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ABSTRACT

The rapid advanced technological development alongside the Internet with its cutting-
edge applications has positively impacted human society in many aspects. Nevertheless,
it equally comes with the escalating privacy and critical cybersecurity concerns that
can lead to catastrophic consequences, such as overwhelming the current network
security frameworks. Consequently, both the industry and academia have been tirelessly
harnessing various approaches to design, implement and deploy intrusion detection
systems (IDSs) with event correlation frameworks to help mitigate some of these
contemporary challenges. There are two common types of IDS: signature and anomaly-
based IDS. Signature-based IDS, specifically, Snort works on the concepts of rules.
However, the conventional way of creating Snort rules can be very costly and error-
prone. Also, the massively generated alerts from heterogeneous anomaly-based IDSs is a
significant research challenge yet to be addressed. Therefore, this paper proposed a novel
Snort Automatic Rule Generator (SARG) that exploits the network packet contents to
automatically generate efficient and reliable Snort rules with less human intervention.
Furthermore, we evaluated the effectiveness and reliability of the generated Snort
rules, which produced promising results. In addition, this paper proposed a novel
Security Event Correlator (SEC) that effectively accepts raw events (alerts) without
prior knowledge and produces a much more manageable set of alerts for easy analysis
and interpretation. As a result, alleviating the massive false alarm rate (FAR) challenges
of existing IDSs. Lastly, we have performed a series of experiments to test the proposed
systems. It is evident from the experimental results that SARG-SEC has demonstrated
impressive performance and could significantly mitigate the existing challenges of
dealing with the vast generated alerts and the labor-intensive creation of Snort rules.

Subjects Artificial Intelligence, Computer Education, Computer Networks and Communications,
Network Science and Online Social Networks, Security and Privacy

Keywords Intrusion Detection System, Snort, Alert Correlation, SARG, Alert Prioritization, SEC,
COTIME, Alerts, Auto-generated rules

INTRODUCTION

The advent of the Internet has come with the cost of wide-scale adoption of innovative
technologies such as cloud computing (Al-Issa, Ottom & Tamrawi, 2019), artificial
intelligence (Miller, 2019), the Internet of Things (I0T) (Park, 2019), and vast ranges of web-
based applications. Therefore, leading to considerable security and privacy challenges of
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managing these cutting-edge applications using traditional security and privacy protection
mechanisms such as firewall, anti-virus, virtual private networks (VPNs), and anti-spyware
(Meryem ¢ Ouahidi, 2020). However, due to the vast range of competitive solutions such
as higher efficiencies, scalability, reduced costs, computing power, and most importantly,
the delivery of services, these technologies continue to revolutionize various aspects of our
daily lives drastically, for instance, in the health care systems, research industry, the global
business landscape, government, and private sectors (Xue ¢ Xin, 2016).

Moreover, countless types of cyber-attacks have evolved dramatically since the inception
of the Internet and the swift growth of ground-breaking technologies. For example, social
engineering or phishing (Kushwaha, Buckchash ¢ Raman, 2017), zero-day attack (Jyothsna
¢ Prasad, 2019), malware attack (Mclntosh et al., 2019), denial of service (DoS) (Verma ¢
Ranga, 2020), unauthorized access of confidential and valuable resources (Saleh, Talaat
¢ Labib, 2019). Additionally, according to the authors of Papastergiou, Mouratidis &
Kalogeraki (2020), a nation’s competitive edge in the global market and national security is
currently driven by harnessing these efficient, productive, and highly secure leading-edge
technologies with intelligent and dynamic means of timely detection and prevention
of cyberattacks. Nevertheless, irrespective of the tireless efforts of security experts in
defense mechanisms, hackers have always found ways to get away with targeted resources
from valuable and most trusted sources worldwide by launching versatile, sophisticated,
and automated cyber-attacks. As a result, causing tremendous havoc to governments,
businesses, and even individuals (Sarker et al., 2020).

For instance, the authors of Damasevicius et al. (2021) intriguingly review various cyber-
attacks and their consequences. Firstly, the paper highlights the estimated 6 trillion USD of
cyber-crimes by 2021 and the diverse global ground-breaking cyber-crimes that could lead
to the worldwide loss of 1 billion USD. Finally, it highlights a whopping 1.5 trillion USD
of cyberattack revenues resulting from two to five million computers compromised daily.
Furthermore, according to published statistics of AV-TEST Institute in Germany, during
the year 2019, there were more than 900 million malicious executables identified among
the security community, and data breach costing 8.19 million USD for the United States,
predicted to grow in subsequent years. Moreover, the Congressional Research Service of
the USA has highlighted that cybercrime-related incidents have cost the global economy
an annual loss of 400 billion USD.

Similarly, 2016 alone recorded more than a whopping 3 billion zero-day attacks and
approximately 9 billion stolen data records since 2013 (Khraisat et al., 2019). In addition,
the energy sector in Ukraine suffered catastrophic coordinated cyberattacks (APT) that led
to a significant blackout affecting more than 225,000 people. They also highlighted similar
alarming APT threats, such as DragonFly, TRITON, and Crashoverride, that could cause
devasting consequences to individual lives and the global economy, thereby leading to
national security threats (Grammatikis et al., 2021). Accordingly, it is essential for security
experts to design, implement and deploy robust and efficient cybersecurity frameworks to
alleviate the current and subsequent alarming losses for the government and private sectors.
Additionally, it is an urgent and crucial challenge to effectively identify the increasing cyber
incidents and cautiously protect these relevant applications from such cybercrimes.
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Therefore, the last few decades have witnessed Intrusion Detection Systems (IDSs)
increasing in popularity due to their inherent ability to detect an intrusion or malicious
activities in real-time. Consequently, making IDSs critical applications to safeguard
numerous networks from malicious activities (Dang, 2019; Meryem ¢ Ouahidi, 2020).
Finally, James P. Anderson claimed credit for the inception of the IDS concept in his paper
written in 1980 (Anderson, 1980), highlighting various methods of enhancing computer
security threat monitoring and surveillance.

Intrusion Detection is the procedure of monitoring the events occurring in a computer
system or network and analyzing them for signs of intrusion”, similarly, an intrusion is an
attempt to bypass the security mechanisms of a network or a computer system, thereby
compromising the Confidentiality, Integrity, and Availability (CIA) (Kagara ¢ Md Siraj,
2020). Moreover, an IDS is any piece of hardware or software program that monitors
diverse malicious activities within computer systems and networks based on network
packets, network flow, system logs, and rootkit analysis (Bhosale, Nenova ¢ Iliev, 2020;
Liu ¢ Lang, 2019). Misused detection (knowledge or signature-based) and anomaly-based
methods are the two main approaches to detecting intrusions within computer systems or
networks. Nevertheless, the past decade has witnessed the rapid rise of the hybrid-based
technique, which typically exploits the advantages of the two methods mentioned above to
yield a more robust and effective system (Saleh, Talaat & Labib, 2019).

Misused IDS (MIDS) is a technique where specific signatures of well-known attacks
are stored and eventually mapped with real-time network events to detect an intrusion
or intrusive activities. The MIDS technique is reliable and effective and usually gives
excellent detection accuracy, particularly for previously known intrusions. Nevertheless,
this approach is questionable due to its inability to detect novel attacks. Also, it requires
more time to analyze and process the massive volume of data in the signature databases
(Khraisat et al., 2020; Lyu et al., 2021). The authors of Jabbar ¢ Aluvalu (2018) presented an
exceptional high-level SIDS architecture, which includes both distributed and centralized
modules that effectively enhanced the protection of IoT networks against internal and
external threats. Furthermore, the authors exploit the Cooja simulator to implement a
DoS attack scenario on IoT devices that rely on version number modification and “Hello”
flooding. Finally, the authors claimed that these attacks might influence specific IoT devices’
reachability and power consumption.

In contrast, the anomaly-based detection method relies on a predefined network behavior
as the crucial parameter for identifying anomalies and commonly operates on statistically
substantial network packets. For instance, incoming network packets or transactions
are accepted within the predefined network behavior. Otherwise, the anomaly detection
system triggers an alert of anomaly (Kagara ¢» Md Siraj, 2020). It is essential to note that
the main design idea of the anomaly detection method is to outline and represent the usual
and expected standard behavior profile through observing activities and then defining
anomalous activities by their degree of deviation from the expected behavior profile using
statistical-based, knowledge-based, and machine learning-based methods (Jyothsna ¢
Prasad, 2019; Khraisat et al., 2020). The acceptable network behavior can be learned using
the predefined network conditions, more like blocklists or allowlists that determine the
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network behavior outside a predefined acceptable range. For instance, “detect or trigger
an alert if ICMP traffic becomes greater than 10% of network traffic” when it is regularly
only 8%.

Finally, the anomaly-based approach provides a broader range of advantages such as
solid generalizability, the ability to determine internal malicious activities, and a higher
detection rate of new attacks such as the zero-day attack. Nevertheless, the most profound
challenge is the need for these predefined baselines and the substantial number of false
alarm rates resulting from the fluctuating cyber-attack landscape (Einy, Oz ¢ Navaei,
2021). For instance, (Fitni ¢ Ramli, 2020) intelligently used logistic regression, decision
tree, and gradient boosting to propose an optimized and effective anomaly-based ensemble
classifier. The authors claimed impressive findings such as 98.8% performance accuracy,
98.8%, 97.1%, and 97.9% precision, recall, and F1-score.

The hybrid-based intrusion detection systems (HBIDS) exploit the functionality of
MIDS to detect well-known attacks and flag novel attacks using the anomaly method.
High detection rate, accuracy, and fewer false alarm rates are some of the main advantages
of this approach (Khraisat et al., 2020). The authors of Khraisat et al. (2020) suggested an
efficient and lightweight hybrid-based IDS that mitigates the security vulnerabilities of
the Internet of Energy (IoE) within an acceptable time frame. The authors intelligently
exploit the combined strengths of K-means and SVM and utilize the centroids of K-means
to enhance the process of training and testing the SVM model. Moreover, they selected
the best value of “k” and fine-tuned the SVM for best anomaly detection and claimed to
have drastically reduced the overall detection time and impressive performance accuracy
of 99.9% compared to current cutting-edge approaches.

Additionally, the two classical IDS implementation methods are Network Intrusion
Detection Systems (NIDS) (Mirsky et al., 2018) and Host-based IDS (HIDS) (Aung & Min,
2018). A HIDS detection method monitors and detects internal attacks using the data
from audit sources and host systems like firewall logs, database logs, application system
audits, window server logs, and operating systems (Khraisat et al., 2019). In contrast,
NIDS is an intrusion detection approach that analyses and monitors the entire traffic of
computer systems or networks based on flow or packet-based and tries to detect and report
anomalies. For example, the distributed denial of service (DDoS), denial of service (DoS),
and other suspicious activities like internal illegal access or external attacks (Niyaz et al.,
2015). Unlike HIDS, NIDS usually protects an entire network from internal or external
intrusions. However, such a process can be very time-consuming, high computational cost,
and very inefficient, especially in most current cutting-edge technologies with high-speed
communication systems.

Nevertheless, this approach still has numerous advantages (Bhuyan, Bhattacharyya &
Kalita, 2014). For instance, it is more resistant to attacks compared to HIDS. Furthermore,
it monitors and analyses the complete network’s traffic if appropriately located in a network,
leading to a high probability of detection rate. Also, NIDS is platform-independent, thus
enabling them to work on any platform without requiring much modification. Finally,
NIDS does not add any overhead to the network traffic (Othman et al., 2018).
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Snort is a classic example of NIDS (Sagala, 2015). Irrespective of the availability of
other signature-based NIDS, such as Suricata and Zeek (Bro) (Ali, Shah ¢ Issac, 2018), this
work adopted Snort because it is the leading open-source NIDS with active and excellent
community support. Likewise, it is easy to install and run with readily available online
resources. Furthermore, because Suricata can use Snort’s rulesets but is prone to false
positives with the need for an intensive system and network resource, we concluded to use
Snort for the proposed solutions.

Snort is a classical open-source NIDS that has the unique competence of performing
packet logging and real-time network traffic analysis within computer systems and networks
using content searching, matching, and protocol analysis (Aickelin, Twycross ¢ Hesketh-
Roberts, 2007; Tasneem, Kumar ¢ Sharma, 2018). Therefore, significantly contributing
to the protection of some major commercial networks. Snort is a signature-based IDS
that detects malicious live Internet or network traffic utilizing the predefined Snort rules,
commonly applied in units of packets’ header, statistical information (packet size), and
payload information. Thus, it has a unique feature of high detection rate and accuracy
(Tasneem, Kumar ¢ Sharma, 2018). However, it cannot detect novel attacks and, at the
same time, it requires expert knowledge to create and update rules frequently, which is
both costly and faulty.

Similarly, IDS have emerged as popular security frameworks that significantly minimized
various cutting-edge cyber-attacks over the past decade. Anomaly-based IDS has gained
quite a buzz among network and system administrators for monitoring and protecting their
networks against malicious attempts, which has achieved phenomenal success, especially
in detecting and protecting systems and networks against novel or zero-day attacks
(Tama, Comuzzi & Rhee, 2019). However, it comes with costly negative consequences of
generating thousands or millions of false-positive alerts or colossal amounts of complex
data for humans to process and make timely decisions (Sekharan ¢ Kandasamy, 2018).
As a result, administrators ignore these massive alerts, which creates room for potential
malicious attacks against highly valued and sensitive information within a given system or
network.

Accordingly, the past years have seen a growing interest in designing and developing
network security management frameworks from academia and industry, which involves
analyzing and managing the vast amount of data from heterogeneous devices, commonly
referred to as event correlation. Event correlation has significantly mitigated modern cyber-
attacks challenges using its unique functionality of efficiently and effectively analyzing and
making timely decisions from massive heterogeneous data (Suarez-Tangil et al., 2009).
Consequently, the past years have seen many researchers and professionals exploit the
efficiency of event correlation techniques to address the problems mentioned earlier
(Dwivedi & Tripathi, 2015; Ferebee et al., 2011; Guillermo Suarez-Tangil et al., 2015).

Nevertheless, this field of research is at its infant stage as minimal work is done to address
these issues. Likewise, according to the authors’ knowledge, none of the above solutions
provides comprehensive solutions that address the manual creation of Snort rules and the
event correlation as a single solution. Based on the above challenges, this paper proposed
two effective and efficient approaches to address the problems associated with the manual
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creation of Snort rules and mitigating the excessive false alarm rates generated by current
IDSs. First, we present an automatic rule creation technique that focuses on packet header
and payload information. Generally, we need to find standard features by examining all
the network traffic to create a rule. Nonetheless, this method is inefficient and requires
much time to complete the rule, and the accuracy of the rules made is variable according to
the interpreters’ ability. Therefore, various automatic rule (signature) generation methods
have been proposed (Sagala, 2015).

However, most of these methods are used between two specific strings, which is still
challenging for creating reliable and effective Snort rules. Therefore, we present a promising
algorithm based on the content rules, enabling the automatic and easy creation of Snort rules
using packet contents. Secondly, we equally proposed a novel model that efficiently and
effectively correlates and prioritizes IDS alerts based on the severity using various features
of a network packet. Moreover, the proposed system does not need prior knowledge while
comparing two different alerts to measure the similarity in diverse attacks. The following
are an overview of the main contributions of this research work:

O The authors proposed an optimized and efficient Snort Automatic Rule Generator
(SARG) that automatically generates reliable Snort rules based on content features.

O Similarly, we present a novel Security Event (alert) Correlator (SEC) that drastically
and effectively minimized the number of alerts received for convenient interpretation.

O This paper also provides solid theoretical background knowledge for the readership of
the journal to clearly understand the fundamental functions and capabilities of Snort
and various correlation methods.

O Finally, the proposed approach has recorded an acceptable number of alerts, which
directly correlates with significantly mitigating the challenges of false alarm rates.

The rest of the paper is organized as follows: ‘Essential Concepts’ discusses important
background concepts. Similarly, ‘Materials and Methods’ explains the materials and
methods of the proposed system. Next, ‘Results and Discussion’ highlights the results and
discussions of the proposed approach. Finally, the paper concludes in ‘Conclusions’.

ESSENTIAL CONCEPTS

This section presents brief essential concepts that support the work in this research paper,
which will provide readers with the necessary knowledge to appreciate this research and
similar results better.

Synopsis of HIDS and NIDS functionalities

The crucial advantages of a host-based IDS are; the ability to detect internal malicious
attempts that might elude a NIDS, the freedom to access already decrypted data compared
to NIDS, and the ability to monitor and detect advanced persistent threats (APT). In
contrast, some of its disadvantages are; firstly, they are expensive as it requires lots of
management efforts to mount, configure and manage. It is also vulnerable to specific DoS
attacks and uses many storage resources to retain audit records to function correctly (Liu
et al., 2019; Saxena, Sinha ¢ Shukla, 2017). The authors of Arrington et al. (2016) use the
innovative strength of machine learning such as artificial immune systems to present an
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interesting host-based IDS. Finally, they claimed to have achieved a reasonable detection
rate through rescinding out the noise within the environment.

The central idea of any classical NIDS is using rulesets to identify and alert malicious
attempts. The majority of the NIDS comes with pre-installed rules that can be modified
to target specific attacks (Ojugo et al., 2012). For example, creating a rule for a possible
probing attack and saving it in the local.rules of Snort IDS will ensure an alert is raised
whenever an intrusion is initiated that matches the rule. Furthermore, the essential
functionalities of a classical NIDS are: practical identification and alerting of policy
violations, suspicious unknown sources, destination network traffics, port scanning, and
other common malicious attempts. However, the bulk of NIDS requires costly hardware
with expensive enterprise solutions, making it hard to acquire (Elrawy, Awad ¢ Hamed,
2018). The authors of (Nyasore et al., 2020) presented an intriguing challenge of evaluating
the overlap among various rules in two rulesets of the Snort NIDS. However, the work
failed to assess the distinction between diverse rulesets explicitly.

Consequently, the work presented in Somimestad, Holm ¢ Steinvall (2021) provides an
interesting empirical analysis of the detection likelihood of 12 Snort rulesets against 1143
misuse attempts to evaluate their effectiveness on a signature-based IDS. Similarly, they
listed certain features as the determining factor of the detection probability. Finally, they
claimed impressive results such as a significant 39% raise of priority-1-alerts against the
misuse attempts and 69-92% performance accuracy for various rulesets.

Figure 1 illustrates a standard representation of a HIDS and NIDS architecture with
unique functionalities in detecting malicious activities. For instance, Fig. 1 shows a
malicious user (attacker) who initiated a DDoS attack against one of the internal servers
within the LAN. However, due to the internal security mechanisms, packets are inspected by
the firewall as the first layer of protection. Interestingly, some malicious packets can bypass
the firewall due to the cutting-edge attack mechanisms, necessitating NIDS (Bul’ajoul,
James ¢ Pannu, 2015). Therefore, the NIDS receives the packets and does a further packet
inspection. If there are any malicious activities, the packets are blocked and returned to
the firewall. Then, the firewall will drop the packets or notify the network administrator,
depending on the implemented policies. It is crucial to note that the same applies to the
outgoing packets from the LAN to the WAN.

In contrast, the scenario depicted at the top of Fig. 1 shows a regular user requesting
web services. Initially, the request goes via the same process as explained above. Then,
if the NIDS qualifies the requests, it is sent to the server through the network switch to
the webserver. Furthermore, the server responds with the required services, which goes
through the same process as the reverse. However, this process is not shown in the diagram.
Lastly, Fig. 1 also presents the architecture of HIDS as labeled on individual devices, which
administers further packet inspection within the host (Vokorokos ¢ BaldZ, 2010), thereby
enhancing the security level of a given network or computer system.

Summary of Snort and its components
Snort is a popular and influential cross-platform lightweight signature-based network
intrusion detection and prevention system with multiple packet tools. The power of Snort
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lies in the use of rules, some of which are preloaded, but we can also design customized rules
to merely send alerts or block specific network traffic when they meet the specified criteria.
Additionally, alerts can be sent to a console or displayed on a graphical user interface, but
they can also be logged to a file for future or further analysis. Finally, Snort also enables
the configuration options of logging alerts to databases such as MSQL and MongoDB or
sending an email to a specified responsible person if there are alerts or suspicious attempts
(Ali et al., 2018).

Moreover, Snort has three running modes: sniffer, packet logger, and network-based IDS
mode (Tasneem, Kumar ¢ Sharma, 2018). The sniffer mode is run from the command line
mode, and its primary function is just inspecting the header details of packets and printing
it on the console. For instance, ./Snort —vd will instruct Snort to display packet data with
its headers. The packer logger mode interestingly inspects packets and logs them into a file
in the root directory. Then, it can be viewed using tcpdump, snort, or other applications
for further analysis. For example, ./Snort -dev -1./directory_name, will prompt Snort to
go to packet logger mode and log the packets in a given directory; if the directory_name
did not exist, then it will exit and throw an error. Finally, the network-based IDS mode
utilizes the embedded rules to determine any potential intrusive activities within a given
network. Snort does this with the help of the network interface card (NIC) running in
the promiscuous mode to intercept and analyze real-time network traffic. For instance,
the command ./Snort -dev -1./log -h 172.162.1.0/24 — ¢ snort.conf will prompt Snort to
log network packets that trigger the specified rules in snort.conf, where snort.conf is the
configuration file that applies all the rules to the incoming packets for any malicious
attempt (Tasneem, Kumar ¢ Sharma, 2018).

It is equally important to note that Snort also has the strength of real-time packet
logging, content matching, and searching with protocol analysis. It also has the advantage
of serving as a prevention tool instead of just monitoring (Ali et al., 2018). However, it does
come with some notable shortcomings. For example, a very unpopular GUI makes using
Snort a bit difficult. Additionally, the vast number of network traffics can compromise the
reliable and functional operation of Snort, which inspires the use of Pfring and Hyperscan
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to reinforce the functionality of Snort for efficiency and reliability. Finally, and most
importantly, caution needs to be exercised in creating Snort rules to avoid the apparent
challenge of many false alarm rates (FAR) (Park ¢ Ahn, 2017). Snort comprises five logical
components that determine and classify potential malicious attacks or any undesired threat
against computer systems and networks (Ali et al., 2018). Finally, interested readers can
refer to the following references for the details of the Snort components (Essid, Jemili ¢
Korbaa, 2021; Mishra, Vijay & Tazi, 2016; Shah & Issac, 2018).

Snort rule syntax

Snort utilizes a flexible, lightweight, and straightforward authoritative rules-language
primarily written in a single line as in versions preceding to 1.8. However, the present
Snort versions allow the spanning of rules in multiple lines but require the addition of
backslash (\) at the end of each line; generally, Snort rules are composed of dual logical
portions. For instance, the rule header and the rule options (Khurat ¢» Sawangphol, 2019).
Usually, Snort rules share all sections of the rule option like the general options, payload
detection options, non-payload detection options, and post-detection options. However,
it can be specified differently depending on the configuration approach. Finally, Snort
rules are generally applied to the headers of the application, transport, and network layers
such as FTP, HTTP, ICMP, IP, UDP, and TCP (Chanthakoummane et al., 2016; Khurat ¢
Sawangphol, 2019). However, they can also be applied to the packet payload, which is the
adopted approach for SARG.

Table 1 presents a classical representation of Snort rules (Khurat ¢ Sawangphol, 2019).
The two rules shown in Table 1 denote that an alert will be triggered based on an icmp
traffic protocol from any source IP address and port number to any destination IP address
and port number if the traffic content contains a probe. Consequently, this will show a
message probe attack, and the signature ID of this rule is 1000023. Similarly, the second
rule is almost the same as the first, except that the action is “log” instead of “alert”, while
the destination port number is 80 instead of “any” number.

The rule header

The Snort rule header comprises the specified actions, protocol, addresses of source
and destination, and port numbers. The default Snort actions are: alert, log, and pass,
and it is a required field for every Snort rule, and it defaults to alert if not specified
explicitly. Nevertheless, drop, reject, and sdrop are additional options for an inline mode
(Chanthakoummane et al., 2016; Khurat ¢ Sawangphol, 2019).

The protocol field within the rule header is required and usually defaults to IP.
Nonetheless, it equally supports UDP, TCP, and ICMP options. The source IP is an
optional field and, by default, is set to any, as indicated in Table 1. However, it also
supports a single IP address like 172.168.10.102 or a CIDR block like 172.168.10.0/16,
which permits a range of IP addresses as an input. Likewise, a source port field allows a
port number or range of port numbers, and the destination IP and port fields are almost
the same as the source IP and port fields. Finally, the direction of the monitored traffic
is specified using the directional operators (->, and <-), and the monitoring of source to
destination (->) is the most common practice (Khurat ¢~ Sawangphol, 2019).
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Table 1 A classical representation of Snort rules syntax.

Action Protocol Src. IP Src. Port Direction Dst. IP Dst. Port Parameters
alert tep icmp any -> any any (msg: content: sid:
“probe attack”; “probe’; 1000023)
log tep any any -> any 80 (msg: content: sid:
“HTTP attack™; 1“GET”; 1000024)
Table2 A typical representation of the rule header components.
Action Protocol Source. IP Source  Direction Destination Destination
port 1P port
alert tcp any :1024 -> 192.168.100.1 600:
log icmp 1172.16.10.0/16 any -> 172.16.10.252 1:6000
alert tcp 1192.168.10.0/24 any <> 192.168.10.0/24 1:1024

Table 2 presents the rule header components with typical examples. For example, the
first example will trigger an alert for traffic from any source address with various port
numbers up to and including 1024 denoted (:1024), which is going to 192.168.100.1, and
ports that are greater than and including port 600 denoted (600:). Finally, the second and

last examples of Table 2 are almost the same as the first except for the change in specific
fields.

The rule options

The rule option unit comprises the detection engine’s central functionalities yet provides
complete ease of use with various strengths and flexibility (Khurat ¢» Sawangphol, 2019).
However, this segment can only be processed if all the preceding details have been matched.
Furthermore, since this unit generally requires a vast amount of processing resources and
time, it is recommended to limit the scope of the rules using only the necessary fields to
enable real-time processing without packet drops. Therefore it is recommended to only use
the message, content, and SID field for writing efficient and reliable rules. The semicolon
(;) separates the rule options while the option keywords are separated using the colon
(:). Finally, this unit comprises four main classes, but this paper will only summarize
the general and payload detection options. For instance, the general options have no
significant effect during detection but merely provide statistics about the rule, whereas the
payload inspects the packet data. The general rule and payload detection options include
numerous parameters available to Snort users for rule creation (Khurat & Sawangphol,
2019). However, only the relevant ones are selected to understand the work proposed in
this paper, and Table 3 presents the selected options with a typical example for each.

Snort configurations and rule files

Snort provides a rich scope of customizable configuration options for effective deployment
and day-to-day operations. Since Snort consists of vast configuration options, this section
will only highlight the necessary options to understand this work easily. Generally, the
snort.conf contains all the Snort configurations, and it includes the various customizable
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Table 3 A typical illustration of the rule header components.

General rule options Payload options
msg sid rev gid priority content offset depth
(msg:”Anomaly  sid: rev:  gid: priority: content:  offset:4; depth:12;
detected’; 1000027; 3; 1000032; 1; ”probe-
attack”;

settings and additional custom-made rules. The snort.conf is a sample and default
configuration file shipped with the Snort distribution. However, users can use the -c
command line switch to specify any name for the configuration file, such as /opt/snort/Snort
-c /opt/snort/myconfiguration.conf. Nevertheless, snort.conf is the conventional name
adopted by many users (Erlacher ¢ Dressler, 2020). Likewise, the configuration file can
also be saved in the home directory as .snortrc but using the configuration file name as a
command-line is the common practice with advantages. Moreover, it also enables using
variables for convenience during rule writing, such as defining a variable for HOME_NET
within the configuration file like var HOME_NET 192.168.10.0/24. The preceding example
enables the use of HOME_NET within various rules, and when a change is needed, the rule
writer only needs to change the variable’s value instead of changing all the written rules. For
instance, var HOME_NET [192.168.1.0/24,192.168.32.64/26] and var EXTERNAL_NET
any (Mishra, Vijay & Tazi, 2016).

Lastly, the rules configuration also enables the Snort users to create numerous customized
rules using the variables within the configuration files and add them to the snort.conf file.
The general convention is to have different Snort rules in a text file and include them
within the snort.conf using the include keyword like include SRULE_PATH/myrules.rules,
which permits the inclusion of the rules within myrules.rules to the snort.conf file during
the next start of snort. Also, users can use the Snort commenting syntax (#) in front of a
specified rule or the rule file within the Snort configuration file to manually disable the
Snort rule or the entire class of rules.

Similarly, Snort parsed all the newly added rules during a Snort startup to activate any
newly added rules. However, if there are any errors within the newly added rules, Snort will
exit with an error, necessitating the correct and consistent writing of Snort rules (Erlacher
¢ Dressler, 20205 Mishra, Vijay ¢ Tazi, 2016). Finally, Figs. S1 and S2 are the standard
representations of the Snort configuration and rule files.

Synopsis of alert correlation

Alert Correlation is a systematic multi-component process that effectively analyzes alerts
from various intrusion detection systems. Its sole objective is to provide a more concise
and high-level view of a given computer system or network, and it can prioritize IDSs alerts
based on the severity of the attack. Additionally, it plays a significant role for the network
administrators to effectively and efficiently differentiate between relevant and irrelevant
attacks within a given network, resulting in reliable and secured networks (Valeur, Vigna
& Kruegel, 2017).
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MATERIALS AND METHODS

The section briefly discusses the methodologies and procedures used to design and
implement the proposed Snort Automatic Rule Generator using a sequential pattern
algorithm and the Security Event Correlation, abbreviated SARG-SEC. It is worthy to note
that the term event is the same as alerts generated during intrusion detection.

Snort automatic rule generation (SARG)

Irrespective of the significant numbers of available literature that use other approaches
of automating rule generation with remarkable success (Li et al., 2006; Ojugo et al., 2012;
Sagala, 2015), there is still a need for an effective and optimized auto-rule generator.
According to the authors’ knowledge, none of the existing literature uses the proposed
approach in this paper. Therefore, this paper presents an automation method of generating
content-based Snort rules from collected traffic to fill this research gap. The following
sections provide a concise description of the design and implementation procedures.

Content rule extraction algorithm
Snort rules can indicate various components, but this research targets rules that only
include header and payload information. The steps demonstrated in the examples below
are performed to generate the Snort rules automatically. For each first host, the application
and service to be analyzed or the traffic of malicious code is collected. Moreover, packets
with the same transmission direction are combined to form a single sequence in a single
flow. Finally, the sequence is used as an input of the sequential pattern algorithm to extract
the content (Pham et al., 2018).

Action Protocol SourcelP SourceProt—>DestinationIP DestinationPort (Payload)

Alert tcp 192.168.0.0 192.168.0.0/24—>IP 80 (content: “cgi-bin/phf’; offset:6; depth:24)

The sequential pattern algorithm finds the candidate content while increasing the length
starting from the candidate content whose length is 1 in the input sequence and finally
extracts the content having a certain level of support. Nevertheless, the exclusive use
of only packet or traffic contents for rule creation can lead to significant false positives,
thereby undermining the effectiveness of the created rules and increasing the potential risks
against computer systems and networks. Therefore, additional information is analyzed
and described in the rule to enable efficient and effective rules against malicious attacks.
As a result, this paper used the content and header information of the network traffic or
packets as supplementary information, thereby significantly enhancing the reliability of the
automatically generated rules at the end of the process. Moreover, by applying the extracted
content to input traffic, traffic matching the content is grouped, and the group’s standard
header and location information is analyzed (Sagala, 2015). Finally, the auto-generated
Snort rules are applied to the network equipment with Snort engine capability.

Sequence configuration Steps

The sequence is constructed by only extracting the payloads of the packets divided into
forward and backward directions of the flow. Moreover, the proposed approach will
generate two sequences for flows that consist of two-way communication packets, whereas
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the unidirectional communication traffic generates a single sequence. Finally, it is worthy
to note that a sequence set consists of several sequences denoted S as shown in Eq. (1), and
a single sequence is made up of host ID and string as shown in Eq. (2).

Sequence Set = {S1,S,,....,Ss} (1)

S;={host_id, < ayayas,....,a, >}. (2)

Content extraction step

A sequence set and a minimum support map are input in the content extraction step and
extract content that satisfies the minimum support. This algorithm improves the Apriori
algorithm, which finds sequential patterns in an extensive database to suit the content
extraction environment. The Content Set, which is the production of the algorithm,
contains several contents (C) as shown in Eq. (3), and one content is a contiguous
substring of a sequence string as shown in Eq. (4). Algorithm 1 and Algorithm 2 illustrate
producing a content set that satisfies a predefined minimum map from an input sequence
set. Moreover, when Algorithm 1 performed the content extraction, the content of length
one (1) is extracted from all sequences of the input sequence set and stored in a content
set of length 1 (L) as demonstrated in (Algo.1 Line: 1~5), the content of length 1 starting
with the length is increased by 1. Also, the content of all lengths is extracted and stored in
its length content set (Ly) as shown in (Algo.1 Line: 6~20).

Content Set = {C;, C;, ..., Cc} (3)
Ci={<axax+1....ay> |1 <x <y =<mn,} (4)
Support = Number of support hosts / total number of hosts. (5)

It is worthy to note that the method to be used at C (Algo. 1.0 Line: 18) is the process
described in Algorithm 2.0.
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Algorithm 1.0: Content extractor (CE) based algorithm
Input: SequenceSet = {S;, S,... Sy}, minimumsupport

Output: ContentSet = {C,, C,,

e

CE (SeqSet, MinimumSupport)

01 begin

02  for each Seq S in the Seq Set do;

03 for each Character a in the S do
04 L,=L, U,

05 END // blocks of statements

06  END // blocks of statements

06 K,=2.0;

07  while L,_;=0Odo

08 Jor each content L,_; do;

09 forI=] to Sequence do;

10 if (S; include c);

11 Count = Count +1,
12 END//blocks of statements
13 END//blocks of statements
14 if ((count /s) < minsupp)
15 Ly, =L, —C

16 END// blocks of statements
17 END// blocks of statements

18 L,=candi_gene (L, ;)

19 Ky++;

20  END// blocks of statements

21 ContentSet = 4,

22 Return Content Set

23 end;

*Representation: L;: Length k ,CE: Content extractor

Algorithm 2.0: The sub content extract (SCE) based algorithm
Input: Lk,

Output: L,

Candi_gen(Lk-1),

01 begin

02  for each content p0 in L., do;

03 foreach content gy in Li.; do

04 if (p-a: = q.a) && (p.as = q.az) && (p.ar.1 = q.ar.2) ) then;
05 =Lk U<p.a;, p.az, ,p.ainq.akr>;
06 END // blocks of statements

06 END // blocks of statements

07  END // blocks of statements

08 Return L

09 end;

*Representation: L, : Length K , CE: Content Extractor

The contents of the set L;_; are created by comparing the contents of Ly. Furthermore,
to make the content of the set Ly_; by combining the contents of the set L, contents of the
set with the same length k-2 content excluding first character and k-2 content excluding
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the last character are possible as shown at (Algo.2.0 Line: 1~7). For example, abcd and
bede are the contents of the set L4. It has the same bed except for a, and bed except for e.
Therefore, the content abcde of the set L5 can be created by increasing the length by 1 in the
same way as above. Extracting and deleting content below the support level are repeated
until the desired outcome.

The final step checked for the content inclusion relationship of all lengths extracted.
If we find the content in the inclusion relationship, the content is deleted from the set as
demonstrated in (Algo.1.0). Then, we deliver the final created content set to the next step.
Moreover, the SequenceSet consisting of traffic from 3 hosts and minimum support of
0.6 is passed as an input. The minimum support rating of 0.6 means that since the total
number of hosts is 3, the content must be observed in traffic generated by at least two
hosts. Finally, all length one (1) content is extracted when the algorithm is executed.

Furthermore, Algorithm 3.0 would have been given content and packet set when it
represents analyzing the location information of the content. The output of this algorithm
is offset when matched to a packet in a packet set. The matching starts in a bit, byte position,
and depth is the matching exit position, meaning the maximum byte position.

Algorithm 3.0: Locate data extract (LDE) based algorithm
Input: Content, Packet set = { p1, p2, pn}

Output: Address location, Depth

ACL (cont, packet set),

01 begin

02 AL = Maximum_ Packet _Size;

03 Dept =0;

04  for each packet t in packet Set do;

05 if(t.isMatchContent(cont)) then

06 al = minimum (offset, t.getStartMatch(cont));
07 depth=maximum (offset, t.getStartMatch(cont));
06 END // blocks of statements

07  END // blocks of statements
08  Return address location, depth,
09 end,;

*Representation: ACL = analysis content location Al= depth maximum byte point each match

The first offset is the maximum size of the packet, and the depth initializes to 0 as shown
in (Algorithm 3.0 Line: 1~7), which traverses all packets in packet set and adjusts offset and
depth. Moreover, it checks whether the content received matches the packet, and if there
exists a match, then the starting byte position is obtained and compared to the current
offset. If the value is less than the current offset, the value changes to the current offset.
Similarly, in the case of depth, if the value is more significant than the current dept., the
current value is obtained using the byte position. Then it changes the value to the current
depth (Algo.3 Line: 4~6). Likewise, to analyze the header information of the extracted
content, we performed a process similar to the location information.
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The analysis steps described above traversed all packets in the packet set and checked
for possible matching with the content. If a match exists, it will store the packet’s header
information. After reviewing all packets, it adds the header information to the content rule
if the stored header information has one unique value. Additionally, in IP addresses, the
CIDR value is reduced to 32, 24, 16 orders which iterate until the unique value is extracted.
Assuming the CIDR value is set to 32, which is the class D IP address range, we will try
to find an exclusive value, and if not found, then apply the CIDR value to 24 to find the
class C IP address, and this process continues until we obtained the desired values. For
instance, if the Destination IP address to which that content is matched is CIDR 32, then
“111.222.333.1/32” and “111.222.333.2/32” are extracted. In contrast, it can also be set to
CIDR 24 and extract “111.222.333.0/24”.

The schematic diagram of the snort automatic rule generator (SARG)
Figure 2 presents a comprehensive schematic diagram of SARG. The proposed auto-rule
generator (SARG) utilized well-known datasets used by many researchers and security
experts to assess various network security frameworks as discussed in Lippmann et al.
(2000). Initially, we used different pcap files to simulate live attacks against SARG that
facilitates an efficient and effortless generation of reliable Snort rules. It is essential to
note that -, w-3, 7-3, ..., -y, denotes the various utilized pcap files for the auto-rule
generation. Consequently, SARG relies on the pcap file contents to automatically generate
numerous effective Snort rules without any human intervention, and X-1, X-3, X-3, X-4,

..»A-p represents the various auto-generated Snort rules. Next, the Snort.conf file is
updated based on the auto-generated rules. In addition, any device with a Snort engine
denoted as @ can use these auto-generated rules against incoming traffic represented as
D-y, ..., D-y to trigger alerts for malicious attempts that meet all the criteria of the rules.
Finally, this paper does not document the generated alerts due to the volume of the work.
However, the provided supplementary materials contain the codes and pcap files that any
interested researcher can reproduce.

Overview and significance of alert correlation

Intrusion detection systems have recently witnessed tremendous interest from researchers
due to their inherent ability to detect malicious attacks in real-time (Vaiyapuri ¢
Binbusayyis, 20205 Zhou et al., 2020). In addition, it has significantly mitigated the security
challenges that came with ground-breaking technologies such as the Internet of Things
(IoT) (Verma & Ranga, 2020), big data, and artificial intelligence (Topol, 2019). However,
regardless of the immense contributions mentioned above, it may still generate thousands
of irrelevant alerts daily, which complicates the role of the security administrators in
distinguishing between the essential and nonessential alerts such as false positives.

In addressing these security challenges, specifically for IDSs, the research industry has
proposed significant pieces of literature with remarkable achievements in lessening the
huge false alarm rates of current cutting-edge proposed systems (Mahfouz et al., 2020;
Zhou et al., 2020). Nevertheless, irrespective of these significant achievements, there is still
a need to propose new approaches with much efficiency and effectiveness to help mitigate
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Figure 2 The schematic diagram of the snort automatic rule generator (SARG).
Full-size & DOI: 10.7717/peerjcs.900/fig-2

the vast false alarm rates of the earlier proposed systems (Jaw ¢ Wang, 2021). Therefore,
this paper presents a novel alert correlation model that correlates and prioritizes IDS alerts.
The following sections provide a succinct description of the design and implementation
process of the proposed security event correlation model.

The proposed security events correlation (SEC)

The SEC model offers efficiency and effectiveness of correlating the alerts generated by
the IDS, which significantly mitigates the massive false alarm rates. Furthermore, it does
not need previous knowledge while comparing different alerts to measure the similarity in
various attacks. Unlike other correlation approaches that usually follow specific standards
and procedures (Valeur, Vigna & Kruegel, 2017; Zhang et al., 2019), we proposed a model
that entails the same processes but with different approaches, as shown in the overview of
the proposed model below.

The overview of the proposed system involves various phases such as monitoring
interval, alert preprocessing, alert clustering, correlation, alert prioritization, and the
results as shown in Fig. 3. The following sections detail the various phases of SEC with their
respective procedures.

The monitoring interval
In summary, this paper defined the monitoring interval as the specific configured time
on the security framework or monitoring model performing the alert correlation. The
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Figure 3 An overview of the proposed security event correlator (SEC).
Full-size &al DOI: 10.7717/peerjcs.900/fig-3

monitoring interval of SEC is 300 days. It is essential to note that the long interval of 300
days is because more days means extra alerts to correlate and aggregate, leading to effective
and better results.

Alert preprocessing

The alert preprocessing stage of this work involves two sub-processes, namely, feature
extraction and selection. This phase systematically extracts features and their equivalent
values from the observed alerts. The similarity index defined below calculates the alerts
with the same value for existing features such as attack category, detection time, source IP
address, and port number. Consequently, it significantly helps identify new features from
the available alerts, thereby overcoming attack duplication. Also, this phase involves the
selection of features for alert correlation. For example, suppose the selected features such
as the attack detection time, category, port number, and source IP address of one alert or
multiple alerts are the same. In that case, we use the similarity index to select the relevant
alerts and eliminate irrelevant ones such as duplications and similar instances. Thus, I1
denotes the similarity between two alerts, and w represents the alert similarity index, and
8 denotes an alert.

I1=w(8a,8b), whereSa # §b. (6)

Lastly, this section also involves alert scrubbing that uses attack type, detection time,
source IP address, and detection port to remove the incomplete alert data. This process
plays a significant role in providing reliable and consistent data.

Alert aggregation and clustering
The existing literature has provided various descriptions of alert aggregation, such as
considering alerts to be similar if all their attributes match but with a bit of time difference.
In contrast, others extended the concept to grouping all alerts with the exact root causes by
aggregating alerts using various attributes. Moreover, this phase groups similar alerts based
on the similarity index of the extracted features. For instance, if the features of alert Y have
the same value as alert X, then this phase will automatically convert these two alerts into
a single unified alert by removing the duplicated alerts, thereby significantly reducing the
number of irrelevant alerts. Finally, the clustered alerts provide an effective and efficient
analysis of false positives, leading to reliable and optimized security frameworks.

Lastly, Fig. 4 demonstrates the alert aggregation process. Firstly, we cluster all the
generated alerts, check their similarity using the similarity index defined in previous
sections, and remove all the duplicated alerts.
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Figure 4 Illustration of the alert aggregation process.
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Correlation
Based on existing literature, the primary objective of alert correlation is to identify
underlying connections between alerts to enable the reconstruction of attacks or minimize
having massive irrelevant alerts. Furthermore, scenario-based, temporal, statistical, and
rule-based correlations are among the most commonly utilized correlation categories in
existing research. The approach in this paper has fully met the attributes of the statistical
correlation method, which correlates alerts based on their statistical similarity. Finally,
this phase consists of the alert correlation process based on selected features like the IP
addresses, attack category, and the detected time of the generated alerts. For example, if
the detection time of two independent alerts satisfies the condition of COTIME denoted
as w, then the correlation is performed based on selected features.

Figure 5 presents the correlation engine with the extracted features for alert correlation.
The correlation engine used these features to efficiently correlate alerts that meet the
conditions of the .

Alert prioritization

Alert prioritization is the final phase of the proposed SEC model. It plays a significant role
in prioritizing the alert’s severity, thereby helping the administrator identify or dedicate
existing resources to the most alarming malicious attacks. Although a priority tag is assigned
to each Snort rule, as explained earlier, we intend to extend its functionality by embedding
an alert prioritization within the proposed SEC model. Alert prioritization is classified into
high, medium, and low priority. Firstly, this paper defines the high priority as the alert
counts with standard features such as the data fragmentations, source IP address, port
number, and attack category.

For instance, if multiple alerts have the same destination port numbers and IP addresses,
then we classify these alerts as high-priority alerts. Lastly, the high priority functionality
will hugely minimize various challenging cyber-attacks such as DDoS and DoS because
it handles the standard techniques utilized in these attacks, like the IP fragmentation
attack, which uses the analogy of data fragmentation to attack target systems. Secondly, the
medium priority alerts count the number of alerts with shared features such as the same
attack category, IP addresses, and destination port number. Finally, low priority alerts are
alert counts with standard features like IP addresses, attack category, and destination port
but varying values.

The alert prioritization categories with the various standard features discussed above are
shown in Fig. 6. However, it is essential to note that irrespective of the common features
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Figure 5 The correlation engine with the selected features for alert correlation.
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Figure 6 Representation of alert prioritization categories with respective common features.
Full-size &l DOI: 10.7717/peerjcs.900/fig-6

in each category, the above section entails specified conditions that uniquely distinguish
them.

Overview of the proposed security events correlation (SEC)

Figure 7 demonstrates the detailed overview of the proposed SEC. First of all, SEC accepts
a collection of raw alerts as an input generated based on a specified monitoring interval
set to 300 days to ensure sufficient alerts for practical analysis. Additionally, the alert
preprocessing step accepts these raw alerts and performs feature extraction and selection.
Furthermore, the alert scrubbing phase uses predefined conditions denoted as E, to check
for alert duplicates. If duplicates exist, the scrubbing process will remove all the copies and
send the alerts with no duplicates to the correlation engine. Next, the correlation engine
decides if the alerts are single or multiple instances using predefined conditions denoted
as <= w. Finally, the alert prioritization phase prioritizes the alerts using the above three
categories, and the output phase presents the relevant alerts as the final results. It is worthy
to note that the alert outputs are the actual events after removing the duplicates and the
alert correlation, as shown in the equation below.

Q=n-p 7)

Where Q2 denotes the final output alerts, 7w represents the total number of alerts, and g
denotes the correlated alerts.
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Figure 7 The detailed overview of the proposed security event correlator (SEC).
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Remove Duplicates

RESULTS AND DISCUSSION

This section presents a comprehensive systematic analysis and performance justification
of the proposed models (SARG-SEC). For example, it evaluates how well the SARG can
efficiently generate standard and reliable Snort rules by executing SARG against live attacks
in existing pcap files. Finally, this section will also highlight the results and performance
evaluation of the (SEC) model that significantly mitigates the challenges of the vast alerts
generated by the Snort IDS and the earlier proposed feature selection and ensemble-based
IDS (Jaw & Wang, 2021).

Evaluation of the generated Snort rules by the proposed SARG

The authors of Lippmann et al. (2000) provided a descriptive and intriguing challenge of
documenting an off-line IDS dataset that a wide range of security experts and researchers
heavily utilized to assess various security frameworks. Moreover, the paper presents a
testbed that used a tcpdump sniffer to produce pcap files used to evaluate the proposed
solutions (SARG-SEC). Finally, the supplementary pcap files also entail the various
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crc@ubuntu:~/M ORT rule ¢ ter$ python packet2snort.py -r 2020-12-31-traffic-analysis-quiz-61.pcap -p 1 -s

alert udp 16.12.19.101 49680 -> any any (msg: "Suspicious IP 10.12.19.101 and port 49680 detected!”; reference:Packet2snort; classtype:trojan-
activity; sid:xxxx; rev:i;)

alert udp any any -> 10.12.19.1 53 (msg: "Suspicious IP 10.12.19.1 and port 53 detected!”; reference:Packet2snort; classtype:trojan-activity;
sid:xxxx; rev:1;)

alert udp SHOME_NET any -> any 53 (msg: "Suspicious DNS request for fersite24.xyz. detected!”; content:"|01 60 60 61 60 60 60 00 00 00|"; dept
h:10; offset:2; content:"|09|fersite24|03|xyz|00|"; fast_pattern; nocase; distance:0; reference:Packet2Snort; classtype:trojan-activity; sid:x
xxx; revii;)

crc@ubuntu:~/M

Figure 8 Auto generated snort rules using pcap files as live attacks.
Full-size Gl DOI: 10.7717/peerjcs.900/fig-8

attacks utilized to evaluate SARG-SEC. Accordingly, this section highlights the findings
of the various conducted experiments to accurately assess the performance of the SARG
framework, as demonstrated in Figs. 8 & 9.

The proposed SARG method has achieved decent performances on the auto-generation
of Snort rules, as illustrated in Fig. 8. All the findings presented in this section use various
pcap files as a simulation of live attacks against the proposed method to generate efficient
and effective Snort rules that completely meet all the criteria of the Snort rule syntax,
as presented in Table 3. For instance, Fig. 8 demonstrated that SARG has successfully
auto-generated a Snort rule with the following content: alert udp 10.12.19.101 49680 ->any
any (msg: “Suspicious IP10.12.19.101 and port 49680 detected”’; reference:Packet2Snort;
classtype:trojan-activity, sid:xxxx, rev:1). Based on the above auto-generated Snort rule,
it is self-evident that SARG has produced optimized Snort rules that meet all the criteria
of Snort rule syntax as discussed in Khurat & Sawangphol (2019). For example, the above
auto-generated rule has produced a descriptive and easy to analyze message of (msg:
“Suspicious IP10.12.19.101 and port 49680 detected ”’;), which details the reason or cause of
the alert.

Furthermore, SARG auto-generated another similar Snort rule by setting the source IP
address and port number to “any any” and the destination IP address and port number
as 10.12.19.1 and 53, respectively. Lastly, the findings presented in Fig. 8 shows that SARG
has auto-generated an impressive and comprehensive Snort rule that meets all standard
Snort rule criteria. However, the auto-generated alert uses the HOME_NET variable as
the source address and a msg, content, dept, and offset values of (msg: “Suspicious DNS
request for fersite24.xyz. detected”; content:*|01000001000000000000|’; depth:10; offset:2;),
respectively. Based on the above performances, the authors concluded that SARG has
effectively met all the criteria of creating compelling and optimized Snort rules consisting
of numerous general rule parameters and payload detection options (Khurat ¢» Sawangphol,
2019).

Moreover, Fig. 9 presents a series of auto-generated Snort rules using several
pcap files as live attacks. All the auto-generated Snort rules shown in Fig. 9 have
completely demonstrated to meet all the standards of Snort rule creation, as
discussed in much existing work (Jeong et al., 2020; Khurat ¢» Sawangphol, 2019).
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rule generater$ python packet2snort.py -r 2018-82-13-traffic-analysis-exercise.pcap -p 1 -s

1.205 63455 -> any any (msg: "Suspiclous IP 10.23.1.205 and port 63455 detected!"; reference:Packet2Snort; classtype:trojan-ac
tivity; sid ; revii;)

alert udp any any -> 16.23.1.7 53 (nsg: "Suspicious IP 10.23.1.7 and port 53 detected!"; reference:Packet2snort; classtype:trojan-activity; si
dixxxx; revii;)

alert udp $HOME_NET any -> any 53 (msqg: "Suspicious DNS request for _ldap._tcp.dc._msdcs.moondustries.con. detected!”; content:"|@1 68 € 61 6
0 60 00 00 60 00|"; depth:18; offset:2; content:"|0S|_ldap tcp|02|dc| 86| _nsdcs|OC |moondustries|03|con|00|"; fast_pattern; nocase; distance
:0; reference:Packet2Snort; classtype:trojan-activity; sid:xxxx; revii;)

crcgubuntu T rule generater$ python packet2smort.py -r 2019-03-19-traffic-analysis-exercise.pcap -p 1 -s

alert udp 10.0.96.215 137 -> any any (msg: "Suspicious IP 10.0.96.215 and port 137 detected!”; reference:Packet2Snort; classtype:trojan-activi

.0.90.255 and port 137 detected!”; reference:Packet2snort; classtype:trojan-activi

alert udp 0.0.0.0 68 -> any any (msg: "Suspicious IP 0.0.0.0 and port 68 detected!”; reference:Packet2Snort; classtype:trojan-activity; sid:xx
xx; rev:ii;)

alert udp any any -> 255.255.255.255 67 (msg: "Suspicious IP 255.255.255.255 and port 67 detected!"; reference:Packet2Snort; classtype:trojan-
activity; si r 3

Figure 9 A demonstration of auto-generated snort rules using various pcap files as live attacks.
Full-size Gal DOI: 10.7717/peerjcs.900/fig-9

For instance, the use of defined variables like the HOME_NET and ASCI values of
(“|05|_Idap|04|_tcp|02|dc|06|_msdcs|0C|moondustries|03”;) for the values of “content:” field
of the auto-generated Snort rules. Also, all the automatically generated rules came with
auto-generated messages that uniquely and vividly describe the intrusive or abnormal
activity whenever the alert is triggered. Consequently, this will significantly help the
administrator to be able to easily identify why the alert happened and quickly find solutions
to mitigate any malicious activities.

Additionally, all the auto-generated Snort rules are saved in the local.rules to ensure
consistency and avoid duplications of rules within the local.rules files, and then included in
the snort.conf file. As a result, it provides the administrator with the flexibility to further
fine-tune the generated rules to meet the specific needs of a given computer network or
system. Thus, irrespective of the additional efforts of fine-tuning the auto-generated rules,
for example, manually updating the sid value of the auto-generated rules and other fields for
specificity, SARG has undoubtedly minimized the time taken for Snort rule creation. Also,
it can significantly lessen the financial burden of human experts for Snort rule creation,
thereby making the proposed method a meaningful tool that would play a significant role
in mitigating the escalating cyberattacks.

In conclusion, the results presented in Figs. 8 and 9 have impressively demonstrated
the capability of auto-generating Snort rules, which considerably mitigates the need for
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costly human capacity in creating Snort rules. However, it has downsides that we could not
handle, such as automatically generating the consistent sid values of the respective rules.
As a result, we came up with a prompt message to remind the users to update the sid value
after the auto-generation of the Snort rule. Also, based on the lack of expert domain, we
could not justify why SARG has two contents in a single generated Snort rule. Nevertheless,
these challenges have no negative implications while validating the auto-generated rules.
Regardless, we intend to extend this research to establish means of solving these research
challenges.

Analysis of the single and multiple instances security event
correlations

Likewise, the following sections present the results of numerous experiments that evaluate
the consistency and efficiency of the proposed security event correlator (SEC). Also,
the findings presented in the subsequent sections have demonstrated the promising
performances of the SEC model, which could significantly mitigate the substantial
challenges of managing the vast alerts generated by heterogeneous IDSs.

Firstly, Figs. 10 and 11 summarized the results of the experiments based on single and
multiple instances. For example, Fig. 10 depicts a single sample of one thousand (1000)
alerts used to evaluate the effectiveness of the proposed security event correlator (SEC),
which obtained an impressive correlation performance of removing 71 irrelevant alerts due
to alert duplication. Even though the 71 removed irrelevant alerts might seem insignificant,
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the authors believed this is an excellent performance considering the dataset sample. Also, it
will be fair to state that processing these irrelevant alerts will waste valuable computational
and human resources. Similarly, Fig. 11 shows the findings of multiple instances ranging
from 1,000 to 4000 alerts as the sample sizes for the individual evaluations. Again, the
results demonstrated that SEC had achieved a decent correlation performance on the
various sets.

For instance, Fig. 11 shows that out of 4000 alerts, SEC efficiently and effectively
compressed it to only 3710 alerts by removing a whopping 290 irrelevant alerts that
could have unnecessarily exhausted an organization’s valuable resources, such as human
and computational resources. Likewise, SEC replicates a similar performance for the
2000 and 1000 alert samples, eliminating a vast 250 and 71 irrelevant alerts for both
instances, respectively. Therefore, considering the above significant performance of SEC
for both single and multiple instances, we can argue that the proposed method could
significantly contribute to the solutions of analyzing and managing the massive irrelevant
alerts generated by current IDSs.

Assessment of single instance with multiple correlation time (COTIME)
This section presents numerous experiments based on a single number of inputs with
varying correlation times (COTIME(s)). It also further assess the performance and
consistency of the proposed security event correlator based on alert prioritization that
efficiently demonstrated the number of high, medium, and low priority alerts. Furthermore,
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it shows the correlation time and the correlated alerts using a fixed sample size of 1000
alerts.

The findings presented in Figs. 12 and 13 summarized the evaluation results obtained
from four experiments, highlighting some exciting results. For instance, experiments one
and two illustrated in Fig. 12 show that using a fixed sample of 1000 alerts and a COTIME
of 40 s, SEC efficiently identified 71 alerts as correlated alerts, producing a manageable 929
alerts as final relevant alerts. Similarly, out of the 929 alerts, SEC effectively categorized
a considerable 334 alerts as high priority alerts, 209 alerts as medium alerts, and 386 low
priority alerts. Likewise, experiment two presented in Fig. 12 indicates that increasing the
number of COTIME to 60 s results in even better findings, such as identifying a massive
117 alerts as correlated alerts, thereby leading to only 883 alerts as the final output alerts.
Unlike experiment one, only 163 alerts were categorized as medium priority alerts, while
334 and 386 were recorded for high and low alerts, respectively.

Moreover, Fig. 13 further validates that an increase in COTIME is a crucial factor
in the performance of the SEC. For example, increasing the COTIME to 90 and 120 s
results in more correlated alerts like 124 and 128 alerts for 90 and 120 s, respectively. Also,
experiments three and four have effectively identified 157 and 154 alerts as medium alerts.
The final output alerts for the two experiments are 876 and 872 alerts, respectively, with
a low priority alert of 385. However, the values for high priority alerts for all these four
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Figure 13 Demonstration of single instances with multiple COTIME for alert prioritization.
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experiments presented in Figs. 12 and 13 recorded the same values. Nonetheless, we have
conducted a series of experiments to validate these similarities.

Similarly, the results illustrated in Figs. 14 and 15 shows that SEC obtained impressive
findings such as an increase of 133 and 165 correlated alerts for experiments five and six
with a COTIME of 180 and 300 s, respectively. Again, this further validates that COTIME
significantly correlates with the number of correlated outputs. Moreover, SEC categorized
150 and 131 alerts as medium alerts, while 383 and 374 alerts were low priority alerts with
only 867 and 835 final output alerts for experiments five and six. Nevertheless, like the
previous experiments, the values for high priority remain as 334 alerts for both experiments,
as shown in Fig. 14.

Finally, and most importantly, Fig. 15 presents some notable and exciting findings that
reveal interesting correlations among the chosen factors of the conducted experiments. For
instance, experiment seven obtained a massive 474 correlated alerts due to a 600 s increase of
COTIME. As a result, it resulted in a much proportionate distribution of alerts into various
categories like 223 high priority alerts, 227 low priority alerts, a negligible 78 medium alerts
with only 526 final output alerts. Similarly, SEC achieves exciting results when COTIME
is 900 s, such as a manageable final output of 424 alerts dues to the vast 576 correlated
alerts. Also, experiment eight presented in Fig. 15 effectively and efficiently categorized the
final output into 178, 65, and 181 alerts for high, medium, and low priority, respectively.
As a result, it would be fair to conclude that SEC can significantly assist the network or
system administrators with a considerably simplified analysis of alerts. Moreover, based
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on the results presented above, it is self-evident that while COTIME increases, the number
of output alerts decreases. Therefore, we can conclude that the number of correlated alerts
and COTIME are directly proportional to each other.

Assessment of the time factor on alert correlations
Similarly, this section meticulously conducted more experiments to evaluate the correlation
of time factors and the performance of the proposed approach (SEC). Considering that the
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amount of COTIME has significantly influenced the outcomes of alert correlation achieved
by SEC, this section intends to validate this apparent relationship.

The results illustrated in Figs. 16 and 17 present the evaluation performance of correlation
time against the correlated alerts with some interesting findings. For instance, Fig. 16 shows
the time lag or time complexity on static COTIME with multiple instances ranging from
1,000 to 4000 alerts. Moreover, time complexity or lag is the time difference between various
sample inputs. Similarly, Fig. 16 confirms a continuous increase in the time (COTIME)
as the value of the inputs increases, which validates the results presented in Figs. 13, 14,
and 15. For instance, increasing the inputs to 1500, 2000, and 2500 alerts has increased
COTIME to 42, 45, and 48 s, respectively. Likewise, the sample of 3500 and 4000 alerts
recorded 52 and 55 s of COTIME, respectively. Based on these performances, the authors
have concluded that COTIME is a crucial factor in SEC’s better performance, as shown in
Fig. 16 and preceding evaluations.

Moreover, Fig. 17 shows a more compelling assessment of COTIME with correlated
alerts. For instance, there is a continuous rise in correlation time and the correlated alerts,
like it takes 40 s COTIME to correlate 71 correlated alerts. Also, the increase of COTIME
to 90, 120, and 182 s has achieved 117, 124, and 128 correlated alerts, respectively.
Furthermore, the considerable rise of COTIME to 300, 600, and 900 s has achieved some
interesting findings such as 165, 474, and 576 correlated alerts, which is a significant and
impressive performance for SEC. Based on the above results, it will be fair to conclude
that a massive increase in COTIME could lead to reliable and effective alert correlation.
However, this could also lead to the demand for more processing power and other similar
burdens. Irrespective of these challenges, SEC has achieved its objective of significantly
minimizing the massive irrelevant alerts generated by heterogeneous IDSs. Also, SEC has
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enabled easy analysis of alerts, which has always been a considerable challenge for system
and network administrators.

CONCLUSIONS

Data security has been a massive concern over the past decades due to the considerable
high-tech progression that has positively influenced human society in many aspects.
However, the illegal mining of data due to the vulnerabilities of security mechanisms has
enabled malicious users to compromise and exploit the integrity of existing systems, thereby
causing colossal havoc to individuals, governments, and even private sectors. Consequently,
this leads to the necessity to deliver reliable and effective security mechanisms by harnessing
various techniques to design, develop and deploy optimized IDSs, for example, Snort-based
IDS. Nonetheless, existing studies have shown that manually creating Snort rules, which is
highly stressful, costly, and error-prone, remain a challenge.

Therefore, this paper proposed a practical and inclusive approach comprising a Snort
Automatic Rule Generator and a Security Event Correlator, abbreviated SARG-SEC. Firstly,
this paper provides a solid and sound theoretical background for both Snort and alert
correlation concepts to enlighten the readership with the essential idea of understanding
the presented research content. Additionally, this paper presents an efficient and reliable
approach (SARG) to augment the success of Snort, which significantly minimizes the
stress of manually creating Snort rules. Moreover, SARG utilizes the contents of various
pcap files as live attacks to automatically generate optimized and effective Snort rules
that meet the entire criteria of Snort rule syntaxes as described in existing literature
(Khurat & Sawangphol, 2019). The results presented in this paper have achieved impressive
performances in the auto-generation of Snort rules, with little knowledge of how the
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contents of the rules are generated. Furthermore, the auto-generated Snort rules could
serve as a beginning point for turning Snort into a content defense method that considerably
lessens data leakages.

Moreover, this paper posits an optimized and consistent Security Event Correlator (SEC)
that considerably alleviates the current massive challenges of managing the immense alerts
engendered by heterogeneous IDSs. This paper evaluated SEC based on single and multiple
instances of raw alerts with consistent and impressive results. For example, utilizing a
single sample of 1000 alerts and multiple instances of 1000 to 400 alerts, SEC effectively
and efficiently identified 71 and 290 alerts as correlated alerts. Furthermore, this paper uses
a single instance of 1000 alerts with varying COTIME to further measure the performance
and stability of SEC based on alert prioritization that competently revealed the number of
high, medium, and low priority alerts. For example, SEC achieved excellent performances
on a single instance of 1000 alerts like 133 and 165 correlated alerts for experiments five
and six with a COTIME of 180 and 300 s, respectively. Furthermore, SEC identified 383
and 374 low priority alerts, whereas 150 and 131 alerts are medium alerts with only 867
and 835 final output alerts for experiments five and six.

Lastly, to further confirm the significant correlation between the number of correlated
outputs and COTIME. Experiments seven and eight present exciting results that
demonstrated some intuitive relationships amongst these chosen factors. For instance,
an increase of COTIME to 600 and 900 s shows a much balanced and acceptable alert
prioritization into numerous categories like final output alerts of only 526, 227 low priority
alerts, 223 high priority alerts, and a negligible 78 medium alerts. Based on the above
findings, it would be fair to conclude that SARG-SEC can considerably support or serve
as a more simplified alert analysis framework for the network or system administrators.
Also, it can serve as an efficient tool for auto-generating Snort rules. As a result, SARG-SEC
could considerably alleviate the current challenges of managing the vast generated alerts
and the manual creation of Snort rules.

However, notwithstanding the decent performance of the SARG-SEC, it has some
apparent downsides that still necessitate some enhancements. For instance, the auto-
generation of consistent sid values of the respective rules and why SARG has two contents
in a single generated Snort rule. Similarly, we acknowledged that the sample sizes of
alerts and the apparent relationship of correlated alerts with COTIME could challenge
our findings. Nevertheless, we aim to extend this research to establish means of solving
these research challenges. In the future, we intend to: (i) Extend SARG’s functionality to
efficiently generate consistent sid values for the auto-generated Snort rules and establish
concepts of how SARG automatically generated the contents of the rules. (ii) Investigate the
apparent relationship of COTIME and correlated alerts and present solutions to how we
can correlate a larger sample size of alerts within an acceptable time frame to mitigate the
need for unceasing computing resources. (iii) Finally, evaluate SEC within a live network
environment instead of pcap files and auto-generate reliable and efficient Snort rules using
the knowledge of the proposed anomaly IDS (Jaw ¢ Wang, 2021).
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