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ABSTRACT

Lcapy is an open-source Python package for solving linear circuits symbolically.

It uses a superposition of DC analysis, AC (phasor) analysis, transient (Laplace)
analysis, and noise analysis. Expressions are evaluated using the computer algebra
system SymPy. Lcapy can model circuits comprised of combinations of one-port and
two-port networks or circuits specified using a netlist with a Spice-like notation.
Lcapy can present the system of equations produced from nodal analysis, modified
nodal analysis, loop analysis, and state-space analysis. Expressions can be formatted
into many representations, parameterized, and transformed to other domains.
Dimensional analysis is performed to reduce user errors and to present results
with units. Both continuous and discrete signals are supported. Lcapy produces
high-quality output. Textbook quality schematics in a number of different formats
can be generated from netlists and customized for different conventions. Expressions
can be formatted into LaTeX format for inclusion into a document or numerically
evaluated and plotted. An overview of the features and capabilities of Lcapy is
presented, along with implementation details and performance considerations.

Subjects Computer Aided Design, Computer Education, Scientific Computing and Simulation
Keywords Linear circuit analysis, Symbolic computation, Python

INTRODUCTION

Lcapy is an open-source Python tool to symbolically generate and solve the system of
integro-differential equations for a linear electrical, mechanical, or electro-mechanical
circuit.

Unlike most other circuit analysis programs, Lcapy stores all values and expressions
symbolically. It utilizes the powerful Python symbolic mathematics package, Sympy
(Joyner et al., 2012; Meurer et al., 2017). The primary advantage of symbolic analysis is that
it provides an exact solution and avoids the trial-and-error nature of system analysis
using numerical simulation. Moreover, it avoids the instability and inaccuracy associated
with numerical integration required by time-stepping simulation. The symbolic solution
provides insight into system behavior, for example, how a component influences the poles
of a power-electronics controller (Heffernan, Mitchell ¢» Hayes, 2020). Using symbolic
mathematical tools allows expressions to be easily converted to standard forms, such a
pole-zero-gain or partial fraction, to gain further insight into system behaviour.

Lcapy started in 2013 as a collection of Python classes for handling rational functions
for modelling piezo-electric transducers. This was augmented with a collection of
component classes that could be organised into networks using parallel and series
operators (Hayes, 2014). As components were added, the network was represented either
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as a Thévenin or Norton model. This was efficient since the network could be represented
as a Laplace-domain generalized impedance with either a current source or a voltage
source. Later, networks were stored as an abstract syntax tree to provide a more general
representation. Netlists were then added to describe the component connectivity but
analysis could only be performed in the Laplace domain. Analysis of networks was
performed by converting them to netlists. Lcapy was then largely rewritten to represent
voltages and currents as a superposition of DC, AC, transient, and noise signals. Thus, the
response for arbitrary sources could be analysed. Many other features have since been
added; such as semi-automated textbook-quality schematic generation (Hayes, 2016),
discrete-time analysis, plotting, expression manipulation, network synthesis, and unit
tracking.

Open-source tools are available for numerical circuit simulation, including SPICE
(Nagel & Pederson, 1973) and its many derivatives, such as PySpice (https://pypi.org/
project/PySpice/), and Qucs (Brinson ¢ Jahn, 2009), an enhancement to SPICE. These
tools are excellent for the generation of numerical solutions to general, non-linear circuits.
However, they do not provide the insight of symbolic analysis.

A number of symbolic circuit analysis packages have been developed, primarily through
the 1980s and 1990s (Ferndndez ¢ Rodriguez-Vizquez, 1996). These include: ISAAC
(Interactive symbolic analysis of analog circuits), a common Lisp program for integrated
circuit design that uses compacted modified nodal analysis (CMNA) with heuristics to
reduce the number of symbolic term cancellations (Walscharts, Gielen ¢ Sansen, 1989;
Gielen, Walscharts & Sansen, 1989); ASAP (analog symbolic analysis program), a C
program that expands transistors in SPICE netlist using library models for small-signal
symbolic analysis (Ferndndez, Rodriguez-Vizquez ¢ Huertas, 1990); Sspice, a C program
for small-signal analysis that uses biasing information to simplify the transfer function
(Wierzba et al., 1989; Srivastava, Wierzba & MacKay, 1990); AnalogSifter, designed for
large integrated circuits using approximate transfer functions (Hsu ¢ Sechen, 1993, 1994);
SNAP (Symbolic and Numerical Analysis Program), a Windows program that linearises
non-linear circuits around an operating point and can approximate the symbolic
analysis (Biolek, 2000; Kolka, Biolek ¢ Biolkova, 2008); SCIASCA, a Visual Java++/Maple
program using nullor-based models (7lelo-Cuautle et al., 2004); SCAM (https://Ipsa.
swarthmore.edu/Systems/Electrical/mna/MNA6.html) (symbolic circuit analysis in
MATLAB); Akhab (https://ahkab.github.io/ahkab), a Python program with a SPICE-like
command sequence; Sapwin/SapecNG/QSapecNG, Windows-based C++ programs
(Grasso et al., 2014); MSCAM (modified symbolic circuit analysis in MATLAB) (Ushie,
Abbod & Ashigwuike, 2015); AICE (analog IC explorer), a C++ program with web-based
interface that uses advanced graph techniques (Shi, 2017); CircuitNav (https://circuitnav.
pythonanywhere.com/), a web-based application for generating a symbolic system of
equations given a netlist, and SLiCAP (https://www.analog-electronics.eu/slicap/slicap.
html) (Symbolic Linear Circuit Analysis Program), a Python (previously MATLAB)
program for teaching circuit analysis.

There is also an unnamed MATLAB toolbox that uses transfer function approximation
(Vazzana, Grasso ¢ Pennisi, 2017) and another unnamed tool that uses a graph reduction

Hayes (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.875 2/30


https://pypi.org/project/PySpice/
https://pypi.org/project/PySpice/
https://lpsa.swarthmore.edu/Systems/Electrical/mna/MNA6.html
https://lpsa.swarthmore.edu/Systems/Electrical/mna/MNA6.html
https://ahkab.github.io/ahkab
https://circuitnav.pythonanywhere.com/
https://circuitnav.pythonanywhere.com/
https://www.analog-electronics.eu/slicap/slicap.html
https://www.analog-electronics.eu/slicap/slicap.html
http://dx.doi.org/10.7717/peerj-cs.875
https://peerj.com/computer-science/

PeerJ Computer Science

decision diagram (GRDD) algorithm (Chen ¢ Shi, 2006). In addition, a summary of some
older programs is given by Ferndndez ¢» Rodriguez-Vizquez (1996).

Most of these tools are are designed specifically for integrated circuit analysis (Hsu ¢
Sechen, 1993), are tied to a particular operating system, and are no longer available.

A possible reason is that most are not open-source (Huelsman, 1996) and thus have not
been maintained over time.

A novel aspect of Lcapy is that it decomposes signals into a number of transform
domains (DC, phasor, Laplace), performs modified nodal analysis for each domain, and
superimposes the result. A rich variety of transformations is provided to convert
between the various domains and to present results in different formats. Lcapy uses an
object-oriented approach and provides a comprehensive selection of expression classes to
specify the transform domain and data quantity.

This paper is not a comprehensive description of the capabilities of Lcapy (this can be
found in the supporting documentation (https://lcapy.readthedocs.io) (Hayes, 2020)).
Instead, the focus is on the philosophy, use cases, and implementation. The paper starts
with a brief overview in “Overview”, the major use cases are described with some
examples in “Basic usage”, circuit analysis techniques are described in “Circuit Analysis”,
additional features are presented in “Additional Features”, details of the implementation
are discussed in “Implementation Details”, and a performance analysis is shown in
“Performance”. The paper concludes with a discussion and conclusions in “Discussion”
and “Conclusions and Future Work”.

OVERVIEW

Lcapy is an open-source Python package for symbolic linear circuit analysis. Python was
chosen since it is platform independent (van Rossum ¢ Drake, 1995), can be used with a
command-line interface or an integrated development environment, and has excellent
packages for plotting—Matplotlib, symbolic analysis—Sympy (Joyner et al., 2012; Meurer
et al., 2017), and numerical analysis—NumPy (Oliphant, 2006; van der Walt, Colbert ¢
Varoquaux, 2011) and SciPy (Virtanen et al., 2020). It is also well documented with online
support.

The author has used Lcapy for modelling low-noise operational amplifier circuits,
designing analog and digital filters, simulating polyphase power systems, fitting models to
electrode impedance data for electromagnetic flowmeters, designing controllers for
power-electronics, modelling impedance compensation systems for biomedical
instrumentation, and modelling piezoelectric transducers. He and others have also used
Lcapy for producing textbook quality schematics, generating exam questions, checking
exam and homework answers, and teaching students circuit theory.

An object-oriented design was chosen to simplify both the implementation and user
interface. The classes provided by Lcapy range from simple expressions, to one-port and
two-port networks, to complete netlist models. The object oriented approach makes
available methods for a given object clear to the user. For example, time-domain objects
have a Laplace transform method but Laplace-domain objects have an inverse Laplace
transform method.
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! The three greater-than signs denote the
user input for the Python interactive
session.

Lcapy uses an instance-based netlist similar to SPICE (Nagel ¢» Pederson, 1973) to
describe how components are connected. It is simply a list of named components, each
with named nodes, see Listing 1. Circuit analysis is performed by converting the netlist into
sub-netlists; one for each of the DC, AC, transient, and noise domains identified from
the independent sources. Each of the sub-netlists are solved independently using modified
nodal analysis and the results are stored as a superposition of DC, AC, transient, and noise
signals. These superpositions can then be transformed to the time domain or Laplace
domain as required by the user.

As well as electrical components, Lcapy netlists can contain masses, springs, and
dampers for modelling mechanical or electro-mechanical networks. The mechanical
analogue II (impedance analogue) is employed where voltage is equivalent to force and
current is equivalent to speed. Thus a mass is analogous to an inductor, a spring is
analogous to a capacitor, and a damper is analogous to a resistor.

BASIC USAGE

Lcapy has three major use cases: network and circuit analysis using combinations of
one-port and two-port models; network and circuit analysis using netlists; and symbolic
expression manipulation for interpretation of results. These are discussed in the following
sections.

Expressions
Lcapy has a number of pre-defined variables associated with different domains: f for the
Fourier (frequency) domain, F for the normalized Fourier domain, s for the Laplace (s)
domain, t for the time domain, omega for the angular Fourier domain, and Omega for
the normalized angular Fourier domain. These variables can be utilised to create
expressions or to specify the result domain for transformations, for example':

>>> from lcapy import s, t, exp

>>>H=s*(s+2)/ (s+3) xexp(-2*s)

>>> H(t)

3¢ u(t —2) — 5(t —2) + 0 (¢ —2) fort > 0.

Here &(t) is the Dirac delta and 8‘V(¢) is the first derivative of the Dirac delta. As a
consequence of the unilateral Laplace transform, the result is only known for ¢ > 0.
However, if the result is known to be zero for t < 0, this can be specified by asserting the
causal argument, for example:

>>> from lcapy import s, t, exp

>>H=s*(s+2) / (s+3) *exp(-2*s)

>>> H(t, causal = True)

3¢5yt —2) — 0(t — 2) + o (t —2).
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Table 1 Rational function representation methods.

Method Example Description
general () 582 +5 Numerator and denominator are polynomials with no factoring of coefficients.
252 4+ 9s + 4
standard () —45s — 10 n 5 Sum of a polynomial and a strictly rational function.
452 +18s+8 2
canonical () 582 5 Denominator is monic (default).
2 2
RN
2
expandcanonical () 5 Sum of rational functions where the numerator of each term contains a unique monomial.
252+9s+4+2$2+95+4
ZPKQ) 5(s—j)(s+j) Zero-pole-gain or factored form where the numerator and denominator are factored.
2 (s + 1) (s+4)
2
partfrac() 5 25 Partial fraction form.

recippartfrac() 5

timeconst () 5

52

2

_|_
2 7(s+4) 28(5+1>
2

85 Partial fraction form using the reciprocal of the variable.

4
+

+

4 1 1 1
7<2+—) 112(—+—)
s 4 s

Numerator and denominator are factored as time-constants.

Lcapy can display expressions in a number of forms. In each case the expressions are
factored into a rational function and an optional exponential function (the latter is used to
support Laplace-domain delays):

N(s)

H(s) = mexp(—sT). (1)

Rational functions can be represented in many forms. Table 1 shows the representations
that Lcapy supports.

Some of the other methods that can be applied to Laplace-domain expressions include:
initial_value(), final_value(), differentiate(), integrate(), delay(),
zeros (), poles(), residues(), transient_response(), frequency_response(),
and step_response (). For example:

>>> from lcapy import s

>>>V=sxx3/ ((s+3) * (s +4))

>>> V.poles()

{-=3:1, —4:1}.

This dictionary indicates a pair of real poles, each with a single occurrence.

Discrete-time expressions
Lcapy also has a number of pre-defined variables associated with discrete-time signals:
k for the discrete-frequency sample index, n for the discrete-time sample index, and z
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for the z-transform domain. These can be used to compose discrete-time signals, for
example:

>>> from lcapy import delta, n

>>> x = delta(n) + 2 * delta(n - 2)

>>> x.seq()

1, 0, 2]

and
>>> from lcapy import delta, n, z
>>>x =delta(n) + 2 * delta(n - 2)
>>> x(z)

2
1+Z—2.

Sequences
Discrete-time, discrete-Fourier, and Z-domain expressions can be converted to and from
sequences. These can be convolved, shifted, transformed, etc. For example,

>>> from lcapy import symbols, delta, n

>>> a, b = symbols(Cab’)

>>>x =a*delta(n - 1) +b *x delta(n - 2)

>>> x.seq()

{Q? a) b}’

where the underscore marks the origin. Similarly, sequences can be converted to
expressions:
>>> seq((1, 2, 3, ’a)) .expr

ad[n — 3] + d[n] + 36[n — 2] + 20[n — 1].

One-port networks
Networks can be constructed by connecting one-port (two-terminal) and two-port
components. Basic one-port components include: Vdc (DC voltage source), Idc (DC
current source), Vac (AC voltage source), Iac (AC current source), R, G, C, and L. These
are augmented by V (generic voltage source), I (generic current source), Y (generic
admittance), and Z (generic impedance). More esoteric components include gyrators and
constant phase elements.

Here is an example that combines an 8 V source in series with a parallel combination of
6 ohm and 3 ohm resistors:

>>> from lcapy import V, R

>>>net =V(8) + (R(6) | R(3))

>>> net
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Figure 1 Schematic of second order filter example generated as a two-port network, using a T-Section
or by chaining C, L, and R oneport components. Full-size k&l DOT: 10.7717/peerj-cs.875/fig-1

V(8) + (R(6)[R(3))-

Note, Lcapy overloads the Python | operator to denote a parallel operation. Also note
that when the net object is printed, the underlying components forming the network are
shown. This is achieved using an abstract syntax tree to represent the component
connections.

A network can be simplified:

>>> net.simplify()

V(8) + R(2)

and transformed into its Norton or Thévenin equivalent:
>>> net.norton()

G(1/2)|1(4).

Attributes of one-port networks include: Isc—short-circuit current; Voc—open-circuit
voltage; Y—generalized admittance; and Z—generalized impedance.

Two-port networks
Two-port networks can be created from one-port components using ladder descriptions
(Khanshan (2007)), primitive two-ports (Shunt, Series, LSection, TSection, TwinTSection,
BridgedTSection, PiSection, Ladder, GeneralTxLine, LosslessTxLine, TxLine), or by
combinations of two-ports using series(), parallel(), and chain() methods.
Furthermore, they can be generated from a netlist. For example, the filter shown in
Figure 1 can be represented as a two-port using:

>>> from lcapy import TSection, L, C, R

>>>a = TSection(C(C’), LCL’), RCR’))
The same network can be constructed by chaining series and shunt elements:

>>> from lcapy import Series, Shunt, L, C, R

>>> a = Series(C(’C’)).chain(Shunt(L(L’))) .chain(Series(R(R’)))

A two-port object has methods for generating A (chain) parameters, B (inverse
chain) parameters, G (inverse hybrid) parameters, H (hybrid) parameters, S (scattering)
parameters, T (transmission) parameters, Y (admittance) parameters, and Z (impedance)
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Figure 2 Simple V-R-L circuit schematic generated from the netlist in Listing 1.
Full-size K&l DOT: 10.7717/peerj-cs.875/fig-2

{V_o + V_s * u(t)}; down
; right=2

_2; down=1.5

_2; right

Listing 1 Lcapy netlist for V-R-L circuit. Note, drawing options are specified after the semicolon.
Full-size Kl DOI: 10.7717/peerj-cs.875/fig-12

parameters (Hayt, Kemmerly ¢ Durbin, 2006). For the above example, the Z parameters
can be found using:
>>> a.Zparams

1
—Ls[ -1 ——— Ls
CLs?

L L 1 R
S —Ls{ -1 ——
Ls

A unique feature of Lcapy is polyphase two-port networks. These use block-matrix
forms for the parameter matrices and are useful for modelling power systems. They have
methods for converting to symmetrical sequence components.

Netlists

More complex circuit topologies are best described using netlists. The Lcapy netlist syntax
is similar to that of SPICE. Usually nodes are numbered, but they can have symbolic
names. The netlist can be loaded from a file or generated incrementally using the add
method of the Circuit class. For example, Listing 1 describes the circuit shown in Fig. 2.

A Circuit object is collection of components and nodes. The nodes are accessed using
Python’s array-indexing notation, for example,

>>> cct[2] - cct[a7’]

Nodes have a number of attributes including: V—the voltage between the node and
ground; dpY—the driving-point generalized admittance between the node and ground;
dpZ—the driving-point generalized impedance between the node and ground. Thus the
potential of node 2 with respect to ground can be found using:

>>> cct[2].V
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Table 2 Component attributes.

Attribute Description
v Voltage across the component
I Current through the component
Voc Voltage across the component when open-circuited
Isc Current through the component when short-circuited
Y Generalized admittance of the component
Z Generalized impedance of the component
dpY Driving-point generalized admittance across the component
dpZ Driving-point generalized impedance across the component
C 1 3; right
R 3 2; right
L 3 0; down
P1 1 0_1; down
P2 2 0_2; down
W 0_1 0; right
W 0 0_2; right

Listing 2 Lcapy netlist description of a second-order R-L-C filter. The W (wire) and P (port)
components are purely for drawing. Full-size K&l DOT: 10.7717/peerj-cs.875/fig-13

Components are dynamically added as attributes of the Circuit class. Thus
components can be accessed using the Python’s attribute notation. For example:

>>> cct.Cl

Each component has several attributes as shown in Table 2. For example, the current
through the inductor L1 in the netlist described by Listing 1 is found using:

>>> from lcapy import Circuit

>>> cct = Circuit CVRL1.sch’)

>>>cct.L1.1

-V
V, s

dc:—, s: L
R

2
s—i—L

The output is a dictionary showing the superposition of a DC component and a
transient-component described in the Laplace domain.

The time-domain response can be found using Python’s call notation:

>>> cct.L1.I(t)
This transforms each component of the superposition into the time domain and sums the
result to give:

A=
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Figure 3 Schematic of second order filter example generated from the netlist in Listing 2.
Full-size K&l DOT: 10.7717/peerj-cs.875/fig-3

Similarly, the total Laplace-domain response can be found using:
>>> cct.L1.I(8)

1
v
Rs " Rs
2 B8
5+L

A common circuit analysis problem is to find the transfer function between two pairs of
nodes. There are several ways this can be achieved with Lcapy. For example, consider
the filter network shown in Fig. 3. First, the independent sources need to be killed and an
arbitrary Laplace-domain voltage source connected across the input nodes. The transfer
function is then found from the ratio of the voltage measured across the output nodes to
the input voltage. An alternative approach is to use the transfer () method which
implicitly kills any independent sources. For example:

>>>H = cct.transfer(1, 0, 2, 0)

>>>H.canonical()

52

§2 + i ‘
CL
A more general approach is to generate a two-port model. For example, the Z-
parameters can be found using:
>>> tp = cct.twoport(l, 0, 2, 0)
>>> tp.Zparams

1
Ls +— Ls

Cs
Ls Ls+R

The common two-port models are supported, including the A, B, G, H, S, T, Y, and
Z-parameter models (Hayt, Kemmerly ¢ Durbin, 2006). They can be converted
interchangeably provided the matrices are not singular.

Other methods of the Circuit class are shown in Table 3. These are augmented with
methods for manipulating a netlist as listed in Table 4.
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Table 3 Circuit methods.

Method Description

describe () Prints how the circuit is analysed

thevenin() Returns a Thevenin object between the two specified nodes

norton() Returns a Norton object between the two specified nodes

twoport () Returns a TwoPort object specified by two pairs of nodes

Voc () Returns the open-circuit voltage between two specified nodes

IscQ Returns the short-circuit current between two specified nodes

YO Returns the generalized admittance between specified nodes (with the independent sources killed)
Z Q) Returns the generalized impedance between specified nodes (with the independent sources killed)

Table 4 Circuit manipulation methods.

Method Description
acQ) Creates a circuit using only the AC independent sources
dc O Creates a circuit using only the DC independent sources

transient ()
simplify ()

kill OO

kill_except ()
s_model ()
state_space_model ()
r_model ()
noise_model ()
subs ()

Creates a circuit using only the transient independent sources

Combines components in series or parallel to simplify the netlist

Kills specified independent sources (voltage sources become short-circuits and current sources become open-circuits)
Kills all but the specified independent sources

Converts sources to the Laplace-domain and represents reactive components as impedances

Creates a state-space model by replacing inductors with current sources and capacitors with voltage sources

Creates a resistive equivalent model using companion circuits for time-stepping simulation

Replaces resistors with a series combination of a resistor and a noise voltage source

Substitutes symbolic component values

3 —VV’iC
TR2

Figure 4 State-space example circuit. Full-size K&l DOTI: 10.7717/peerj-cs.875/fig-4

CIRCUIT ANALYSIS

As well as calculating node voltages and branch currents, Lcapy can also display the
equations for nodal analysis, modified nodal analysis, mesh analysis, and state-space
analysis. For the following, consider the circuit shown in Fig. 4 defined by the netlist in
Listing 3.

Hayes (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.875
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V10 {v(t)}; down

R1 1 2; right

L 2 3; right=1.5, i={i_L}

R2 3 0_3; down=1.5, i={i_{R2}}, v={v_{R2}}

W 0 0_3; right

W 3 3_a; right

C 3_a 0_4; down, i={i_C}, v={v_C}
W 0_3 0_4; right

Listing 3 Lcapy netlist for the circuit analysis example of Fig. 4.
Full-size K&l DOT: 10.7717/peerj-cs.875/fig-14

Nodal analysis
Lcapy can output the nodal equations by applying Kirchhoff’s current law at each node in a
circuit. For example:
>>> from lcapy import Circuit
>>> cct = Circuit (Cexamplel.sch’)
>>>na = cct.nodal_analysis()
>>> na.nodal_equations()
{1: () =v(),

t

J (na(z) = vs(7))dr

() +nlt) | %

2 R, + I =0,
[ (cuale) + w(x)) de
. d V3(t) —0 .
3: C3V3(t) + R, + i =0}

This is a dictionary keyed by the circuit node names.

The nodal equations can be formulated in the Laplace-domain using the 1laplace ()
method to convert the circuit. For example:

>>> na = cct.laplace() .nodal_analysis()

>>> na.nodal_equations()

{1: Vi(s) = V(s),
—Vi(s) + Va(s) | Va(s) = Vs(s)

2: =0
R1 + Ls ’
Vi(s)  —Va(s) + V.
3: CsVi(s) + a(s) | =Valo) + 3(5)20}.
Rz Ls

The matrix formulation can also be generated for the Laplace-domain, DC, and phasors.
For example:
>>> na = cct.laplace() .nodal_analysis()
>>> na.matrix_equations()
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1 0 0 -1
Vi(s) 1 1.1 1 V(s)
V, (5) = R, R Ls Ls 0
Vs (5) 1 1 1 0
0 - 7 Cla ace T T
Ls place + 7

Mesh analysis
Lcapy can output the mesh equations by applying Kirchhoff’s voltage law around each
mesh loop in a circuit. For example:

>>> from lcapy import Circuit

>>> cct = Circuit (‘examplel.sch’)

>>>la = cct.loop_analysis()

>>> la.mesh_equations()

{il(t) : L% (—i1(t)) — Ryiy (t) + Ro(—iy () + ia(t)) + v(¢) = 0,

ir(t) : Ro(—ir(t) + ir(t)) +

J (=0 + (o)
C - O}

This is a dictionary indexed by the mesh current.

State-space analysis
State-space analysis is performed by assigning capacitor voltages and inductor currents as
state variables. The state equations are found using:

>>> from lcapy import Circuit

>>> cct = Circuit Cexamplel.sch’).

>>> ss = cct.state_space()

>>> ss.state_equations()

d

a0 % ol | L [zL(t)]
LI 11| e
ave®) c g

Similarly, the output equations are found using:
>>> ss.output_equations()

vi(t) 1 0 0 .
1% = 14 — K1 lL(t) .
| =)o [ o)
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The state-space analyser can generate state-transition matrices, system transfer
functions, system impulse responses, and the characteristic polynomial. For example, the
characteristic polynomial for the circuit in Fig. 4 is generated by:

>>> ss.P

Rz =+ (LS + Rl)(Cst + 1)
CLR, '

Initial value problems
If any capacitor or inductor in a netlist has an initial value, the transient response is calculated
as an initial value problem using Laplace transforms. The result is only valid for t > 0.

Simulation
Lcapy can numerically simulate a circuit using time-stepping numerical integration. Both
the trapezoidal and backward-Euler integrators are provided. Here is an example of use:
>>> from lcapy import Circuit
>>> from numpy import linspace
>>> cct = Circuit(
...V 10{10 xu(t)}; down
...R125; right
...C230.1; right
..L30_30.5; down
...W00_3; right""")
>>> tv = linspace(0, 1, 100)
>>> results = cct.sim(tv)
>>> ax = cct.R.v.plot(tv, label =’analytic’)
>>> ax.plot(tv, results.R.v, 'C1-’, label="simulated’)
>>> ax.legend ()
In this example, the sim() method takes a NumPy array of time values to numerically

"wonon

evaluate the circuit at. The variable results is a SimulationResults object. This
can be indexed by node name. It also has an attribute for each circuit component; for
example, results.R1.v is a NumPy array for the time-varying voltage across R1. The
plotted result is shown in Fig. 5.

ADDITIONAL FEATURES

Network synthesis
Networks can be created using network synthesis techniques given an impedance or
admittance expression. For example:

>>> from lcapy import s, Impedance

>>> 7 = Impedance((4 * s*¥2+3xs+’1/6)/ (s*¥*¥2+ 2 *x s / 3))

>>> Z.network ()

((C(1) + R(2))[C(3)) + R(4).
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analytic

simulated

0.0 0.2 0.4 0.6 0.8 1.0
Time (s)

Figure 5 Comparison between simulated and analytic result.
Full-size ] DOT: 10.7717/peerj-cs.875/fig-5

Note, in this example the ratio 1/6 is placed in quotes to prevent Python converting the
result to a floating point number before Lcapy converts it to a rational number. This
overcomes an unfortunate side-effect of the Python parser.

Lcapy provides many network synthesis methods, including recognising the common
parallel/serial combinations of resistors, inductors, and capacitors plus more generic
methods such as Foster I, II and Cauer I, II (Bakshi ¢ Bakshi, 2005).

Random networks
Networks with a random topology can generated with the random_network() function.
This is useful for automated exam question generation. For example:

>>> from lcapy import random_network

>>> net = random_network (num_resistors = 4, num_voltage_sources = 1,
kind =’dc’)
This example generates a DC network with four resistors and one voltage source. The kind
argument can be ac, dc, or transient. The number of parallel connections can be specified
with the num_parallel argument.

Parameterization
Lcapy can parameterize a number of first-order, second-order, and third-order Laplace-
domain expressions. For example:

>>> from lcapy import s

>>>H2=3/ (s**2+ 2% s +4)

>>> H2p, defs = H2.parameterize()

>>> H2p

K

@ + 2wps{ + 527
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2 All the expressions in this paper are
presented using the latex method.

where defs is a dictionary of the parameter definitions. In this case the parameter
definitions are:

1
{K : 3, omega 0 : 2, zeta: 5}

Using the dictionary of definitions, the original expression can be obtained by
substituting the parameter definitions into the parameterized expression.

Systems higher than first-order can be parameterized in different ways. For example:

>>> from lcapy import s

>>»>H2=3/ (s**2+ 2 * s+ 4)

>>> H2p, defs = H2.parameterize(zeta = False)

>>> H2p

K
o} + 2+ 2501 + 07

Polyphase systems
The polyphase module provides classes for handling polyphase signals. This handles
conversions between line voltages and currents to phase voltages and currents. In addition,
it can decompose line and phase signals into symmetrical components and vice-versa.
In each case, the polyphase signals are stored as vectors. An arbitrary number of phases can
be supported, although there are many attributes specifically for three-phase systems, such
as Vab that returns the phase-phase voltage between the a and b phases.

Here is an example that determines the symmetrical sequence components for
three-phase phase-voltages:

>>> from lcapy.polyphase import PhaseVoltageVector

>>> V = PhaseVoltageVector (('Va’, 'Vb’, 'Vc’))

>>> V.sequence ()

Vo, V V.

3 3 + 3
V., Voo V.2
33 3 |
V., Vi V.

3 3 3

where « = exp(—j2n/3) for a three-phase system.

Printing

Expressions have printing methods similar to Sympy. These are summarised in Table 5°.
There are other methods for automatic formatting of the expression for a Jupyter notebook
(Kluyver et al., 2016) or an IPython interpreter (Pérez ¢ Granger, 2007). These include
the use of MathJax (Cervone (2012)) for mathematics formatting in web browsers.
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3 Lcapy is open-source and hosted on
GitHub at https://github.com/mph-/
lcapy. It is distributed under the GNU
Lesser General Public License v2.

* The expression classes are for internal
use and are not part of the the APL

Table 5 Expression printing methods.

Method Description

latex Formats the expression using LaTeX markup
pretty Formats the expression using Unicode

pprint Formats the expression using Unicode if using an interactive terminal otherwise formats the
expression using LaTeX markup

Evaluation

Expressions have an evaluate () method which accepts a NumPy array of values at which
to evaluate the expression. Internally, Lcapy uses Sympy’s lambdify () function to
convert the expression to executable Python code that can be efficiently evaluated.

Plotting

Expressions have a plot () method. For Laplace-domain expressions, this is a pole-zero
plot. For time-domain expressions, this shows the waveform. In addition, there are specific
methods for Bode and Nyquist plots. The plot () methods provide automatic labelling
and use the Matplotlib library for high-quality output in a number of formats (Hunter
(2007)).

Schematics

Lcapy can draw circuits specified as networks or netlists. Networks are drawn
automatically using a number of layout forms, including as a ladder network. Netlists
require drawing hints to describe the component orientation, size, color, etc. These hints
are used to automatically position the components. LaTeX CircuiTikz (https://www.ctan.
org/pkg/circuitikz) macros are output producing text-book quality schematics. Lcapy
provides a script, schtex, that can convert a netlist into an image, with a number of formats
such as pdf or png. This script can also manipulate the netlist, such as renumbering the
nodes.

Customisation

Lcapy has a config module that can be used for customisation. For example, the printing of
v—1asior j, aliases for functions such as the Dirac delta or Heaviside unit step, an
extensible list of words used for formatting in a Roman font in LaTeX expressions, and
which method Sympy uses for matrix inversion.

IMPLEMENTATION DETAILS
Lcapy is implemented using 393 classes within 115 modules’. Most modules have a single

class but a number, such as Oneport, represent many types of similar one-port component.
Lcapy has an additional 170 expression classes that are lazily defined as required.

Expressions
Expressions are represented using one of the 170 dynamic expression classes”. Each of
these inherit from a quantity class (voltage, current, impedance, efc.) and from a domain
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Table 6 Expression and sequence domain classes.

Class

Description

AngularFourierDomainExpression
AngularFourierNoiseDomainExpression
ConstantDomainExpression
DiscreteTimeDomainExpression
DiscreteFourierDomainExpression
FourierDomainExpression
FourierNoiseDomainExpression
LaplaceDomainExpression
NormFourierDomainExpression
NormAngularFourierDomainExpression
PhasorDomainExpression
TimeDomainExpression
SuperpositionExpression
ZDomainExpression
DiscreteTimeDomainSequence
DiscreteFourierDomainSequence

ZDomainSequence

Spectral density as function of angular frequency

Noise signal

DC signal (or constant value)

Discrete-time signal

Discrete-frequency signal

Spectral density as function of linear frequency

Noise signal

Laplace-domain transformation

Spectral density as function of normalized linear frequency
Spectral density as function of normalized angular frequency
AC signal (phasor)

Time domain signal

Combination of AC, DC, transient, and noise signals
Z-domain transformation

Discrete-time sequence

Discrete-frequency sequence

Z-domain sequence

class (time, Laplace, Fourier, phasor, discrete-time, efc.). Attributes specify the quantity

(is_voltage, is_current, etc.) and the domain (is_time_domain,

is_laplace_domain, efc.).

Lcapy expressions are created from factory functions, including: expr () for general

expressions, voltage (), current (), impedance(), admittance (), and transfer ()

(for transfer functions). For example, the expr () factory function chooses one of the

expression classes listed in Table 6. Similarly, the voltage () factory function chooses one

of the voltage classes, subclassed from a corresponding expression class.

There are two special superposition classes: SuperpositionCurrent and

SuperpositionVoltage. These represent signals as a superposition of DC, phasor,

transient, and noise signals. They collate the results from the different circuit analysis

methods before conversion to the time domain, Laplace domain, etc.

All Leapy expression classes sub-class the Expr class. This facade class provides a

common interface to the myriad of Sympy expression classes. Note, Sympy represents an
expression using an abstract syntax tree of expression classes (Meurer et al., 2017). For
example, it includes simple singleton classes to represent common constants such as 0 or 1,
the Mul class to represent the product of two sub-expressions, the Add class to represent
the sum of two sub-expressions, etc.

The Expr class also tracks the units of an expression using the Sympy units sub-system
with an Lcapy extension that simplifies products of units into canonical forms. Units can
be printed after expressions in both standard and abbreviated forms.

Lcapy has a Matrix class to extend the Sympy Matrix class. It also has classes to extend
list, tuple, and dict. These provide a unified set of methods for printing of expressions.
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Numbers

Lcapy converts floating point numbers to rational numbers of arbitrary precision. This
improves detection of equality between expressions and reduces the order of some rational
functions.

Noise signals

Lcapy assumes noise signals are zero-mean, wide-sense stationary, Gaussian random
processes. Correlations are specified by a one-sided amplitude spectral density. Each noise
source is assigned a noise identifier (nid) attribute. Noise expressions with different nids
are assumed to be independent and thus represent different noise realisations.

Lcapy analyses the circuit for each noise realisation independently and stores the result
for each realisation separately, using a SuperpositionVoltage or
SuperpositionCurrent object. For example:

>>> from lcapy import Circuit

>>> cct = Circuit(" " "

... Vn1 1 O noise 3

...Vn2 2 1 noise 4" " ")

>>> cct[2].V

{nl : 3, n2:4}.

In this example Vnl defines a white Gaussian noise source with an amplitude spectral
density (ASD) of 3 V/+/Hz. It has a noise identifier n1. Similarly, Vn2 defines an
independent white Gaussian noise source with an ASD of 4 V/v/Hz. It has a noise
identifier n2. The voltage at node 2 can be seen to be a superposition of the two noise
signals. The total noise ASD at node 2 is found using the n attribute. This sums the noise
components in quadrature, i.e., v/ 3% 4 42, since the noise components have different nids
and are thus considered independent.

>>>cct[2].V.n

Netlists
Netlists have a Spice-like syntax and are parsed with a custom parser. A parser based on
lex-yacc (Johnson, 1975) was tried but found to give poor messages for syntax errors.
Each netlist component has an optional orientation hint and drawing attributes. These are
used to semi-automatically draw a schematic, using a graph-based approach to define the
component positions.

Netlists are stored as ordered dictionaries. This simplifies the lookup of components by
name and preserves the component order whenever a netlist is converted into another form.

Modified nodal analysis
Circuit analysis is performed using modified nodal analysis (MNA) (Ho, Ruehli & Brennan,
1975). Essentially, this analyses the circuit by solving a set of simultaneous linear equations,
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5 As advocated by Lundberg, Miller &
Trumper (2007).

x =A"'b, (2)

where x is a vector of unknown nodal voltages and unknown currents through dependent
voltage sources, b is a vector of the known voltage and current sources, and A is the system
matrix. For example, the system of equations for the circuit shown in Fig. 2 and
described by the netlist shown in Listing 1 is:

1 1 -1
v z -z 1 0
;/2 = 1 Ls+R 3 (3)
Vs R LRs I
1 0 0 s

Here V; and V, are the unknown nodal voltages and Iy; is the unknown current
through the independent voltage source V. Note, since the voltage source is DC, its
Laplace-domain voltage is V/s.

Lcapy uses a custom implementation of modified nodal analysis and supports
controlled sources (VCCS, CCVS, etc.), opamps, gyrators, mutual inductances,
transformers, and two-ports. Each component has a stamp () method that fills in the
system matrices.

Transforms

Lcapy supports the Laplace and the Fourier transform, the discrete-time equivalents
(the Z-transform and the discrete-time Fourier transform (DTFT)), plus the discrete
Fourier transform (DFT). The inverse transforms are also supported. Where possible,
Lcapy breaks an expression into terms and evaluates each term. All results are cached.

Laplace transform
Lcapy uses the £_ form of the Laplace transform’,

o0

E{v(t)}:/ v(t) exp(—st)dt. 4)

0~

Lcapy can evaluate most common Laplace transforms. To improve performance, it
caches results. Expressions that Lcapy cannot recognise are passed to Sympy.
Unfortunately, Sympy uses the £ form of the Laplace transform,

L{v(t)} = /0 () exp(—st)dt. 5)

However, this only affects Dirac deltas (and their derivatives) and these are handled by
Lcapy.

Time-domain expressions are determined using an inverse Laplace transform of the
corresponding Laplace-domain expression. The Sympy inverse Laplace transform routines
were found to be slow and unreliable and so were augmented with a custom method.
This was applied when the expression could be factored into the product of a rational
function and an exponential, as described by (1). After finding the poles of the rational
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function, the residues of the partial fraction expansion are determined using a custom
algorithm. When pairs of unrepeated conjugate poles are detected, sines and cosines are
generated, otherwise exponential functions (and their derivatives for repeated poles) are
generated.

Fourier transform

The Fourier transform computed by Lcapy is

V(f) = /_ (1) expl—janft)dt. ©)

o0

Both the forward and inverse Fourier transforms are performed using the same algorithm
with a change of variable. Here is an example of usage:

>>> from lcapy import expr, f

>>> v = expr(’sin(2 * pi * £0 *x t)’)

>>> v(f)

R —h) O +h)
2 2

The Fourier transform can also be expressed in terms of angular frequency using a
change of variable. For example:
>>>V = v(omega)

() il 5)
- : +

Z-transform
The unilateral Z-transform is computed as

o0
V(z) = Z vin]z™". (7)
n=0
Lcapy recognises many common discrete-time signals and returns the appropriate
Z-transform. For inverse Z-transforms, Lcapy uses partial fraction expansion to simplify
expressions.

Discrete-time Fourier transform
The DTFT is computed as

oo

Vi(f) = Z v[n] exp(j2nfnAt). (8)
n=—00
The normalized linear and angular frequency forms are handled with a change of variable.
For example, the DTFT of the rect function in terms of normalized angular frequency, Q:
>>> from lcapy import symbol, rect, n, Omega
>>> N = symbol CN’, even = True)
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>>> x = rect(n/N)
>>> x (Omega)

N
e2 sin (—)
_ \2)
o(3)
sin| —
2

and the DTFT of the normalized sinc function in terms of the normalized frequency, F:
>>> from lcapy import symbol, sincn, n, F
>>> x = sincn(n * K)

>>> x(F)

F m

Eizfoo rect |:E — E:|
K

One-port components

The one-port components are sub-classed from the OnePort class. Parallel and series
combinations are represented by the Par and Ser classes. Both of these combinations are
also OnePort objects.

Two-port components

Two-port components are based on the TwoPortModel class. This class contains a 2 x 2
matrix of expressions for the two-port parameters. This is augmented with a vector of two
voltages, two currents, or a voltage/current pair to describe the effects of independent
sources within the circuit. For example, the equations describing a B-parameter two-port
model are:

Va Bu B || Vi Vab
= + . 9
[—12] [321 Bzz] |:II:| [lzb} ®)
Here V,;, and I, model the independent sources within the circuit. Similarly, the equations
used to describe a Z-parameter two-port model are:

Vi Zu Zyn||h Vi
= + . 10
[ Va } [221 Zn || L Vo, (10)
In this case, a pair of voltages (one for each port) are required to model the independent
sources within the circuit, see Figs. 6 and 7.

Nodal and mesh analysis

Nodal and mesh analysis use the CircuitGraph class to convert a netlist into a graph. The
Python package Networkx (Hagberg, Swart ¢ Chult, 2008) is employed to determine
the loops in the graph. Unfortunately, Networkx cannot find loops when there are parallel
edges in a graph, and so Lcapy adds dummy nodes and dummy wires to avoid parallel
edges (see Fig. 8).
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Figure 6 Independent source-free Z-parameter two-port model.
Full-size K&l DOT: 10.7717/peerj-cs.875/fig-6
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Figure 7 General Z-parameter two-port model. Full-size K&l DOT: 10.7717/peerj-cs.875/fig-7

PERFORMANCE

The performance of Lcapy is strongly dependent on the matrix inversion algorithm used
by Sympy. This constrains the complexity of the circuit that can be solved interactively.

Figure 9 shows the time taken to determine the open-circuit voltage for twenty
randomly-generated networks with a specified number of components. Each network has a
single voltage source and a number of resistors, and its open-circuit voltage was computed
using:

>>> net = random_network (num_resistors = NR, num_voltage_sources =1,
kind = dc’)

>>>net.Voc

The timing tests were performed on an HP Elitebook 850 G6 using a single core of an
Intel i5-8365U CPU running at 1.60 GHz. It is apparent that the maximum computation
time increases exponentially with the number of components. The computation time is
also highly variable for a given number of components, with over three orders of
magnitude variation for 11 components. This is partly due to the MNA matrix size, but it
also depends on the number of terms that each matrix element has. The variation of time
with the MNA matrix size is not obvious, as shown in Fig. 10.

Sympy has a number of matrix inversion algorithms. Historically, Lcapy used Gaussian
elimination since it was fastest, however, the latest version of Sympy has disappointing
performance for some of the MNA matrices generated by Lcapy. The other methods
produce a similar maximum time, as shown in Fig. 11. The exception is the new domain
matrix (DM) algorithm, currently under development, which shows promising results.
These algorithms are O(N°) as expected (Krishnamoorthy ¢» Menon, 2013) but only for
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N

Figure 8 Graph for Fig. 4, drawn by graphviz, showing the dummy wire, W0, added to avoid the
parallel connection between R2 and C. This graph has two meshes for mesh-analysis.
Full-size K&l DOTI: 10.7717/peerj-cs.875/fig-8
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Figure 9 Timing comparison for networks comprised of a number of resistors and a single voltage
source. This is colored by the MNA matrix size; this is larger for series connections than for parallel
connections. An empirical model for the maximum time is shown as the dashed line. The MNA matrix
was inverted using the adjoint matrix approach. Full-size K&l DOT: 10.7717/peerj-cs.875/fig-9

small N x N matrix sizes. For larger N, the computation time is slower due to the additional
arithmetic required to maintain all the terms.

Documentation
Documentation is stored as Restructured Text and converted to HTML/PDF using
Sphinx (http://sphinx-doc.org/sphinx.pdf). On-line documentation can be found at
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Figure 10 Timing comparison for networks comprised of a number of resistors and a single voltage
source. This is plotted as function of the MNA matrix size and is colored by the number of components
in each random network. The MNA matrix was inverted using the adjoint matrix approach. Note, the size
of the MNA matrix is larger for series connections than for parallel connections.

Full-size K&l DOT: 10.7717/peerj-cs.875/fig-10
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Figure 11 Empirical models for the maximum time taken to invert the MNA matrix as a function of
number of components in a random network using different inversion methods. The solid black line
represents O(N°). DM-GE denotes Gaussian elimination using Domain Matrix DM-CP denotes the
characteristic polynomial method using Domain Matrix. Full-size K&l DOI: 10.7717/peerj-cs.875/fig-11

https://lcapy.readthedocs.io. Included in the documentation are tutorials; some using
Jupyter notebooks.

DISCUSSION

Lcapy leverages from the strengths of Python as an interpreted programming language and
Sympy as a computer algebra system. Its advantage over other circuit analysis programs is
that it can generate and solve systems of integro-differential equations. The symbolic
solutions explicitly shows how component values affects circuit behaviour and allows an
exact solution to be calculated. A unique feature of Lcapy is that it can perform noise
analysis symbolically.
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Lcapy can present the circuit equations for nodal analysis, modified nodal analysis, loop
analysis, and state-space analysis. Expressions can be represented in many different
formats, parameterized, and transformed between domains, such as Laplace and Fourier.
Expressions can be associated with a quantity to ensure correct dimensional calculations
and to print expressions with units.

Textbook-quality schematics can be generated in a number of formats from a network
or netlist description. These can be customised for different conventions.

Symbolic analysis provides an exact solution and avoids numerical inaccuracies and
instabilities. However, it is much slower for large problems. The time-critical functions are
matrix inversion for modified nodal analysis and pole/zero finding. The computation time
could be improved using the Simplification Before Generation (SBG) approach (Kolka,
Biolek & Biolkova, 2008; Kolka, Vlk ¢ Horak, 2011). To mitigate slow computation,
wherever possible Lcapy uses lazy evaluation and caches results.

Sympy is an excellent tool but can be confusing for novices since it allows symbols of the
same name but with different assumptions. Thus the symbols are not equivalent. Lcapy
tries to resolve this problem by keeping a registry of symbols and looking them up by
name. The disadvantage of this approach is that symbol assumptions cannot be changed.

Lcapy has a number of circuit transformations but further work could add more
advanced circuit transformations, similar to programs like SAPWIN (Luchetta, Manetti ¢
Reatti, 2001). Another improvement for circuit analysis teaching would be to incorporate a
trainer program (Weyten, Rombouts & De Maeyer, 2009).

CONCLUSIONS AND FUTURE WORK

Lcapy is an open-source Python package, designed to generate and solve systems of
equations for linear circuit analysis. It supports many aspects of circuit theory, including
two-port networks, network synthesis, and polyphase systems. The author is aware of its
use for generating exam questions, checking exam and homework answers, teaching
students circuit theory and signal processing, simulating polyphase power systems,
designing controllers for power-electronics, modelling low-noise operational amplifier
circuits, and modelling electromechanical systems. There are many other potential
applications.

Planned work is to improve compatibility with PySpice and to add a graphical user
interface (GUI) to enter and display circuits schematically. This could be achieved by
importing and exporting netlists or implementing the GUI in Python and using Lcapy as a
module. A GUI is useful from a circuit teaching perspective since components could be
selected, the current/voltage interrogated and specific transforms applied.

An improvement would be to employ cancellation-free analysis so that all poles and
zeros are shown. One approach is to use graph-pair decision diagram techniques (Gu ¢
Shi, 2015) or heuristic tree-based methods (Ferndndez, Rodriguez-Vizquez ¢ Huertas,
1990). Another improvement would be to use heuristics to generate approximate solutions
(Yu & Sechen, 1996; Ferndndez et al., 1994; Wambacq et al., 1995; Wambacq, Gielen &
Sansen, 1998; Katzenelson ¢» Unikovski, 1999). These enhancements to Lcapy could be
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easily added by switching the MNA solver class. Another improvement would be the
linearisation of non-linear circuits around an operating point for small-signal analysis.
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