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ABSTRACT
The non-orthogonal multiple access (NOMA) scheme has proven to be a potential
candidate to enhance spectral potency and massive connectivity for 5G wireless
networks. To achieve effective system performance, user grouping, power control,
and decoding order are considered to be fundamental factors. In this regard, a joint
combinatorial problem consisting of user grouping and power control is considered,
to obtain high spectral-efficiency for NOMA uplink system with lower computational
complexity. To solve the joint problem of power control and user grouping, for Uplink
NOMA, we have used a newly developed meta-heuristicnature-inspired optimization
algorithm i.e., whale optimization algorithm (WOA), for the first time. Furthermore,
for comparison, a recently initiated grey wolf optimizer (GWO) and the well-known
particle swarm optimization (PSO) algorithms were applied for the same joint issue. To
attain optimal and sub-optimal solutions, a NOMA-based model was used to evaluate
the potential of the proposed algorithm. Numerical results validate that proposedWOA
outperforms GWO, PSO and existing literature reported for NOMA uplink systems in-
terms of spectral performance. In addition, WOA attains improved results in terms of
joint user grouping and power control with lower system-complexity when compared
toGWOand PSO algorithms. The proposedwork is a novel enhancement for 5G uplink
applications of NOMA systems.

Subjects Artificial Intelligence, Computer Networks and Communications
Keywords Whale optimization algorithm, Grey wolf optimization, Particle swarm optimization,
Wireless communication, Uplink, NOMA, 5G

INTRODUCTION
Multiple access approaches are increasingly gaining importance in modern mobile
communication systems, primarily due to the overwhelming increase in the communication
demands at both the user and device level. Over past few years, non-orthogonal multiple
access (NOMA) (Ding et al., 2017a; Ding et al., 2014; Ding et al., 2017b; Benjebbovu et al.,
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2013) schemes have earned significant attention for supporting the huge connectivity
in contemporary wireless communication systems. The NOMA schemes are currently
considered to be the most promising contender for the 5G and beyond 5G (B5G) wireless
communications, which are capable of accessing massive user connections and attaining
high spectrum performance. Moreover, a report has been published recently regarding
the Third Generation Partnership Project for determining the effectiveness of NOMA
schemes for several applications or development scenarios, particularly for ultra-reliable
low latency communications (URLLC), enhanced mobile broadband (eMBB), and massive
machine type communications (mMTC) (Benjebbour et al., 2013). Contrary to the classic
orthogonal multiple access (OMA) approaches, the NOMA schemes can offer services to
multiple users in the same space/code/frequency/time resource block (RB). The NOMA
schemes are also capable of differentiating the users that have distinct channel settings.
These schemes are mainly inclined at strengthening connectivity and facilitating users with
an efficient broad-spectrum (Islam et al., 2016; Dai et al., 2015).

Some recent studies (Chen, Wang & Zhang, 2018; Wang et al., 2019; Shahini & Ansari,
2019) have discussed the effective use of the NOMA approach in standard frameworks
for Internet of Things (IoT) systems and Vehicle-to-Everything (V2X) networks. The
successive interference cancellation (SIC) technique, which is pertinent for multi-user
detection and decoding is implemented for the NOMA scheme at the receiver end. The
SIC technique operates differently for the downlink and uplink scenarios. In the downlink
NOMA scenario, SIC is applied at the receiver end, where high energy is consumed during
processing when a lot of users are considered in the NOMA group. For that reason, two
users are typically considered in a group for optimum grouping/pairing of users in the case
of the downlink NOMA system (Al-Abbasi & So, 2016; He, Tang & Che, 2016). Whereas in
the uplink NOMA systems, it is possible to employ SIC at the base station (BS) that has
a higher processing capacity. Moreover, in uplink NOMA, multiple users are allowed to
transmit in a grant-free approach that leads to a significantly reduced latency rate.

From a practical perspective, the user-pairing/grouping and power control schemes in
uplink/downlink NOMA systems are critically required to achieve an appropriate trade-off
between the performance of the NOMA system and the computational complexity of the
SIC technique. Over the past few years, several studies have discussed different prospects
regarding the maximization of sum rate (Zhang et al., 2016a; Ding, Fan & Poor, 2015; Ali,
Tabassum & Hossain, 2016), the transmission power control approaches (Wei et al., 2017),
and fairness (Liu, Mähönen & Petrova, 2015; Liu et al., 2016) for user pairing/grouping
NOMA systems. Regarding the maximization of sum rate, a two-user grouping scheme
based on a unique channel gain is demonstrated in Ding, Fan & Poor (2015) whereas
another study (Ali, Tabassum & Hossain, 2016) presented a novel framework for pertinent
user-pairing/grouping approaches to assign the same resource block to multiple users.

In reference to the user pairing schemes (Sedaghat & Müller, 2018) used the Hungarian
algorithm with a modified cost function to investigate optimum allocation for three
distinct cases in the uplink NOMA system. Furthermore, several matching game-based
(Liang et al., 2017) user-pairing/grouping approaches are discussed in Xu et al. (2017) and
Di, Song & Li (2016), wherein the allocation of users and two sets of players are modeled
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as a game theory problem. Numerous recent studies (Zhai et al., 2019; Zhu et al., 2018;
Nguyen & Le, 2019) have also investigated different user-pairing/grouping schemes for
NOMA systems. A novel algorithm named Ford Fulkerson (Zhai et al., 2019) has been
introduced for D2D cellular communication to address the user-pairing issue in NOMA
systems. In addition to that, optimal user paring is achieved in Zhu et al. (2018) by taking
two users with appropriate analytical conditions into consideration. A new framework
(Song et al., 2014) is also presented for optimum cooperative communication networks.
Besides that, a lookup table (Azam, Shahab & Shin, 2019) is introduced by performing
comprehensive calculations to highlight the significance of power allocation and uplink
user pairing in obtaining high sum-rate capacity while fulfilling the demands of user
data rates. For the uplink case, a cumulative distributive function (CDF)-based resource
allocation scheme (Zhanyang, Toor & Jin, 2018) is presented where for each time slot, the
selection of two users is dependent on the highest value of the CDF. Moreover, a few
dynamic power allocation and power back-off schemes are also discussed in few studies
(Zhang et al., 2016b; Yang et al., 2016) for scrutinizing the performance of the system to
obtain high sum rates and meet the service quality requirements.

In the context of overlapping, a generic user grouping approach (Chen et al., 2020a) is
presented for NOMA, which involves the grouping of many users with a limitation on
maximumpower. The authors also formulated a problem for generalized user grouping and
power control to achieve an optimized user grouping scheme based on themachine learning
approach. Furthermore, another study (Chen et al., 2020b) proposed a framework in which
an overlapping coalition formation (OCF) game is used for overlapping user grouping
and an OCF-based algorithm is also introduced that facilitated the self-organization of
each user in an appropriate overlapping coalition model. Besides that, a joint problem
is examined in Guo et al. (2019) for user grouping, association, and power allocation in
consideration of QoS requirements for enhancing the uplink network capacity. Zhang et
al. (2019) also discussed a joint combinatorial problem for obtaining a sub-optimal and
universal solution for user-pairing/grouping to boost the overall system performance.
Additionally, the authors in Wang et al. (2018) considered a user association problem by
using an orthogonal approach for grouping users and employing a game-theoretic scheme
for the allocation of a resource block to multi-users in a network. It has been observed
that there are certain limitations associated with the game-theoretic schemes that are
typically employed in user association techniques. However, the evolutionary algorithms
(EAs) are universal optimizers that exhibit exceptional performance irrespective of the
optimization problems being studied. The problem formulation is done as a sum rate
utility function for the network and a parameter is presented that depicts the intricacy for
power control problems. Therefore, the parameters for power control remain constant for
all the systems.Moreover, NOMA-basedmobile edge computing (MEC) system (Zheng, Xu
& Tang, 2020) has been investigated to improve the energy efficiency during task offloading
process. Further, a matching coalition scheme has been used to address the issue of power
control and resource allocation. In addition, a matching theory (Panda, 2020) approach is
proposed to enhance the operational system’s user patterns and resource management.
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Meta-heuristics are high-level processes that combine basic heuristics and procedures
in order to provide excellent approximation solutions to computationally complex
combinatorial optimization problems in telecommunications (Martins & Ribeiro, 2006) .
Furthermore, the key ideas connected with various meta-heuristics and provide templates
for simple implementations. In addition, several effective meta-heuristic approaches to
optimization problems have been investigated in telecommunications.

Several meta-heuristic algorithms (Sharma & Gupta, 2020) have been proposed to
address localization problems in sensor networks. Some of the meta-heuristic algorithms
used to solve the localization problems include the bat algorithm, firework algorithm
and cuckoo search algorithm. For wireless sensors networks (Wang, Li & Pedrycz, 2020),
routing algorithm has been developed based on elite hybrid meta-heuristic optimization
algorithm.

On the other hand, swarm intelligence (SI) algorithms, in addition to game theory
and convex optimization, has recently emerged as a promising optimization method for
wireless-communication. The use of SI algorithms can resolve arising issues in wireless
networks such as power control problem, spectrum allocation and network security
problems (Pham et al., 2020b). Furthermore, two SI algorithms, named grey wolf optimizer
(GWO) and particle swarm optimizer (PSO) are also used in literature for solving the joint
problem regarding user associations and power control in NOMA downlink systems to
attain maximized sum-rate (Goudos et al., 2020). Additionally, an efficient meta-heuristic
approach known as multi-trial vector-based differential evolution (MTDE) (Nadimi-
Shahraki et al., 2020) has been implemented for solving different complex engineering
problems by using multi trial vector technique (MTV) which integrates several search
algorithms in the form of trial vector producers (TVPs) approach. Recently, an updated
version of GWO i.e., Improved-grey wolf optimizer (I-GWO) (Nadimi-Shahraki, Taghian
& Mirjalili, 2021) has been investigated for handling global optimization and engineering
design challenges. This modification is intended to address the shortage of population
variety, the mismatch between exploitation and exploration, and the GWO algorithm’s
premature convergence. The I-GWO algorithm derives from a novel mobility approach
known as dimension learning-based hunting (DLH) search strategy which was derived
from the natural hunting behaviour of wolves. DLH takes a unique method to creating
a neighbourhood for each wolf in which nearby information may be exchanged among
wolves. This dimension learning when employed in the DLH search technique improves the
imbalance between local and global search and preserves variation. A parallel variant of the
Cuckoo Search method is the Island-based Cuckoo Search (IBCS) (Alawad & Abed-alguni,
2021) using extremely disruptive polynomial mutation (iCSPM). The discrete iCSPM with
opposition-based learning approach (DiCSPM) is a version of iCSPM has been proposed to
schedule processes in cloud computing systems focusing on data communication expenses
and computations. Moreover, for scheduling dependent tasks to virtual machines (VMs),
this work offers a discrete variant of the Distributed GreyWolf Optimizer (DGWO) (Abed-
alguni & Alawad, 2021). In DGWO, the scheduling process is considered as a problem of
minimization for data communication expenses and computation.
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In this paper, a joint combinatorial problem of user pairing/grouping, power control,
and decoding order are considered for every uplink NOMA user within the network. To
solve this problem, we propose a recently introduced meta-heuristic algorithm known
as whale optimization algorithm (WOA) (Mirjalili & Lewis, 2016) that is inspired by the
hunting approach of the humpback whale. Furthermore, a grey wolf optimizer (GWO)
(Mirjalili, Mirjalili & Lewis, 2014) and particle swarm optimization (PSO) (Kennedy &
Eberhart, 1995) algorithms are also employed in this research study. The results obtained
through the algorithms proposed in Sedaghat & Müller (2018), WOA, GWO and the
popular PSO are exclusively compared in this study. The acquired results indicate that the
WOA outperformed the existing algorithm (Sedaghat & Müller, 2018), GWO and PSO in-
terms of spectral-efficiency with lower computational complexity.

The rest of the paper is structured as follows: the ‘System Model and Problem
Formulation’ describes the mathematical representation and research problem of NOMA
uplink system. The solution is provided in the ‘Solution of Proposed Problem’ section
where an efficient decoding order, power control scheme and user grouping approach
are employed for NOMA uplink System. A concise analysis on the simulation is provided
in ‘Simulation Results’ section. The ‘Conclusion’ section presents the summary of this
research work.

SYSTEM MODEL AND PROBLEM FORMULATION
System model
As illustrated in Fig. 1, we consider an uplink NOMA transmission with a single-cell
denoted by C . The number of users M served by a single base station (BS) placed at the
centre of the cell. To obtain the signal/information requirements of several users, the
number of physical resource block (PRB) denoted by N are assigned to multiple-users in
a cell.

For uplink transmission, users in almost in same PRB/group maintaining same PRB
execute NOMA operation while users belong to different PRB/group assigned different
PRB execute OMA operation. Hence, the received signal zn at the BS can be represented
as:

zn=
M∑

m=1

υn,m gm
√
αmPsm+ωn. (1)

where υn,m ∈ {0,1} is the user n indicator assigned to the n− th group. The transmission
path between userm and BS is represented by gm which is Guassian distributed. The power
control coefficients is denoted by αm(0≤αm≤ 1). For each userm, the transmission power
and the signal is denoted by P and sm, where E(|sm|2= 1). The additive white Gaussian
noise (AWGN) power is denoted byωn with an average power σ 2. Therefore, themaximum
spectral efficiency of userM and the received signal to interference plus noise ratio (SINR)
on n− th PRB can be expressed as:

Sm= log2 (1+φm) (2)
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Figure 1 NOMA uplink transmission.
Full-size DOI: 10.7717/peerjcs.882/fig-1

φm=
|gm|2αmP∑M

j 6=m |gj |2αjP+σ 2
(3)

The SIC operation is carried out at the BS for each PRB/group to decode the users signal.
The decoding order of a user n is represented by δn,m in a cell, where δn,m= a> 0 assumes
that any user m in a group is the i− th one in the n− th PRB is to be decoded. Thus, the
maximum spectral efficiency of user n can be represented as:

Sm= log2

1+
|gm|2αmγ∑M

j 6=m
δn,j >δn,m> 0

|gj |2αjγ +1

 (4)

where δn,j >δn,m represents the decoding order of users in a PRB/group. If usersm and j are
in the same group, then it implies that user m is decoded first. The transmission power to
noise ratio is represented by γ , where γ = P/σ 2. Assuming that, channel-state-information
(CSI) is known by BS of each user within coverage area.

To attain effective user-pairing/grouping and power control for NOMA uplink system,
each userM in a cell transmit their power control coefficient αm along with user indicator
υn,m. Hence, the maximum spectral-efficiency in the n− th PRB/group can be expressed as
follows:

St (n)=
∑
υn,m=1

Sm (5)
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St (n)= log2

(
1+

∑
υn,m=1

|gm|2αmγ
)

(6)

Eq. (6) clearly shows that the spectral efficiency in each group has not been affected by
the order of decoding but has an impact on each user.

Problem formulation
In this paper, we propose an efficient method for power-control, decoding order and
user-pairing/grouping to increase the spectral-efficiency under their required minimum
rate constraint. Therefore, a joint combinatorial problem of power control, decoding order
and user pairing/grouping is formulated tomaximize the spectral-efficiency. Theminimum
spectral-requirement of each user in the network is sm. Therefore, the spectral efficiency
maximization problem (Sedaghat & Müller, 2018; Zhang et al., 2019) can be formulated as:

maximize{υn,m},{δn,m}∈π,{αm} St =
N∑
n=1

St (n) (7a)

subject to C1 : 0≤αm≤ 1,∀m, (7b)

C2 : Sm≥ sm,∀m, (7c)

C3 : υn,m ∈ {0,1},∀m,∀n, (7d)

C4 :

N∑
n=1

υn,m= 1,∀m (7e)

where δn,m represents the decoding order and π indicates all possible combinations of
users decoding orders in a network. C1 indicates the upper bound of transmission power.
C2 guarantees the minimum rate of a user. C3 and C4 ensures the user indicator and m
users assigned to PRB/group.

SOLUTION OF PROPOSED PROBLEM
To achieve the global optimal solution for problem (Eq. (7a)), the optimization variables
υn,m, δn,m, andαm are strongly correlated, whichmakes the problem complex. In connection
of the fact that user-pairing variables δn,m are combinatorial integer programming variables.
Hence, first solve the combinatorial problem of power control and decoding order instead
and compute the optimum user-pairing/grouping solution. In case of any fixed scheme of
user-grouping, the value of υn,m are independent among all distinct group regarding both
decoding order and power control.

maximize{δn,m}∈π,{αm} St (n) (8a)
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subject to Sm≥ sm, m∈Mn, (8b)

0≤αm≤ 1, m∈Mn (8c)

whereMn indicates set of all possible combination in the n− th PRB.

Optimal decoding for optimal user-pairing/grouping
In order to apply the SIC operation, all users signals/information are decoded by the
receiver in the descending order based on channel condition. In the uplink NOMA system
(Ali, Tabassum & Hossain, 2016), the users with better channel condition is decoded first
at the BS while the user with worse channel conditions is decode last. As a result, the user
with better channel condition experiences interference from all the users in the network,
while the users with poor channel condition experiences interference free transmission.

To attain an efficient decoding (Zhang et al., 2019) for NOMAuplink users, the decoding
order for M users in a cell concern to same group/PRB, based upon the value of Jn, where
different decoding order of each user in a network depend on power control (Zhang et al.,
2019) scheme regarding different feasible region can be represented as:

Jm= |gm|2(1+
1
9m

) (9)

where

9m= 2sm−1 (10)

Based on Eq. (9), the user with higher value of Jm in a cell is decoded first. Also applies
that the decoding-order does not affect the spectral efficiency of each PRB/group.

Power control
The nature of the problem in Eq. (8a) is amixed integer non-linear programming (MINLP).
Hence, we have achieved the optimal solution for decoding order δn,m. Therefore, it is
required to find all the possible group of combination for user pairing/grouping.

For this purpose, k users in a single cell C are considered. Without loss of generality,
it is needful to reduce the complexity and simplify the mathematical procedure regarding
optimal decoding order δn,m. The users are listed in a C based on the decreasing order Jm,
for example 1,2,3,...,K . Therefore, Eq. (8a) can be represented as:

maximize{αk }
K∑
k=1

|gk |2αkγ (11a)

subject to |gk |2αkγ ≥9k

( K∑
j=k+1

|gj |2αjγ +1
)
, ∀k, (11b)

0≤αk ≤ 1,∀k, (11c)
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where {αk} represents power control-variables. Equations (11a) and (11b) show linearity
and translated to SNR formulations respectively.

As shown in Eq. (11a), αk is increasing. Therefore, the optimal solution for power control
will always be upper bound. To determine the lower bound of power control (Zhang et al.,
2019), the following equation can be solved as:

α0k =
9kγ

′

k

|gk |2γ
, 1≤ k ≤K (12)

where

γ
′

k =

K∏
u=k+1

(9u+1) (13)

which signifies that the spectral efficiency requirements is equal to the sum of spectral
efficiencies of all the users. If α0k ≥ 1, exceeds the limit of upper bound and hence, no
feasible solution for Eq. (11a). If 0≤ α0k ≤ 1, Eq. (11a) has the feasible solution due to
bound of αk variables. Therefore, for all users M in a cell, the optimal solution (Zhang et
al., 2019) of the αk variables can be illustrated as

α∗k =min{1,bk} (14)

where

bk =min{
|hu|2γ
9u
−

k−1∑
q=u+1

|hq|2γ −
K∑

j=k+1

|hj |2α0j γ −1(u= 1,2,3,...,k−1)}. (15)

In reference to Eqs. (14) and (15), the optimal power control variables α∗k mentioned in
problem Eq. (11a) is achieved. Specifically, if α∗k = bk , for other users, the optimal power
control variables are α∗j =α

0
j for j > k.

User grouping
An efficient and low computational time algorithm for user-pairing/grouping is one of
the key concern for an effective NOMA uplink system. In this regard, three different
meta-heuristic algorithms are proposed to solve the issue of complexity. The WOA is
investigated for an efficient optimal and sub-optimal solution for user-pairing/grouping
problem as a result to enhance the system performance. Further, the user pairing/grouping
problem that exploits the channel-gain difference among different users in a network
and the objective is to raise system’s spectral-efficiency. To determine the optimum
user-pairing/grouping, a specific approach of solving user pairing/grouping problem
is by using the search approach. For fixed user-pairing/grouping scheme, the optimal
solution is obtained (Zhang et al., 2019). Then, list all the users in the decreasing order of
Jm accordingly. The proposed algorithm for user pairing/grouping problem is illustrated
in Algorithm 1. Initially, define the feasible solution of user grouping for exhaustive and
swarm based algorithm. An exhaustive search explores each data points within the search
region and therefore provides the best available match. Furthermore, a huge proportion
of computation is needed. Particularly a discrete type problem where no such solution
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exists to find the effective feasible solution. There may be a need to verify each and every
possibility sequentially for the purpose of determining the best feasible solution. The
optimal solution using exhaustive search algorithm (Zhang et al., 2019) is getting obdurate
because the number of comparison increases rapidly. Hence, the system complexity of
WOA for user grouping scheme is O(MN ), where as O(NM ) represent the complexity of
the exhaustive search algorithm. Therefore, a WOA approach is employed to reduce the
complexity and provide efficient results. In addition, GWO and PSO algorithms are also
proposed for the same problem.

Whale optimization algorithm (WOA)
To enhance the spectral-throughput and reduce the system complexity, an innovative
existence meta-heuristic optimization technique named whale optimization algorithm
(WOA) (Mirjalili & Lewis, 2016) is proposed in this paper. The algorithmWOA is resembles
to the behaviour of the humpback whales, which is based on the bubble-net searching
approach. Three distinct approaches are used to model the WOA is described as

Encircling prey
In this approach, the humpback-whales can locate the prey-location of the prey and
en-circle that region. Considering that, the location of the optimal design in the search
region is not known in the beginning. Hence, the algorithmWOAprovides the best solution
that is nearer to the optimal value. First determine the best solution regarding location
and then change the position according to the current condition of the other search agents
concerning to determine the best solution. Such an approach is described mathematically
and can be expressed as:
−→
E = |A.

−→
X∗(t )−X(t )| (16)

−→
Y (t )=

−→
X (t+1) (17)

−→
Y (t )=

−→
X∗(t )−

−→
B .
−→
E (18)

where,
−→
B and

−→
A represents the coefficients-vectors, t defines the initial iteration and

X∗ and
−→
X both describes the position- vector where X∗ includes the best solution so far

acquired. || and . defines the absolute and multiplication. Noted that the position vector X∗

is updated for each iteration until to find the best solution. The coefficients vector vectors
−→
B and

−→
A can be determined as:

−→
B = 2

−→
b .−→r −

−→
b (19)

−→
A = 2.−→r (20)

where−→r indicates random vector 0≤ r ≤ 1 and
−→
b represent a vector with a value between

2 and 0, which is decreasing linearly during the iteration.
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Spiral bubble-net feeding maneuver
Two techniques are proposed to predict accurately the bubble-net activity of humpback-
whales.

1. Shrinking en-circling
This type of techniques is achieved by decreasing the value of

−→
b using Eq. (19). It is to

be noted that the variation range of
−→
B is also reduced by the value

−→
b . Therefore,

−→
B is

a random value from [−b,b], where the value of b is decreasing from 2 to 0 during the
iterations.

2. Spiral updating position
In spiral method, a relationship between the location of prey and whale to impersonate
the helix-shaped operations is represented in the form of mathematical equation of
humpback-whales in the following manner:

−→
Y (t )=

−→
E
′

.epq.cos(2πq)+
−→
X
∗

(21)

where
−→
E
′

= |
−→
X
∗

(t )−
−→
X (t )|, which represents the distance between prey and the i− th

whale. l denotes the random number (−1≤ l ≤ 1).b represents logarithmic spiral, which
is a constant number and . indicates the multiplication operation. It’s worth noting that
humpback-whales swim in a shrinking-circle around their prey while still following a
spiral-shaped direction. To predict this concurrent action, an equation is derived to
represent the model can be expressed as:

−→
Y (t )=

{−→
X
∗

(t )−
−→
E .
−→
B , if d < 0.5

−→
E
′

.epq.cos(2πq)+
−→
X
∗

, if d ≥ 0.5
(22)

where d represents a random number (0≤ d ≤ 1). Further, the searching behaviour of
humpback-whales for prey is randomly in the bubble-net approach. The following is the
representation of mathematical model for bubble net approach.

Prey searching technique
To locate prey, same strategy based on the modification of the

−→
B vector can be utilized

(exploration). In reality, humpback-whales search at random based on their location. As a
result, we select

−→
B randomly with values

−→
B > 1 or

−→
B <−1 to compel the search-agent to

step away from a target value. Comparison with exploitation, modify the location of every
search- agent in the sample space, based on randomly selected process until to obtained a
better solution. This operation and |

−→
B |> 1 place an emphasis on the exploration phase

and enable WOA to perform global-searching. This can be represented below:
−→
E = |

−→
A .
−−→
Xrand−

−→
X | (23)

−→
Y (t )=

−−→
Xrand−

−→
B .
−→
E (24)

where
−−→
Xrand indicates a position-vector that is randomly selected from the existing space.
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The algorithm WOA comprised of a selection of random samples. For every iteration,
the search agents change their locations in relation to either a randomly selected search
agent or the best solution acquired so far in this. For both cases exploitation phase and
exploration the value of b is decreasing in the range from 2 to 0 accordingly. As the value of
|
−→
B |> 1, a randomly searching solution is selected, while the optimal solution is obtained

when |
−→
B |< 1 for updating the search- location of the agents. Based on the parameter

d , the WOA is used as a circular or spiral behaviour. Ultimately, the WOA is ended by
the successful termination condition is met. Theoretically, it provides exploration and
exploitation capability. Therefore, WOA can still be considered as a successful global
optimizer. The WOA is described in Algorithm 1.

Data: Set the input control variables
M ,N ,γm,{gm},{sn}
Population initialization X1,X2,.........Xn

Result: X∗ (Best search agent for user- pairing/grouping).

List all the users with decreasing order of Jm.
while t < (total iterations)
for every search user
Initialize b,B,A,q and d
if1(d < 0.5)
if2(|B|< 1)
Existing search user position is updated using equation (16)
else if2(|B| ≥ 1)
Randomly selected a search user (Xrand)
Existing position of search user is updated using equation (23)
end if2
else if1(d ≥ 0.5)
Exiting position of search user is updated using equation (21)
end if1
end for
Examine the position of every search user in the search region if above the search

region then modify it.
Determine the position of every search user
If a best solution becomes available, update X*
t=t+1

end while
return X∗

Algorithm 1:WOA

Grey wolf optimizer (GWO)
A popular meta-heuristic algorithm, which is influenced by the behaviour of grey-wolves
(Mirjalili, Mirjalili & Lewis, 2014). This algorithm is based on the hunting approach of grey
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Figure 2 Grey wolf hierarchy (Mirjalili, Mirjalili & Lewis, 2014).
Full-size DOI: 10.7717/peerjcs.882/fig-2

wolves and their governing- hierarchy. Grey wolves represent predatory animals, which
means these are heading up in the hierarchy. Grey wolves tended to stay in groups. The
wolves in a group is varying between 5 to 12. The governing-hierarchy of GWO is shown
in Fig. 2, where several kinds of grey wolves have been used particularly α, β, δ, and ω.

Both wolves (male and female) are the founders known as αs. The α is mainly in favour
of producing decision making regarding hunting, sleeping and waking time, sleeping place
etc. The group is governed by the αs actions. Even so, some egalitarian behaviour has
been observed, such as an alpha wolf following other wolves in the group. The whole
group respects the α by keeping their tails towards ground at gatherings. The α wolf is
also regarded as superior since the group must obey his/her orders. The group’s α wolves
are the only ones that can mate. Usually, the α is not always the biggest member of the
group, but rather the best at handling the batch. Which illustrates that a group’s structure
and discipline are often more critical than its capacity. β is the second phase of the grey
wolf hierarchy. The β’s are the sub-ordinate wolves who assist the α in taking decision.
The β wolf (male or female), is most likely the better choice to be the α wolf in the event
that one of the α wolves dies or gets very old. Therefore, β wolf would honour the α while
still commanding all other lower-level wolves. It serves as an adviser to the α and a group
disciplinarian. Throughout the group, the β confirms the αs orders and provides guidance
to the α. The grey wolf with the lowest rating is ω. The ω serves as a scapegoat. ω wolves
must still respond towards other dominant wolves in a group. They are the last wolves
permitted to feed. While it might seem that the ω is not a vital member of the group,
it has been found that when the ω is lost, the entire group experiences internal combat
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and problems. This would be attributed to the ω venting his anger and resentment on
both wolves (s). This tends to please the whole group while still preserving the dominance
system. In certain circumstances, the ω is also the group’s babysitter. Whenever a wolf
should not be an α, β, or ω, he or she is referred to as a subordinate also called δ. where
δ wolves must yield to αs and βs, however they rule the ω. This group contains scouts,
sentinels, elders, hunters, and caregivers. Scouts are in charge of patrolling the area and
alerting the group if there is any threat. Sentinels defend and ensure the group’s safety.
Furthermore, the mathematical model of GWO is described as:

Social hierarchy
For mathematical representation of GWO, we assume that α is fittest alternative solution
used to mimic the social hierarchy. As a result, the second and third best solutions are
designated as β and δ, respectively. The remaining member approaches are now considered
to be ω. For algorithm, the hunting (optimization) is led by α, β and δ. These three wolves
are accompanied by the ω.

Encircling prey
Grey wolves encircle prey during the hunting. The following equations are presented to
mathematical model the encircling actions.
−→
A = |

−→
D .
−→
Xs (t )−

−−→
X(t )| (25)

−→
Y (t )=

−→
X (t+1) (26)

−→
Y (t )=

−→
Xs (t )−

−→
B .
−→
A (27)

where
−→
B and

−→
D represents coefficient vectors, t is the exiting iteration,

−→
X and

−→
Xs defines

the position vector of a grey wolf and prey.
The vectors and are computed in the following manner:
−→
B = 2.

−→
b .
−→
d1 −
−→
b (28)

−→
D = 2.

−→
d2 (29)

where 0≤ d1 ≤ 1 and 0≤ d2 ≤ 1 indicates random vector and
−→
b component decreasing

linearly over the entire iteration from 2 to 0.

Hunting
Grey wolves do have capability to detect and encircle prey. The α normally leads the chase.
The β and δ can also engage in hunting. However, in an arbitrary search space, we have no
idea that where is the optimal (prey) location. Hence, first acquired the three best solutions
so far and then search other agents (containing ω’s) in accordance with the best search
agent’s location. In this respect, the following equations are provided.
−→
Aα = |

−→
D1.
−→
Xα−
−→
X | (30)
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−→
Aβ = |

−→
D2.
−→
Xβ−
−→
X | (31)

−→
Aδ = |

−→
D3.
−→
Xδ−
−→
X | (32)

−→
Xa =
−→
Xα−
−→
β1 .(
−→
Aα) (33)

−→
Xb =
−→
Xβ−
−→
β2 .(
−→
Aβ) (34)

−→
Xc =
−→
Xδ−
−→
β3 .(
−→
Aδ ) (35)

−→
Y (t )=

−→
Xa+
−→
Xb+
−→
Xc

3
(36)

Attacking prey
The wolves complete the chase by hitting the target once it cease running. Themathematical
model of attacking prey approach can be achieve by decreasing the value of

−→
b . It’s worth

mentioning that the variance range of
−→
B is also limited by

−→
b .

That is
−→
B in the range of [−b,b], which is a random value and decreasing over the entire

iteration from 2 to 0. If any random values ranges between [−1,1], then new location of a
search-agent lies between exiting and prey location.

Search for prey
Grey wolves primarily hunt depending on the locations of the α, β, and δ. At the starting
they diverge from other wolves to hunt and then combine to hit prey. The mathematical
model of divergence can be achieved by utilizing the value of

−→
B . For divergence, random

values of
−→
B < 1 or

−→
B > 1 is used by the search agent. This process enables the GWO

algorithm to search globally. In nature, the D vector can even be assumed as the impact of
barriers to pursuing prey. In general, natural barriers arise in wolves’ hunting paths and
discourage them from approaching prey effectively and easily. This is precisely depend on
the vector D. It will arbitrarily give the prey a weight to find it tougher and farther to catch
for wolves, depending on location of the wolf, or likewise.

The suggested social hierarchy supports GWO algorithm in sustaining the best solutions
achieved so far through iteration. By using hunting approach, it enables agents to search
the likely location of prey. The GWO is described in Algorithm 2.
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Data: Set the input control variables
M ,N ,γm,{gm},{sn}
Population initialization X1,X2,.........Xn

Initialization of B,b and D

Result: Xα (Best search agent for user- pairing/grouping).

List all the users with decreasing order of Jm.
Determine fitness of every search agent
Xα ,Xβ and Xδ .
while t < (total iterations)
for every search user

Update the existing location of search agent by using equation (36)
Update B, b and D
Determine fitness of search agent
UpdateXα , Xβand Xδ
t=t+1

end for
end while
return Xα

Algorithm 2: GWO

Particle swarm optimization (PSO)
Kennedy & Eberhart (1995) introduced PSO as an evolutionary computationmethod. It was
influenced by the social behaviour of birds, which involves a large number of individuals
(particles) moving through the search space to try to find a solution. Over the entire
iterations, the particles map the best solution (best location) in their tracks. In essence,
particles are guided by their own best positions, which is the best solution same as achieved
by the swarm. This behaviour can modelled mathematically by using velocity vector (u),
dimension (S), which represents the number of parameters and position vector (x). In
the entire iterations, the position and velocity of the particles changing by the following
equation:

ut+1i = vuti +e1× rand× (pbesti−x
t
i )+e2× rand× (gbest−x

t
i ) (37)

x t+1i = ut+1i +x
t
i (38)

where v(0.4≤ v ≤ 0.9) represents the inertial weight, which control stability of the PSO
algorithm. cognitive coefficient e1(0< e1 ≤ 2), which limits the impact of the individual
memory for best solution. Social factor e2(0< e2≤ 2), which limits the motion of particles
to find best solution by the entire swarm, rand indicates a random number in the range
between 0 and 1, attempt to provide additional randomized search capability to the PSO
algorithm and two variables pbest and gbest , used to accumulate best solutions achieved
by each particle and the entire swarm accordingly. The PSO is described in Algorithm 3.
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Data: Set the input control variables
M ,N ,γm,{gm},{sn}
Population initialization X1,X2,.........Xn

Result: pbest and gbest (Best search agent for user- pairing/grouping).

List all the users with decreasing order of Jm.
for each generation do

for each particle do
Update the position and vector by using equation (37) and equation (38)

Estimate the fitness of the particle
Update both pbest and gbest
t=t+1
end for

end for
return pbest , gbest

Algorithm 3: PSO

Table 1 Parameters for proposed uplink NOMA.

Parameter Value

C 1
M 6
N 3
sm 1.1 bits/s/Hz
γ 30 dB

SIMULATION RESULTS
This section evaluates the performance of the proposed meta-heuristic algorithms, namely,
WOA, GWO and PSO for joint problem of user-grouping, power control and decoding
order for NOMA uplink systems.

Table 1 presents the simulation parameter values attained from the literature (Sedaghat &
Müller, 2018; Zhang et al., 2019; Mirjalili & Lewis, 2016; Mirjalili, Mirjalili & Lewis, 2014;
Kennedy & Eberhart, 1995) for WOA, GWO and PSO algorithms that involved in the
simulation. Further, the Wilcoxon test and Friedman test (Abualigah et al. (2921)) are
performed for experiments and the statistical analysis of GWO and PSO is also provided in
Table 2. Based on the results of tests, the proposedWOA outperforms the other algorithms
in comparison.

Both channel of the users and location are allocated randomly in the simulation.
Therefore, the range between the user and BS are uniformly distributed and considered
that the channel response is Gaussian distribution (Zhang et al., 2019).

Figure 3 indicates the comparison of convergence of WOA (Mirjalili & Lewis, 2016) ,
GWO (Mirjalili, Mirjalili & Lewis, 2014) and PSO (Kennedy & Eberhart, 1995) algorithms
proposed for NOMA uplink system. We may conclude that WOA, GWO and PSO
algorithms converge at a comparable rate, hence WOA converges after a greater number
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Table 2 Statistical analysis of GWO and PSO.

Wilcoxon GWO PSO

p-value 1.8E−169 4.7E−181

Friedman GWO PSO

p-value 4.5E−161 1.2E−164
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Figure 3 Illustration of convergence ofWOA, GWO and PSO.
Full-size DOI: 10.7717/peerjcs.882/fig-3

of iterations than GWO and PSO. The proposed WOA attains significant performance
in-terms of spectral efficiency as compare to GWO and PSO algorithms. The proposed
WOA(Mirjalili & Lewis, 2016) provides stability and attains theminimumrate requirement
without such a noticeable drop in the results.

Figure 4 compares the spectral-efficiency of NOMA and OMA approaches with varying
γ , respectively. It has been proved that the spectral-efficiency of NOMA scheme is
considerably higher than those of scheme.Moreover, the spectral-efficiency of the proposed
sub-optimal approach is nearer to the optimal value. The proposedWOA algorithm attains
near optimal performance with minimal computational complexity. In addition, as the
number of users increases the computational cost of the exhaustive-search algorithm
increases as compared to WOA.

For NOMA uplink systems, the power control approach in Sedaghat & Müller (2018)
is provided as a benchmark scheme, where the spectral efficiency are near to the optimal
value. Noted that the approach used in Sedaghat & Müller (2018) is valid only for two
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Figure 4 Illustration of spectral efficiency ofWOAwith increasing γ .
Full-size DOI: 10.7717/peerjcs.882/fig-4

user-pairing. Hence, the proposed scheme performs admirably in-terms of having efficient
user grouping for multiple users.

Figures 5 and 6 evaluates the performance of GWO and PSO algorithms in-terms of
spectral-efficiency. For uplink NOMA system, the spectral-efficiency of NOMA scheme
outperform OMA scheme with varying γ . Moreover, the spectral-efficiency of optimal
and sub-optimal solutions are nearer to each other. The power control scheme for NOMA
uplink system in Sedaghat & Müller (2018) is used as a benchmark. It has been observed
that the spectral-efficiency of both GWO and PSO algorithms shows better results than
power control (Sedaghat & Müller, 2018) and OMA scheme.

Moreover, a comparison of proposed optimal WOA, GWO and PSO has shown in
Fig. 7. The performance of proposed optimal WOA, GWO and PSO are almost nearer to
one another. Moreover, as the value of γ above 30 dB, the optimal WOA performs better
in-terms of spectral-efficiency as compare to GWO and PSO.

CONCLUSION
NOMAsystems have garnered a lot of interest in recent years for 5G cellular communication
networks. The efficient user grouping and power control scheme play an essential role to
enhance the performance of communication network. In this paper, we have examined
for the first time up to authors knowledge, a joint issue of user-grouping and power
control for NOMA uplink systems. we have solved this problem by proposing WOA
with low complexity. Further, for comparison, GWO and PSO were adopted to solve the
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Figure 5 Illustration of spectral efficiency of GWOwith increasing γ .
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same problem. Simulations results show that the WOA proposed for this combine issue
in uplink allows better performance than the conventional OMA in-terms of spectral-
efficiency. Further, proposed WOA provides better result as compared to GWO, PSO
and existing algorithm in literature with lower system complexity by considering same
constraint regarding uplink NOMA systems.The acquired results also suggest that the
combinatorial joint problem gets more difficult to solve as the number of users grows
and needs additional network resources. In the future, the study might be expanded to
include more performance parameters to the mentioned problem and implementation
of multiple antennas combinations which leads to massive MIMO (Mulitiple-Input and
Multiple-Output) scenario in order to further enhance the performance of the network.
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