
Submitted 21 May 2016
Accepted 7 September 2016
Published 3 October 2016

Corresponding author
Chen Zhang, cz5670@mun.ca

Academic editor
Baochun Li

Additional Information and
Declarations can be found on
page 16

DOI 10.7717/peerj-cs.89

Copyright
2016 Zhang et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

TCP adaptation with network coding
and opportunistic data forwarding in
multi-hop wireless networks
Chen Zhang1, Yuanzhu Chen1 and Cheng Li2

1Department of Computer Science, Memorial University of Newfoundland, St. John’s, Canada
2Department of Electrical and Computer Engineering, Memorial University of Newfoundland,
St. John’s, Canada

ABSTRACT
Opportunistic data forwarding significantly increases the throughput in multi-hop
wireless mesh networks by utilizing the broadcast nature of wireless transmissions and
the fluctuation of link qualities. Network coding strengthens the robustness of data
transmissions over unreliable wireless links. However, opportunistic data forwarding
and network coding are rarely incorporated with TCP because the frequent occurrences
of out-of-order packets in opportunistic data forwarding and long decoding delay
in network coding overthrow TCP’s congestion control. In this paper, we propose
a solution dubbed TCPFender, which supports opportunistic data forwarding and
network coding in TCP. Our solution adds an adaptation layer to mask the packet
loss caused by wireless link errors and provides early positive feedbacks to trigger a
larger congestion window for TCP. This adaptation layer functions over the network
layer and reduces the delay of ACKs for each coded packet. The simulation results show
that TCPFender significantly outperforms TCP/IP in terms of the network throughput
in different topologies of wireless networks.

Subjects Computer Networks and Communications, Network Science and Online Social
Networks
Keywords TCP, Network coding, Opportunistic data forwarding, Multi-hop wireless networks

INTRODUCTION
Wireless mesh networks have emerged as the most common technology for the last mile
of Internet access. The Internet provides a platform for rapid and timely information
exchanges among clients and servers. Transmission Control Protocol (TCP) has become
the most prominent transport protocol on the Internet. Since TCP was originally
designed primarily for wired networks that have low bit error rates, moderate packet
loss, and packet collisions, the performance of TCP degrades to a greater extent in
multi-hop wireless networks, where several unreliable wireless links may be involved
in data transmissions (Aguayo et al., 2004; Jain & Das, 2005). However, multi-hop wireless
networks have several advantages, including rapid deployment with less infrastructure
and less transmission power over multiple short links. Moreover, a high data rate can be
achieved by novel cooperation or high link utilization (Larsson, 2001). Some important
issues are being addressed by researchers to utilize these capabilities and increase TCP
performance in multi-hop wireless networks, such as efficiently searching the ideal path

How to cite this article Zhang et al. (2016), TCP adaptation with network coding and opportunistic data forwarding in multi-hop wire-
less networks. PeerJ Comput. Sci. 2:e89; DOI 10.7717/peerj-cs.89

https://peerj.com
mailto:cz5670@mun.ca
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.89
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.7717/peerj-cs.89


from a source to a destination, maintaining reliable wireless links, protecting nodes from
network attacks, reducing energy consumption, and supporting different applications.

In multi-hop wireless networks, data packet collision and link quality variation can
cause packet losses. TCP often incorrectly assumes that there is congestion, and therefore
reduces the sending rate. However, TCP is actually required to transmit continuously to
overcome these packets losses. As a result, such a problem causes poor performance in
multi-hop wireless networks. There are extensive studies working on these harmful effects.
Some studies were proposed to reduce the collision between TCP data packets and TCP
acknowledgements or dynamically adjust the congestion window. Other relief may come
from network coding. The pioneering paper proposed by Ahlswede et al. (2000) presents
the fundamental theory of network coding. Instead of forwarding a single packet at each
time, network coding allows nodes to recombine input packets into one or several output
packets. Furthermore, network coding is also very well suited for environments where only
partial or uncertain data is available for making a decision (Mehta & Narmawala, 2011).

The link quality variation in multi-hop wireless networks is widely studied in the
opportunistic data forwarding under User Datagram Protocol (UDP). It was traditionally
treated as an adversarial factor in wireless networks, where its effect must be masked
from upper-layer protocols by automatic retransmissions or strong forwarding error
corrections. However, recent innovative studies utilize the characteristic explicitly to
achieve opportunistic data forwarding (Biswas & Morris, 2005; Chen, Zhang & Marsic,
2009; Wang, Chen & Li, 2012). Unlike traditional routing protocols, the forwarder in
opportunistic routing protocols broadcasts the data packets before the selection of next-
hop forwarder. Opportunistic routing protocols allow multiple downstream nodes as
candidates to forward data packets instead of using a dedicated next-hop forwarder.

Since the broadcasting nature of wireless links naturally supports both network coding
and opportunistic data forwarding, many studies work on improving UDP performance
in multi-hop wireless networks by opportunistic data forwarding and network coding.
However, opportunistic data forwarding and network coding are inherently unsuitable for
TCP. The frequent dropping of packets or out-of-order arrivals overthrowTCP’s congestion
control. Specifically, opportunistic data forwarding does not attempt to forward packets
in the same order as they are injected in the network, so the arrival of packets will be in a
different order. Network coding also introduces long coding delays by both the encoding
and the decoding processes; besides, it is possible along with some scenarios of not being
able to decode packets. These phenomena introduce duplicatedACK segments and frequent
timeouts in TCP transmissions, which reduce the TCP throughput significantly.

Our proposed protocol, called TCPFender, uses opportunistic data forwarding and
network coding to improve TCP throughputs. TCPFender adds an adaptation layer above
the network layer to cooperate with TCP’s control feedback loop; it makes the TCP’s
congestion control work well with opportunistic data forwarding and network coding.
TCPFender proposes a novel feedback-based scheme to detect the network congestion
and distinguish duplicated ACKs caused by out-of-order arrivals in opportunistic data
forwarding from those caused by network congestion. We compared the throughput of
TCPFender and TCP/IP in different topologies of wireless mesh networks, and analyzed the

Zhang et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.89 2/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.89


influence of batch sizes on the TCP throughput and the end-to-end delay. Since our work
adapts the TCPFender to functioning over the network layer without any modification to
TCP itself, it is easy to deploy in wireless mesh networks.

RELATED WORK
Opportunistic data forwarding
ExOR (Extreme Opportunistic Routing) is a seminal effort in opportunistic routing
protocols (Biswas & Morris, 2005). It is an integrated routing and MAC protocol that
exploits the broadcast nature of wireless media. In a wireless mesh network, when a source
transmits a data packet to a destination by several intermediate nodes which are decided
by the routing module, other downstream nodes not in the routing path, can overhear
the transmission. If the dedicated intermediate node, which is in the routing path, fails
to receive this packet, other nearby downstream nodes can be scheduled to forward this
packet instead of the sender retransmitting. In this case, the total transmission energy
consumption and the transmission delay can be reduced, and the network throughput
will be increased. Unfortunately, traditional IP forwarding dictates that all nodes without
a matching receiver address should drop the packet, and only the node that the routing
module selects to be the next hop can keep it for forwarding subsequently, so traditional
IP forwarding is easily affected by link quality variation. However, ExOR allows multiple
downstream nodes to coordinate and forward packets. The intermediate nodes, which
are ‘closer’ to the destination, have a higher priority in forwarding packets towards the
destination. ExOR can utilize the transient high quality of links and obtains an opportunistic
forwarding gain by taking advantage of transmissions that reach unexpectedly far or fall
unexpectedly short. In ExOR, a forwarding schedule is proposed to reduce duplicate
transmissions. This schedule guarantees that only the highest priority receiver will forward
packets to downstream nodes. However, this ‘strict’ schedule also reduces the possibilities
for spatial reuse. The study in (Chachulski et al., 2007) shows that ExOR can have better
spatial reuse of wireless media. Furthermore, this schedule may be violated due to frequent
packet loss and packet collision.

Opportunistic data forwarding with network coding
Studies show that network coding can reduce the data packet collision and approach
the maximum theoretical capacity of networks (Ahlswede et al., 2000; Li, Yeung & Cai,
2003; Koetter & Médard, 2003; Laneman, Tse & Wornell, 2004; Jaggi et al., 2005; Ho et al.,
2006). Many researchers incorporate network coding in opportunistic data forwarding to
improve the throughput performance (Chachulski et al., 2007; Lin, Li & Liang, 2008; Lin,
Liang & Li, 2010; Zhu et al., 2015). MORE (MAC-independent Opportunistic Routing and
Encoding) is practical opportunistic routing protocol based on random linear network
coding (Chachulski et al., 2007). In MORE, the source node divides data packets from the
upper layer into batches and generates coded packets of each batch. Similar to ExOR,
packets in MORE are also forwarded based on a batch. packets with the same batch
index can be encoded together. The destination node can decode these coded packets to
original packets after receiving enough independently coded packets in the same batch.

Zhang et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.89 3/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.89


The destination receives enough packets when the decoding matrix reaches the full rank,
then these original packets will be pushed to the upper layer. MORE coordinates the
forwarding of each node using a transmission credit system, which is calculated based
on how effective it would be in forwarding coded data packets to downstream nodes.
This transmission credit system reduces the possibility that intermediate nodes forward
the same packets in duplication. However, MORE uses a ‘stop-and-wait’ design with a
single batch in transmission, which is not efficient utilizing the bandwidth of networks.
COPE focuses on inter-session network coding; it is a framework to combine and encode
data flows through joint nodes to achieve a high throughput (Basagni et al., 2008). CAOR
(Coding Aware Opportunistic Routing) proposes a localized coding-aware opportunistic
routing mechanism to increase the throughput of wireless mesh networks. In this protocol,
the packet carries out with the awareness of coding opportunities and no synchronization
is required among nodes (Yan et al., 2008). NC-MAC improves the efficiency of coding
decisions by verifying the decodability of packets before they are transmitted (Argyriou,
2009). The scheme focuses on ensuring correct coding decisions at each network node, and
it requires no cross-layer interactions.

CodeOR (Coding in Opportunistic Routing) improves MORE in a few important
ways (Lin, Li & Liang, 2008). InMORE, the source simply keeps transmitting coded packets
belonging to the same batch until the acknowledgment of this batch from the destination
has been received. CodeOR allows the source to transmit multiple batches of packets in a
pipeline fashion. They also proposed a mathematical analysis in tractable network models
to show the way of ‘stop-and-wait’ affects the network throughput, especially in large or
long topology. The timely ACKs are transmitted from downstream nodes to reduce the
penalty of inaccurate timing in transmitting the next batch. CodeOR applies the ideas of
TCP flow control to estimate the correct sending window and the flow control algorithm is
similar to TCP Vegas, which uses increased queueing delay as congestion signals. SlideOR
works with online network coding (Lin, Liang & Li, 2010), in which data packets are not
required to be divided into multiple batches or to be encoded separately in each batch. In
SlideOR, the source node encodes packets in overlapping sliding windows such that coded
packets from one window position may be useful towards decoding the packets inside
another window position. Once a coded packet is ‘seen’ by the destination node, the source
node only encodes packets after this seen packet. Since it does not need to encode any
packet that is already seen at the destination, SlideOR can transmit useful coded packets
and achieve a high throughput.

CCACK (Cumulative Coded ACKnowledgment) allows nodes to acknowledge coded
packets to upstream nodes with negligible overhead (Koutsonikolas, Wang & Hu, 2011). It
utilizes a null space-based (NSB) coded feedback vector to represent the entire decoding
matrix. CodePipe is a reliable multicast protocol, which improves the multicast throughput
by exploiting both intra and inter network coding (Li et al., 2012). CORE (Coding-aware
Opportunistic Routing mEchanism) combines inter-session and intra-session network
coding (Krigslund et al., 2013). It allows nodes in the network to setup inter-session coding
regions where packets from different flows can be XORed. Packets from the same flow uses
random linear network coding for intra-session coding. CORE provides a solution to cope

Zhang et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.89 4/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.89


with the unreliable overhearing and improves the throughput performance in multi-hop
wireless networks. NCOR focuses on how to select the best candidate forwarder set and
allocate traffic among candidate forwarders to approach optimal routing (Cai et al., 2014).
It contracts a relationship tree to describe the child-parent relations along the path from
the source to the destination. The cost of the path is the sum of the costs of each constituent
hyperlink for delivering one unit of information to the destination. The nodes, which create
the path with the minimum cost, can be chosen as candidate forwarders. Hsu et al. (2015)
proposed a stochastic dynamic framework to minimize a long-run average cost. They also
analyzed the problem of whether to delay packet transmission in hopes that a coding pair
will be available in the future or transmit a packet without coding. Garrido et al. (2015)
proposed a cross-layer technique to balance the load between relaying nodes based on
bandwidth of wireless links, and they used an intra-flow network coding solution modelled
by means of Hidden Markov Processes. However, the schemes above were designed to
utilize opportunistic data forwarding and network coding, but none of these was designed
to support TCP.

Network coding in TCP
A number of recent papers have utilized network coding to improve TCP throughput.
In particular, (Huang et al., 2008) introduce network coding to TCP traffic, where
data segments in one direction and ACK segments in the opposite direction can be
coded at intermediate nodes. The simulation showed that making a small delay at each
intermediate node can increase the coding opportunity and increase the TCP throughput.
TCP/NC enables a TCP-compatible sliding-window approach to utilize network coding
(Sundararajan et al., 2011). Such a variant of TCP is based on ACK-based sliding-window
network coding approach and improves the TCP throughput in lossy links. It uses the
degree of freedom in the decoding matrix instead of the number of received original
packets as the sequence number in ACK. If a received packet increases the degree of
freedom in the decoding matrix, this packet is called an innovative packet and this packet is
‘seen’ by the destination. The destination node will generate an acknowledgment whenever
a coded packet is seen instead of producing an original packet. However, TCP/NC cannot
efficiently control the waiting time for the decoding matrix to become full rank, and the
packet loss can make TCP/NC’s decoding matrix very large, which causes a long packet
delay (Sun et al., 2015). TCP-VON introduces online network coding (ONC) to TCP/NC,
which can smoothly increase the receiving data rate and packets can be decoded quickly
by the destination node. However, these protocols are variants of RTT-based congestion
control TCP protocols (e.g., Vegas), which limits their applications in practice since most
TCP protocols are loss-based congestion control (Bao et al., 2012). TCP-FNC proposes
two algorithms to increase the TCP throughput (Sun et al., 2015). One is a feedback based
scheme to reduce the waiting delay. The other is an optimized progressive decoding
algorithm to reduce computation delay. It can be applied to loss-based congestion control,
but it does not take advantage of opportunistic data forwarding. Since TCP-FNC is based on
traditional IP forwarding, it is easily affected by link quality variation. ComboCoding (Chen
et al., 2011) uses both inter- and intra-flow networking to support TCP with deterministic

Zhang et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.89 5/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.89


Figure 1 TCPFender design scheme.

routing. The inter-flow coding is done between the data flows of the two directions of
the same TCP session. The intra-flow coding is based on random linear coding serving
as a forward-error correction mechanism. It has an adaptive redundancy to overcome
variable packet loss rates over wireless links. However, ComboCoding was not designed
for opportunistic data forwarding.

Contribution of TCPFender
Opportunistic data forwarding and network coding do not inherently support TCP, so
many previous research on opportunistic data forwarding and network coding were not
designed for TCP. Other studies modified TCP protocols by cooperating network coding
into TCP protocols; these work created different variants of TCP protocols to improve
the throughput. However, TCP protocols (especially, TCP Reno) are widely deployed
in current communication systems, it is not easy work to modify all TCP protocols of
the communication systems. Therefore, we propose an adaptation layer (TCPFender)
functioning below TCP Reno. With the help of TCPFender, TCP Reno do not make any
change to itself and it can take advantage of both network coding and opportunistic data
forwarding.

DESIGN OF TCPFENDER
Overview of TCPFender
We introduce TCPFender as an adaptation layer above the network layer, which hides
network coding and opportunistic forwarding from the transport layer. The process of
TCPFender is shown in Fig. 1. It confines the modification of the system only under the
network layer. The goal of TCPFender is to improve TCP throughput in wireless mesh
networks by opportunistic data forwarding and network coding. However, opportunistic
data forwarding in wireless networks causes many dropped packets and out-of-order
arrivals, and it is difficult for TCP sender to maintain a large congestion window. Especially
the underlying link layer is the stock IEEE 802.11, which only provides standard unreliable

Zhang et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.89 6/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.89


broadcast or reliable unicast (best effort with a limited number of retransmissions). TCP
has its own interpretation of the arrival (or absence) of the ACK segments and their
timing. It opens up its congestion window based on continuous ACKs coming in from
the destination. The dilemma is that when packets arrive out of order or are dropped,
the TCP receiver cannot signal the sender to proceed with the expected ACK segment.
Unfortunately, opportunistic data forwarding can introduce many out-of-order arrivals,
which can significantly reduce the congestion window size of regular TCP since it increases
the possibility of duplicated ACKs. Furthermore, the long decoding delay for batch-based
network coding does not fare well with TCP, because it triggers excessive time-out events.

The TCPFender adaptation layer at the receiving side functions over the network layer
and provides positive feedback early on when innovative coded packets are received,
i.e., suggesting that more information has come through the network despite not being
decoded for the time being. This process helps the sender to open its congestion window
and trigger fast recovery when the receiving side acknowledges the arrival of packets
belonging to a later batch, in which case the sending side will resend dropped packets of
the unfinished batch. On the sender side, the ACK signalling module is able to differentiate
duplicated ACKs and filter useless ACKs (shown in Fig. 1).

TCPFender algorithm
To better support TCPwith opportunistic data forwarding and network coding, TCPFender
inserts the TCP adaptation layer above the network work layer at the source, the forwarder,
and the destination. The main work of the TCP adaptation layer is to interpret observations
of the network layer phenomena in a way that is understandable by TCP. The network
coding module in the adaptation layer is based on a batch-oriented network coding
operation. The original TCP packets are grouped into batches, where all packets in
the same batch carry encoding vectors on the same basis. At the intermediate nodes,
packets will be recoded and forwarded following the schedule of opportunistic data
forwarding proposed by MORE, which proposes a transmission credit system to describe
the duplication of packets. This transmission credit system can compensate the packet loss,
increase the reliability of the transmission, and represent the schedule of opportunistic data
forwarding. The network coding module in the destination node will try to decode received
coded packets to original packets when it receives any coded packet. The ACK signalling
modules at the source and the destination are responsible for translation between TCP
ACKs and TCPFender ACKs.

Network Coding in TCPFender
We implement batch-oriented network coding operations at the sender and receiver to
support TCP transmissions. All data pushed down by the transport layer in sender are
grouped into batches, and each batch has a fixed number β (β = 10 in our implementation)
of packets of equal length (with possible padding). When the source has accumulated
packets in a batch, these packets are coded with random linear network coding, tagged with
the encoding vectors, and transmitted to downstream nodes. The downstream nodes are
any nodes in the network closer to the destination. Any downstream node can recode and

Zhang et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.89 7/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.89


forward packets when it receives a sufficient number of them. We use transmission credit
mechanism, as proposed in MORE, to balance the number of packets to be forwarded in
intermediate nodes.

We make two important changes to improve the network coding process of MORE for
TCP transmissions. For a given batch, the source does not need to wait until the last packet
of a batch from the TCP before transmitting coded packets. We call this accumulative
coding. That is, if k packets (k <β) have been sent down by TCP at a point of time, a
random linear combination of these k packets is created and transmitted. Initially, the
coded packets only include information for the first few TCP data segments of the batch,
but will include more towards the end of the batch. The reason for this ‘‘early release’’
behaviour is for the TCP receiving side to be able to provide early feedback for the sender
to open up the congestion window. On the other hand, we use a deeper pipelining than
MOREwhere we allowmultiple batches to flow in the network at the same time. To do that,
the sending side does not need to wait for the batch acknowledgement before proceeding
with the next batch. In this case, packets of a batch are labeled with a batch index for
differentiation, in order for TCP to have a stable, large congestion window size rather than
having to reset it to 1 for each new batch. The cost of such pipelining is that all nodes need
to maintain packets for multiple batches.

Source adaptation layer
The source adaptation layer buffers all original packets of a batch that have not been
acknowledged. The purpose is that when TCP pushes down a new data packet or previously
sent data packet due to a loss event, the source adaptation layer can still mix it with other
data packets of the same batch. The ACK signalling module can discern duplicated ACKs
which are not in fact caused by the network congestion. Opportunistic data forwarding
may cause many extra coded packets, specifically when some network links are of the high
quality at a certain point. This causes the destination node to send multiple ACKs with
same sequence number. In this case, such duplicated ACKs are not a signal for the network
congestion, and should be treated differently by the ACK signalling module in the source.
These two cases of duplicated ACKs can actually be differentiated by tagging the ACKs
with the associated sequence numbers of the TCP data segment. These ACKs are used by
the TCPFender adaptation layer at the source and the destination and should be converted
to original TCP ACKs before being delivered to the upper layer.

The flow of data or ACKs transmissions is shown in the left of Fig. 1. Original TCP data
segments are generated and delivered to the module of ‘‘network coding and opportunistic
forwarding’’. Here, TCP data segments may be distributed to several batches based on
their TCP segment sequences, so the retransmitted packets will be always in the same batch
as their initial distribution. After the current TCP data segment mixes with packets in a
batch, TCPFender data segments will be generated and injected to network via hop-by-hop
IP forwarding, which is essentially broadcasting of IP datagrams. On the ACK signalling
module, when it receives TCPFender ACKs, if the ACK’s sequence number is greater than
the maximum received ACK sequence number, this ACK will be translated into a TCP
ACK and delivered to the TCP sender. Otherwise, the ACK signalling module will check

Zhang et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.89 8/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.89


whether this duplicated ACK is caused by opportunistic data forwarding or not. Then it
will decide whether to forward a TCP ACK to the TCP or not. The reason for differentiating
duplicated ACKs at the source instead of at the destination is to reduce the impact of ACK
loss on TCP congestion control.

Destination adaptation layer
The main function of the destination adaptation layer is to generate ACKs and detect
congestion in the network. It expects packets in the order of increasing batch index. For
example, when it is expecting the bth batch, it implies that it has successfully received
packets of the previous b− 1 batches and delivered them up to the TCP layer. In this
case, it is only interested in and buffers packets of the bth batch or later. However, the
destination node may receive packets of any batch. Suppose that the destination node is
expecting the bth batch, and that the rank of the decoding matrix of this batch is r . In
this case, the destination node has ‘‘almost’’ received β×(b−1)+ r packets of the TCP
flow, where β×(b−1) packets have been decoded and pushed up the TCP receiver, and r
packets are still in the decoding matrix. When it receives a coded packet of the b′th batch,
if b′< b, the packet is discarded. Otherwise, this packet is inserted into the corresponding
decoding matrix. Such an insertion can increase r by 1 if b′= b and this received packet
is an innovative packet. The received packet is defined as an innovative packet only if the
received packet is linearly independent with all the buffered coded packets within the same
batch. In either case, it generates an ACK of sequence number β×(b−1)+ r , which is
sent over IP back to the source node. One exception is that if r = β (i.e. decoding matrix
become full rank), the ACK sequence number is β×(b̂−1)+ r̂ , where b̂ is the next batch
that is not full and r̂ is its rank. At this point, the receiver moves on to the b̂th batch. This
mechanism ensures that the receiver can send multiple duplicate ACKs for the sender to
detect congestion and start fast recovery. It also supports multiple-batch transmissions in
the network and guarantees the reliable transmission at the end of the transmission of each
batch.

The design of the destination adaptation layer is shown on the right of Fig. 1. The network
coding module has two functions. First, it will check whether the received TCPFender data
segment is innovative or not. In either case, it will notify the ACK signalling to generate
a TCPFender ACK. Second, it will deliver original TCP data segments to TCP layer if one
or more original TCP data segment are decoded after receiving an innovative coded data
packet. This mechanism can significantly reduce the decoding delay of the batch-based
network coding. On the other hand, TCPFender has its own congestion controlmechanism,
so TCP ACK that is generated by the TCP layer will be dropped by the ACK signalling
module at the destination.

Forwarder adaptation layer
The flow of data at forwarders is shown in the middle of Fig. 1. The ACK is unicast from the
destination to the source by IP forwarding, which is standard forwarding mechanism and is
not shown in the diagram. The intermediate node receives TCPFender data segment from
below and this segment will be distributed into corresponding batches and regenerates a
new coded TCPFender data segment. This new TCPFender data segment will be sent to

Zhang et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.89 9/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.89


Figure 2 Diamond topology.

Figure 3 String topology.

downstream forwarders via hop-by-hop IP broadcasting based on the credit transmission
system proposed by MORE.

PERFORMANCE EVALUATION
In this section,we investigate the performance of TCPFender through computer simulations
using NS-2. The topologies of the simulations are made up of three exemplar network
topologies and one specific mesh. These topologies are depicted in Fig. 2 ‘‘diamond
topology,’’ Fig. 3 ‘‘string topology,’’ Fig. 4 ‘‘grid topology,’’ and Fig. 5 ‘‘mesh topology.’’
The packet delivery rates at the physical layer for the mesh topology are marked in
Fig. 5, and the packet delivery rates for other topologies are described in Table 1. The
source node and the destination node are at the opposite ends of the network. One FTP
application sends long files from the source to the destination. The source node emits
packets continuously until the end of the simulation, and each simulation lasts for 100 s.
All the wireless links have a bandwidth of 1Mbps and the buffer size on the interfaces is set
to 100 packets. To compensate for the link loss, we used the hop-to-hop redundancy factor
for TCPFender on a lossy link. Recall that the redundancy factor is calculated based on the
packet loss rate, which was proposed in MORE (Chachulski et al., 2007). This packet loss
rate should incorporate the loss effect at both the Physical and Link layers, which is higher
than the marked physical layer loss rates. The redundancy factors of the links are thus set
according to these revised rates. We compared our protocol against TCP and TCP + NC
in four network topologies. In our simulations, TCP ran on top of IP, and TCP + NC has
batch-based network coding enabled but still over IP. The version of TCP is TCP Reno for
TCPFender and both baselines. The ACK packet for the three protocols are routed to the
source by shortest-path routing.

Zhang et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.89 10/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.89


Figure 4 Grid topology.

Table 1 Packet delivery rate

100 m 200m

100% 80% 60% 40% 20%
80% 60% 40% 20%
60% 40% 20%
40% 20%

In this paper, we examined whether TCPFender can effectively utilize opportunistic
forwarding and network coding. TCPFender can provide reliable transmissions in these
four topologies and the analysis metrics we took are the network throughput and the
end-to-end packet delay at the application layer. We repeated each scenario 10 times
with different random seeds for TCPFender, TCP + NC, and TCP/IP, respectively. In
TCPFender, every intermediate node has the opportunity to forward coded packets and
all nodes operate in the 802.11 broadcast mode. By contrast, for TCP/IP and TCP + NC,
we use the unicast model of 802.11 with ARQ and the routing module is the shortest-path
routing of ETX Couto et al. (2003).

In the diamond topology (Fig. 2), the source node has three different paths to the
destination. TCP and TCP + NC only use one path to the destination, but TCPFender
could utilize more intermediate forwarders thanks to the opportunistic routing. The packet

Zhang et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.89 11/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.89


Figure 5 Mesh topology.

Figure 6 Throughput for diamond topology.

delivery rates for each link are varied between 20%, 40%, 60% and 80%. We plotted the
throughput of these three protocols in Fig. 6. In all cases, the TCPFender has the highest
throughput, and the performance gain is more visible for poor link qualities.

Next, we tested these protocols in the string topology (Fig. 3) with six nodes. The distance
between the two nodes is 100 m, and the transmission range is the default 250 m. Different
combinations of packet delivery rates for 100-meter and 200-meter distances are described
in Table 1. As a result, the shortest path routing used by TCP and TCP+ NC can decide to
use the 100 m or 200 m links depending on their relative reliability. The throughputs of the
three protocols are plotted in Fig. 7, where we observed how they perform under different
link qualities. Except for the one case where both the 100 m and 200 m links are very stable
(i.e., 100% and 80%, respectively), the gains of having network coding and opportunistic
forwarding are fairly significant in maintaining TCP’s capacity to the application layer.

Zhang et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.89 12/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.89


Figure 7 Throughput for string topology.

When the links are very stable, the cost of the opportunistic forwarding schedule and the
network coding delay will slightly reduce the network throughput.

We also plotted these three protocols’ throughputs in a grid topology (Fig. 4) and a
mesh topology (Fig. 5). Each node has more neighbours in these two topologies, compared
to string topology (Fig. 3), which increases the chance of opportunistic data forwarding.
The packet delivery rates are indicated in these two Figures (Figs. 4 and 5). In general, the
packet delivery rates drop when the distance between a sender and a receiver increases.
In our experiment, the source and destination nodes deploy at the opposite ends of the
network. The throughput of TCPFender is depicted in Fig. 8 and it is much higher than
TCP/IP because opportunistic data forwarding and network coding increase the utilization
of network capacity. The gain is about 100% in our experiment. The end-to-end delays of
the grid topology and the mesh topology are plotted in Fig. 8. In general, TCP + NC has
long end-to-end delays because packets need be decoded before delivered to the application
layer, this is an inherent feature of batch-based network coding. TCPFender can benefit
from backup paths and receive packets early, so it reduces the time-consumption of waiting
for decoding and its end-to-end delay is shorter than TCP + NC.

Next, we are interested in the impact of batch sizes on the throughput and the end-to-end
delay. Figure 9 shows the throughput of TCPFender in the mesh topology for batch sizes
of 10, 20, 30, ..., 100 packets. In general, batch sizes will have an impact on then TCP
throughput (as exemplified in Fig. 10). When the batch size is small (≤40), the increment
of the batch size can increase the throughput, since it expands the congestion window.
However, if the batch size is too large (>40), the increment of the batch size will decrease the

Zhang et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.89 13/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.89


Figure 8 Throughput and delay for grid topology andmesh topology.

Figure 9 Throughput and delay for different batch sizes.

throughput because the increase of batch size will amplify the fluctuation of the congestion
window and also increase packet overhead by long encoding vectors. The Fig. 10 also
describes how many packets are transmitted in the network. Each intermediate node will
keep all unfinished batches. From the Fig. 10, since the number of packets transmitted
in the network is smaller than two batch sizes, intermediate nodes only need to keep two

Zhang et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.89 14/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.89


Figure 10 Evolution of congestion window for three different batch sizes simulated in the mesh topol-
ogy.

Figure 11 Delay for two specific cases with batch sizes of 10 and 40.

batches of packets and the memories required to store the packets are acceptable. The
nature of batch-based network coding will also introduce decoding delays, so the batch size
has a direct impact on the end-to-end delay, as summaries in Fig. 9. In Fig. 11, we plotted
the end-to-end delays of all packets over time in two sample simulations. Note that these
tests were done for files that need many batches to carry. On the other hand, when the file
size is comparable to the batch size, the file-wise delay will be comparable to the decoding

Zhang et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.89 15/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.89


delay of an entire batch, which may seem large relatively. However, because the file size
is small, this delay is not overly significant as the delay is at the order of its transmission
time. Nevertheless, network coding does add considerable amount of delay in comparison
to pure TCP/IP.

CONCLUDING REMARKS
In this paper, we proposed TCPFender, which is a novel mechanism to support TCP with
network coding and opportunistic data forwarding. TCPFender completes the control
feedback loop of TCP by creating a bridge between the adaptation modules of the sender
and the receiver. The sender adaptation layer in TCPFender differentiates duplicate ACKs
caused by network congestion from these caused by opportunistic data forwarding, and the
receiver side releases ACK segments whenever receiving an innovative packet. In current
work, we implemented our algorithm to support TCP Reno. In fact, TCPFender can also
support other TCP protocols with loss-based congestion control (e.g., TCP-NewReno,
TCP-Tahoe). The adaptive modules are designed generally enough to not only support
network coding and opportunistic data forwarding, but also any packet forwarding
techniques that can cause many dropping packets or out-of-order arrivals. One example
will be multi-path routing, where IP packets of the same data flow can follow different
paths from the source to the destination. By simulating how the TCP receiver will signal
the TCP sender, we are able to adapt TCPFender to functioning over such the multi-path
routing without having to modify TCP itself.

In the simulation results, we compared TCPFender and TCP/IP in four different network
topologies. The result shows that TCPFender has a sizeable throughput gain over TCP/IP,
and the gain will be very distinct from each other when the link quality is not that good.
We also discussed the influence of batch size on the network throughput and end-to-end
packet delay. In general, the bath size has a small impact on the network throughput, but
it has direct impact on end-to-end packet delay.

In future, we will consider TCP protocols with RTT-based congestion control and also
analyze howmultiple TCP flows interact with each other in a network coded, opportunistic
forwarding network layer, or a more generally error-prone network layer. We will refine
the redundancy factor and the bandwidth estimation to optimize the congestion control
feedback of TCP. Finally, we will propose a theoretical model of TCP with opportunistic
forwarding and network coding, which will enable us to study the TCPFender as a function
in various communication systems.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported in part by the Natural Sciences and Engineering Research Council
(NSERC) of Canada (Discovery Grants 293264-12 and 327667-2010, and Strategic Project
Grant STPGP 397491-10). The funders had no role in study design, data collection and
analysis, decision to publish, or preparation of the manuscript.

Zhang et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.89 16/19

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.89


Grant Disclosures
The following grant information was disclosed by the authors:
Natural Sciences and Engineering Research Council (NSERC) of Canada: 293264-12,
327667-2010.
Strategic Project Grant STPGP: 397491-10.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Chen Zhang, Yuanzhu Chen and Cheng Li conceived and designed the experiments,
performed the experiments, analyzed the data, contributed reagents/materials/analysis
tools, wrote the paper, prepared figures and/or tables, performed the computation work,
reviewed drafts of the paper.

Data Availability
The following information was supplied regarding data availability:

GitHub: https://github.com/UploadForPeerJ/NS-2.35.

REFERENCES
Aguayo D, Bicket J, Biswas S, Judd G, Morris R. 2004. Link-level measurements from

an 802.11b mesh network. In: Proceedings of the 2004 conference on applications,
technologies, architectures, and protocols for computer communications (SIGCOMM),
vol. 34. New York: ACM, 121–132.

Ahlswede R, Cai N, Shuo-Yen, Li R, Yeung RW. 2000. Network information flow.
Information Theory 46(4):1204–1216 DOI 10.1109/18.850663.

Argyriou A. 2009.Wireless network coding with improved opportunistic listening. IEEE
Transactions on Wireless Communications 8(4):2014–2023
DOI 10.1109/TWC.2009.080396.

BaoW, Shah-Mansouri V,Wong VW, Leung VC. 2012. TCP VON: joint congestion
control and online network coding for wireless networks. In: Global communications
conference (GLOBECOM). Piscataway: IEEE, 125–130.

Basagni S, Conti M, Giordano S, Stojmenovic I. 2008. XORs in the air: practical wireless
network coding. IEEE/ACM Transactions on Networking 16(3):497–510
DOI 10.1109/TNET.2008.923722.

Biswas S, Morris R. 2005. ExOR: opportunistic multi-hop routing for wireless networks.
In: Proceedings of the ACM SIGCOMM conference on applications, technologies,
architectures, and protocols for computer communications (SIGCOMM). New York:
ACM, 133–144.

Cai S, Zhang S, Wu G, Dong Y, Znati T. 2014.Minimum cost opportunistic routing with
intra-session network coding. In: IEEE international conference on communications
(ICC). Piscataway: IEEE, 502-507.

Zhang et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.89 17/19

https://peerj.com
https://github.com/UploadForPeerJ/NS-2.35
http://dx.doi.org/10.1109/18.850663
http://dx.doi.org/10.1109/TWC.2009.080396
http://dx.doi.org/10.1109/TNET.2008.923722
http://dx.doi.org/10.7717/peerj-cs.89


Chachulski S, Jennings M, Katt S, Katabi D. 2007. Trading structure for randomness in
wireless opportunistic routing. ACM SIGCOMM Computer Communication Review
37(12):169–180 DOI 10.1145/1282427.1282400.

Chen C-C, Chen C, Oh SY, Park J-S, Gerla M, Sanadidi MY. 2011. ComboCoding:
Combined intra-/inter-flow network coding for TCP over disruptive MANETs.
Journal of Advanced Research 2:241–252 DOI 10.1016/j.jare.2011.05.002.

Chen Y, Zhang J, Marsic I. 2009. Link-Layer-and-above diversity in multi-hop wireless
networks. IEEE Communications Magazine 47(2):118–124
DOI 10.1109/MCOM.2009.4785389.

Couto DSJD, Aguayo D, Bicket J, Morris R. 2003. A high-throughput path metric for
multi-hop wireless routing. In: Proceedings of the 9th annual international conference
on mobile computing and networking (MobiCom). New York: ACM, 134–146.

Garrido P, Gómez D, Agüero R, Serrat J. 2015. Combination of random linear coding
and cross-layer opportunistic routing: Performance over bursty wireless channels.
In: IEEE 26th annual international symposium on personal, indoor, and mobile radio
communications (PIMRC). Piscataway: IEEE, 1692–1696.

Ho T, MédardM, Koetter R, Karger DR, Effros M, Shi J, Leong B. 2006. A random linear
network coding approach to multicast. IEEE Transmission on Information Theory
52(10):4413–4430 DOI 10.1109/TIT.2006.881746.

Hsu Y-P, Abedini N, GautamN, Sprintson A, Shakkottai S. 2015. Opportunities for
network coding: to wait or not to wait. IEEE/ACM Transactions on Networking
23(6):1876–1890 DOI 10.1109/TNET.2014.2347339.

Huang Y, Ghaderi M, Towsley D, GongW. 2008. TCP performance in coded wireless
mesh networks. In: Sensor, mesh and ad hoc communications and networks (SECON).
Piscataway: IEEE, 179–187.

Jaggi S, Sanders P, Chou PA, Effros M. 2005. Polynomial time algorithms for multicast
network code construction. IEEE Transmission on Information Theory 51:1973–1982
DOI 10.1109/TIT.2005.847712.

Jain S, Das S. 2005. Exploiting path diversity in the link layer in wireless ad hoc networks.
In:World of wireless mobile and multimedia networks (WoWMoM). Piscataway: IEEE,
22–30.

Koetter R, MédardM. 2003. An algebraic approach to network coding. IEEE Transmis-
sion on Networking 11(5):782–795 DOI 10.1109/TNET.2003.818197.

Koutsonikolas D,Wang C-C, Hu YC. 2011. Efficient network-coding-based opportunis-
tic routing through cumulative coded acknowledgments. IEEE/ACM Transactions on
Networking (TON) 19(5):1368–1381 DOI 10.1109/TNET.2011.2111382.

Krigslund J, Hansen J, Hundeboll M, Lucani DE, Fitzek FHP. 2013. CORE: COPE
with MORE in wireless meshed networks. In: Vehicular technology conference (VTC
Spring), 1–6.

Laneman JN, Tse DNC,Wornell GW. 2004. Cooperative diversity in wireless networks:
efficient protocols and outage behavior. IEEE Transmission on Information Theory
50(12):3062–3080 DOI 10.1109/TIT.2004.838089.

Zhang et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.89 18/19

https://peerj.com
http://dx.doi.org/10.1145/1282427.1282400
http://dx.doi.org/10.1016/j.jare.2011.05.002
http://dx.doi.org/10.1109/MCOM.2009.4785389
http://dx.doi.org/10.1109/TIT.2006.881746
http://dx.doi.org/10.1109/TNET.2014.2347339
http://dx.doi.org/10.1109/TIT.2005.847712
http://dx.doi.org/10.1109/TNET.2003.818197
http://dx.doi.org/10.1109/TNET.2011.2111382
http://dx.doi.org/10.1109/TIT.2004.838089
http://dx.doi.org/10.7717/peerj-cs.89


Larsson P. 2001. Selection diversity forwarding in a multihop packet radio network with
fading channel and capture. ACM SIGMOBILE Mobile Computing and Communica-
tions Review 5(4):47–54 DOI 10.1145/509506.509517.

Li P, Guo S, Yu Sh, Vasilakos AV. 2012. CodePipe: an opportunistic feeding and routing
protocol for reliable multicast with pipelined network coding. In: INFOCOM.
Piscataway: IEEE, 100–109.

Li S-YR, Yeung RW, Cai N. 2003. Linear network coding. IEEE Transmission on Informa-
tion Theory 49(2):371–381 DOI 10.1109/TIT.2002.807285.

Lin Y, Li B, Liang B. 2008. CodeOR: opportunistic routing in wireless mesh networks
with segmented network coding. In: IEEE International conference on network
protocols (ICNP). Piscataway: IEEE, 13–22.

Lin Y, Liang B, Li B. 2010. slideOR: online opportunistic network coding in wireless
mesh networks. In: INFOCOM, 2010 proceedings IEEE. Piscataway: IEEE, 1–5.

Mehta T, Narmawala Z. 2011. Survey on multimedia transmission using network coding
over wireless networks. In: Nirma university international conference on engineering,
1–6.

Sun J, Zhang Y, Tang D, Zhang S, Zhao Z, Ci S. 2015. TCP-FNC: a novel TCP with
network coding for wireless networks. In: International conference on communications
(ICC). Piscataway: IEEE,.

Sundararajan JK, Shah D, MedardM, Jakubczak S, Mitzenmacher M, Barros J. 2011.
Network coding meets TCP: theory and implementation. Proceedings of the IEEE
99(3):490–512 DOI 10.1109/JPROC.2010.2093850.

Wang Z, Chen Y, Li C. 2012. CORMAN: a novel cooperative opportunistic routing
scheme in mobile ad hoc networks. IEEE Journal on Selected Areas in Communica-
tions 30(2):289–296 DOI 10.1109/JSAC.2012.120207.

Yan Y, Zhang B, Mouftah HT, Ma J. 2008. Practical coding-aware mechanism for
opportunistic routing in wireless mesh networks. In: IEEE international conference
on communications. Piscataway: IEEE, 2871–2876.

Zhu D, Yang X, YuW, Lu C, Fu X. 2015. INCOR: inter-flow Network Coding based
opportunistic routing in wireless mesh networks. In: IEEE international conference
on communications (ICC). Piscataway: IEEE, 3666–3671.

Zhang et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.89 19/19

https://peerj.com
http://dx.doi.org/10.1145/509506.509517
http://dx.doi.org/10.1109/TIT.2002.807285
http://dx.doi.org/10.1109/JPROC.2010.2093850
http://dx.doi.org/10.1109/JSAC.2012.120207
http://dx.doi.org/10.7717/peerj-cs.89

