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ABSTRACT
Background. It is often the case that only a portion of the underlying network structure
is observed in real-world settings. However, as most network analysis methods are built
on a complete network structure, the natural questions to ask are: (a) how well these
methods perform with incomplete network structure, (b) which structural observation
and network analysis method to choose for a specific task, and (c) is it beneficial to
complete the missing structure.
Methods. In this paper, we consider the incomplete network structure as one random
sampling instance from a complete graph, and we choose graph neural networks
(GNNs), which have achieved promising results on various graph learning tasks, as
the representative of network analysis methods. To identify the robustness of GNNs
under graph sampling scenarios, we systemically evaluated six state-of-the-art GNNs
under four commonly used graph sampling methods.
Results. We show that GNNs can still be applied on single static networks under
graph sampling scenarios, and simpler GNN models are able to outperform more
sophisticated ones in a fairly experimental procedure. More importantly, we find that
completing the sampled subgraph does improve the performance of downstream tasks
in most cases; however, completion is not always effective and needs to be evaluated
for a specific dataset. Our code is available at https://github.com/weiqianglg/evaluate-
GNNs-under-graph-sampling.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Networks and
Communications, Network Science and Online Social Networks
Keywords Graph neural network, Graph sampling, Evaluation, Imcomplete structure

INTRODUCTION
In the last few years, graph neural networks (GNNs) have become standard tools for learning
tasks on graphs. By iteratively aggregating information from neighborhoods, GNNs embed
each node from its k-hop neighborhood and provides a significant improvement over
traditional methods in node classification and link prediction tasks (Dwivedi et al., 2020;
Shchur et al., 2018). Powerful representation capabilities have led to GNNs being applied in
areas such as social networks, computer vision, chemistry, and biology (Hou et al., 2020).
However, most GNNmodels need a complete underlying network structure, which is often
unavailable in real-world settings (Wei & Hu, 2021).
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Frequently it is the case that only a portion of the underlying network structure is
observed, which can be considered as the result of graph sampling (Al Hasan, 2016; Ahmed,
Neville & Kompella, 2013; Blagus, Šubelj & Bajec, 2015; Dwivedi et al., 2020; Hu & Lau,
2013). Graph sampling has become a standard procedure when dealing with massive
and time evolving networks (Ahmed, Neville & Kompella, 2013). For example, on social
networks such as Twitter and Facebook, it is impossible for third-party aggregators to
collect complete network data under the restrictions for crawlers, we can only sample them
by various different users. Unfortunately, many factorsmake it difficult to performmultiple
graph sampling. First, the time consuming, communication networks such as the Internet
need hours or days to be probed (Ouédraogo & Magnien, 2011). Moreover, measuring the
network structure is costly, e.g., experiments in biological or chemical networks. Graph
sampling scenarios bring an additional challenge for GNNs, and little attention has been
paid to the performance of GNN models under graph sampling.

In this experimental and analysis paper, we consider the observed incomplete network
structure GO as one random sampling instance from a complete graph G, then we address
the fundamental problem of GNN performance under graph sampling, in order to lay
a solid foundation for future research. Specifically, we investigate the following three
questions:

Q1: Can we use GNNs if only a portion of the network structure is observed?
Q2:Which graph sampling methods and GNN models should we choose?
Q3: Can the performance of GNNs be improved if we complete the partial observed

network structure?
To answer the above questions, we design a fairly evaluation framework for

benchmarkingGNNsunder graph sampling scenarios by following the principles inDwivedi
et al. (2020). Specifically, we performed a comprehensive evaluation of six prominent GNN
models under four different graph sampling methods on eight different datasets with three
semi-supervised network learning tasks, i.e., node classification, link prediction and graph
classification. The GNN models we implemented include Graph Convolutional Networks
(GCN) (Kipf & Welling, 2017), GraphSage (Hamilton, Ying & Leskovec, 2017), MoNet
(Monti et al., 2017), Graph Attention Network (GAT) (Velicković et al., 2017), GatedGCN
(Bresson & Laurent, 2017), and Graph Isomorphism Network (GIN) (Xu et al., 2018),
and the graph sampling methods we used include breadth-first search (BFS), forest fire
sampling (FFS), random walk (RW) and Metropolis–Hastings random walk (MHRW).
Our main findings are summarized as follows:

• In most single graph datasets, we can still use GNNs under graph sampling scenarios if
the sampling ratio is relatively large; however, sampling on multi-graph datasets causes
GNNs to fail.
• The best GNN model and sampling method are GCN and BFS in small datasets, GAT
and RW in medium datasets, respectively.
• In most cases, completing a sampled subgraph is beneficial to improve the performance
of GNNs; but completion is not always effective and needs to be evaluated for a specific
dataset.

Wei and Hu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.901 2/15

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.901


As far as we know, this is the first work to systematically evaluate the impact of graph
sampling on GNNs.

RELATED WORK
In this section, we briefly review related works on graph sampling and GNNs.

Graph sampling
Graph sampling is a technique to pick a subset of nodes and/or edges from an original
graph. The commonly studied sampling methods are node sampling, edge sampling,
and traversal-based sampling (Al Hasan, 2016; Ahmed, Neville & Kompella, 2013). In node
sampling, nodes are first selected uniformly or according to some centrality, such as
degree or PageRank, then the induced subgraph among the selected nodes is extracted.
In edge sampling, edges are selected directly or guided by nodes. Node sampling and
edge sampling are simple and suitable for theoretical analysis, but in many real scenarios
we cannot perform them due to various constraints, e.g., the whole graph is unknown
(Hu & Lau, 2013). Traversal-based sampling, which extends from seed nodes to their
neighborhood, is more practical. Therefore, a group of methods was developed, including
breadth-first search (BFS), depth-first search (DFS), snowball sampling (SBS) (Goodman,
1961), forest fire sampling (FFS) (Leskovec, Kleinberg & Faloutsos, 2005), random walk
(RW), and Metropolis–Hastings random walk (MHRW). With the numerous graph
sampling methods developed, the question of how they impact GNNs still remains to be
answered.

GNNs
After the first GNN model was developed (Bruna et al., 2014), various GNNs have
been exploited in the graph domain. GCN simplifies ChebNet (Defferrard, Bresson &
Vandergheynst, 2016) and speeds up graph convolution computation. GAT and MoNet
extend GCN by leveraging an explicit attention mechanism (Lee et al., 2019). Due to
powerful represent capabilities, GNNs have been applied into a wide range of applications
including knowledge graphs (Zhang, Cui & Zhu, 2020), molecular graph generation (De
Cao & Kipf, 2018), graph metric learning and image recognition (Kajla et al., 2021; Riba et
al., 2021). Recently, graph sampling was investigated in GNNs for scaling to larger graphs
and better generalization. Layer sampling techniques have been proposed for efficient
mini-batch training. GraphSage performs uniform node sampling on the previous layer
neighbors (Zeng et al., 2019). GIN extends GraphSage with arbitrary aggregation functions
on multiple sets, which is theoretically as powerful as the Weisfeiler–Lehman test of graph
isomorphism (Xu et al., 2018). In contrast to layer sampling, GraphSAINT constructs
mini-batches by directly sampling the training graph, which decouples the sampling from
propagation (Zeng et al., 2019). However, in most GNNs it is assumed that the underlying
network structure is complete without data loss, which is often not the case.

In addition, different GNNs are compared in Errica et al. (2019) and Shchur et al. (2018)
with regard to node classification and graph classification tasks, respectively, a systematic
evaluation of deep GNNs is presented in Zhang et al. (2021), and a reproducible framework
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for benchmarking of GNNs is introduced in Dwivedi et al. (2020). The most related work
to ours is Fox & Rajamanickam (2019), in which the robustness of GIN to additional
structural noise is studied. Our work focuses on graph sampling that can be considered as
a random structure removed from the original network.

Models
We focus on the robustness of GNNs under graph sampling scenarios. As shown in Fig. 1,
GO is the partial observed graph from a networkG, which is often difficult tomake complete
observations. We train GNNs onGO and then evaluate on three typical learning tasks: node
classification, link prediction and graph classification. In this paper, we treat GO as one of
the many graphs generated by a certain sampling process from a knownG, consequently we
are able to determine the robustness of GNNs in a statistical way via multiple independent
random sampled GO.

We denote the original network as G(V ,E,X), where V and E represent node and edge
sets, respectively, andX ∈R|V |×d denotes the attributematrix. There is nomissing structure
in G. The observed or sampled graph is represented by GO(VO,EO,XO) where VO⊆V and
EO⊆ E . We evaluate six popular GNNs (GCN, GraphSage, GAT, MoNet, GatedGCN and
GIN) with four traversal-based graph sampling methods (BFS, FFS, RW, and MHRW).
The six GNN models are selected according to performance and popularity; moreover,
they cover all three categories of GNN models: isotropic (GCN, GraphSage), anisotropic
(GAT, MoNet, GatedGCN) and Weisfeiler-Lehman (GIN) GNNs (Dwivedi et al., 2020).
We test only traversal-based sampling methods for two reasons: these methods are practical
in real settings (Hu & Lau, 2013), and these methods extract connected subgraphs, which
is a prerequisite for GNNs. In graph sampling, we iteratively pick nodes and edges starting
from a random seed node until the cardinality of the sampled node set VO reaches a given
number. Apart from the original sampled subgraph GO(VO,EO,XO), we also induce VO

to form G
′

O(VO,E
′

O,XO), i.e., E
′

O= (u,v)|u,v ∈VO,(u,v)∈ E.G
′

O has the same edges as G
between the vertices in VO; hence, G′O can be considered as a completion of GO.

We follow the principles of Dwivedi et al. (2020) and develop a standardized training,
validation, and testing procedure for all models for fair comparisons.

In addition, we considered multilayer perceptron (MLP) as a baseline model, which
utilizes only node attributes without graph structures.

EXPERIMENTS
Datasets
In our benchmark, we used nine datasets including six social networks (Cora, CiteSeer,
PubMed (Yang, Cohen & Salakhutdinov, 2016), Actor (Pei et al., 2020), ARXIV and
COLLAB (Hu et al., 2020)), two super-pixel networks of images (MNIST, CIFAR10
(Dwivedi et al., 2020)) and one artificial network generated from Stochastic Block Model
(CLUSTER (Dwivedi et al., 2020)). Statistics for all datasets are shown in Table 1.We treated
all the networks as undirected and only considered the largest connected component,
moreover, we ignored edge features in our experiments.
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Figure 1 Description of GNNs evaluation under graph sampling scenarios.
Full-size DOI: 10.7717/peerjcs.901/fig-1

Table 1 Dataset statistics.Only the largest connected component is considered. NC, LP and GC are
short for node classification, link prediction and graph classification, respectively.

Dataset #Graphs Total #Nodes Total #Edges #Node Features Task Metric

Actor 1 6,208 14,891 932
CiteSeer 1 2,120 3,679 3,073
Cora 1 2,485 5,069 1,433
PubMed 1 19,717 44,324 500

NC,
LP

Weighted
F1
for
NC;
ROC
AUC
for
LP

ARXIV 1 139,065 1,085,657 128 NC Accuracy
COLLAB 1 232,865 961,883 128 LP Hit@50
MNIST 70,000 4,939,668 23,954,305 1
CIFAR10 60,000 7,058,005 33,891,607 3

GC Accuracy

CLUSTER 12,000 1,406,436 25,810,340 7 NC Weighted F1

Setup
Setups for our experiments are summarized in Table 2. All datasets were split into training,
validation, and testing data. For node classification tasks, Cora, CiteSeer and PubMed were
split according to Yang, Cohen & Salakhutdinov (2016), first of the 10 splits from Pei et al.
(2020) was picked for Actor, and CLUSTER was split according to Dwivedi et al. (2020);
For link prediction tasks, we used a random 70%/10%/20% training/validation/test split
for positive edges in all datasets; For graph classification tasks, the splits were derived from
Dwivedi et al. (2020).

In GNNs, all models had a linear transform for node attributes X before hidden layers.
The number of hidden layers L was set to L= 2 to avoid over-smoothing for small-scale
datasets such as Actor, Core, CiteSeer and Pubmed, and we set to L= 3 for ARXIV and
COLLAB, L= 4 to MNIST, CIFAR10 and CLUSTER. We added residual connections
between GNN layers for medium-scale datasets (i.e., ARXIV, COLLAB, MNIST, CIFAR10
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Table 2 Experiment setups.NC, LP, LR are short for node classification, link prediction and learning rate, respectively.

Dataset Training/validation/
test ratio (%)

Model Optimizer LR reduce
patience#Layers Residual LR Weight

decay

48.0/32.0/20.0 (NC)
Actor

70.0/10.0/20.0 (LP)
3.8/15.5/31.3 (NC)

CiteSeer
70.0/10.0/20.0 (LP)
4.9/18.5/36.8 (NC)

Cora
70.0/10.0/20.0 (LP)
0.3/2.5/5.1 (NC)

PubMed
70.0/10.0/20.0 (LP)

2 No 0.01 5e−4 50

ARXIV 51.9/18.3/29.8 3 0.01 5e−4 50
COLLAB 70.0/10.0/20.0 3 10
MNIST 78.6/7.1/14.3 4 10
CIFAR10 75.0/8.3/16.7 4 10
CLUSTER 83.3/8.3/8.3 4

Yes
0.001 0

5

and CLUSTER) as suggested by Dwivedi et al. (2020). We chose the hidden dimension and
the output dimension that made the number of parameters almost equal for each model.
The number of attention heads of GAT was set to 8, and the mean aggregation function in
GraphSage was adopted. In MoNet, we set the number of Gaussian kernels to 3, and used
the degrees of the adjacency nodes as the input pseudo-coordinates, as proposed in Monti
et al. (2017).

We used the same training procedure for all GNN models for a fair comparison.
Specifically, the maximum number of training epochs was set to 1,000, and we adopted
Glorot (Glorot & Yoshua, 2010) and zero initialization for the weights and biases,
respectively. Also, we applied the Adam (Kingma & Ba, 2015) optimizer, and we reduced
learning rate with a factor of 0.5 when a validation metric has stopped improving after the
given reduce patience. Furthermore, we stopped the training procedure early if (a) learning
rate was less than 1e-5, or (b) validation metric did not increase for 100 consecutive
epochs, or (c) training time was more than 12 h. All model parameters were optimized
with cross-entropy loss when GO was sampled.

We implemented all the six models by the Pytorch Geometrics library (Fey & Lenssen,
2019) and the four graph sampling methods based on Rozemberczki, Kiss & Sarkar (2020).

RESULTS
For each dataset, sampling method, and GNNmodel, we performed 4 runs with 4 different
seeds, then reported the average metric. To answer Q1, we show means, µ, and standard
deviations, δ, of metrics for all datasets with sampling ratio r = |Vs|/|V | ∈ [0.1,0.5] using
GCN and MHRW (Table 3). It is worth to mention that the other GNN models and graph
sampling methods had similar results. There are a few observations to be made. First, the
means, µ, increase and the standard deviations, δ, decrease as the sampling ratio increases
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in node classification and graph classification tasks, which aligns with our intuition. Second,
the performance is acceptable in most single graph datasets when r is relatively large, e.g.,
compared to the complete cases, the relative losses1= 1−µr/µcomplete are all less than 15%
for CiteSeer, Cora, Pubmed, ARXIV and COLLAB when r ≥ 0.4. This is partly because the
nodes in GO have acquired sufficient neighborhood structure to accomplish the messaging
and aggregation needed by GNNs. Therefore, we can still use GNNs in most single graph
datasets under sampling scenarios, as long as the sampling ratio, r , is chosen properly.
The choice of the appropriate r varies depending on the dataset, sampling method, and
GNN model. For example, in order to make 1≤ 10% on node classification tasks, the
sampling ratio should satisfy r ≥ 0.5 for Actor and PubMed, r ≥ 0.4 for Cora, and r ≥ 0.1
for CiteSeer. By contrast, the performance degradation is severe for multi-graph datasets
(i.e., CLUSTER, MNIST, CIFAR10), which is mainly due to the fact that independent
random sampling destroys the intrinsic association between graphs. Hence, we cannot
directly use GNNs with independent random sampling scenarios.

To answer Q2, we show µ and δ for all datasets when we fix r = 0.3 in Table 4.
According to Table 4, the best performing GNN model(s) is consistent across different

sampling methods for a specific dataset, especially in node classification tasks, e.g.,
GatedGCN for Actor, GCN for Cora, CiteSeer, and PubMed. The consistency suggests that
datasets have a strong preference for a specific GNN model, and there is no silver-bullet
GNN for all datasets. Another observation is that, some datasets show a tendency towards
sampling methods, e.g., BFS for Actor, RW for ARXIV. To compare all GNN models
and sampling methods, we consider the relative metric score, as proposed in Shchur et al.
(2018). That is, for GNN models, we take the best µ from four sampling methods as 100%
for each dataset, and the score of each model is divided by this value, then the results for
eachmodel are averaged over all datasets and samplingmethods.We also rankGNNmodels
by their performance (1 for best performance, 7 for worst), and compute the average rank
for each model. Similarly, we calculate the score of each sampling method. The final scores
for GNN models and sampling methods are summarized in Table 5. These results provide
a reference for the selection of sampling methods, and a guidance for sampling-based GNN
training like GraphSAINT (Zeng et al., 2019).

GNNs outperform MLP on average in Table 5, and this confirms the superiority of
GNNs, which combine structural and attribute information, compared to methods that
consider only attributes. On small datasets, GCN is the best GNNmodel , which proves that
simple methods often outperforms more sophisticated ones (Dwivedi et al., 2020; Shchur
et al., 2018). In addition, BFS is found to be the best sampling method for small datasets,
partly because it samples node labels more uniformly than other methods. Figure 2 shows a
comparison of the Kullback–Leibler divergence between label distributions of training and
testing from different sampling methods in PubMed (NC); it can be seen that BFS has a
lower score, which leads to better generalization power in GNNs. On medium datasets, the
best GNNmodel changes to GAT, and the most competitive sampling method are RW and
MHRW. This may be due to the fact that RW and MHRW can obtain a more macroscopic
structure compared to BFS and FFS.
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Table 3 The means and standard deviations of metrics (µ± δ (%)) for all nine datasets with sampling
ratio r ∈ [0.1,0.5] using GCN andMHRW. Metric for complete network structures are reported as ‘‘com-
plete’’.

Node classification (GCN,MHRW)

r Actor (NC) CiteSeer
(NC)

Cora (NC) Pubmed (NC) ARXIV CLUSTER

0.10 25.2± 3.6 63.5± 14.6 63.5± 11.6 56.6± 11.2 59.0± 1.2 31.9± 0.6
0.20 26.4± 2.7 65.8± 8.6 64.8± 6.0 62.6± 7.1 61.6± 1.4 27.3± 0.2
0.30 26.8± 2.4 64.8± 7.6 68.4± 4.4 66.6± 7.1 62.2± 1.2 26.9± 0.2
0.40 26.9± 1.8 66.6± 5.0 70.8± 3.7 70.6± 3.9 63.3± 1.2 26.5± 0.4
0.50 27.5± 1.6 66.9± 4.3 72.8± 3.1 72.4± 2.6 63.3± 1.5 26.6± 0.2
complete 30.1± 0.7 70.6± 1.0 78.6± 1.1 78.7± 0.2 71.4± 0.8 55.7± 1.6

Link prediction (GCN,MHRW)

r Actor (LP) CiteSeer (LP) Cora (LP) Pubmed (LP) COLLAB

0.10 72.1± 3.9 91.8± 1.3 84.6± 5.3 75.6± 1.0 85.1± 2.3
0.20 69.6± 4.4 93.6± 2.4 88.3± 2.1 79.4± 2.0 81.8± 6.3
0.30 74.4± 2.0 92.9± 4.9 95.1± 1.7 88.4± 9.7 80.8± 1.9
0.40 74.2± 9.2 96.3± 0.6 90.9± 4.4 89.4± 9.5 72.5± 5.4
0.50 75.3± 6.8 94.7± 3.1 94.2± 3.6 98.5± 0.4 75.0± 5.5
complete 94.5± 0.7 98.7± 0.4 98.3± 0.6 99.4± 0.1 62.3± 5.2

Graph classification (GCN,MHRW)

r MNIST CIFAR10

0.10 18.6± 0.1 25.1± 0.8
0.20 18.2± 0.6 28.6± 0.4
0.30 20.0± 0.5 30.6± 0.5
0.40 22.4± 0.8 32.8± 0.6
0.50 25.3± 0.2 34.7± 0.4
complete 83.8± 0.5 41.9± 0.8

To answer Q3, we considered the induced subgraphG′O as a completion ofGO. We chose
the preferred GNN model for each dataset, e.g., GatedGCN for Actor, then computed the
induced relative metric improvement percent as τ = µ′r/µr − 1. Figure 2 shows the
improvements on all datasets with r ∈ 0.1,0.3,0.5.

From Fig. 3 it can be seen that network completion can improve performance in most
cases. Comparing Figs. 3A, 3B and 3C shows that the induced improvement τ increases as
the sampling ratio r decreases especially when we performMHRW or RW, which indicates
the necessity of network completion when τ is low.

On the other hand, Fig. 3 reveals the complexity of datasets under sampling scenarios,
which indicates that network completion is not always effective. Some datasets benefit from
network completion in all cases, e.g., Cora (NC), ARXIV and MNIST; and there are also
some datasets seem to be unaffected by completion, e.g., PubMed (LP) when r ∈ 0.3,0.5
(see Figs. 3B–3C); what is more, network completion has side effects on datasets such
as COLLAB. The complexity may be partly explained by structure noise in network. It
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Table 4 The means and standard deviations of metrics (µ± δ (%)) for all nine datasets with sampling ratio r = 0.3. NC, LP are short for node
classification and link prediction, respectively. For each dataset and graph sampling method, the best metric is marked in bold. For each dataset and
GNN method, the best metric is shown in red.

Dataset Sampling method GAT GCN GIN Gated Sage MoNet MLP

BFS 29.2 ± 2.5 31.1 ± 2.8 30.1 ± 2.2 37.6± 5.8 34.0 ± 3.7 31.7 ± 5.3 26.6± 7.6
FFS 24.9± 1.9 25.8± 2.1 25.9± 2.0 41.2 ± 2.5 32.3± 4.0 31.7 ± 5.0 29.2± 3.8
MHRW 25.2± 2.5 26.8± 2.4 26.4± 2.4 40.6± 2.1 32.5± 2.9 31.5± 4.9 29.8± 3.1

Actor
(NC)

RW 25.5± 2.7 26.8± 2.6 27.3± 2.7 38.1± 4.5 32.9± 4.3 31.5± 5.1 30.4 ± 5.1
BFS 71.0 ± 7.7 73.5 ± 4.3 67.5 ± 6.3 52.5± 27.6 65.4 ± 17.6 60.5 ± 21.5 63.1 ± 12.7
FFS 65.2± 6.7 67.4± 5.1 63.9± 6.6 53.8± 24.6 61.4± 14.6 54.5± 17.5 57.4± 11.8
MHRW 61.3± 8.8 64.8± 7.6 59.6± 9.8 49.1± 23.5 54.8± 11.8 43.6± 13.1 52.3± 12.6

CiteSeer
(NC)

RW 64.3± 7.0 66.8± 6.2 61.4± 7.9 56.3 ± 9.7 58.0± 14.1 48.9± 13.8 50.7± 12.2
BFS 64.7 ± 8.0 68.6± 7.0 61.7± 7.6 48.0± 14.0 60.6 ± 9.7 50.6 ± 11.8 59.4 ± 9.5
FFS 61.8± 6.5 66.6± 4.7 62.3± 5.6 54.5 ± 10.5 55.5± 10.5 45.4± 8.5 56.2± 10.9
MHRW 61.9± 5.4 68.4± 4.4 64.1 ± 4.8 53.5± 8.8 54.5± 10.6 42.7± 8.1 56.5± 8.9

Cora
(NC)

RW 62.1± 5.7 69.4 ± 5.0 62.8± 6.5 49.7± 12.0 53.8± 10.5 42.7± 8.9 54.2± 8.9
BFS 71.9 ± 9.1 74.4 ± 5.5 69.8 ± 7.9 55.5± 19.0 65.9 ± 19.2 63.6 ± 19.8 63.7 ± 19.9
FFS 65.4± 8.4 68.5± 5.8 66.9± 6.2 66.3 ± 4.5 61.6± 15.0 52.0± 18.4 60.0± 13.1
MHRW 63.0± 8.7 66.6± 7.1 64.6± 6.1 52.1± 16.8 52.7± 14.8 50.9± 12.7 54.4± 13.0

PubMed
(NC)

RW 64.4± 7.8 67.7± 4.9 65.8± 5.5 53.7± 21.3 57.8± 14.4 53.5± 14.1 56.1± 13.8
BFS 57.4± 2.2 55.7± 2.4 61.6± 3.6 60.8± 2.1 59.6± 2.1 56.9± 2.0 58.9 ± 1.8
FFS 61.5± 4.1 60.5± 0.6 62.9± 2.8 59.5± 4.3 59.2± 3.5 58.2± 4.2 53.3± 4.0
MHRW 61.9± 2.6 62.2± 1.2 64.1± 1.2 59.2± 1.0 60.2± 0.9 58.6± 1.1 52.5± 1.2

ARXIV

RW 64.6 ± 1.6 65.7 ± 0.5 67.3 ± 0.6 64.2 ± 0.8 63.1 ± 0.3 63.4 ± 1.6 57.7± 0.3
BFS 26.4± 0.5 26.3± 0.6 26.1 ± 1.2 25.6 ± 1.2 24.5± 0.3 26.3± 1.2 29.3± 0.5
FFS 27.2± 0.7 26.1± 0.5 23.8± 0.4 25.1± 1.3 25.4± 0.3 25.0± 1.0 29.1± 0.4
MHRW 27.6 ± 0.4 26.9 ± 0.2 25.6± 1.5 25.1± 0.7 25.9± 0.5 26.6 ± 0.6 29.5 ± 0.2

CLUSTER

RW 27.3± 0.4 26.8± 0.4 24.4± 1.1 25.3± 1.0 26.7 ± 0.2 26.2± 1.0 28.9± 0.4
BFS 91.0 ± 17.3 99.1 ± 0.6 97.5 ± 2.9 99.3 ± 0.7 99.9 ± 0.0 99.8 ± 0.1 91.1 ± 1.5
FFS 61.2± 15.2 71.6± 1.7 79.3± 3.3 86.6± 4.8 63.1± 18.2 81.8± 5.8 51.8± 1.8
MHRW 63.7± 14.1 74.4± 2.0 75.9± 2.0 84.9± 4.8 49.3± 3.4 81.6± 4.6 50.6± 1.6

Actor
(LP)

RW 56.2± 11.5 73.8± 7.5 81.4± 6.0 84.4± 4.2 81.2± 4.2 87.3± 3.1 57.0± 1.0
BFS 91.8 ± 3.8 91.9± 4.8 95.1 ± 2.4 95.2 ± 1.9 95.6 ± 3.0 92.2± 10.8 72.0 ± 10.2
FFS 83.5± 20.6 91.6± 5.1 90.4± 2.7 94.3± 0.5 94.7± 2.3 95.7± 2.5 59.9± 4.6
MHRW 90.6± 1.8 92.9± 4.9 92.4± 1.0 94.0± 1.6 94.4± 2.2 91.6± 6.5 57.4± 4.0

CiteSeer
(LP)

RW 85.4± 18.7 93.1 ± 4.7 92.8± 2.1 92.9± 2.0 93.6± 5.9 96.4 ± 0.9 61.8± 3.9
BFS 91.5± 4.1 94.5± 3.3 94.3 ± 2.3 97.9 ± 2.2 98.0 ± 1.2 96.7 ± 0.8 83.6 ± 2.3
FFS 95.4 ± 0.8 92.1± 4.6 91.3± 1.7 90.1± 3.3 90.1± 5.4 93.6± 3.3 54.8± 0.6
MHRW 80.0± 19.3 95.1 ± 1.7 92.3± 1.0 90.1± 3.7 93.8± 3.4 93.3± 3.8 57.3± 7.1

Cora
(LP)

RW 89.7± 4.8 92.0± 3.5 91.6± 5.0 91.9± 3.4 92.7± 3.1 86.8± 10.4 65.7± 6.6
BFS 84.8± 20.1 98.2 ± 1.7 99.1 ± 0.6 99.7 ± 0.2 99.1 ± 0.3 99.2± 0.8 78.9± 2.8
FFS 83.0± 18.9 90.1± 8.1 98.1± 0.8 98.2± 0.7 63.7± 19.7 98.7± 0.6 81.3± 1.9
MHRW 84.6± 20.0 88.4± 9.7 98.6± 0.4 98.6± 0.8 74.2± 23.9 97.9± 2.1 74.0± 14.0

PubMed
(LP)

RW 96.2 ± 0.8 89.0± 9.1 98.3± 0.6 98.7± 0.8 97.1± 0.0 99.0 ± 1.0 84.7 ± 1.0
(continued on next page)
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Table 4 (continued)

Dataset Sampling method GAT GCN GIN Gated Sage MoNet MLP

BFS 98.9 ± 0.2 9.3± 1.6 11.3± 1.1 11.1± 1.1 78.3± 43.0 9.6± 1.1 4.5± 2.6
FFS 64.7± 31.0 62.2± 5.1 29.5± 5.6 30.6± 19.2 88.6± 8.5 55.2± 7.9 7.7± 1.9
MHRW 70.5± 34.8 80.8 ± 1.9 44.5 ± 13.3 37.7 ± 12.5 89.6 ± 5.7 56.4± 11.6 18.4 ± 2.5

COLLAB

RW 77.5± 9.2 72.0± 1.8 42.3± 5.0 33.6± 6.7 74.3± 11.4 60.9 ± 6.1 10.7± 4.3
BFS 24.8 ± 0.1 25.3 ± 0.4 24.9 ± 0.8 26.9 ± 0.4 24.6 ± 0.9 27.3 ± 0.6 21.3 ± 0.6
FFS 23.3± 0.9 21.2± 0.2 21.8± 1.5 24.6± 1.2 22.4± 1.3 23.1± 0.2 20.9± 0.4
MHRW 21.4± 0.2 20.0± 0.5 21.9± 0.4 21.9± 0.2 21.5± 0.8 22.4± 0.3 20.1± 1.1

MNIST

RW 21.9± 0.1 21.0± 0.5 21.1± 2.3 22.3± 0.3 22.1± 0.5 22.1± 0.2 20.7± 0.3
BFS 33.0± 0.4 30.6± 0.5 28.3± 1.1 33.3± 1.0 33.0± 0.4 34.0± 0.7 32.8± 0.5
FFS 34.6± 0.4 29.7± 0.1 20.2± 2.1 34.5± 0.6 33.7± 1.1 34.3± 0.6 32.8± 0.5
MHRW 36.5 ± 0.1 30.6± 0.5 21.5± 2.1 35.5± 0.2 35.6 ± 0.7 27.9± 1.5 33.5± 0.5

CIFAR10

RW 35.4± 0.3 31.2 ± 0.3 29.4 ± 3.2 35.4 ± 0.4 34.8± 0.2 35.7 ± 0.7 33.7 ± 0.3

is evident that removing task-irrelevant edges from original structure can improve GNN
performance (Luo et al., 2021; Zheng et al., 2020). We treat graph sampling as a structural
denoising process. If the original network G has only a small amount of structure noise,
completion restores the informative edges removed by sampling, thus improving the GNN
performance.Whereas if the structure noise is large inG, completion weakens the denoising
effect of sampling and leads to performance degradation.

CONCLUSIONS
We focused on the performance of GNNs with partial observed network structure. By
treating the incomplete structure as one of themany graphs generated by a certain sampling
process, we determined the robustness of GNNs in a statistical way viamultiple independent
random sampling. Specifically, we performed an empirical evaluation of six state-of-the-art
GNNs on three network learning tasks (i.e., node classification, link prediction and graph
classification) with four popular graph sampling methods. We confirmed that GNNs can
still be applied under graph sampling scenarios in most single graph datasets, but not on
multiple graph datasets. We also identified the best GNNmodel and sampling method, that
is, GCN and BFS for small datasets, GAT and RW for medium datasets. Which provides
a guideline for future applications. Moreover, we found that network completion can
improve GNN performance in most cases, however, specific analysis is needed case by
case due to the complexity of datasets under sampling scenarios. Thus, suggesting that
completion and denoising should be done with careful evaluation. We hope this work,
along with the public codes, will encourage future works on understanding the relationship
between structural information and GNNs.

Wei and Hu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.901 10/15

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.901


Table 5 Relative metric score and average rank for (a) GNNs on small datasets, (b) graph sampling
methods on small datasets, (c) GNNs onmedium datasets, and (d) graph sampling methods on
medium datasets.

(a)

GNN Relative metric (%) Rank

GCN 93.3 2.9
GIN 92.2 3.4
GatedGCN 91.2 3.6
MoNet 89.5 3.6
GraphSage 87.6 3.7
GAT 87.4 4.6
MLP 73.1 6.3

(b)

Sampling method Relative metric (%) Rank

BFS 98.4 1.4
RW 90.7 2.6
FFS 90.3 2.7
MHRW 87.9 3.2

(c)

GNN Relative metric (%) Rank

GAT 94.1 2.6
GraphSage 93.5 3.8
GCN 85.9 4.3
MoNet 85.5 3.8
GatedGCN 82.4 3.9
GIN 77.3 4.6
MLP 75.9 5.2

(d)

Sampling method Relative metric (%) Rank

RW 93.7 2.1
MHRW 93.1 2.3
FFS 89.1 3.0
BFS 85.3 2.7
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Figure 2 Kullback–Leibler divergence between label distributions of training and testing on Pubmed
(NC).

Full-size DOI: 10.7717/peerjcs.901/fig-2

Figure 3 Induced relative metric improvement for (A) r = 0.1, (B) r = 0.3, and (C) r = 0.5.
Full-size DOI: 10.7717/peerjcs.901/fig-3
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The data is available at the torch geometric library and Open Graph Benchmark (OGB).
- Actor is available at GitHub: https://github.com/graphdml-uiuc-jlu/geom-gcn/tree/

master/new_data/film
- CiteSeer, Cora and Pubmed is available at GitHub: https://github.com/kimiyoung/

planetoid/raw/master/data
- ARXIV: http://snap.stanford.edu/ogb/data/nodeproppred
- COLLAB: http://snap.stanford.edu/ogb/data/linkproppred
- CLUSTER, MNIST, CIFAR10: Wei Qaing. (2022). Three Datasets Cloned from

GNNBenchmarkingDatasets (Version v2) [Data set]. Zenodo. https://doi.org/10.5281/
zenodo.6050722

Our code is available at GitHub: https://github.com/weiqianglg/evaluate-GNNs-under-
graph-sampling.
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