
Detecting racism and xenophobia using
deep learning models on Twitter data:
CNN, LSTM and BERT
José Alberto Benítez-Andrades1, Álvaro González-Jiménez2, Álvaro
López-Brea2, Jose Aveleira-Mata3, José-Manuel Alija-Pérez3 and María
Teresa García-Ordás3

1 SALBIS Research Group, Department of Electric, Systems and Automatics Engineering,
Universidad de León, León, León, Spain

2 Department of Electric, Systems and Automatics Engineering, Universidad de León, Leon,
León, Spain

3 SECOMUCI Research Group, Escuela de Ingenierías Industrial e Informática, Universidad de
León, León, León, Spain

ABSTRACT
With the growth that social networks have experienced in recent years, it is
entirely impossible to moderate content manually. Thanks to the different existing
techniques in natural language processing, it is possible to generate predictive models
that automatically classify texts into different categories. However, a weakness has
been detected concerning the language used to train such models. This work aimed
to develop a predictive model based on BERT, capable of detecting racist and
xenophobic messages in tweets written in Spanish. A comparison was made with
different Deep Learning models. A total of five predictive models were developed,
two based on BERT and three using other deep learning techniques, CNN, LSTM and
a model combining CNN + LSTM techniques. After exhaustively analyzing the
results obtained by the different models, it was found that the one that got the best
metrics was BETO, a BERT-based model trained only with texts written in Spanish.
The results of our study show that the BETO model achieves a precision of 85.22%
compared to the 82.00% precision of the mBERT model. The rest of the models
obtained between 79.34% and 80.48% precision. On this basis, it has been possible
to justify the vital importance of developing native transfer learning models for
solving Natural Language Processing (NLP) problems in Spanish. Our main
contribution is the achievement of promising results in the field of racism and hate
speech in Spanish by applying different deep learning techniques.

Subjects Artificial Intelligence, Data Mining and Machine Learning, Data Science, Natural
Language and Speech
Keywords Hate speech, Transfer learning, BERT, BETO, Natural language processing, Text
classification

INTRODUCTION
In recent years, the use of social networks such as Twitter, Facebook or Instagram, as
well as other community forums, is generating hateful conversations among users (Del
Vigna et al., 2017;Watanabe, Bouazizi & Ohtsuki, 2018; Zhang & Luo, 2019). The fact that
people can comment anonymously is one of the factors that leads to the spread of hate
speech (Barlett, 2015).
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Within hate crimes, some countries are particularly interested in studying racist and
xenophobic crimes (Sayan, 2019; Rodríguez Maeso, 2018). For example, in the UK, hate
speech towards different Muslim and other immigrant communities has increased (BBC
News, 2017; Travis, 2017). A link was found between the rise of racism and the exit from
the EU or the Manchester bombings. In other countries, such as Spain, the Congress of
Deputies has recently approved the “Non-legislative motion on preventing the spread of
hate speech in the digital space” (Congreso de los Diputados of Spanish Government, 2020).
In short, the fight against racism and xenophobia are issues of international concern.

Some studies are currently working on the classification of texts for the detection of
racism or xenophobia (Kumari et al., 2021, Al-Hassan & Al-Dossari, 2019; Alotaibi &
Abul Hasanat, 2020, Plaza-Del-Arco et al., 2020; Chaudhry, 2015; Konstantinidis,
Papadopoulos & Kompatsiaris, 2017; Sazzed, 2021). To do this, they have used different
techniques in the field of artificial intelligence and, more specifically, within natural
language processing. One of the most widely used techniques for this purpose is sentiment
analysis on different datasets obtained from some social networks, Twitter being one of the
most widely used (Saha, Senapati & Mahajan, 2020; Garcia & Berton, 2021).

In order to classify texts using machine learning techniques and, more specifically, deep
learning, techniques are often used such as Convolutional Neural Network (CNN),
Recurrent Neural Network (RNN) and Hierarchical Attention Network (HAN). Within
these techniques, Long Short-Term and, more specifically, Bi-directional Long Short-Term
(BiLSTM) are the most responsive. Analysing the latest developments in this regard are the
BERT-based approaches.

However, one of the barriers encountered in detecting racist and xenophobic tweets is
language. There are deep learning models that detect racist or xenophobic texts in English.
Nevertheless, so far, no pretrained model has been found with texts in Spanish and
there are studies showing that classification models trained with native language texts give
better results (Gutiérrez-Fandiño et al., 2021; Pomares-Quimbaya, López-Úbeda & Schulz,
2021; Kamal, Kumar & Vaidhya, 2021; Sharma, Kabra & Jain, 2022; Velankar et al., 2021).
Therefore, the main objectives of this research are those shown below:

� Obtain a set of texts in Spanish related to racism and xenophobia. Preprocess the data set
and label said texts in a binary category, giving a value of 1 if the message is xenophobic
or racist, and 0 when it is not.

� Apply different deep learning models and determine which of them is the one with the
highest accuracy and precision.

In this paper, we propose a dataset related to racism and xenophobia in the Spanish
language and we propose different models based on deep learning techniques to detect
racist or xenophobic texts.

The paper is organized as follows. Related work is presented in “Related Work”. The
methodology of the different proposed techniques is detailed in “Methodology”. In
“Experiments and Results”, the setup of different deep learning techniques and the results,
showing a comparative between the different techniques are explained. Finally, results have
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been discussed in “Critical Evaluation and Comparison of the Results” and we conclude in
“Conclusions”.

RELATED WORK
Within the state of the art, two different branches can be analysed, the Spanish language
datasets publicly available on the web and the natural language processing techniques most
commonly used in text classification.

Existing datasets
While it is possible to find a large number of datasets in English that are properly labelled
for the detection of racism, and especially hate speech, it is extremely difficult to find
datasets in Spanish with these same characteristics.

A total of two Spanish datasets related to hate speech has been found, and it is
completely impossible to find one related solely and exclusively to racism/xenophobia.
Nevertheless, both datasets have been explored: HaterNet (Pereira-Kohatsu et al., 2019)
and HatEval (Basile et al., 2019).

Other datasets were found that also contained texts in Spanish, but were not exclusively
in Spanish, as in the case of the PHARM project, where the dataset is composed of texts in
Spanish, Italian and Greek (Vrysis et al., 2021).

HaterNet

The first of the two datasets has been obtained thanks to HaterNet (Pereira-Kohatsu et al.,
2019), an intelligent system used by the National Office for the Fight against Hate Crimes,
belonging to the Spanish Ministry of Interior (Ministerio del Interior, 2019).

This dataset has a total of 6,000 tagged tweets indicating the presence or not of hate
speech. Among the hate speech, there are, unsurprisingly, some tweets in which racism can
be seen. However, they represent a rather low percentage of the total number of labelled
tweets, which in practice makes the dataset invalid for training the model proposed in
this project.

Not only are there tweets on topics that differ completely from racism, but the labelling
criteria are also somewhat confusing. For these reasons, this dataset has been completely
discarded for use in the training and subsequent validation of the predictive model.

HatEval
The second dataset has been obtained thanks to HatEval (Basile et al., 2019), a competition
organised by SemEval (International Workshop on Semantic Evaluation), whose main
objective was to develop a predictive model for the detection of anti-female and anti-
immigration hate speech on Twitter. In order to access this dataset, it is necessary to
request permission from one of its creators as shown in the repository https://github.com/
msang/hateval.

The dataset consists of two different sets of tweets. The first one contains tweets written
in English, which makes it completely unusable for the purpose of this project. The second
one, in turn, contains 5,000 tweets written in Spanish in the training set and 1,600 in the
test set.
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Of these 5,000 tweets, a total of 1,971 are related to racism, which makes the set, at least
initially, valid.

As regards the structure of the dataset, for each tuple, a text followed by three binary
variables can be found. The first, called HS, denotes whether the tweet expresses hate
speech or not. The second, known as TR, indicates whether the victim is a single person or
a group of people. Finally, the variable called AG indicates whether the tweet is expressed
in an aggressive way or not.

After looking closely at the dataset, it was determined that 987 (50.07%) tweets out of
1,971 were mislabelled. There are tweets from some people denouncing racism that are
labelled as racist. The same goes for some comments that are clearly ironic. On other
occasions, tweets that have nothing to do with racism (in South America the word
“sudaca” is used to refer to the subcontinent itself) or that are simply not racist are labelled
as hate crimes.

Because of all these labelling failures, it has been determined that this dataset is also not
valid for the purpose of this project.

Therefore, after having thoroughly analysed both datasets, it has been concluded that it
is strictly necessary to build a suitable dataset. The whole process of building this dataset
can be found in “Methodology”.

Text classification
The techniques that can be used to create models of automatic classification of a text are
very varied. However, it is possible to group them into three main types of techniques:
conventional machine learning, deep learning and transfer learning.

Conventional machine learning
Among the various conventional machine learning techniques used in text classification,
and especially in the detection of hate speech on the Internet, support vector machines
(SVM) and logistic regression stand out.

SVMs (Cortes & Vapnik, 1995) are extremely accurate and effective in classifying texts
(Ahmad et al., 2018; Hasan, Maliha & Arifuzzaman, 2019). One of their main advantages
is that, unlike most other techniques, they perform particularly well on small training
sets. Commonly, when using this technique, text features are usually obtained by applying
TF-IDF or word embeddings, or another technique with a similar functionality such as
Part of speech (POS).

Logistic regression (Lakshmi, Divya & Valarmathi, 2018; Br Ginting, Irawan &
Setianingsih, 2019) is a type of regression analysis used to predict the outcome of a
categorical variable given a set of independent variables. Like SVMs, it is also necessary to
extract text features with one of the aforementiond techniques before training begins.
Unlike SVMs, they perform significantly worse on small training sets.

Deep learning
Deep learning is a specific branch of machine learning whose main difference is that,
unlike traditional machine learning algorithms, it is capable of continuing to learn as it
receives more and more data, without stagnating.
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Among the deep learning techniques most commonly used in text classification,
convolutional neural networks (CNNs) and recurrent neural networks (RNNs) stand out.

Convolutional neural networks (Nedjah, Santos & de Macedo Mourelle, 2019; Roy et al.,
2020) are a type of neural network that, combined with supervised learning, process layers
by mimicking the human eye, allowing them to differentiate different features in the
received inputs. Although they were specifically designed for computer vision, they have
been shown to perform excellently on textual classification problems as well. When
extracting text features, a stage prior to learning the network, it is common to use word
embeddings.

Recurrent neural networks (Paetzold, Zampieri & Malmasi, 2019) are a type of neural
network in which the connections between nodes form a directed graph along a temporal
sequence. Among the different variants of this type of network, the Long Short-Term
Memory Network (LSTM) (Talita & Wiguna, 2019; Bisht et al., 2020; Zhao et al., 2020;
Zhang et al., 2021), which were specifically designed to avoid the problem of long-term
dependency. As with CNNs, a correct extraction of text features prior to the learning
period of the network, which is carried out by means of word embeddings, is of vital
importance.

Transfer learning
Transfer learning is a machine learning technique in which the knowledge gained from
carrying out a certain task is stored and then applied to a related problem. It is especially
used for building models where a small amount of data is available for training and
evaluation.

Within NLP tasks, the first attempted use of transfer learning was the creation of
embeddings from large datasets such as Wikipedia. Although this was a major
breakthrough in NLP, especially when training on very small datasets, there were still
problems in differentiating the context in which words are written.

To solve this problem, a number of context-based pre-trained models such as
Embedding from Language Models (ELMO) (Peters et al., 2018) and Bidirectional Encoder
Representations from Transformers (BERT) (Devlin et al., 2019) have emerged, and a
model very similar to the latter will be used in this project.

Detecting racism and hate speeches in Spanish
As regards the detection of racism, to date there is no model in Spanish developed for this
specific purpose. However, research has been carried out on hate speech in Spanish.

The most important study on hate speech in Spanish is (Plaza-Del-Arco et al., 2020). It
compares the performance of various NLP models in classifying tweets in the HatEval
dataset. These models include SVM, linear regression (LR), Naive Bayes (NB), decision
trees (DT), LSTM and a lexicon-based classifier. Of these, the best performing was an
Ensemble Voting Classifier, which combines the output of several classifiers when making
a prediction.

The second study (del-Arco et al., 2021), by the same authors, compares the
performance of other NLP models when classifying tweets from the HaterNet and HatEval
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datasets. These models include deep learning models such as LSTM, Bidirectional Long
Short-Term Memory Networks (BiLSTM) and CNN, as well as transfer learning models
such as mBert, XLM and BETO (Peters et al., 2018), all of which are based on BERT.
The best performer on almost all metrics was BETO.

Finally, the study (Pereira-Kohatsu et al., 2019) presents HaterNet, an intelligent system
that identifies and monitors the evolution of hate speech on Twitter. In this study, in
addition to building the aforementioned HaterNet dataset, a series of comparisons are also
made between different text classification models. These models include LDA, QDA,
Random Forest, Ridge Logistic Regression, SVM and an LSTM combined with an MLP,
the latter being the best performing.

After having analysed the different existing models, and having verified that there are no
models specifically developed to detect racism in texts written in Spanish, and that the hate
speech detection models have all been trained on the same two datasets, which have
numerous mislabelled tweets, the development of new models for this purpose is more
than justified.

Summary of the literature review
A summary of the literature review is shown in the Table 1, specifying the important
results found in each study analysed, as well as the weaknesses found in relation to the
objectives presented in our study.

METHODOLOGY
This section explains the methodology used in this research. In Fig. 1 it is possible to see
the complete workflow of the work carried out.

All the data used in the experiments, as well as the models generated and the source
code are available in a GitHub repository at this link: https://doi.org/10.5281/zenodo.
5188098.

Dataset
Having found that neither of the two public datasets in Spanish labelling the presence or
absence of hate speech was sufficiently valid for training the proposed model, a proprietary
dataset was constructed that could be fully adapted to the problem posed.

The Tweepy library (Roesslein, 2020) has been used to build this dataset. This library
makes use of the Twitter API. The search patterns used for the construction of the dataset.

A keyword search was performed. These words are shown in Table 2, as well as their
English translation:

A dataset of 26,143 tweets dating between 2nd November 2020 and 21st December
2020 was generated. Although for training purposes it is only necessary to have the text of
the tweet and its classification, in order to carry out an analysis of the data, it was decided
to store additional information such as Location, Number of followers, Number of
followings, Total number of tweets, Date of user creation, Date of tweet creation, Number
of retweets and Hashtags.
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As far as data privacy is concerned, it is demonstrated that Cambridge Analytica is still
alive and we can export people’s behavioural characteristics without their consent just by
acquiring publicly available data (Pitropakis et al., 2020; Kandias et al., 2013; Isaak &
Hanna, 2018). This information, being public and anonymized, is exempt from the request
for approval by an ethics committee (Eysenbach & Till, 2001).

Preprocessing and labelling data
After analysing the different articles in which predictive models are generated, it was
decided to make use of a subset of data consisting of 2,000 tweets to be labelled in the
two categories to be classified: racist tweets and non-racist tweets. The subset of data
chosen was balanced, with 52% of tweets labelled as non-racist and 48% of tweets labelled
as racist.

From the initial set of 26,143 tweets, a pre-selection of 2,000 tweets was made by
four students of computer engineering interpreting 50% of them as belonging to each
category: racist or xenophobic tweets and tweets that were neither racist nor xenophobic.
Subsequently, labelling was carried out manually by eight experts in the field of
psychology. The set of 2,000 tweets was divided into four subsets of 500 tweets that

Table 1 Summary of the objectives and weaknesses of the literature review conducted.

Reference Findings Weaknesses

(Ahmad et al., 2018; Hasan, Maliha &
Arifuzzaman, 2019; Lakshmi, Divya &
Valarmathi, 2018; Br Ginting, Irawan &
Setianingsih, 2019)

Studies that corroborate good results in the task of
text classification using conventional machine
learning techniques (SVMs, Logistic regression).

These articles are not focused on obtaining
predictive models for classifying categories of
racism and xenophobia in Spanish texts.

(Pereira-Kohatsu et al., 2019) HaterNet: dataset of 6,000 labelled tweets as hate
speech or not. LDA, QDA, Random Forest,
Ridge Logistic Regression, SVM and an LSTM
combined with an MLP applied to HaterNet.

Tweets labelled as racist, but not racist. Very small
percentage of tweets are related to racism, which
is one of the topics that interests us for this work.

(Basile et al., 2019) HateEval: two datasets, one in english and the
second one in Spanish. Spanish dataset has 5,000
labelled tweets in the training set.

Only 1,971 tweets are related to racism and 987 of
this subset were mislabelled. Tweets from some
people dnouncing racism that are labelled as
racist.

(Nedjah, Santos & de Macedo Mourelle, 2019;
Roy et al., 2020)

Convolutional neural networks applied to
different problems.

CNN applied to different problems, not only for
text classification and not focused on racism and
xenophobia.

(Paetzold, Zampieri & Malmasi, 2019) Theory about recurrent neural networks (RNN) Usually, training the BERT model from scratch on
similar dataset could produce much better result
(Sany et al., 2022; Shahri et al., 2020).

(Talita & Wiguna, 2019; Bisht et al., 2020;
Zhao et al., 2020; Zhang et al., 2021)

Long Short-Term Memory Network (LSTM)
applied to different problems.

Not all of them are focused on text classification.
Those that are, do not make comparisons with
BERT.

(Plaza-Del-Arco et al., 2020) SVM, linear regression (LR), Naive Bayes (NB),
decision trees (DT), LSTM and a lexicon-based
classifier applied to a dataset composed by
tweets related to xenophobia and misogyny.

The tweets are labelled with value 1 if speaks about
xenophobia or misogyny. This may bias the
results of the model. The best model was 74.2%
of F1-score.

(del-Arco et al., 2021) LSTM, Bidirectional Long Short-Term Memory
Networks (Bi-LSTM) and CNN, mBert, XLM
and BETO applied to HatEval and HaterNet.

The dataset are biased because the subsets were
mislabelled.
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were labelled by two people individually. The pairs of experts then compared their labels
and decided which label to assign to tweets where there might be some doubt as to whether
or not they belonged to a category. Subsequently, a clustering phase of all tagged tweets
was carried out.

Before generating this subset, a pre-processing of the data was carried out, which
included the following tasks:

� Removal of extremely short tweets in which it is totally impossible to identify the
presence or absence of racism.

� Removal of ironic tweets.

� Removal of tweets that are excessively badly written, making them difficult to
understand or simply using invalid characters repeatedly.

Figure 1 Workflow of the research conducted. Full-size DOI: 10.7717/peerj-cs.906/fig-1

Table 2 Spanish keywords used to collect dataset and their translation to English language.

Spanish keyword Translation to English

moro, mora moor

gitano, gitana, gypsy gypsy

puto simio fucking ape

negro de mierda, negra de mierda, puto
negro, puta negra

fucking nigga

inmigracion, inmigrante immigration, immigrant

patera small boat

mena (menores extranjeros no acompanados) unaccompanied foreign minor immigration, immigrant

panchito, panchita, sudaca spic, greaser

Benítez-Andrades et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.906 8/24

http://dx.doi.org/10.7717/peerj-cs.906/fig-1
http://dx.doi.org/10.7717/peerj-cs.906
https://peerj.com/computer-science/


� Conversion of all text to lowercase.

� Removal of URLs.

� Elimination of unnecessary spaces.

� Elimination of user names.

� Elimination of unnecessary characters.

� Elimination of accents.

� Elimination of stopwords.

The following criteria were also taken into account when selecting the subset:

� Variety of terms in the dataset. While the filters used to capture the tweets are extremely
varied, in practice some terms are much more popular than others. For example, the
terms “inmigracion” (immigration) or patera (small boat) appear in a much higher
number of tweets than the term “negra de mierda” (fucking nigga). Therefore, if this
factor is not taken into account when tagging tweets, we end up with a data set that is too
poor with data that is too similar.

� Variety of meanings within the same term. Although many of the terms do not leave any
doubt about their meaning, some of them may have different meanings which, if they
are not both included, the behaviour of the model in the future when receiving input
from these terms would be considerably reduced. An example of words to which this
criterion applies directly is: “mora” (moor), “mena” (unaccompanied foreign minor) or
“panchito” (spic).

BERT models
BERT (Devlin et al., 2019) makes use of Transformers (Vaswani et al., 2017), a deep
learning model proposed by researchers at Google and the University of Toronto in 2017
that has particular application in the field of natural language processing.

Like Recurrent Neural Networks (RNN), Transformers is designed to work with
sequential data. In a similar way to humans, it is capable of processing natural language,
serving to carry out tasks as diverse as translation or text classification. However, unlike
RNNs, Transformers do not require sequential data, text in this case, to be processed in
order.

This means that, when receiving a text as input, it is not necessary to process the
beginning of the text before the end, which allows for much greater parallelisation and,
therefore, reduces training times considerably.

Transformers have been designed using the concept of the attention mechanism, which
itself was designed to memorise long sentences in machine translation tasks.

At the architectural level, it is based on an encoder-decoder architecture in which the
encoders consist of a set of encoding layers that iteratively process the input layer by layer.
In turn, the decoders consist of a set of decoding layers that do the same at the output of
the encoder.
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Thus, when Transformers receive a text, it passes through a stack of encoders. The
output obtained at the last encoder is passed to each of the decoders that make up the stack
of decoders, resulting in a final output. A very high-level representation of Transformers
can be found in the Fig. 2.

Each encoder consists of two main components, an attention mechanism called self-
attention and a feed forward neural network.

The encoder receives a list of numeric vectors as input that flows through the self-
attention layer. This layer helps the encoder to take into account the rest of the words in
the sentence before encoding each word. Although the example in the figure above is
very simple, the encoder, before encoding the word “Thinking”, would take into account
that this word is accompanied by the word “Machines” when generating the z1 vector, just
as it would do the same with the word “Machines” when generating the z2 vector.

The output obtained for each of the input vectors, a list of z vectors in this case, is
passed through a pre-fed neural network, which will generate an output for each z input
vector. This output, which in the figure is represented as r, becomes the input to the next
encoder, which will perform the same process as described above.

Finally, it should be noted that each encoder has a series of residual connections that
prevents the output of one layer from being processed by the next layer. These mechanisms
are particularly relevant in neural networks that have many hidden layers, allowing
certain layers to be left unused if necessary. In addition, it should be noted that a
normalisation process is applied to the output of each layer.

Since its publication, it has become the best existing solution for a large number of NLP
problems. The most special feature of the model is the way in which it deals with the

Figure 2 High-level representation of Transformers. Full-size DOI: 10.7717/peerj-cs.906/fig-2
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meaning of words depending on the context in which they are used, using an architecture
based on Transformers, which will be explained in due course.

BERT’s first differentiating factor is the difference from older embedding generation
techniques such as Word2Vec, Glove or FastText.

The embeddings generated using the aforementioned techniques are context-
independent, i.e., each word has a unique vector that defines it whatever the context in
which it is used. This means that all the different meanings of a given word are combined
into a single vector.

Metrics to evaluate results
To evaluate the results obtained in each of the models developed, three different metrics
have been used: Precision (P), Recall (R) and F1-score (F1).

Precision
Precision is a metric used to calculate what percentage of the positive samples (which in
this particular case equals the samples labelled as racist) have been properly classified.
The formula used to calculate this metric is as follows, where c is equal to the class (0 =
Non-racist, 1 = Racist), TP = True positive, FP = False positive and FN = False negative:

PðcÞ ¼ TP
TP þ FP

(1)

Recall
Recall, in turn, is a metric used to calculate what percentage of the samples classified as
positive have been properly classified. The formula used to calculate this metric is as
follows, where c is equal to the class (0 = Non-racist, 1 = Racist), TP = True positive and FN
= False negative:

RðcÞ ¼ TP
TP þ FN

(2)

F1-score
F1-score is a metric used to calculate the effectiveness of a classifier by taking into account
its accuracy and recall values. F1 assumes that the two metrics used are of equal
importance in calculating effectiveness. If one of them is more important than the other, a
different formula Fβ would have to be used. The formula used to calculate this metric is as
follows, where P equals the precision value and R equals the recall value:

F1 ¼ 2 � P � R
P þ R

(3)
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EXPERIMENTS AND RESULTS
Experimental setup
As part of the development of this project, a total of five different predictive models have
been developed. Two are transfer learning models and three are deep learning models.

Within the transfer learning models, a model based on BETO has been developed,
which is very similar to BERT trained in Spanish, and a model based on mBERT, a BERT
checkpoint that can be used on texts in a large number of different languages. With respect
to deep learning models, a model has been developed that implements a convolutional
neural network, another model that implements a recurrent neural network (LSTM) and a
last model that fuses a convolutional neural network with another recurrent neural
network.

BETO model
BETO (Cañete et al., 2020) is a transfer learning model that has been trained in the same
way as BERT, except that it has been trained using texts written in Spanish instead of
English, including Wikipedia entries, subtitles of series and movies, and even news. The
specific technique with which it has been trained is called Whole Word Masking, a
technique very similar to the Masked Language Model in which instead of hiding random
tokens, it ensures that the hidden tokens always constitute a word, which means that if a
token corresponding to a sub-word is hidden, the rest of the tokens that make up the whole
word are also hidden. If we make a comparison between BETO and the different BERT
models, we could say that it is a model extremely similar to the base BERT, given that it has
12 layers of encoders in its architecture.

Within BETO, there are two different models, one that has been trained using words
containing both upper and lower case letters (original texts therefore) and another one that
has been trained using only words written in lower case letters (texts are processed to
comply with this premise). Although both models offer great results, depending on the
problem to be solved, it is more appropriate to use one rather than the other. In this
particular case, given that the dataset used is made up of tweets (where people are not at all
careful about the way they express themselves), the uncased model is the one that performs
better. After carrying out a large number of tests with both models, it has been found
that the results obtained by this model are between 0.5% and 1% better, which justifies the
selection of this model.

mBERT model
mBERT (Multilingual BERT) (Devlin et al., 2019) is a transfer learning model that has been
trained on Wikipedia texts written in 104 different languages, including Spanish. Like
BETO, it also has an identical architecture to the BERT base, with 12 layers of encoders,
and two different models, one trained with texts containing both lowercase and uppercase
letters and the other trained with texts containing only words written in lowercase
letters. Contrary to BETO, after several tests, it has been found that the cased model
performs slightly better than the uncased model. However, due to some problems in the
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tokenisation process, it has been necessary to convert all text to lower case even though the
selected model is case-sensitive.

Multilingual models frequently encounter the common problem of language detection.
This type of model does not usually have any mechanism or system that allows the
detection of the language in which the texts that make up the input are written, which
means that on many occasions the tokenizer makes mistakes when dividing the texts
into tokens. If we add to this the fact that this type of model does not have mechanisms
that allow words from different languages with the same meaning to be represented in a
similar way in the vector space, everything seems to indicate that the results obtained
after training these models are worse than those obtained by native models, that is, those
designed to work with texts written in a single language (as is the case of BETO in Spanish
or BERT in English).

CNN model

This model is made up of the following layers:

� Embedding layer.

� Three convolutional layers each followed by a MaxPooling layer. A total of 256, 128 and
64 filters. MaxPooling of 2 × 2.

� Final output layer with a single neuron, in charge of classifying the sample.

The schematic architecture of the model is shown in Fig. 3.

LSTM model
This model consists of the following layers:

� Embedding layer.

� LSTM layer with 64 units.

� Two fully connected layers with dropout between them.

� Final output layer with a single neuron, in charge of classifying the sample.

The schematic architecture of the model is shown in Fig. 4.

CNN + LSTM model
This model consists of the following layers:

� Embedding layer.

� Convolutional layer with 64 filters.

� LSTM layer with 128 filters.

� Final output layer with a single neuron, in charge of classifying the sample.

The schematic architecture of the model is shown in Fig. 5.

Transfer learning parameter optimisation (BETO and mBERT)
In order to ensure that the results obtained by the transfer learning models are as
high as possible, a series of tests have been carried out in which the performance of
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both models has been tested as a function of the value taken by the various
hyperparameters.

Although the number of hyperparameters that can be customised is really high, in
practice it is totally impossible to try to modify all of them given the exponential growth
experienced in the number of combinations. Therefore, it has been necessary to select
those parameters that have a greater relevance in the behaviour of the model (Sun et al.,
2019).

The parameters selected were as follows:

� Type of model: Cased or uncased.

� Number of epochs: 2, 4 and 8. The number of epochs dictates the number of times the
model will process the entire training set.

� Batch size: 8, 16, 32 and 64. This parameter indicates the number of samples to be
processed by the model until an internal update of the model weights is performed.

� Optimiser: Adam and Adafactor. Mechanisms used to manage the update of the model
weights.

Figure 3 CNN architecture scheme. Full-size DOI: 10.7717/peerj-cs.906/fig-3
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� Learning rate: 0.00002, 0.00003 and 0.00004. Parameter that determines the step size
when performing an update in the model with a view to approaching a minimum in a
loss function.

As the dataset is made up of tweets, the length of which is generally limited to between
three and 35 words, the maximum sequence size is not so relevant. However, if we were
working with other types of text, it would be another parameter to be modified.

The different possible combinations tested (a total of 144) and the best parameters
found for each of the two models can be found in the Table 3.

The most optimal configurations for both models are practically identical, with the
exception of the model type and number of epochs. While in the case of BETO it is the
uncased model that obtains the best results, in mBERT it is the cased model that obtains
the best results, although the difference is minimal. In turn, in relation to the number of
epochs, BETO obtains better results with 8 and mBERT with 4.

Optimisation of deep learning parameters (CNN, LSTM and CNN +
LSTM)
In order to ensure that the results obtained by the deep learning models are as high as
possible, a series of tests have been carried out in which the performance of the models has
been tested depending on the value of certain strategically selected parameters.

As in BERT, the number of parameters to be modified is really high, much higher still in
this case since some factors such as the number of hidden neurons in each layer greatly
influence the performance of the models. Although several tests have been carried out on
both the structure of the different models and the number of hidden neurons in each layer,
it is more important to focus on the remaining parameters that have been modified.

The selected parameters have been the following:

� Batch size: 16, 32, 64, 128.

� Dropout: 0.25, 0.5.

� Optimizador: Adam, SGD.

� Funcion de activacion: Relu, Tanh.

� Tasa de aprendizaje: 0.01, 0.02, 0.001, 0.002.

On numerous occasions, the number of epochs is also a parameter to be modified.
However, in all the models pertaining to this project, we have chosen to use a mechanism
called EarlyStopping, which is a regularisation mechanism used to avoid overfitting and
which consists of stopping training when the control metrics of the validation set begin to
decay.

The different possible combinations tested (a total of 64 in the CNN model and 128 in
the LSTM and CNN + LSTMmodels) and the best parameters for each of the three models
can be found in Table 4.
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The most optimal configurations for the three models are very similar, sharing values in
optimiser, activation function and learning rate. Dropout, which is not present in the
proposed CNN architecture, is identical in the other two models.

Hardware and Software used for the experiments
To perform the pre-processing of the tweets and apply the deep learning techniques, a
Jupyter notebook, Python 3.6 was used and run on a computer with the following
characteristics: Intel(R) Core(TM) i7-9700K CPU @ 3.60GHZ, 32.0GB RAM and an
NVIDIA GeForce RTX 2080 6GB graphics card. The spaCy and nltk libraries were used to
pre-process the text content.

Figure 4 LSTM architecture scheme. Full-size DOI: 10.7717/peerj-cs.906/fig-4
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Results
Table 5 shows the results obtained after numerous runs of the various predictive models.
The runtime column refers to the time spent training and validating the model.

Figure 5 CNN + LSTM architecture scheme. Full-size DOI: 10.7717/peerj-cs.906/fig-5

Table 3 The best transfer learning hyperparameters.

Hyperparameter Options BETO mBERT

Model type (cased, uncased) uncased cased

Epochs (2, 4, 8) 8 4

Batch size (8, 16, 32, 64) 8 8

Optimizer (Adam, Adafactor) Adam Adam

Learning rate (2e−5, 3e−5, 4e−5) 4e−5 4e−5

Table 4 The best deep learning hyperparameters.

Hyperparameter Options CNN LSTM CNN + LSTM

Batch size (16, 32, 64, 128) 32 64 64

Dropout (0.25, 0.5) N/A 0.5 0.5

Optimizer (Adam, SGD) Adam Adam Adam

Activation function (Relu, Tanh) Relu Relu Relu

Learning rate (1e−2, 2e−2, 1e−3, 2e−3) 2e−3 2e−3 2e−3
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BETO offers the best results in each and every one of the metrics calculated, obtaining a
wide advantage over the rest of the models. The confusion matrices of the two best-
performing models are shown in Fig. 6.

As regards to the most important metric of all, Macro F1-score, in which all classes have
the same importance in determining the effectiveness of the model, BETO obtains 85.14%,
improving by more than three points over the other transfer learning model developed
(mBERT) and between five and six points over the deep learning models. Several
conclusions can be drawn from these results.

CRITICAL EVALUATION AND COMPARISON OF THE
RESULTS
Firstly, comparing the two transfer learning models, it can be seen that the native model
(BETO) performs substantially better than the multilingual model (mBERT). The main
reasons for this difference between the two models are as follows:

� Vocabulary difference between the two models: As BETO was trained with texts written
in Spanish and mBERT with texts written in 104 different languages, the number of
Spanish words in the two models differs greatly, which means that the percentage of
words in the dataset present in the models’ vocabulary of the models is also very
different. As these are transfer learning models, where a generic model is used to solve a

Table 5 Results obtained for all models.

Model Non-racist Racist Macro-averaged Runtime

P (%) R (%) F1 (%) P (%) R (%) F1 (%) P (%) R (%) F1 (%)

BETO 84.28 87.30 85.76 86.17 82.94 84.52 85.22 85.12 85.14 1,230 s

mBERT 83.28 81.11 82.18 80.73 82.94 81.82 82.00 82.02 82.00 1,129 s

CNN 80.13 81.43 80.78 80.21 78.84 79.52 80.17 80.14 80.15 840 s

LSTM 78.90 84.04 81.39 82.05 76.45 79.15 80.48 80.24 80.27 844 s

CNN + LSTM 77.58 83.39 80.38 81.11 74.74 77.80 79.34 79.07 79.09 938 s

Note:
The best results are highlighted in bold.

Figure 6 Confusion matrices of the best performing models (BETO and mBERT).
Full-size DOI: 10.7717/peerj-cs.906/fig-6
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specific problem, the difference in the word coverage of the dataset has a significant
impact on the models’ results.

� Difference in the tokenisers: While BETO has a tokeniser that is solely and exclusively
responsible for tokenising texts written in Spanish, mBERT has a generic tokeniser that
does not even have a mechanism for detecting the language in which the text it is
processing is written. This means that on numerous occasions tokenisation in mBERT is
carried out erroneously by recognising Spanish words as words that exist in other
languages.

With respect to the deep learning models, although they perform considerably worse
than the transfer learning models (especially BETO), it should be noted that the results
obtained are really good if we take into account the simplicity of the models developed and
the small amount of data in the training set (only 1,400 samples).

Among the factors that influence the poorer performance of these models are the
following:

� Single embeddings for several meanings of the same word: Although pre-trained
embeddings are used which have a coverage of 82.4% of the words (an exceptionally
good figure), all meanings of the same word are represented by the same numeric vector.
This means that, for words in this situation, their numeric vector is influenced by all
the different meanings of the word, which causes the accuracy of the model to be
reduced slightly.

� Context independence: Unlike transfer learning models, deep learning models do not
have such an effective mechanism for representing words based on their context
(RNNs have one, but it is nowhere near as effective as that implemented by BERT-based
systems). This makes it often a bit complex for such models to take into account a word
into account its specific context, which in addition to the unique embeddings for
each word leads to poorer model results.

Taking into account all of the above into account, it is worth highlighting that BETO is,
without a doubt, the model that best solves the problem posed in this research, also
demonstrating how important it is to develop native transfer learning models, as they
obtain better results than multilingual models.

In our research, BETO was the best performing model. Deep learning models generally
operate as black boxes, so in some cases it is difficult to reason why some perform better or
worse. However, our performance results are consistent with those obtained in other
studies (del-Arco et al., 2021; Gutiérrez-Fandiño et al., 2021; Pomares-Quimbaya, López-
Úbeda & Schulz, 2021) in which BETO was also the best performing model. Although
BETO and mBERT have very similar architectures, BETO was trained on Spanish data and
mBERT was pre-trained on 104 languages. In this case it is evident, as in other articles
that also make use of them (Gutiérrez-Fandiño et al., 2021; Pomares-Quimbaya, López-
Úbeda & Schulz, 2021) that for the present problem, the model trained specifically with the
same language as the dataset for which an efficient solution is to be found offers better
results.
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CONCLUSIONS
In this research, the two objectives initially set have been completed:

� Messages on the Twitter platform containing words related to racism were obtained. A
subsample of 2,000 messages was tagged, resulting in a balanced dataset.

� Different predictive models were generated using NLP techniques. These models were
based on deep learning (CNN, LSTM and CNN + LSTM) and on transfer learning
models (BERT). The best performing model was based on BERT, namely BETO with a
precision of 85.22%.

This fact justifies the need for the development of native transfer learning models.
Having been trained with texts written in a single language instead of dozens of languages,
the vocabulary of native models is far superior to that of multilingual models, which
translates into greater effectiveness in the vast majority of situations.

This research shows preliminary results that need to be further investigated by
improving some weaknesses, e.g., the size of the dataset used. Future research will increase
the dataset, to achieve a more robust validation of the model presented in this article.
Following more robust validation, it is intended to add new languages and to integrate
these models into web applications that can be useful to society. Other limitations include,
as in other studies that present text classification models, the need to retrain the model to
include new terms generated by society over time. In addition to this, it is proposed to
implement the model in an application that helps to automatically detect racism in
different websites and to present results and validation of the complete system.
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