

ANDRUBIS (Lindorfer https://anubis.iseclab.org 2012 3,500 API Free/discontinued-
et al., 2014) commercialized to Paid only

https://www.lastline.com/

APK Auditor (Talha, http://app.ibu.edu.tr:8080/apkinspectoradmin 2015 Ignored Web Discontinued
Alper & Aydin, 2015)

NVISO (Hoffmann et al., https://apkscan.nviso.be/ - 2,400 Web/API Free/Pro
2016)

Copperdroid http://copperdroid.isg.rhul.ac.uk/copperdroid/ 2015 NA Web NA

Totalhash https://totalhash.cymru.com 10 Web/API ~ Commercial

using VirusTotal to build Android malware detection datasets. Many of the dataset are
published for future academic research such as Drebin (Arp et al., 2015), Genome (Yajin ¢
Xuxian, 2012), Kharon (Kiss et al., 2016), AMD (Li et al., 2017), AAGM (Lashkari et al.,
2017), PRAGuard (Maiorca et al., 2015), AndroZoo (Allix et al., 2016) datasets.

Machine learning in android malware detection

Based on collected characteristics or so-called features (Feizollah et al., 2015), different
machine learning classification techniques classify APK as benign or malware. However,
deep insight into machine learning techniques is outside the scope of this study.
Android malware detection classifies Android apps into two classes benign and malware.
However, some papers detect Android Ransomware (Andronio, Zanero & Maggi, 2015;
Maiorca et al., 2017) considering three classes benign, malware, and ransomware. Hence, we
briefly explain the evaluation measures of ML classification. Machine learning comprises
three main categories, namely supervised, unsupervised, and reinforcement learning.

(a) Supervised Model:

Supervised machine learning bases its model on a labelled dataset. The framework splits
the dataset into two subsets; first subset is for training and creating the classification
model, and the second subset is for testing and validating the trained classification model.
Most researchers split the data into 70% training and 30% testing subsets, but some split
the data into 50% for training and 50% for testing (Adebayo ¢ AbdulAziz, 2014).

(b) Unsupervised Model:

In the unsupervised model, apps are unlabeled. The unsupervised model recognizes
the class of the applications without knowing which App is malware or benign.
Researchers use unsupervised models to learn the covert pattern of the unlabeled data

Elsersy et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.907 22/61


https://www.virustotal.com
https://andrototal.org/http://droydseuss.com
http://droydseuss.com
https://anubis.iseclab.org
https://www.lastline.com/
http://app.ibu.edu.tr:8080/apkinspectoradmin
https://apkscan.nviso.be/
http://copperdroid.isg.rhul.ac.uk/copperdroid/
https://totalhash.cymru.com
http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

PeerJ Computer Science

Table 4 Confusion matrix.

Classified apps
Total samples Malware Benign
True apps Malware - M TP' FN*
Benign - B FP’ TN*

Notes:
" TP True Positive.
* FN False Negative.
* FP False Positive.
* TN True Negative.

(Akpojaro, Aigbe & Onwudebelu, 2014; Kohout & Pevny, 2015; Tang, Sethumadhavan &
Stolfo, 2014).

(c) Reinforcement Learning:

The machine exposes itself to an environment where it trains itself continually using
trial and error. This machine learns from experience and tries to capture the best
possible knowledge to make accurate business decisions. An example of reinforcement
learning is the Markov Decision Process (Kaelbling, Littman ¢ Moore, 1996).

To understand the supervised model classification performance, ML introduces the
confusion matrix to calculate the performance measures as per Table 4. Let D be the total
number of test apps, which we use to examine the supervised ML model performance that
classifies apps as benign or malware, let M be the number of malware samples, and B the
number of benign samples.

True Positive (TP) represents the number of malware correctly classified.

False Positive (FP) accounts for the number of benign apps classified erroneously as
malware.

True Negative (TN) represents the number of correctly classified benign apps.

False Negative (FN) accounts for the number of malware apps classified erroneously as
benign.

The ML performance measures represent the accuracy of the Android malware
detection classification frameworks. Table 5 explains the ML performance measure
formulas and their direct mathematical relation to the confusion matrix.

The Receiver Operating Characteristic (ROC) curve plots the TPR against FPR where
TRP is the y-axis and FPR is the x-axis. Every point in the ROC curve represents one
confusion; it is all based on TP and FP values. Area Under the Curve (AUC) is the area
under the ROC curve representing the aggregation of the ML trained model (Afifi ef al.,
2016; Baskaran ¢ Ralescu, 2016; Feizollah et al., 2015).

Evasion test benches tools

Researchers or commercial companies have developed the evasion test benches to study
the robustness of the currently available anti-malware applications or protect their
software packages from piracy issues. The first test benches trials were ADAM
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Table 5 ML classification performance measures.

Performance measure Short-form Formulas Description
Recall or Sensitivity TPR _ I = _TP True Positive Rate
M TP+ FP

EN EN

Miss rate FNR =— = False Negative Rate
M TP+ FP

Fall-out FPR FP FP False Positive Rat

-0 =—= alse Positive Rate
" B TP+FN v

TN TN

Specificity TNR =B “TPLEN True Negative Rate

- P . -

Precision PPV = Positive Predictive Value
TP + FP

False Di Rat FDR -t False Di Rat

alse Discovery Rate = TP+ FD alse Discovery Rate
False Omission Rat FOR N False Omission Rat
se Omission Rate = alse Omission Rate
TN + FN
. - IN . -

Negative Predictive Value NPV = Negative Predictive Value
TN + FN
TP + TN TP + TN

Accuracy ACC = Jlr) =Tp TNJ; FP T FN Total truly detected apps over total examined apps

2 x TP . . e
F-measure F1 = — The harmonic mean of precision and sensitivity

2 x TP + FN + FP

(Zheng, Lee ¢» Lui, 2013a) and Droidchameleon Rastogi (Rastogi, Chen ¢ Jiang, 2013),
which conclude that there is a detection performance degradation when applying trivial
obfuscation techniques. However, researchers developed evasions tools to evaluate
commercial anti-malware performance, such as PANDORA (Protsenko ¢ Muller, 2013),
Mystique (Meng et al., 2016), AAMO (Preda ¢ Maggi, 2016), ProGuard (Lafortune,
2002), and others as listed in Table 6. Evasion tools were initially aiming to protect
commercial software companies’ applications from piracy, such as DexGuard (GuardSquare,
2014), which is an extension of ProGuard (Lafortune, 2002), and Klassmaster (Klassmaster,
2013). Recently, a pretty good number of researchers develop frameworks targeting
obfuscation and malware variant resiliency. PetaDroid (Karbab ¢ Debbabi, 2021) introduces
the severe first obfuscation dataset, which is a good initial. However, it proves that the
accuracy degrades with time and needs malware variant and obfuscation adaptations.
Dynamic analysis frameworks (Chen et al., 2018; Cho, Yi ¢ Ahn, 2018; De Lorenzo et al,
2020; Feng et al., 2018; Sihag et al., 2021; Xue et al., 2017) declare the ability to detect all types
of obfuscated malware; however, most of it misses the evaluation report of each obfuscation
technique using obfuscated malware datasets. Researchers who evaluated their framework
against particular evasions are identified by mentioning the detected evasion, which
represents that the respective study either evaluated or presumed its ability to detect the
evasion technique, while “Failed to detected or ignored” means the respective study is
defeated the corresponding evasion technique. The “stared” cell indicates the framework that
ignores the evaluation experiments on evasion techniques or assumptions to that effect, or
the study misses evaluating its framework performance against this evasion technique.
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Table 6 Android malware evasion test benches.

Polymorphism Metamorphism
Package Encryption Code obfuscation Advanced code transformation Anti-emulator
transformation
Framework (RPK) (PKR) (IDR) (DEN) (BEN) (PEN) (CRE) (CIN) (DCI) (NEX) (FIO) (REF) DCL/ (ADE) (VMA) (PID)
DCM)
ADAM (Zheng, v * * V4 * * v/ * v * * * * * * *
Lee ¢ Lui,
2013a)
DroidChameleon v * * * * * v * * * * v * * * ¥
(Rastogi, Chen
& Jiang, 2013)
ProGuard * *® * v v v * # * * ® # # * « «
(Lafortune,
2002)
DexGuard * * * 4 #* ® v/ v/ * * * s * * s %
(GuardSquare,
2014)
Klassmaster * * * v/ v/ * v v/ * * * * # * x %
(Klassmaster,
2013)
Maiorca (Maiorca * * v v v * * * * * v * * * *
et al., 2015)
Vidas (Vidas ¢ * * * # * * * * * * x " * # v N
Christin, 2014)
Petsas (Petsas * * * G * * * * * * * * * * V4 *
et al., 2014)
Morpheus (Jing  * * * * i« * * # * * * * . " v N
et al., 2014)
Garcia (Garcia * v * V4 4 # # v * * * * - * x *
et al., 2015)
DroidSieve * * * v v v/ * * * * * v v * « %
(Suarez-Tangil
et al., 2017)
MysteryChecker v * * * v/ v/ v/ v/ * * * * - * « «
(Jeong et al.,
2014)
PANDORA * * i v * * * # * * v v * * " *
(Protsenko &
Muller, 2013)
Mystique (Meng  * # v/ v * * # * * * v * - * « «
et al., 2016)
Canfora (Canfora v v v v/ * * v/ * v * * * * * " «
et al., 2015b)
Hatwar (Hatwar * * * * # * * * * * * * v " % M
& Shelke, 2014)
AAMO (Preda & v v * * v * 4 v v * v v * v * ¥

Maggi, 2016)

(Continued)
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Table 6 (continued)

Polymorphism Metamorphism
Package Encryption Code obfuscation Advanced code transformation Anti-emulator
transformation
Framework (RPK) (PKR) (IDR) (DEN) (BEN) (PEN) (CRE) (CIN) (DCI) (NEX) (FIO) (REF) DCL/ (ADE) (VMA) (PID)
DCM)
Abid (Abaid, * * * * * * # * * * * # v * * ¥
Kaafar & Jha,
2017)
EnDroid (Feng — * # * * * * * * * * * v v * * x
et al., 2018)
Bacci (Bacci et al., v V4 V4 * * 4 v/ Y * * * # * * *
2018)
DexMoinitor * * * v v v/ * * * * * * * * # #
(Cho, Yi & Ahn,
2018)
Kim (Kim et al, * v v/ 4 # * * v v * * * * * * *
2019)
DAMBA (Zhang * * i V4 v v/ * v/ * * * * v * * *
et al., 2020)
IMCFN (Vasan V4 v V4 * i v * v # * - * * % #
et al., 2020)
PetaDroid v v v v * v v v v * * v * * * ¥
(Karbab &
Debbabi, 2021)
BLADE (Sihag, v N4 V4 v/ v/ v/ v/ * * * * * * x * *
Vardhan &
Singh, 2021b)
(Millar et al.,
2020)
AndrODet N4 v/ V4 4 * * % v/ % s % % % 5 F F
(Mirzaei et al.,
2019)
(Ikram, Beaume
& Kdafar, 2019)
Obfusifier (Li v v v * * * v v/ v * * * * * " %
et al., 2019)
Note:

RPK, Repacking; PKR, Package Renaming; IDR, Identifier Renaming; DEN, Data Encryption; BEN, Bytecode Encryption; PEN, Payload Encryption; CRE, Code
Reordering; CIN, Call Indirections; DCI, Dead Code Insertion; NEX, Native Exploits; FIO, Function Inlining and Outlining; API (REF), Reflection; DCL/DCM, Dynamic
code loading/Modification; ADE, Anti-debugging; VMA, Virtual Machine Aware; PID, Programmed Interaction Detection.

EVALUATION OF EVASION DETECTION FRAMEWORKS

We have explored the last 10 years’ research to evaluate the Android detection frameworks
against evasion techniques discussed in evasion techniques section. We studied Android
malware detection frameworks for the last decade from 2011 to early 2021, as listed in

Table 7. We categorize malware detection framework by the analysis methodology static,
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Table 7 List of examined Android malware detection frameworks.

Detection The examined Android malware detection frameworks Number of
techniques frameworks
Static DroidMat (Wu et al., 2012), Juxtapp (Hanna et al., 2013), DroidOLytics (Faruki et al., 2013), Zhou (Zhou et al., 74

2013), DroidAPIMiner (Aafer, Du ¢ Yin, 2013), MAMA (Sanz et al., 2013), QuantDroid (Markmann, Gessner
& Westhoff, 2013), Glodek (Glodek ¢ Harang, 2013), ViewDroid (Zhang et al., 2014), Yerima (Yerima, Sezer &
Muttik, 2014), DroidGraph (Kwon et al., 2014), MysteryChecker (Jeong et al., 2014), AdDetect (Narayanan,
Chen ¢ Chan, 2014), ResDroid (Shao et al., 2014), Dendroid (Suarez-Tangil et al., 2014), Wei et al. (Wei et al.,
2015), Poeplau (Poeplau et al., 2014), Chen (Chen et al., 2015), Apk Auditor (Talha, Alper & Aydin, 2015),
Abdulla (Abdulla & Altaher, 2015), Andro-Tracer (Kang et al., 2015), Dempster—Shafe (Du, Wang ¢» Wang,
2015), Dexhunter (Zhang, Luo ¢ Yin, 2015), DroidExec (Wei et al., 2015), AnDarwin and DNADroid (Crussell,
Gibler & Chen, 2015), AndroSimilar (Faruki et al., 2015d), Grab ‘n Run Falsina (Falsina et al., 2015), Ngrams
(Canfora et al., 2015a), SeqMalSpec -Sufatrio (Sufatrio et al., 2015a), DroidEagle (Sun, Li ¢» Lui, 2015),
VulHunter (Chenxiong et al., 2015), COVERT (Bagheri et al., 2015), Sheen (Sheen, Anitha ¢» Natarajan, 2015),
Droidkin (Gonzalez, Stakhanova & Ghorbani, 2014), Shen (Shen et al., 2015), SherlockDroid (Apvrille &
Apvrille, 2015), Kuhnel (Kuhnel, Smieschek ¢ Meyer, 2015), Elish (Elish et al., 2015), Lei (Lei et al., 2015),
Gurulian (Gurulian et al., 2016), TriggerScope (Fratantonio et al., 2016), Wu (Wu et al., 2016), DroidRA (Li
et al., 2016), AAMO (Preda & Maggi, 2016), Wang (Wang et al., 2016), MocDroid (Martin, Menéndez ¢
Camacho, 2016), Battista (Battista et al., 2016), RAPID Zhang (Zhang, Breitinger ¢ Baggili, 2016), DroidSieve
(Suarez-Tangil et al., 2017), Bhandari et al., (Bhandari et al., 2017), Jin Li (Li et al., 2018), AndrODet (Mirzaei
et al., 2019), PetaDroid (Karbab ¢ Debbabi, 2021), Amin (Amin et al., 2020), Taheri (Taheri et al., 2020),
ProDroid (Sasidharan ¢ Thomas, 2021), Tiwari (Tiwari ¢» Shukla, 2018), GDroid (Gao, Cheng ¢ Zhang,
2021), Millar (Millar et al., 2021), Sahin (Sahin et al., 2021), DGCNDroid (Yang et al., 2021), IntDroid (Zou
et al., 2021), Dharmalingam (Dharmalingam ¢ Palanisamy, 2021), BLADE (Sihag, Vardhan ¢ Singh, 2021b),
Wang (Wang et al., 2020), Pektas (Pektas ¢ Acarman, 2020), Alazab (Alazab et al., 2020), Jung (Jung et al.,
2018), Tiwari (Tiwari ¢» Shukla, 2018), Maiorca (Maiorca et al., 2017), Alahy (Alahy et al., 2020), Hamming
(Taheri et al., 2020), SEDMDroid (Zhu et al., 2020), Kim Multimodal (Kim et al., 2019), Taha (Taha ¢
Malebary, 2021), Dadidroid (Ikram, Beaume & Kaafar, 2019), Obfusifier (Li et al., 2019)

Dynamic Amos (Amos, Turner & White, 2013), AndroTotal (Maggi, Valdi ¢ Zanero, 2013), Lee & Kim (Lee et al., 2014), 35
TaintDroid (Enck et al., 2014a), Pektas (Pektas ¢ Acarman, 2014), Soh (Soh et al., 2015), Shabtai (Shabtai et al.,
2014), VetDroid (Yuan et al., 2014b), DroidBarrier (Almohri, Yao & Kafura, 2014), APSET (Salva &
Zafimiharisoa, 2015), Afonso (Afonso et al., 2015), Maier (Maier, Protsenko ¢ Miiller, 2015), Singh (Singh,
Mishra & Singh, 2015), Gheorghe (Gheorghe et al., 2015), DwroidDump (Kim, Kwak ¢ Ryou, 2015), Ng (Ng ¢
Hwang, 2015), GroddDroid (Abraham et al., 2015), Wu (Wu et al., 2015), DynaLog (Alzaylaee, Yerima ¢
Sezer, 2016), Q-floid (Castellanos et al., 2016), Diao (Diao et al., 2016), Alzaylaee (Alzaylaee, Yerima ¢ Sezer,
2017), (Feng et al., 2018), DE-LADY (Sihag et al., 2021), Wang (Wang ¢ Li, 2021), MLDroid (Mahindru ¢
Sangal, 2021), Liu (Liu et al., 2021), BPFroid (Agman & Hendler, 2021), DL-Droid (Alzaylaee, Yerima ¢ Sezer,
2020), Droidetec (Ma et al., 2020), Taheri (Taheri et al., 2020), Abuthawabeh (Abuthawabeh ¢ Mahmoud,
2019), Feng (Feng et al., 2020), Wang (Wang et al., 2019), Chen (Chen et al., 2018)

Hybrid RiskRanker (Grace et al., 2012), MobSafe (Xu et al., 2013), Shalaginov (Shalaginov ¢ Franke, 2014), ARIGUMA 26
(Zhong et al., 2013), Petsas (Petsas et al., 2014), Droid-Sec (Yuan et al., 2014a), AMDetector (Zhao et al., 2014),
MARVIN (Lindorfer, Neugschwandtner & Platzer, 2015), Mobile-Sandbox (Spreitzenbarth et al., 2015),
StaDyna (Zhauniarovich et al., 2015), Tap-Wave-Rub (Shrestha et al., 2015), Droiddetector (Yuan, Lu & Xue,
2016), Andro-Dumpsys (Jang et al., 2016), Abaid (Abaid, Kaafar ¢ Jha, 2017), Manto (Mantoo ¢ Khurana,
2020), Chao (Chao et al., 2020), Loreenzo (De Lorenzo et al., 2020), Puerta (de la Puerta et al., 2019),
Surendrean (Surendran, Thomas ¢ Emmanuel, 2020), Lu (Lu et al., 2020), Dhalaria (Dhalaria ¢» Gandotra,
2021), Zhu (Zhu et al., 2021), Nawaz (Nawaz, 2021), Liu (Liu et al., 2021), PNSDroid (Kandukuru ¢ Sharma,
2018), Bacci (Bacci et al., 2018), DAMBA (Zhang et al., 2020)

dynamic, and hybrid features. This paper decides to put metadata analysis out of this
research scope. We have examined 74 static analysis based frameworks. The number of
dynamic based analysis frameworks are 35. The number of hybrid analysis frameworks is
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26. Hence, the total number of examined papers are 135 research paper that this study
selected from top rank journals and conferences.

Polymorphism evasion detection

We examine the three main static, dynamic, and hybrid frameworks vs polymorphism
evasions. Table 8 represents static, dynamic, and hybrid analysis based detection; we
scrutinize each framework against polymorphism transformation techniques in the two
categories package transformation and encryption transformation. Each framework uses
various samples of Android malware and benign applications’ datasets in the evaluation
process; each dataset contains a certain number of malware and benign applications.
For instance, APK Auditor (Talha, Alper ¢» Aydin, 2015) tested its framework against 6,909
malware and 1,853 benign applications; a total of 8,762 apps that APK Auditor crawled
from Google play store and other datasets such as Genome Project and Contagio. APK
Auditor achieved 88% malware detection accuracy. As it is signature-based, most of the
evasion techniques prevent the APK Auditor detection framework from detecting malware
applications.

(a) Package Transformation:
- RPK - Repacking Evasion Detection:

Detecting repacking evasion is possible using static analysis and detection techniques;
Dempster-Shafe (Du, Wang ¢» Wang, 2015) investigate repacking characteristics using
a control flow graph and claimed better resistance to code obfuscation techniques.
Likewise, Droidgraph (Kwon et al., 2014) used the hierarchical class levels to determine
the repackaged malicious code to the original payload; it also considered the API calls,
junk code, and code obfuscation. It reduced the code comparison time compared to the
polynomial time-consuming native call graphs algorithm. Though, reflection
successfully evades the detection framework that uses the control flow graph. Other static
detection approaches such as MysteryChecker (Jeong et al., 2014), AnDarwin (Crussell,
Gibler & Chen, 2015), AndroSimilar (Faruki et al., 2015d), ngrams (Canfora et al., 2015a),
DroidEagle (Sun, Li ¢» Lui, 2015), DroidKin (Gonzalez, Stakhanova & Ghorbani, 2014),
DroidOlytics (Faruki et al., 2013), Gurulian (Gurulian et al., 2016), Shen (Shen et al,
2015), and AAMO (Preda ¢ Maggi, 2016) have indicated their ability to detect RPK
evasions. While studying dynamic analysis papers, we notice that most dynamic studies
provide less attention to this evasion type. Similarly, So ef al. (2015) and Wu et al.
(2015) stressed that RPK evasion detection could detect RPK evasion, as illustrated in
Table 8. The study spotted 20 papers that scrutinized the RPK evasion using static
analysis, and only two papers scrutinized RPK using dynamic analysis.

- PKR - Package Renaming Detection:

Static analysis frameworks such as DroidoLytics (Faruki et al., 2013) and Droidkin
(Gonzalez, Stakhanova & Ghorbani, 2014) examine their capability in detecting PKR
evasion techniques. However, many other papers insufficiently evaluate its framework
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against PKR, such as APK Auditor (Talha, Alper ¢ Aydin, 2015), DroidGraph (Kwon
et al., 2014), Andro-tracer (Kang et al., 2015), Vulhunter (Chenxiong et al., 2015), and
COVERT (Bagheri et al., 2015), as presented in Table 8. Dynamic and Hybrid analysis
frameworks studies incompetently examine its robustness against PKR, except one
research, Shen (Shen et al., 2015) highlighted the issue of PKR and its capability of
detecting it as per Table 8. The study spotted nine papers that scrutinized the PKR
evasion using static analysis, and only one papers scrutinized PKR using dynamic
analysis.

— IDR Identifier Renaming Evasion Detection:

DroidOlytics (Faruki et al., 2013), AndroSimilar (Faruki et al., 2015d), Droidkin
(Gonzalez, Stakhanova & Ghorbani, 2014), Kuhnel (Kuhnel, Smieschek ¢ Meyer, 2015),
Triggerscope (Fratantonio et al., 2016), AAMO (Preda ¢ Maggi, 2016), and Battista
(Battista et al., 2016) claim they can detect IDR evasion by using their static Android
malware detection frameworks as presented in Table 8. Nevertheless, many other
researchers inadequately evaluate its robustness against IDR evasion. Table 8
demonstrates the issue of assuring the Android malware detection frameworks’
robustness against IDR evasion and scrutinizes the researchers’ framework against IDR
evasion techniques.

In summary, most Android malware detection frameworks based on static analysis can
detect package transformation techniques (RPK, PKR, and IDR). However, most
detection frameworks based on dynamic and hybrid analysis inadequately evaluate or
report their resilience against IDR evasion techniques. The study spotted 20 papers
that scrutinized the RPK evasion using static analysis, and only 10 papers scrutinized
IDR. The study spotted nine papers that scrutinized the IDR evasion using static
analysis, and only one paper scrutinized IDR using dynamic analysis.

(b) Encryption Transformation Evasion Detection:

Static analysis detects encryption evasion techniques; many studies, such as DexHunter
(Zhang, Luo ¢ Yin, 2015), DroidKin (Gonzalez, Stakhanova & Ghorbani, 2014),
Sherlockdroid (Apvrille & Apvrille, 2015), Kuhnel (Kuhnel, Smieschek ¢ Meyer, 2015),
and AAMO (Preda ¢ Maggi, 2016), have proved that they detect the three encryption
evasions (DEN, BEN, and PEN). Static based detection studies, such as AndroSimilar
(Faruki et al., 2015d), MysteryChecker (Jeong et al., 2014), DroidKin (Gonzalez,
Stakhanova & Ghorbani, 2014), SherlockDroid (Apvrille & Apvrille, 2015), Kuhnel
(Kuhnel, Smieschek & Meyer, 2015), Shen (Shen et al., 2015), and AAMO (Preda ¢
Maggi, 2016), are able to detect DEN evasions. Likewise, Soh (Soh ef al., 2015) and
Q-floid (Castellanos et al., 2016) claimed robustness against BEN evasion. The dynamic
analysis based detection DwroidDump (Kim, Kwak ¢ Ryou, 2015) used code extraction
executable code from the memory of Dalvik Virtual Machine (DVM) instead of
using a decompilation tool, which is subject to obstruction by the three encryption
evasions techniques as shown in Table 8. Nevertheless, the RiskRanker (Grace et al.,
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2012) hybrid based detection framework successfully detected DEN, BEN, and PEN.
Hybrid detection frameworks such as RiskRanker (Grace et al., 2012), AMDetector
(Zhao et al., 2014), MARVIN (Lindorfer, Neugschwandtner & Platzer, 2015), and
Mobile-Sandbox (Spreitzenbarth et al., 2015) evaluated their frameworks against DEN
evasion; they claim the ability to detect BEN evasion techniques. Two dynamic
detections papers evaluate their frameworks against RPK evasion techniques: Soh (Soh
et al., 2015) and Wu 2015 (Wu et al., 2015). Likewise, DwroidDump (Kim, Kwak e
Ryou, 2015) examines its framework against encryption evasion techniques. Kumawat,
Sharma & Kumawat (2017) also developed a system to detect cryptographic
vulnerabilities in Android applications and to detect malware. This study spotted
seven papers that scrutinized the DEN evasion using static analysis, only one paper
scrutinized DEN using dynamic analysis, and two papers scrutinized DEN using hybrid
analysis. However, this study spotted six papers that scrutinized the BEN evasion
using static analysis, only one paper scrutinized BEN using dynamic analysis, and two
papers scrutinized BEN using hybrid analysis. In addition, this study spotted five papers
that scrutinized the PEN evasion using static analysis, only one paper scrutinized
PEN using dynamic analysis, and two papers scrutinized PEN using hybrid analysis.

Metamorphism evasion detection
Table 8 represents static, dynamic, and hybrid-based Android malware detection
frameworks and their robustness against metamorphism evasion detection techniques.

(a) Code Obfuscation Detection:

Code obfuscation consists of CRE, CIN, and DCI; we explain each evasion detection
framework in the following list:

- CRE - Code Reordering Evasion Detection:

ResDroid (Shao et al., 2014), AnDarwin (Crussell, Gibler ¢» Chen, 2015), and
Seqmalspec (Sufatrio et al., 2015a) proposed static analysis based detection and
managed to detect CRE evasion. Likewise, Q-floid (Castellanos et al., 2016) detected
CRE using the dynamic sandboxing methodology. Mobile-Sandbox (Spreitzenbarth
et al., 2015) hybrid based detection frameworks detect CRE evasions. Nonetheless, CRE
evades ngrams (Canfora et al., 2015a) and Elish (Elish et al., 2015) static detection
frameworks, which results in many false negatives (FN), as shown in Table 9. This study
spotted 17 papers that scrutinized the CRE evasion using static analysis, only two papers
scrutinized CRE using dynamic analysis, and four papers scrutinized CRE using
hybrid analysis.

— CIN - Call Indirections Evasion Detection:

As shown in Table 9, the CIN evasion technique successfully evades the call graph based
Android malware detection frameworks (Chenxiong et al., 2015; Poeplau et al., 2014;
Wu et al., 2016). Despite the fact that many static frameworks easily detect CIN evasion
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(Faruki et al., 2015d; Faruki et al., 2013; Gurulian et al., 2016; Kwon et al., 2014;
Martin, Menéndez & Camacho, 2016; Narayanan, Chen & Chan, 2014; Wei et al., 2015;
Zhang, Luo ¢ Yin, 2015), CIN still defeats other frameworks such as APK Auditor
(Talha, Alper & Aydin, 2015), Andro-Tracer (Kang et al., 2015), ngrams (Canfora et al.,
2015a), Elsih (Elish et al., 2015) and Wu (Wu et al., 2016). Few dynamic analysis based
detection frameworks (Castellanos et al., 2016; Soh et al., 2015) and hybrid detection
frameworks such as (Grace et al., 2012; Lindorfer, Neugschwandtner ¢ Platzer, 2015;
Zhao et al., 2014) can detect-Call Indirections Evasion CIN. Choliy, Li & Gao

(2017) developed a system called ACTS (App topologiCal signature through graphleT
Sampling) in which they detected obfuscated function calls in malware samples.

This study spotted 15 papers that scrutinized the CIN evasion using static analysis,
only two papers scrutinized CIN using dynamic analysis, and three papers scrutinized
CIN using hybrid analysis.

- DCI - Dead Code Insertion Evasion Detection:

AnDarwin (Crussell, Gibler ¢» Chen, 2015) conducted dead code insertion detection
experiments based on code similarity. AnDarwin reported that it is less robust to dead
code insertion transformation (Crussell, Gibler ¢ Chen, 2015) that adopts code’s
similarity approach with semantic analysis, as shown in Table 9. The similarity
approach examines the distance vector values using semantic analysis. The distance
vector increases with the code alteration between the original and after dead code
insertion obfuscation. This study spotted 14 papers that scrutinized the DCI evasion
using static analysis, and four papers scrutinized DCI using hybrid analysis.

In general, the dynamic analysis framework Q-floid (Castellanos et al., 2016) introduces
the Qualitative Data Flow Graph (QDFG) to analyze the dynamic behaviour of a
suspicious app. It states that it detects code obfuscation, basing this assumption on
PC-based malware detection using Q-floid (Castellanos et al., 2016). It detects code
obfuscation transformation using the QDFG (Banescu et al., 2015; Wiichner, Ochoa ¢
Pretschner, 2015). However, it claims that Q-floid (Castellanos et al., 2016) inadequately
detects Android malware when restricting using monitoring services. MysteryChecker
(Jeong et al., 2014) proposes a novel software-based attestation approach to detect the
repackaged malware with code obfuscation and a randomly selected encryption chain.
Likewise, Gurulian (Gurulian et al., 2016) introduces a DCI evasion resilient framework by
maintaining the attack vector; similarly, DroidOLytics (Faruki et al., 2013) uses statistical
similarity to detect application repackaging and code obfuscation. It builds a signature
repository that changes its length dynamically for code cloning detection. AndroSimilar
(Faruki et al., 2015d) uses signature-based detection and attains 76% accuracy, but its
detection rate of repacking and code obfuscation transformation evasions is relatively low.
Until today, AndrODet (Mirzaei et al., 2019) adopts static analysis to detect Android
malware applications with CRE, CIN, and DCI evasions; however, the average achieved
performance for detection CRE, CIN, and DCI evasions is 63%.
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(b) Advanced Code Transformation Detection:
It consists of NEX, FIO, REF, DCL, and ADE evasions explained in this section.
— NEX Evasion Detection:

DroidAPIMiner (Aafer, Du ¢ Yin, 2013) uses static analysis to detect NEX evasion and, as
listed in Table 9, claims success; likewise, the dynamic analysis DroidBarrier (Almohri,
Yao ¢ Kafura, 2014) and hybrid analysis MARVIN (Lindorfer, Neugschwandtner ¢
Platzer, 2015) claim the same. In contrast, many static frameworks such as AdDetect
(Narayanan, Chen ¢ Chan, 2014), APK Auditor (Talha, Alper ¢ Aydin, 2015),
Andro-Tracer (Kang et al., 2015), and ngrams (Canfora et al., 2015a) stated their
limitations in countermeasures of NEX evasion as shown in Table 9. This study spotted
one paper that scrutinized the CIN evasion using static analysis, one paper scrutinized
CIN using dynamic analysis, and one paper scrutinized CIN using hybrid analysis.

— FIO Evasion Detection:

AAMO (Preda & Maggi, 2016) evaluates anti-virus packages vs function inlining and
outlining FIO evasion, as shown in Table 9. However, dynamic analysis and hybrid
analyses inadequately consider the evaluation of their framework against FIO evasion.
This study spotted one paper that scrutinized the FIO evasion using static analysis, and
two papers scrutinized FIO using dynamic analysis.

— REF Evasion Detection:

As shown in Table 9, many static analysis frameworks examine the robustness of their
detection frameworks against REF evasion, such as DroidAPIMiner (Aafer, Du ¢ Yin,
2013), DexHunter (Zhang, Luo ¢ Yin, 2015), SherLockDroid (Apvrille ¢» Apvrille,
2015), Kuhnel (Kuhnel, Smieschek ¢» Meyer, 2015), DroidRA (Li et al., 2016), and
AAMO. Likewise, Maier (Maier, Protsenko ¢ Miiller, 2015), which uses Dynamic
analysis, RiskRanker (Grace et al., 2012), and StaDyna (Zhauniarovich et al., 2015),
which use hybrid analysis, study REF evasion detection using dynamic and hybrid
analysis based detection techniques. This study spotted six papers that scrutinized the
REF evasion using static analysis, only two papers scrutinized REF using dynamic
analysis, and two papers scrutinized REF using hybrid analysis.

— DCL Evasion Detection:

Some Android malware detection frameworks propose and evaluate their methods to
detect DCL evasion, for instance, DroidAPIMiner (Aafer, Du ¢ Yin, 2013), Poeplau
(Poeplau et al., 2014), Dexhunter, Maier (Maier, Protsenko ¢ Miiller, 2015), RiskRanker
(Grace et al., 2012), and StaDyna (Zhauniarovich et al., 2015). However, AndroSimilar
(Faruki et al., 2015d) insufficiently evaluates its mechanism against dynamic code
loading, reflection, and other transformation techniques, as shown in Table 9. This
study spotted four papers that scrutinized the DCL evasion using static analysis, only
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two papers scrutinized DCL using dynamic analysis, and two papers scrutinized DCL
using hybrid analysis.

ADE Evasion Detection: Only the static analysis DexHunter (Zhang, Luo & Yin, 2015)
considered the ADE evasion technique in evaluating the framework. On the contrary,
the dynamic analysis Q-floid (Castellanos et al., 2016) reported ineffective ADE
evasion detection, as shown in Table 9. This study spotted one paper that scrutinized the
ADE evasion using static analysis.

— Anti-emulation Detection

Anti-emulation evasions consist of VMA and PID evasion techniques; the following is
the insight of detection framework analysis:

— VMA Evasion Detection:

As a countermeasure for the VMA evasion technique, researchers (David ¢ Netanyahu,
2015; Mutti et al., 2015) equip an emulator sandbox with physical devices to
dynamically run the application analyzes. Dietzel (2014), Gajrani et al. (2015), and Hu &
Xiao (2014) propose a fake response agent, which feeds the in the dynamic analysis
based testing and a masquerade emulator as a physical device. In late 2015 and the
beginning of 2016, several studies analyze the nature of anti-emulation malware

with false values about the environment request. This study spotted six papers that
scrutinized the WMA using dynamic analysis, and three papers scrutinized WMA using
hybrid analysis.

Singh (Singh, Mishra ¢ Singh, 2015) enhances the dynamic malware detection
robustness, using anti-emulator and user interaction detection. Petsas (Petsas et al., 2014)
proposes countermeasures for different evasion detections, such as anti-emulation using
realistic sensor simulation and IMEI modification. However, it inadequately evaluates
this countermeasure. Dynalog (Alzaylaee, Yerima ¢ Sezer, 2016) proposes a performance-
enhanced Android malware dynamic analysis that uses the emulation tool, subject to
emulation detection evasions. Likewise, Dynalog (Alzaylaee, Yerima ¢ Sezer, 2016)
highlights the issue of dynamic analysis evasion without proposing a solution. To overcome
VMA evasion, Vidas (Vidas et al., 2014) proposes system logs and network traffic
classification features using a physical device A5 instead of emulator evasion techniques.
Some studies only hoist the red flag to indicate that neither enough malware samples nor test
benches exist for examining anti-emulation evasion (works such as Chaugule, Xu ¢ Zhu
(2011) and Tao et al. (2012)). Nevertheless, Maier, Protsenko ¢ Miiller (2015) studied VWA
evasion and proposed a solution based on comparing the behaviour of the APK when
installing on a physical device and emulator, as shown in Table 9.

— PID Evasion Detection:

Programmed Interaction Detection is fortunate to evade automated dynamic analysis
using the inherent difference between key runner and human interaction patterns
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(Diao et al., 2016). Instead of relying on identifying old virtualization or emulation
techniques, Diao et al. (2016) focuses on detecting the automated gesture, which
simulates user input, to conclude whether the application is under analysis or working
under normal conditions, as shown in Table 9. As this anti-emulation evasion targeted
sandboxing, which takes place during the dynamic analysis based detection, most of
the efforts to countermeasure this type of evasion have used dynamic or hybrid analysis
detection frameworks. This study spotted four papers that scrutinized the PID using
dynamic analysis, and one paper scrutinized PID using hybrid analysis.

DISCUSSION

In this section, this paper synthesizes the last decade’s Android malware detection
framework using three methodologies. First is identifying the evasions techniques
requiring more attention from the research community. The second represents the
potential evasion resilient detection techniques by reporting each framework’s number of
considered evasion techniques. The third summarizes the three types of Android
application analysis with the number of frameworks that evaluated evasions techniques by
bubble plot chart. Finally, we provide a to-do list and learned lessons from all the examined
frameworks.

The static analysis radar graph shown in Fig. 5 signifies the evasion detection
capabilities of static based detection. It serves to understand the evaluation of the static
analysis based detection frameworks.

Figure 5 presents the static analysis based Android malware detection frameworks using
the radar graph approach. The radar graph represents the number of frameworks in
circular layers, starting with the outside circle, which means zero frameworks. The second
circular layer represents five frameworks. The inner-circle layer represents the largest
number of frameworks that examined evasion techniques. Each evasion technique is
labelled point such as PID, WMA, ADE, DCL, etc. Besides each point number representing
the number of Android malware detection frameworks that evaluated its proposed model
against this evasion technique or point in the radar graph. For example, 15 malware
detection frameworks consider the RPR evasion technique; thus, the RPK label points to
15, as displayed in Fig. 5. The evasion techniques that avoid Android malware detection
using VMA and PID have zero values besides their points, as shown in Fig. 5.

We selected the Radar graph to demonstrate that static detection studies could detect
package transformation evasions and basic code obfuscation; however, advanced
transformation techniques and anti-emulation were neither studied nor evaluated.
Concerning DCL, Pektas (Pektas ¢ Acarman, 2014), in 2014, detected anti-emulation
evasion by using a dynamic analyzing tool developed just to deal with the DCL evasion
malware samples, which achieved 92% accuracy. Many researchers avoid using
dynamic-based detection techniques because they are time-consuming and risk installing
malware into their testing devices. In Mobile-Sandbox (Spreitzenbarth et al., 2015), the
dynamic analysis required an average of 18 min to accomplish the dynamic analysis tasks.
This time depends on the size of the APK file and the dynamic analysis server hardware
specifications.
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Until today, many static analysis researchers depends on permissions (Arora, Peddoju &
Conti, 2019; Dharmalingam ¢ Palanisamy, 2021; Li et al., 2018; Sahin et al., 2021);
however, many are relying on API calls (Alazab et al., 2020; Jung et al., 2018; Maiorca et al.,
2017; Mirzaei et al., 2019; Pektas & Acarman, 2020; Tiwari & Shukla, 2018; Zhang et al.,
2020; Zhang, Breitinger & Baggili, 2016; Zou et al., 2021) and deep code analysis and other
types of features as discussed earlier in Android evasion detection frameworks section.
Many of examined researches ignored the evasion techniques evaluation. Other
frameworks assumed the impossibility of the evasion detection using static analysis and
advise the research community to use dynamic analysis to detect it. Android Malware
detection frameworks assumed their capability of detecting obfuscation techniques
without evaluating their framework against obfuscated malware datasets. This paper
examined 74 static frameworks, but only 35 research papers consider or evaluate their
framework using at least one evasion technique, as shown in Fig. 6. The dynamic analysis
evasion radar graph demonstrates the capabilities of dynamic analysis based.

Researchers assume that dynamic analysis covers all the simple obfuscations and
transformation techniques. Hence many of the dynamic analysis frameworks
(Abuthawabeh & Mahmoud, 2019; Chen et al., 2018; de la Puerta et al., 2019; De Lorenzo
et al., 2020; Feng et al., 2020; Feng et al., 2018; Pang et al., 2017; Sihag et al., 2021; Wang
et al., 2019) ignored the metamorphic evasion techniques. The overall performance
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accuracy of the most current malware detection frameworks is measured against randomly
selected malware samples representing certain malware families. If the randomly chosen
malware families overlook evasion techniques, the selected malware insufficiently reflect
the actual robustness of the proposed detection framework against evasion techniques; this
was the main reason behind excluding the accuracy in evaluation tables. This paper
examined 35 Android malware detection using different dynamic techniques. However,
only 14 of 35 dynamic analysis based detection framworks have tried to include
obfuscation into their evaluation processes, as shown in Fig. 7. Figure 8 shows the number
of considered evasion techniques in each research is between 1 and 5 evasions. In its
evaluation, Soh et al. (2015) considered three types of repackaging evasion, indirectly
considered code reordering, and called indirection evasion. It defines many limitations to
its approach and planned to consider the hybrid analysis in its future plan.

However, a few researchers evaluate their frameworks against specific evasion
techniques, as reflected in the radar graph of the hybrid malware detection frameworks, as
shown in Figs. 9 and 10. For instance, four frameworks claimed that their method detected
the CRE and DCI evasions (Grace et al., 2012; Lindorfer, Neugschwandtner & Platzer,
2015; Spreitzenbarth et al., 2015; Zhao et al., 2014), and three frameworks claimed the
detection of CIN (Grace et al., 2012; Spreitzenbarth et al., 2015; Zhao et al., 2014) and
WMA (Grace et al., 2012; Petsas et al., 2014; Yuan, Lu & Xue, 2016). The hybrid based
detection requires enormous effort to collect both static and dynamic characteristics and
logs. RiskRanker (Grace et al., 2012) started highlighting the evasion problems and their
impacts on detection accuracy. However, Petsas (Pefsas et al., 2014) in 2014 and Tap-
Wave-Rub (Shrestha et al., 2015) battled anti-emulation evasions and used the device
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hardware (proximity sensor) to differentiate between maliciously driven actions and
end-user physical interactions.

Most of the recent dynamic analysis researches (Feng et al., 2020; Mahindru ¢ Sangal,
2021; Sihag et al., 2021) confirmed the ability to detect obfuscated Android malware.
Unfortunately, none of dynamic analysis based detection has evaluated their framework
using specific evasion techniques; most of dynamic analysis studies just randomly select
from the publicly available Android malware datasets. For example, Droidetec (Ma et al.,
2020) proposed a dynamic analysis based framework by analyzing the process behavior in
an ordered manner. Still, the evaluation process was generic and included few malware
families that exclude obfuscated malware.

The Hybrid analysis techniques are suggested by many researchers and have been set in
their future plan to overcome the resiliency issue of complex obfuscation techniques.
However, it is a shocking fact that the examined 26 Android malware detection
frameworks using hybrid analysis, that only nine frameworks just consider few evasion
techniques such as RiskRanker (Grace et al., 2012) that has initiated the issue in 2012,
Mobile-Sandbox (Hoffmann et al., 2016), Marvin (Lindorfer, Neugschwandtner ¢ Platzer,
2015). Recently some hybrid analysis based detection Puerta (de la Puerta et al., 2019),
Surendrean (Surendran, Thomas & Emmanuel, 2020), Lu (Lu ef al., 2020), Dhalaria
(Dhalaria ¢ Gandotra, 2021), Zhu (Zhu et al., 2021), Nawaz (Nawaz, 2021), Liu (Liu et al.,
2021), PNSDroid (Kandukuru ¢ Sharma, 2018), Bacci (Bacci et al., 2018), DAMBA
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(Zhang et al., 2020) has highlighted the complex evasions detection resiliency issue in their
research literature; however, the proposed malware detection methods and experiments of
excluded the obfuscated malware from their evaluation sheets.

The systematic evasion detection map is illustrated in Fig. 11; the horizontal axis
represents each type of evasion in this study. The bubble size represents the accumulative
number of detection techniques developed by the research community to fight each
evasion technique. It is divided into three main categories in the vertical axis: static,
dynamic, and hybrid detection techniques. For instance, the circle with the number “17”
represents static Android malware detection frameworks, which consider CRE evasions on
the framework evaluation process. As per the systematic map, the NEX, FIO, and ADE
need more attention from the research community. Likewise, the overall dynamic analysis
studies that considered evasion evaluation is shallow.

Researchers have concentrated on Android malware static analysis in the last few years,
which requires less time and effort than dynamic analysis. They tried to overcome the
static analysis weaknesses against evasion attacks, which is why many researchers
evaluated their frameworks to check the anti-obfuscation capabilities, as presented in
Fig. 11. Dynamic analysis researchers concentrated on avoiding virtualization detection
and random interaction, which is the main reason for False Negative malware detection.
Figure 11 shows the number of existing Android malware detection frameworks in each
circle, which consider each evasion technique in the framework evaluations. It shows the
necessity of more insights regarding evaluation against all types of evasions, as currently,
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available standard malware datasets cover some evasion techniques that are randomly
selected during evaluation. In summary, all the above investigations demonstrate the
absolute need for standard evasion benchmarking tools to evaluate the newly developed
frameworks against all evasion techniques.

LESSONS LEARNED AND FUTURE DIRECTIONS

Android malware development is always one step ahead of malware detection techniques,
which means malware detection still requires many efforts to catch up with malware
development. To achieve this objective, we share several insights drawn from our analysis.

(a) Obfuscation dataset

One of the most important is to keep on updating and standardizing obfuscated
malware datasets. We recommend standardizing this dataset by the research community
trusted institutions and being available upon validated requests for research purposes.
Despite some available obfuscated datasets such as PRAGuard (Karbab & Debbabi, 2021)
sharing ten thousands obfuscated malware by obfuscating MalGnome and the Contagio
MiniDump dataset, however the PRAGuard stopped sharing the dataset starting from
April 2021.

(b) Obfuscation detection framework performance

The performance of the Android malware framework degraded over time since new
malware variants, and obfuscations techniques were generated PetaDroid (Karbab ¢
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Debbabi, 2021). Hence, we recommend researchers extend their research to keep an eye on
their framework performance over time.

(c) Metamorphism evasion:

Static detection is unable to detect most of the metamorphism evasion techniques
because of the dynamic characteristics of metamorphism. However, there is still a lack of
dynamic and hybrid frameworks to detect metamorphism evasions. It is therefore
beneficial to focus more on developing dynamic and hybrid methods.

(d) Standard Evasion Benchmarking:

We suggest building a comprehensive and collaborative benchmarking framework for
Android malware detection evasion techniques that aims to improve the quality of
research and add to the body of knowledge in Android malware detection studies. The
benchmark consists of a list of evasion techniques based on the detection methods that
have been evaluated. As a result, detection methods are tested against a standardized list of
malware evasion techniques to determine whether they are capable of detecting malware
evasions.

(e) Android Exploits:

As mentioned earlier, Android is based on Linux OS; it has inherited Linux exploits.
Recently, malware authors developed and published the Android exploit code Dirty-Cow
CVE-2016-5195 (Oester, 2016). The Dirty Cow exploit has been existing in Linux since
2007; it affects all Android versions. Existing fixes for Linux exploits are inefficient;
Android fixes are still expected from vendors like Google or Samsung. Researchers must
study such exploits and recommend proper ways to fix newly discovered exploits.
Additionally, researchers need to examine the Android operating system and identify
potential exploits and offer solutions before attackers abuse such exploits.

(f) Code Integrity Verification:

Verification means that the application integrity is authenticated against repackaging by
guaranteed third-party authentication authorities. Vidas ¢» Christin (2013) proposed a
simple mechanism that alleviates the specific problem of verifying the authenticity of an
App to protect the user from repackaged apps that contain malicious code. Their approach
is based on creating a simple public-key infrastructure backed by the domain name system.
This area of research needs more attention compared to others. App integrity significantly
increases the effort required for a successful attack. Under this new model, the attacker
must either obtain the original publisher’s secret signing key, control the publisher’s web
server, or commit a man-in-the-middle (MitM) attack on the publisher’s DNS records and
web server. The attacker must now conduct two successful attacks in all cases, and the
secondary attack requires more effort than application repackaging. It is worth noting that
code verification, and not code analysis, is recommended, as it is necessary to consider the

Elsersy et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.907 44/61


http://dx.doi.org/10.7717/peerj-cs.907
https://peerj.com/computer-science/

PeerJ Computer Science

complexity of the available applications. Code verification does not require much effort, as
it involves checking the code’s integrity by using the public-key infrastructure.

(g) Process Authentication:

Some researchers leverage the process of model authentication to eliminate the need for
an external Certification Authority (CA) that protects the system from many exploits
(Almohri, Yao & Kafura, 2014). However, they are still unable to detect the payload that is
downloaded to install malicious applications. For example, DroidBarrier is designed to
prevent such installations by detecting their unauthenticated processes, thereby foiling this
form of attack. However, DroidBarrier (Almohri, Yao & Kafura, 2014) cannot guarantee
the isolation of hijacked processes described under attacks. Therefore, it is generally
advisable to monitor processes running on the device. If an unauthenticated process is
launched, the process must be isolated to hinder damaging the device and analyze and
detect the malicious application. This way, if a malicious application bypasses the detection
barrier and downloads a malicious payload, it is caught when running an unauthenticated
process to execute that payload.

(h) Triggering Malicious Code Assurance:

The process of ensuring the malicious code runs during the dynamic analysis
sandboxing. TriggerScope (Fratantonio et al., 2016) statically tries to detect suspicious
triggering; however, its limitation as static analysis makes it easy to be evaded by code
obfuscation. Likewise, Groddroid (Abraham et al., 2015) developed a framework to launch
the branches of each function to make sure that the malicious code starts. However, it fails
to follow the components of background services, which misses the main activity.
Groddroid is still an open issue among researchers and is known as code coverage. It is
essential to address this issue by covering possible branches in the source code of the
applications.

CONCLUSIONS

Global evasion techniques make Android malware more advanced and sophisticated, which
was our motivation for this study. We aim to highlight the most critical weaknesses of
Android malware detection frameworks, mainly when malware uses different

evasions techniques. Therefore, this study scrutinizes top Android malware detection
frameworks against 18 evaluation test benches to evaluate the effectiveness of the

evasions detection techniques in Android malware detection frameworks. Therefore, the study
introduces a new evasion taxonomy that categorizes the evasion techniques into

two main groups, polymorphism and metamorphism, where each group has branches;

the polymorphism group includes package transformation, and the encryption
metamorphism group contains code obfuscation, advanced transformation, and anti-
emulation branches. The study also pointed out the lack of research in evaluating the malware
detection against different evasion techniques; hence we scrutinized the frameworks based on
every evasion technique and categorized the evaluations based on the malware detection
methods. Our analysis results conclude a lack of research evaluating the current Android
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malware detection framework robustness against state-of-the-art evasion techniques. We also
concluded that static analysis based detection is easily evaded with simple obfuscation.

On the contrary, dynamic and hybrid analyses address advanced code transformation
techniques and other advanced evasions. However, preliminary studies have evaluated
their frameworks against evasion techniques. The missing framework evaluations are due
to the lack of standard benchmark evasion datasets with updated standard malware
datasets and the lack of comprehensive test benches tools to assess the efficiency of the
existing and future frameworks. This study advises the research community to exert more
effort into detecting anti-emulation evasion as indicated in the map of evasions and
detection techniques. We also plan to create a standard evaluation framework to include all
types of evasion techniques and consider the new generation of malware that combines
multiple evasion techniques.
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