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ABSTRACT
One of the key challenges in facial recognition is multi-view face synthesis from a
single face image. The existing generative adversarial network (GAN) deep learning
methods have been proven to be effective in performing facial recognition with a set
of pre-processing, post-processing and feature representation techniques to bring a
frontal view into the same position in-order to achieve high accuracy face identification.
However, these methods still perform relatively weak in generating high quality
frontal-face image samples under extreme face pose scenarios. The novel framework
architecture of the two-pathway generative adversarial network (TP-GAN), has made
commendable progress in the face synthesismodel, making it possible to perceive global
structure and local details in an unsupervised manner. More importantly, the TP-GAN
solves the problems of photorealistic frontal view synthesis by relying on texture details
of the landmark detection and synthesis functions, which limits its ability to achieve
the desired performance in generating high-quality frontal face image samples under
extreme pose. We propose, in this paper, a landmark feature-based method (LFM)
for robust pose-invariant facial recognition, which aims to improve image resolution
quality of the generated frontal faces under a variety of facial poses. We therefore
augment the existing TP-GAN generative global pathway with a well-constructed 2D
face landmark localization to cooperate with the local pathway structure in a landmark
sharing manner to incorporate empirical face pose into the learning process, and
improve the encoder-decoder global pathway structure for better representation of
facial image features by establishing robust feature extractors that select meaningful
features that ease the operational workflow toward achieving a balanced learning
strategy, thus significantly improving the photorealistic face image resolution.We verify
the effectiveness of our proposed method on both Multi-PIE and FEI datasets. The
quantitative and qualitative experimental results show that our proposed method not
only generates high quality perceptual images under extreme poses but also significantly
improves upon the TP-GAN results.
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INTRODUCTION
Face recognition is one of the most commonly used biometric systems for identifying
individuals and objects on digital media platforms. Due to changes in posture, illumination,
and occlusion, face recognition faces multiple challenges. The challenge of posture changes
comes into play when the entire face cannot be seen in an image. Normally, this situation
may happen when a person is not facing the camera during surveillance and photo tagging.
In order to overcome these difficulties, several promising face recognition algorithms based
on deep learning have been developed, including generative adversarial networks (GANs).
These methods have been shown to work more efficiently and accurately than humans at
detection and recognition tasks. In such methods, pre-processing, post-processing, and
multitask learning or feature representation techniques are combined to provide high
accuracy results on a wide range of benchmark data sets (Junho et al., 2015; Chao et al.,
2015; Xi et al., 2017; Jian et al., 2018). The main hurdle to these methods is multi-view
face synthesis from a single face image (Bassel, Ilya & Yuri, 2021; Chenxu et al., 2021; Yi
et al., 2021; Hang et al., 2020; Luan, Xi & Xiaoming, 2018; Rui et al., 2017). Furthermore, a
recent study (Soumyadip et al., 2016) emphasized that compared with frontal face images
with yaw variation less than 10 degrees, the accuracy of recognizing face images with
yaw variation more than 60 degrees is reduced by 10%. The results indicate that pose
variation continues to be a challenge for many real-world facial recognition applications.
The existing approaches to these challenges can be divided into two main groups. In a
first approach, frontalization of the input image is used to synthesize frontal-view faces
(Meina et al., 2014; Tal et al., 2015; Christos et al., 2015; Junho et al., 2015), meaning that
traditional facial recognition methods are applicable. Meanwhile, the second approach
focuses on learning discriminative representations directly from non-frontal faces through
either a one-joint model or multiple pose-specific models (Omkar, Andrea & Andrew,
2015; Florian, Dmitry & James, 2015). It is necessary to explore the above approaches in
more detail before proceeding. For the first approach, the conventional approaches often
make use of robust local descriptors, (such as John, 1985; Lowe, 1999; Ahonen, Hadid &
Pietikäinen, 2006;Dalal & Triggs, 2005), to account for local distortions and then adapt the
metric learning method to achieve pose invariance. Moreover, local descriptors are often
used (Kilian & Lawrence, 2009; Tsai-Wen et al., 2013) approaches to eliminate distortions
locally, followed by a metric learning method to prove pose invariance. However, due to
the tradeoff between invariance and discriminability, this type of approach is relatively
weak in handling images with extreme poses. A second approach, often known as face
rotation, uses one-joint models or multiple pose-specific models to learn discriminative
representations directly from non-frontal faces. These methods have shown good results
for near-frontal face images, but they typically perform poorly for profile face images
because of severe texture loss and artifacts. Due to this poor performance, researchers have
been working to find more effective methods to reconstruct positive facial images from
data (Yaniv et al., 2014; Amin & Xiaoming, 2017; Xi et al., 2017). For instance, Junho et al.
(2015), adopted a multi-task model to improves identity preservation over a single task
model from paired training data. Later on (Luan, Xi & Xiaoming, 2017; Rui et al., 2017),
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their main contribution was a novel two-pathway GAN architecture tasks for photorealistic
and identity preserving frontal view synthesis starting from a single face image. Recent work
by Bassel, Ilya & Yuri (2021), Chenxu et al. (2021) and Yi et al. (2021) has demonstrated
advances in the field of face recognition. During pose face transformation, however, some
of the synthetic faces appeared incomplete and lacked fine detail. So far, the TP-GAN
(Rui et al., 2017) has made significant progress in the face synthesis model, which can
perceive global structure and local details simultaneously in an unsupervised manner.
More importantly, TP-GAN solves the photorealistic frontal view synthesis problems by
collecting more details on local features for a global encoder–decoder network along with
synthesis functions to learn multi-view face synthesis from a single face image. However,
we argue that TP-GAN has two major limitations. First, it is critically dependent on
texture details of the landmark detection. To be more specific, this method focuses on the
inference of the global structure and the transformation of the local texture details, as their
corresponding feature maps, to produce the final synthesis. The image visual quality results
indicate that these techniques alone have the following deficiencies: A color bias can be
observed between the synthetic frontal face obtained by TP-GAN method and the input
corresponding to non-frontal input. In some cases, the synthetic faces are even incomplete
and fall short in terms of fine detail. Therefore, the quality of the synthesized images still
cannot meet the requirements for performing specific facial analysis tasks, such as facial
recognition and face verification. Second, it uses a global structure, four local network
architectures and synthesis functions for face frontalization, where training and inference
are unstable under large data distribution, which makes it ineffective for synthesising
arbitrary poses. The goal of this paper is to address these challenges through a landmark
feature-based method (LFM) for robust pose-invariant facial recognition to improve image
resolution under extreme facial poses.

In this paper, we make the following contributions:
The LFM is a newly introduced method for the existing generative global pathway

structure that utilizes a 2D face landmark localization to cooperate with the local pathway
structure in a landmark sharingmanner to incorporate empirical face pose into the learning
process. LFM of target facial details provides guidance to arbitrary pose synthesis, whereas
the four-local patch network architecture remains unchanged to capture the input facial
local perception information. The LFM provides an easy way for transforming and fitting
two-dimensional face models in order to achieve target pose variation and learn face
synthesis information from generated images.

In order to better represent facial image features, we use a denoising autoencoder (DAE)
to modify the structure of the generator’s global-path encoder and decoder. The goal of
this modification is to train the encoder decoder with multiple noise levels so that it can
learn about the missing texture face details. Adding noise to the image pixels causes them to
diffuse away from the manifold. As we apply DAE to the diffused image pixels, it attempts
to pull the data points back onto the manifold. This implies that DAE implicitly learns the
statistical structure of the data by learning a vector field from locations with no data points
back to the data manifold. As a result, encoder–decoders must infer missing pieces and
retrieve the denoised version in order to achieve balanced learning behavior.
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We optimize the training process using an accurate parameter configuration for a
complex distribution of facial image data. By re-configuring the parameters (such as the
learning rate, batch size, number of epochs, etc.), the GAN performance can be better
optimized during the training process. Occasionally, unstable ‘‘un-optimized’’ training for
the synthetic image problem results in unreliable images for extreme facial positions.

RELATED WORK
In this section, we focus on the most recent studies which are related to the multi-view face
synthesis problem using deep learning approaches. The deep learning approaches including
face normalization, generative adversarial network and facial landmark detection, are
reviewed.

Face normalization
Face normalization, or multi-view face synthesis from a single face image, is a unique
challenge for computer vision systems due to its ill-posed problem. The existing solutions
to address this challenge can be classified into three categories: 2D/3D local texture warping
methods (Tal et al., 2015; Xiangyu et al., 2015), statistical methods (Christos et al., 2015; Li
et al., 2014), and deep learning methods (Xi et al., 2017; Luan, Xi & Xiaoming, 2017). Tal
et al. (2015), employed a single 3D reference surface for all query faces in order to produce
face frontalization. Xiangyu et al. (2015) employed a pose and expression normalization
method to recover the canonical-view. Christos et al. (2015), proposed a joint frontal view
synthesis and landmark localization method. Li et al. (2014), concentrated on local binary
pattern-like feature extraction. Xi et al. (2017) proposed a novel deep 3DMM-conditioned
face frontalization GAN in order to achieve identity-preserving frontalization and high-
quality images by using a single input image with a 90◦ face pose. Luan, Xi & Xiaoming
(2017) proposed a single-pathway framework called the disentangled representation
learning-generative adversarial network (DR-GAN) to learn identity features that are
invariant to viewpoints, etc.

Generative adversarial networks (GANs)
The GAN is one of themost interesting research frameworks that is used for deep generative
models proposed by Ian et al. (2014). The theory behind the GAN framework can be seen
as a two-player non-cooperative game to improve the learning model. A GAN model has
two main components, generator (G) and discriminator (D). G generates a set of images
that is as plausible as possible in order to confuse the D, while the D works to distinguish
the real generated images from the fake. The convergence is achieved by alternately training
them. The main difference between GANs and traditional generative models is that GANs
generate whole images rather than pixel by pixel. In a GAN framework, the generator
consists of two dense layers and a dropout layer. A normal distribution is used to sample
the noise vectors and feed them into the generator networks. The discriminator can
be any supervised learning model. GANs have been proven effective for a wide range of
applications, such as image synthesis (Rui et al., 2017; Yu et al., 2018; Yu et al., 2020), image
super-resolution (Christian et al., 2017), image-to-image translation (Jun-Yan et al., 2017),
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etc. Several effective GAN models have been proposed to cope with the most complex
unconstrained face image situations, such as changes in pose, lighting and expression. For
instance, Alec, Luke & Soumith (2016) proposed a deep convolutional GAN to integrate a
convolutional network into the GANmodel to achievemore realistic face image generation.
Mehdi & Simon (2014) proposed a conditional version of the generative adversarial net
framework in both generator and discriminator. Augustus, Christopher & Jonathon (2017)
presented an improved version of the Cycle-GAN model called ‘‘pixel2pixel’’ to handle
the image-to-image translation problems by using labels to train the generator and
discriminator. David, Thomas & Luke (2017) proposed a boundary equilibrium generative
adversarial network (BE-GAN) method, which focuses on the image generation task to
produce high-quality image resolution, etc.

Facial landmark detection
The face landmark detection algorithm is one of most successful and fundamental
components in a variety of face applications, such as object detection and facial recognition.
The methods used for facial landmark detection can be divided into three major groups;
holistic methods, constrained local methods, and regression-based methods. In the past
decade, deep learning models have proven to be a highly effective way to improve landmark
detection. Several existing methods are considered to be good baseline solutions to the
2D face alignment problem for faces with controlled pose variation (Xuehan & Fernando
De la, 2013; Georgios, 2015; Xiangyu et al., 2015; Adrian & Georgios, 2017). Xuehan &
Fernando De la (2013), proposed supervised descent method, which learns the general
descent directions in a supervised manner. Georgios (2015), in their method, a sequence
of Jacobian matrices and hessian matrices is determined by using regression. Xiangyu et
al., 2015 proposed a 3D model with cascaded convolutional neural network to solve the
self-occlusion problem. Adrian & Georgios (2017), proposed a guided-by-2D landmarks
convolutional neural network that converts 2D annotations into 3D annotations, etc.

We can summarize some important points from our related work. Despite the fact
that the existed methods produced good results on the specific face image datasets for
which they were designed and provided robust alignment across poses, they are difficult to
replicate if they are applied alone to different datasets. This is especially true for tasks like
facial normalization or other face synthesis tasks, where deep structure learning methods
still fail to generate high-quality image samples under extreme pose scenarios, which results
in significantly inferior final results.

PROPOSED METHOD
In this section, we shall first briefly describe the existing TP-GAN architecture and then
describe our proposed LFM method in detail.

TP-GAN architecture
Based on the structure shown in Fig. 1, the TP-GAN framework architecture consists of two
stages. The first stage is a generator of two-pathways CNN GθG that is parameterized by θG.
Each pathway has encoder–decoder {GθE ,GθD} structure and combination of loss functions,
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Figure 1 The structure of TP-GAN. The final output was obtained by integrating the global pathway
with a 2D facial landmark localization to collaborate with the local pathway in a landmark sharing fashion.
The dataset was downloaded from the official TP-GAN GitHub page: https://github.com/HRLTY/TP-GAN.

Full-size DOI: 10.7717/peerjcs.897/fig-1

a local pathway {Gθ lE ,Gθ lD} of four landmark patch networksGθ li ,i∈ {0,1,2,3} to capture the
local texture around four facial landmarks, and one global network {Gθ gE ,Gθ

g
D
} to process

the global face structure. Furthermore, the bottleneck layer (Gg ), which is the output of
Gθ gE , is typically used for classification tasks with the cross-entropy loss Lcross-entropy. A
global pathway helps to integrate facial features with their long-range dependencies and,
therefore, to create faces that preserve identities, especially in cases of faces with large pose
angles. In this way, we can learn a richer feature representation and generate inferences
that incorporate both contextual dependencies and local consistency. The loss functions,
including pixel-wise loss, symmetry loss, adversarial loss, and identity preserving loss, are
used to guide an identity preserving inference of frontal view synthesis. The discriminator
DθD is used to distinguish real facial images I For ‘ground-truth (GT ) frontal view’ from
synthesized frontal face images GθG(I

P) or ‘synthesized-frontal (SF) view’. A second stage
involves a light-CNN model that is used to compute face dataset’s identity-preserving
properties. For a more detailed description, see Rui et al. (2017).

LFM for generative global pathway structure
To the best of our knowledge, this is the first study to integrate an LFM with the existing
TP-GAN global pathway structure for training and evaluation purposes. In this work,
we exploit a landmark detection mechanism (Adrian & Georgios, 2017) that proposed for
2D-to-3D facial landmark localization to help our model obtain a high quality frontal-face
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image resolution. Face landmarks are the most compressed representation of a face that
maintains information such as pose and facial structure. There are many situations where
landmarks can provide advanced face-related analyses without using whole face images.
The landmark method used in this study was explored at (Xi et al., 2017; Jian et al., 2018;
Xing, Sindagi & Vishal, 2018). These methods can achieve high accuracy of face alignment
by cascaded regression methods. Methods like these work well when particular poses are
chosen without taking other factors into consideration, such as facial characteristics. We
found that facial characteristics can play an imperative role in improving the results of the
current state of the art. By adding landmarks to augment the synthesized faces, recognition
accuracy will be improved since these landmarks rely on generative models to enhance the
information contained within them. The process for generating facial images is shown in
Fig. 1. We will discuss our Fig. 2 architecture in the subsequent paragraph. We perform a
face detection to locate the face in the Multi-PIE and FEI datasets. The face detection can
be achieved by using a Multi-Task Cascade CNN through the MTCNN library (Kaipeng
et al., 2016). After that, cropping and processing of the profile image. A local pathway of
four landmark patch networks Gθ li ,{i∈ 0,1,2,3} to capture the local texture around four
facial landmarks. Each patch learns a set of filters for rotating the center-cropped patch
(after rotation, the facial landmarks remain in the center) to its corresponding frontal
view. Then, we used a multiple feature map to combine the four facial tensors into one.
Each tensor feature is placed at a ‘‘template landmark location’’ and a max-out fusing
strategy is used to ensure that stitches on overlapping areas are minimized. Then, a 2D
zero padding technique is used to fill out the rows and columns around the template
landmark location with zeros. Nevertheless, local landmark detection alone cannot provide
accurate texture detail for a face that has a different shape, or multiple views, because
all generated local synthesis faces have the same fixed patch (or template) centralized
location, regardless of their shape characteristics. The challenge becomes even greater
with these shapes when the face is under extreme poses. A texture can be defined as a
function of the spatial variation of brightness intensity of pixels in an image. Each texture
level represents a variable, with variations such as smoothness, coarseness, regularity,
etc., of each surface oriented in different directions. Our work focuses on two important
phenomena: rotation and noise ‘‘noise is a term used to describe image information that
varies randomly in brightness or color’’. As a result, if the methods used to eliminate
these common phenomena are unreliable, the results will be less accurate; therefore, in
practice, the methods used to create the images should be as robust and stable as possible.
In addition, the images may differ in position, viewpoint, and light intensity, all of which
can influence the final results, challenging texture detail capturing. In order to overcome
these challenges, we must adapt a method that can capture and restore the missing texture
information. The key to solving this problem is a landmark localization method based on
regression. Our work utilized Face Alignment Network (FAN). A FAN framework is based
on the HourGlass (HG) architecture, which integrates four Hourglass models to model
human pose through hierarchical, parallel, and multi-scale integration to improve texture
maps by reconstructing self-occluded parts of faces. The landmark detection algorithm
captures and restores the texture details of the synthesised face image by repositioning the
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Figure 2 The structure of the 2D facial landmark localization method. The dataset was downloaded
from the official TP-GAN GitHub page: https://github.com/HRLTY/TP-GAN.

Full-size DOI: 10.7717/peerjcs.897/fig-2

appearance spot of themismatched or drifted patch ‘‘template landmark location’’. Figure 3
illustrates some examples. Our method allows us to treat faces that have a variety of shape
characteristics. In this way, the spatial variations, smoothness, and coarseness that arise due
to mismatched or drifted pixels between local and global synthesized faces are eliminated.
Typical landmark templates are approximately the same size as a local patch network, but
each region has its own structure, texture, and filter. Next, we combined the local synthesis
image with the global synthesis image (or two textures) for data augmentation. Every
patch of our FAN has its own augmented channels, and each patch has its own RGB along
with a depth map (D) input for each 2D local synthesis image. In this way, the texture
details help us to build a more robust model around the face patch region and enhance
generalization. Even though landmark feature extraction may result in some incongruous
or over-smoothing due to noise, it still remains an important method for incorporating
pose information during learning.

The landmark detection algorithm for our synthesis face image was built using 68 points.
We then reconstructed those synthesis image into four uniform patches (or templates),
Leye =Gθ g0 ,i ∈ 0, Reye =Gθ g1 ,i ∈ 1, Nose=Gθ g2 ,i ∈ 2 and Mouth=Gθ g3 ,i ∈ 3, and each
patch is comprised of convolutional components. Each patch region has its own filter,
which contains different texture details, regain size and structure information. Individual
filters provide more details about specific areas in an image, such as pixels or small areas
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Figure 3 The detection of different facial shapes characteristics. In example 1, the appearance of the
face is very accurate because all of the generated local synthesis patches (or templates) are centralized.
In examples 2, 3, and 4 the appearance of the face is inaccurate since all of the generated local synthesis
patches (or templates) are decentralized, resulting in mismatches or drifts. Faces in examples 2, 3, and 4
can be treated using our method regardless of their shape.

Full-size DOI: 10.7717/peerjcs.897/fig-3

Table 1 An overview of the workflow of the 2D facial landmarks localization including all its operational steps. These steps are the key to our
method that results in a successful implementation.

Steps Process

1-Face detection: the goal of this step is to identify faces that are generated by local and global pathways.
2-Facial landmarks such as the eye centers, tip of the nose, and mouth are located.2D landmark detection
3-The feature extractor encodes identity information into a high-dimension descriptor.

Convolutional neural network 4-The purpose of this layer is to coordinate and extract intermediate features.
Data augmentation 5-This technique is used to enhance the synthesis image textures detail by adding slightly modified copies of

already existing data or by creating new synthetic data based on existing data.
5, 6 and 7 layers 6-5, 6 and 7 act as a visual feature map for specific inputs of fontal-face images in order to retain more visual

information by subsampling layers’ structure.

with a high contrast or that are different in color or intensity from the surrounding pixels
or areas. Then, one layer of convolutional neural networks is used to coordinate and extract
intermediate features. For our method to work more effectively, we remove layers 5, 6, and
7 from ConvNet {Gθ gD} and replace them after the concatenation stage. Those layers’ act as
a visualization feature map for a specific input of a fontal-face image in order to increase
the amount of visual information kept by subsampling layers’ structure. Then, we merged
the features tensors of the local and global pathways into one tensor to produce the final
synthesis face. Table 1 shows the workflow of all operational steps. The landmark method
provides useful information for large-pose regions, e.g., 90◦, which helps our model to
produce more realistic images.

Global pathway encoder-decoder structure
In this section we describe our encoder–decoder formulation. Inspired by the work of
Jimei et al. (2016), for the DAE, our aim is to train the encoder–decoder with multiple
noise levels in order to learn more about the missing texture face details of the input face
image and preserve the identity of the frontal-view image I F from the profile image IP .
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The encoder–decoder mechanism has to discover and capture information between the
dimensions of the input in order to infer missing pieces and recover the denoised version.
In a subsequent paragraph, we will discuss encoder–decoders in more technical details. The
idea starts with assuming that the input data points (image pixels) lies on a manifold inRN .
Adding noise to the data image pixel results in diffusing away from the manifold. When
we apply DAE to the diffused data image pixels, it tries to pull the data point back onto
the manifold. Therefore, DAE learns a vector field pointing from locations with no data
point back to the data manifold, implying that it implicitly learns the statistical structure
of the data. However, a sparse coding model has been shown to be a good model for image
denoising. We assume that group sparse coding, which generalizes standard sparse coding,
is effective for image denoising as well, and we will view from a DAE perspective. The
encoding function of sparse coding occurs in the inference process, where the network
infers the latent variable s from noisy input x̂ . Each individual symbol is defined here. Let
fe be the RGB components of the input face image, 8 is the method that splits the input
image into its (RGB) components, ∧ is a set of weights and bias for the DAE, and a is the
activation function. In our case, the iterative shrinkage-thresholding algorithm (ISTA) is
used to perform inference and is formulated as follows:

s= fe (x̃;{8,∧,a})= ISTA(x̃;8,∧,a). (1)

The decoding function is the network’s reconstruction of the input from the latent
variable.

x̂ = fd (s;8)=8s (2)

where fd is a denoising function.
The DAE method can be used to learn ∧ through the following. For each input data

point as shown in Fig. 4, we construct a noisy input by adding Gaussian white noise (GWN)
to the original input profile images, as given in: x̃ = x+v , where v ∼N

(
O,σ 2I

)
. Here, I is

anN×N identity matrix, whereN is the size of input data (batch output of the generator),
and σ 2 is the noise variance which is the same in all directions. We use group sparse coding
to denoise x̃ , as described in Eqs. (1) and (2). The DAE is formulated as follows:

EDAE=‖x− x̂‖22. (3)

We define DAE’s reconstruction error as a square error between x and x̂ .
Generally, the cost function can be another form of differentiable error measure, shown

as follows:

1∧∝−∂EDAE/∂∧ (4)

where ∂EDAE/∂∧−→ differentiate DAE’s reconstruction error with respect to weights,
and 1∧ is the change in weights, ∧ can then be learned by doing gradient descent on the
DAE’s cost function.

Essentially, the Gθ gE encodes input data x ∈ RN into a hidden representation:
h= fe (x;θ) ∈RM .fe is the encoder and θ is learning parameters of the DAE function.
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Figure 4 The global pathway structure. The structure is based on encoder down-sampling and decoder
up-sampling. The bottleneck with 256-D features vector remains the same. The dataset was downloaded
from the official FEI website: https://fei.edu.br/~cet/facedatabase.html.

Full-size DOI: 10.7717/peerjcs.897/fig-4

Then, it decodes Gθ gD the hidden representation into a reconstruction of the input data:
x̂ = fd(h;θ). The objective for learning the parameter θ of an {Gθ gE ,Gθ

g
D
} is to minimize the

reconstruction error between x̂ and x . Usually, there is some constraint on {Gθ gE ,Gθ
g
D
} to

prevent it from learning an identity transformation. For example, the dimension of h is
much smaller than the input data’s dimension i.e.M�N , then {Gθ gE ,Gθ

g
D
} will function

similarly to principle component analysis (PCA). The hidden representation ‖h‖1 is small,
then Gθ gE functions similarly to sparse coding. The DAE tries to remove noise from input
data. Let x̃ = x+ v be a noisy input by adding v to an original input x . DAE takes x̃ as
an input, then outputs a denoising signal x̂ = fd(f e (x̃;θ);θ). The objective function of a
such technique is to minimize the error between x and x̂ by adjusting θ , i.e., it tries to
reconstruct the actual content well while not reconstructing noise. DAE can also be viewed
as a generative model.

Adversarial networks
Following (Ian et al., 2014) work, adversaries network consists of two components (G) and
(D). ‘‘The loss function reflects the difference in distribution between the generated and
original data’’. We will first review some technical aspects of the training process, and then
the adversaries’ network. In frontal view synthesis, the aim is to generate a photorealistic
and identity-preserving frontal view image (I F ) from a face image under a different pose,
i.e., a profile image (IP). During the training phase of such networks, pairs of corresponding
{I F ,IP} from multiple identities y are required. Input IP and output I F are both based
on a pixel space of size W ×H ×C with a color channel C . We aim to learn a synthesis
function that can output a frontal view when given a profile image. This section will be
omitted since it was already explained in TP-GAN architecture. Optimizing the network
parameters (GθG) starts with minimizing the specifically designed synthesis loss (Lsyn) and
the aforementioned Lcross-entropy. For a training set with N training pairs of {I Fn ,I

P
n }, the
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optimization problem is expressed as follows:

θ̂G=
1
N
argmin

θG

N∑
n=1

{
Lsyn

(
GθG(I

P
n ),I

F
n
)
+αLcross-entropy

(
Gθ gE

(
I pn
)
,yn
)}

(5)

where α is a weighting parameter and Lsyn is a weighted sum of individual losses that
together constrain the image to reside within the desired manifold. Each individual loss
function will be explained in the comprehensive loss functions section.

In order to generate the best images, we need a very good generator and discriminator.
The reason for this is that if our generator is not good enough, we won’t be able to fool the
discriminator, resulting in no convergence. A bad discriminator will also classify images
that make no sense as real, which means our model never trains, and we never produce
the desired output. The image can be generated by sampling values from a Gaussian
distribution and feeding them into the generator network. Based on a game-theoretical
approach, our objective function is a minimax function.

min
θG

max
θD

[
EIF∼P(IF )logDθD

(
I F
)
+EIP∼P(IP )log

(
1−DθD

(
GθG

(
IP
)))]

(6)

where I F presents as real frontal face images
DθD presents as the discriminator
GθG presents as the generator
GθG

(
IP
)
presents as synthesized frontal face images.

Using the discriminator tomaximize the objective function allows us to perform gradient
descent on it. The generator tries to minimize its objective function, so we can use gradient
descent to compute it. In order to train the network, gradient ascent and descent must be
alternated.

max
θD

[
EIF∼P(IF )logDθD

(
I F
)
+EIP∼P(IP )log

(
1−DθD

(
GθG

(
IP
)))]

. (7)

Gradient ascent on D.

min
θG

EIP∼P(IP )log
(
1−DθD

(
GθG

(
IP
)))
. (8)

Gradient descent on G.
Minimax problem allows discriminate to maximize adversarial networks, so that we can

perform gradient ascent on these networks; whereas generator tries to minimize adversarial
networks, so that we can perform gradient descent on these networks. In practice, Eq. (6)
might not provide enough gradients for G to learn well. During the early stages of learning,
when G is poor, D can reject samples with a high degree of confidence, since they are
clearly different from the training data. In this case, log(1−DθD(GθG

(
IP
)
)) saturates. As an

alternative to training G to minimize log(1−DθD(GθG
(
IP
)
)), we can train G to maximize

logDθD
(
I F
)
. As a result of this objective function, the discriminator and generator have

much stronger gradients at the start of the learning process.
When a single discriminating network is trained, the refiner network will tend to

overemphasize certain features in order to fool the current discriminator network, resulting
in drift and producing artifacts. We can conclude that any local patch sampled from the
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refined image should have similar statistics to the real image patches. We can therefore
define a discriminator network that classifies each local image patch separately rather than
defining a global discriminator network. The division limits both the receptive field and the
capacity of the discriminator network, as well as providing a large number of samples per
image for learning the discriminator network. The discriminator in our implementation is
a fully convolutional network that outputs a probabilistic N ×N (‘‘N = 2’’ represented as
a synthesized face image) map instead of one scalar value to distinguish between a ground
truth frontal view (GT ) and a synthesized frontal view (SF). Our discriminator loss is
defined through the discrepancy between the model distribution and the data distribution,
using an adversarial loss (Ladv). By assigning each probability value to a particular region,
the DθD can now concentrate on a single semantic region rather than the whole face.

Comprehensive loss functions
In addition to the existing TP-GAN synthesis loss functions, which are a weighted sum of
four individual loss functions (Lpx , ‘‘Lsym,Lip,Ltv and Llocal’’), a classification loss Lclassify is
further added to our method in order to get better results. Each individual loss function is
presented below, and the used symbols are defined here. Let I be an output image.

Let W and H be the width and height of I , (x,y) be a pixel coordinate of a 2D image,
Ipred be the predicted (i.e., synthesized) frontal-face image of I , I gt be the representative
frontal-face image of the ground-truth category of I .I gtlocal be the composition image of the
four local facial patches of I gt , and I gtlocal be the composition image of the four local facial
patches of I .

Pixel-wise loss (Lpx)

Lpx =
1

W ×H

W∑
x=1

H∑
y=1

|I gt
(
x,y

)
− Ipred

(
x,y

)
|. (9)

Although pixel wise loss may bring some over-smooth effects to the refined results, it is
still an essential part for both accelerated optimization and superior performance.

Symmetry loss (Lsym)

Lsym=
1

W /2×H

W /2∑
x=1

H∑
y=1

|Ipred
(
x,y

)
− Ipred

(
W −(x−1),y

)
|. (10)

Lsym is used to calculate the symmetry of the synthesized face image because a face image
is generally considered to be a symmetrical pattern.

Identity preserving loss (Lip)

Lip=
2∑

i=1

1
Wl×Hl

Wl∑
x=1

Hl∑
y=1

∣∣∣F gt
l
(
x,y

)
−Fpred

l
(
x,y

)∣∣∣. (11)

Alhlffee et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.897 13/28

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.897


where F gt
l and Fpred

l respectively denote the feature map of the last two layers of the
light-CNN net (Xiang et al., 2015) of I gt and Ipred, Wl and Hl are the width and height of
the feature map of the last l-th layer (l=1,2) of the light-CNN net. It is expected that a good
synthesized frontal-face image will have similar characteristics to its corresponding real
frontal-face image. We employ a fully connected layer of the pre-trained light-CNN net
for the feature extraction of the pre-trained recognition network. The pre-trained model
will leverage the loss to enforce identity-preserving frontal view synthesis.

Adversarial loss (Ladv)

Ladv=
1
N

N∑
n=1

−logDθD
(
GθG

(
IPn
))
. (12)

Ladv is used to make the real frontal-face image I F and a synthesized frontal face images
GθG(I

P
n ) indistinguishable, so that the synthesized frontal face image achieves a visually

pleasing effect.

Total variation loss (Ltv)
Generally, the face images synthesized by two pathways generative adversarial networks
have unfavorable visual artifacts, which deteriorates the visualization and recognition
performance. Imposing Ltv on the final synthesized face images can help to alleviate this
issue. The Ltv loss is calculated as follows:

Ltv =
W∑
x=1

H∑
y=1

∣∣∣Ipredx,y − I
pred
x−1,y

∣∣∣+ ∣∣∣Ipredx,y − I
pred
x,y−1

∣∣∣. (13)

Ltv will generate a smooth synthesized face image.

Classification loss (Lclassify)

Lclassify=−
∑
i

y truei log2
(
ypredi

)
(14)

where i is the class index, y true denotes the tensor of the one-hot true target of I, and ypred

is the predicted probability tensor. Lclassify is a cross-entropy loss which is used to ensure
the synthesized frontal-face image can be classified correctly.

Local pixel-wise loss (Llocal)

Llocal=
1

W ×H

W∑
x=1

H∑
y=1

∣∣∣I gtlocal(x,y)− Ipredlocal
(
x,y

)∣∣∣. (15)

This loss is to calculate the total average pixel difference between I gtlocal and Ipredlocal , and it
is not addressed in Rui et al. (2017) work.
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Table 2 The structure and parameters setting in the LFMTP-GAN. Those values contribute to the
learning process and help our model to achieve its goals.

Parameters name Corresponding
value

Batch Size (GθG ) 4
Batch Size (DθD ) 10
Epoch Steps 4500+
Learning Rate (lr) 0.01

Generator loss functions (Lgenerator)
The generator loss function of the proposed method is a weighted sum of all the losses
defined above:

Lgenerator= Lpx+λ1Lsym+λ2Lip+λ3Ladv+λ4Ltv+λ5Lclassyify+λ6Llocal (16)

where λi(i= 1∼ 6) are weights that coordinate the different losses, and they are set to be
λ1= 0.1, λ2= 0.001, λ3= 0.005,λ4= 0.0001,λ5= 0.1,and λ6= 0.3 in our experiments.

The Lgenerator is used to guide an identity-preserving inference of frontal view synthesis.
While the Ladv is used to push the generative network forward so the synthesized frontal
face image achieves a pleasing appearance.

Optimizing the training process
In order to optimize the training process, we propose some modifications to the TP-GAN
parameters as shown in Table 2 in order to improve the performance in learning the
frontal-face data distribution. In our experiment, we consider few parameters: learning
rate, batch size, number of epochs, and loss functions. We chose those parameters based
on our experience, knowledge and observations. The adopted learning rate improve
the module loss accuracy for both G and D. The batch size is the number of examples
from the training dataset used in the estimation of the error gradient. This parameter
determines how the learning algorithm will behave. We have found that using a larger
batch size has adversely affected our method performance. As a result, during initial
training the discriminator may be overwhelmed by too many examples. This will lead to
poor training performance. The number of training epochs is a key advantage of machine
learning. As the number of epochs increases, the performance will be improved and the
outcomes will be astounding. However, the disadvantage is that it takes a long time to
train a large number of epochs. These parameters are essential to improve LFMTP-GAN’s
representation learning, gaining high-precision performance and reducing visual artifacts
when synthesising frontal-face images.

EXPERIMENTS
Weconducted extensive experiments to verify the effectiveness of ourmethod by comparing
it with the TP-GAN. The evaluation protocol includes frontal face image resolution and
accuracy preserving face identity.
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Experimental settings
Both LFMTP-GAN and TP-GAN models are tested and trained on the Multi-PIE and
FEI datasets. Multi-PIE (Ralph et al., 2010) is a large face dataset with 75000+ images for
337 identities across a variety of different poses, illuminations and expression conditions
captured in a constrained environment. Multi-PIE has 15 poses ranging from ±90◦,
and 20 illumination levels for each subject. All 20 illuminations were taken within a few
seconds: two without any flash illumination, followed by an 18 image with each flash firing
independently. Figure 5 shows an example of our model results. ‘‘The intensity of light is
determined by the brightness of the flash and the background. For example, a bright or dark
flash, shadow reflection, or a white or blue background will affect intensity. This depends
on the recording equipment and the positioning’’. To minimize the number of saturated
pixels in flash illuminated images, all cameras have been set to have a pixel value of 128 for
the brightest pixel in an image without flash illumination. In the same way, the diffusers
in front of each flash were added. The color balance was also manually adjusted so that
the images looked similar. FEI (FEI, 2005–2006) is a Brazilian unlabeled face dataset with
2800+ images for 200 identities across a variety of different poses captured in a constrained
environment. The face images were taken between ‘‘June 2005 and March 2006’’ at the
artificial intelligence laboratory at são bernardo do campo, são paulo, brazil. The FEI
images were taken against a white homogenous background in an upright frontal position
with a ±90◦ range of profile poses; and different illuminations, distinct appearances and
hairstyles were included for each subject. Our method shares the same implementation
concept as TP-GAN but totally has different parameters settings. The training lasts for
10-to-18 days in each system for each dataset. The training model and source code are
available at: https://github.com/MahmoodHB/LFMTP-GAN.

Visual quality
In this subsection, we compare LFMTP-GAN with TP-GAN. Figures 6 and 7 shows the
comparison images, where the first column is the profile-face images under different face
poses, the second column is the synthesized frontal-face images by TP-GAN, the third
column is the synthesized frontal-face images by LFMTP-GAN, and the last column is
one randomly selected frontal-face image of the category corresponding to the profile-face
image. The yaw angle of the input face image are chosen circularly from (15◦, 30◦, 45◦,
60◦, 75◦ and 90◦). Obviously, the resolution of the LFMTP-GAN images looks better than
TP-GAN. This reveals that the use of a proper 2D landmark localization algorithm could
significantly improve the image quality of the synthesized images, provide rich textural
details, and contain fewer blur effects. Therefore, the visualization results shown in Figs. 6
and 7 demonstrate the effectiveness of our method across a variety of poses and datasets.
Similarly, Fig. 8 shows the results of these datasets in close-up image with 90◦ facial pose.

Previous frontal view synthesis methods are usually based on a posture range of ±60◦.
It is generally believed that if the posture is greater than 60◦, it is difficult to reconstruct
the image of the front view. Nonetheless, we will show that with enough training data
and a properly designed loss function, this is achievable. In Figs. 9 and 10, we show
that LFMTP-GAN can recover identity-preserving frontal faces from any pose, as well as
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Figure 5 Examples of different levels of illumination. The level of illumination, including brightness,
exposure, contrast, and shadows, etc. Some quality effects can also be observed, such as sharpness,
smoothness, blurriness, etc. The dataset was downloaded from the official TP-GAN GitHub page:
https://github.com/HRLTY/TP-GAN.

Full-size DOI: 10.7717/peerjcs.897/fig-5

comparing with state-of-the-art face frontalizationmethods, it performs better. In addition,
our geometry estimation method does not require 3D geometry knowledge because it is
driven by data alone.

Identity preserving
To quantitatively demonstrate the identity preserving ability of the proposed method, we
evaluate the classification accuracy of synthesized frontal-face images on both Multi-PIE
and FEI databases, and show their classification accuracy (%) in Table 3 across views
and illuminations. The experiments were conducted by first employing light-CNN to
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Figure 6 Comparison of TP-GAN and LFMTP-GAN by synthesizing frontal-face images under differ-
ent poses and illuminations onMulti-PIE face database. It can be seen that LFMTP-GAN generates bet-
ter visual quality images. The dataset was downloaded from the official TP-GAN GitHub page: https://
github.com/HRLTY/TP-GAN.

Full-size DOI: 10.7717/peerjcs.897/fig-6

extract deep features and then using the cosine-distance metric to compute the similarity
of these features. The light-CNN model was trained on MS-Celeb-1M (Microsoft Celeb,
2016) which is a large-scale face dataset, and fine-tuned on the images fromMulti-PIE and
FEI. Therefore, the light-CNN results on the profile images IP serves as our baseline. Our
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Figure 7 Comparison of TP-GAN and LFMTP-GAN by synthesizing frontal-face images under differ-
ent poses and illuminations on FEI face database. It can be seen that LFMTP-GAN generates better vi-
sual quality images with less blurry visualization effect. The dataset was downloaded from the official
FEI website: https://fei.edu.br/~cet/facedatabase.html.

Full-size DOI: 10.7717/peerjcs.897/fig-7

method produces better results than TP-GAN as the pose angle is increased. Our approach
has shown improvements in frontal-frontal face recognition. Moreover, Table 4 illustrates
that our method is superior to many existing state-of-the-art approaches.

Many deep learning methods have been proposed for frontal view synthesis, but none
of them have been proved to be sufficient for recognition tasks. Chao et al. (2015) and
Yibo et al. (2018) relied on direct methods such as CNN for face recognition, which will
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Figure 8 A comparison of the resolution of facial images taken under 90◦ face pose, and illuminations
condition. The facial visualization area is inside the yellowmap. The dataset was downloaded from the
official websites: https://github.com/HRLTY/TP-GAN and https://fei.edu.br/~cet/facedatabase.html.

Full-size DOI: 10.7717/peerjcs.897/fig-8

Figure 9 A comparison of LFMTP-GAN algorithms with different techniques for face frontalization
onMulti-PIE dataset. The dataset was downloaded from the official TP-GAN GitHub page: https://github.
com/HRLTY/TP-GAN. The other image used for face recognition comparison was downloaded from:
https://github.com/YuYin1/DA-GAN.

Full-size DOI: 10.7717/peerjcs.897/fig-9

definitely reduce rather than improve performance. It is therefore important to verify
whether our synthesis results can improve recognition performance (whether ‘‘recognition
via generation’’ works) or not. The next section presents the loss curves for the two models.

Model loss curve performance
This section provides a comparison with TP-GAN. We analyze the effects of our model
on three tradeoff parameters named generator loss, pixel-wise loss, and identity preserving
accuracy. 80% of the face image subjects from the Multi PIE and FEI datasets were used
for training and evolution purposes. 90% of the image subjects were used for training,
while 10% were used for testing. The recognition accuracy and corresponding loss curves
are shown in Fig. 10. We can clearly see from the curves that, the proposed method
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Figure 10 The TP-GAN and LFMTP-GAN loss curve plots. (A) The generator loss curve, and (B) pixel-
wise loss curve. The horizontal axis indicates the number of epochs, which is the number of times that en-
tire training data has been trained. The vertical axis indicates how well the model performed after each
epoch; the lower the loss, the better a model. (C) The identity preserving accuracy curve, which is a quality
metric that measures how accurate it is to preserve a user’s identity; the higher the accuracy, the better the
model.

Full-size DOI: 10.7717/peerjcs.897/fig-10

improves the TP-GAN model and provides a much better performance on both datasets.
In particular, the number of epochs exceeds 4500, the loss performance decreased sharply
in LFMTP-GAN model, while the loss performance decreased slightly in the TP-GAN
model. Our optimization learning curves was calculated according to the metric by which
the parameters of the model were optimized, i.e., loss. More importantly, our method still
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Table 3 Cross-validation of face recognition rates onMulti-PIE and FEI datasets using weights that
coordinate different loss value parameters and Table 1 settings. The run time is measured in minutes.

Method Train Valid Cross-valid
(Ls)

Time
(m)

Multi-PIE dataset
TP-GAN 95.2% 91.7% 0.165 373
LFMTP-GAN 96.1% 92.7% 0.164 290

FEI dataset
TP-GAN 94.0% 90.0% 0.179 303
LFMTP-GAN 95.0% 91.3% 0.164 315

Table 4 The recognition rate (%) across views and illuminations based on theMulti-PIE dataset under Table 1 settings. This table compares
different methods of facial recognition. Our method is capable of outperforming and achieving a better result.

Method
Angle

LFMTP-
GAN

Rui et al.
(2017)

Luan, Xi &
Xiaoming
(2017)

Yibo et al.
(2018)

Chao et al.
(2015)

Xiang et al.
(2015)

Junho et al.
(2015)

±90◦ 65.23% 64.03% – 66.05% 47.26% 5.51% –
±75◦ 85.30% 84.10% – 83.05% 60.66% 24.18% –
±60◦ 94.13% 92.93% 83.2% 90.63% 74.38% 62.09% –
±45◦ 98.80% 98.58% 86.2% 97.33% 89.02% 92.13% 71.65%
±30◦ 99.88% 99.85% 90.1% 99.65% 94.05% 97.38% 81.05%
±15◦ 99.80% 99.78% 94.0% 99.82% 96.97% 98.68% 89.45%
Average ACC 90.523% 89.878% 88.375% 89.421% 77.056% 63.328% 80.716%

produces visually convincing results (as shown in Figs. 6, 7 and 9) even under extreme face
poses, its recognition performance is about 1.2% higher than that of TP-GAN.

RESULTS AND DISCUSSIONS
The goal of this method is to match the appearance of each query face by marking the
partially face surface of the generated image, such as the eyes, nose and mouth. In theory,
this would have allowed the TP-GAN method to better preserve facial appearance in
the updated, synthesized views. The statement holds true when the face is considered to
have similar shape characteristics. Considering that all human faces have unique shape
characteristics, this may actually be counterproductive and harmful, rather than improving
face recognition. We believe that it is necessary to integrate the four important local areas
(eyes, nose and mouth) into their right positions on the whole face image, which is already
proved to be correct from our experiment results. A majority of face recognition systems
require a complete image to be recognized, however, recovering the entire image is difficult
when parts of the face are missing. This makes it difficult to achieve good performance.
We demonstrate how our approach can help enhance face recognition by focusing on
these areas of the face and outperform other methods in the same context. Landmark
detection is widely used in a variety of applications including object detection, texture
classification, image retrieval, etc. TP-GAN already has landmark detection implemented
for detecting the four face patches in its early stages as shown in Fig. 1. Such a method
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might be valuable in obtaining further textual details that can help in recovering those
facial areas and face shapes that have different characteristics. In our proposal, we offer
a relatively simple yet effective method for restoring the texture details of a synthesised
face image by repositioning the appearance areas of four landmark patches rather than
the entire face. We show a different method for facial recognition (Table 4) for faces with
extreme poses. In four major poses we achieve rank-1 recognition rates (75%, 60%, 45%,
and 30%). Furthermore, when it comes to global {Gθ gE ,Gθ

g
D
}, we found that optimizing for

the corrupted images resulted in a better convergence rate than optimizing for the clean
images in order to achieve balanced learning behavior. Therefore, we neither extensively
modify the {Gθ gE ,Gθ

g
D
}, nor include an external neural network in our modification, because

that integration will increase the network complexity and cause training limitations. We
obtained better results by introducing noise to the image before feeding it to the {Gθ gE ,Gθ

g
D
}

during optimization.

CONCLUSION
In this paper, we propose an LFM model for synthesizing a frontal-face image from a
single image to further enhance the frontal-face images quality of the TP-GAN model.
To accomplish our goal smoothly, we expand the existing generative global pathway with
a well-constructed 2D face landmark localization to cooperate with the local pathway
structure in a landmark sharing manner to incorporate empirical face pose into the
learning process, and improve the encoder–decoder global pathway structure for better
facial image features representation. Compared with TP-GAN, our method can generate
frontal imageswith rich texture details andpreserve the identity information. Face landmark
localization allows us to restore the missing information of the real face image from the
synthetic frontal images, and provide a rich texture detail. The quantitative and qualitative
experimental results of the Multi-PIE and FEI datasets show that our proposed method
can not only generate high-quality perceptual facial images in extreme poses, but also
significantly improves the TP-GAN results. Although LFMTP-GAN method achieves a
high-quality image resolution output, there is still room for improvement by choosing
different optimization algorithms, such as loss functions, or introducing some different
techniques for facial analysis and recognition. Our future research is to apply different
error functions or different face analysis and recognition techniques, combined with two
pathway structures, to achieve a super-resolution generative model and high-precision
performance.
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