Peer.

Submitted 31 August 2021
Accepted 12 January 2022
Published 15 March 2022

Corresponding author
Vitor Mesaque Alves de Lima,
vitor.lima@ufms.br

Academic editor
Yilun Shang

Additional Information and
Declarations can be found on
page 22

DOI 10.7717/peerj-cs.874

© Copyright
2022 Alves de Lima et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Temporal dynamics of requirements
engineering from mobile app reviews

Vitor Mesaque Alves de Lima', Adailton Ferreira de Aratjo* and
Ricardo Marcondes Marcacini'*

! Faculty of Computing (FACOM), Federal University of Mato Grosso do Sul (UEMS), Campo
Grande, Mato Grosso do Sul, Brazil

2 Institute of Mathematics and Computer Sciences (ICMC), University of Sao Paulo (USP),
Sao Carlos, Sdo Paulo, Brazil

ABSTRACT

Opinion mining for app reviews aims to analyze people’s comments from app stores
to support data-driven requirements engineering activities, such as bug report
classification, new feature requests, and usage experience. However, due to a large
amount of textual data, manually analyzing these comments is challenging, and
machine-learning-based methods have been used to automate opinion mining.
Although recent methods have obtained promising results for extracting and
categorizing requirements from users’ opinions, the main focus of existing studies is
to help software engineers to explore historical user behavior regarding software
requirements. Thus, existing models are used to support corrective maintenance
from app reviews, while we argue that this valuable user knowledge can be used for
preventive software maintenance. This paper introduces the temporal dynamics of
requirements analysis to answer the following question: how to predict initial trends
on defective requirements from users’ opinions before negatively impacting the
overall app’s evaluation? We present the MAPP-Reviews (Monitoring App Reviews)
method, which (i) extracts requirements with negative evaluation from app reviews,
(ii) generates time series based on the frequency of negative evaluation, and (iii)
trains predictive models to identify requirements with higher trends of negative
evaluation. The experimental results from approximately 85,000 reviews show that
opinions extracted from user reviews provide information about the future behavior
of an app requirement, thereby allowing software engineers to anticipate the
identification of requirements that may affect the future app’s ratings.

Subjects Data Mining and Machine Learning, Software Engineering
Keywords App reviews, Opinion mining, Requirement extraction, Requirement engineering,
Temporal dynamics, Emerging issue

INTRODUCTION

Opinions extracted from app reviews provide a wide range of user feedback to support
requirements engineering activities, such as bug report classification, new feature requests,
and usage experience (Dabrowski et al., 2020; Martin et al., 2016; AlSubaihin et al., 2019;
Araujo & Marcacini, 2021). However, manually analyzing a reviews dataset to extract
useful knowledge from the opinions is challenging because of the large amount of data and
the high frequency of new reviews published by users (Johanssen et al., 2019; Martin et al.,
2016). To deal with these challenges, opinion mining has been increasingly used for

How to cite this article Alves de Lima VM, de Aratjo AF, Marcondes Marcacini R. 2022. Temporal dynamics of requirements engineering
from mobile app reviews. Peer] Comput. Sci. 8:e874 DOI 10.7717/peerj-cs.874

http://dx.doi.org/10.7717/peerj-cs.874
mailto:vitor.�lima@�ufms.�br
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.874
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

computational analysis of the people’s opinions from free texts (Liu, 2012). In the context
of app reviews, opinion mining allows extracting excerpts from comments and mapping
them to software requirements, as well as classifying the positive, negative or neutral
polarity of these requirements according to the users’ experience (Dabrowski et al., 2020).

One of the main challenges for software quality maintenance is identifying emerging
issues, e.g., bugs, in a timely manner (April & Abran, 2012). These issues can generate huge
losses, as users can fail to perform important tasks or generate dissatisfaction that leads the
user to uninstall the app. A recent survey showed that 78.3% of developers consider
removing unnecessary and defective requirements to be equally or more important than
adding new requirements (Nayebi et al., 2018). According to Lientz & Swanson (1980),
maintenance activities are categorized into four classes: (i) adaptive — changes in the
software environment; (ii) perfective — new user requirements; (iii) corrective - fixing
errors; and (iv) preventive — prevent problems in the future. The authors showed that
around 21% of the maintenance effort was on the last two types (Bennett ¢» Rajlich, 2000).
Specifically, in the context of mobile apps Mcilroy, Ali ¢» Hassan (2016) found that
rationale for the update most frequently communicated task in app stores is bug fixing
which occurs in 63% of the updates. Thus, approaches that automate the analysis of
potentially defective software requirements from app reviews are important to make
strategic updates, as well as prioritization and planning of new releases (Licorish,
Savarimuthu & Keertipati, 2017). In addition, the app stores offer a more dynamic way of
distributing the software directly to users, with shorter release times than traditional
software systems, i.e., continuous update releases are performed every few weeks or even
days (Nayebi, Adams ¢» Ruhe, 2016). Therefore, app reviews provide quick feedback from
the crowd about software misbehavior that may not necessarily be reproducible during
regular development/testing activities, e.g., device combinations, screen sizes, operating
systems and network conditions (Palomba et al., 2018). This continuous crowd feedback
can be used by developers in the development and preventive maintenance process.

Using an opinion mining approach, we argue that software engineers can investigate
bugs and misbehavior early when an app receives negative reviews. Opinion mining
techniques can organize reviews based on the identified software requirements and their
associated user’s sentiment (Dabrowski et al., 2020). Consequently, developers can
examine negative reviews about a specific feature to understand the user’s concerns about a
defective requirement and potentially fix it more quickly, i.e., before impacting many users
and negatively affecting the app’s ratings.

Different strategies have recently been proposed to discover these emerging issues (Zhao
et al., 2020), such as issues categorization (Tudor ¢» Walter, 2006; lacob & Harrison, 2013;
Galvis Carrefio & Winbladh, 2013; Pagano ¢ Maalej, 2013; Mcilroy et al., 2016, Khalid
et al., 2015; Panichella et al., 2015; Panichella et al., 2016), sentiment analysis of the
software requirements to identify certain levels of dissatisfaction (Gao et al., 2020), and
analyze the degree of utility of a requirement (Guzman ¢» Maalej, 2014). These approaches
are concerned only with past reviews and acting in a corrective way, i.e., these approaches
do not have preventive strategies to anticipate problems that can become frequent and
impact more users in the coming days or weeks. Analyzing the temporal dynamics of a

Alves de Lima et al. (2022), Peerd Comput. Sci., DOl 10.7717/peetrj-cs.874 2/26

http://dx.doi.org/10.7717/peerj-cs.874
https://peerj.com/computer-science/

PeerJ Computer Science

requirement from app reviews provides information about a requirement’s future
behavior. In this sense, we raise the following research question: how do we predict initial
trends on defective requirements from users’ opinions before negatively impacting the
overall app’s evaluation?

In this paper, we present the MAPP-Reviews (Monitoring App Reviews) method.
MAPP-Reviews explores the temporal dynamics of software requirements extracted from
app reviews. First, we collect, pre-process and extract software requirements from large
review datasets. Then, the software requirements associated with negative reviews are
organized into groups according to their content similarity by using clustering technique.
The temporal dynamics of each requirement group is modeled using a time series, which
indicates the time frequency of a software requirement from negative reviews. Finally,
we train predictive models on historical time series to forecast future points. Forecasting is
interpreted as signals to identify which requirements may negatively impact the app in the
future, e.g., identify signs of app misbehavior before impacting many users and prevent
the low app ratings. Our main contributions are briefly summarized below:

e Although there are promising methods for extracting candidate software requirements
from application reviews, such methods do not consider that users describe the same
software requirement in different ways with non-technical and informal language. Our
MAPP-Reviews method introduces software requirements clustering to standardize
different software requirement writing variations. In this case, we explore contextual
word embeddings for software requirements representation, which have recently been
proposed to support natural language processing. When considering the clustering
structure, we can more accurately quantify the number of negative user mentions of a
software requirement over time.

e We present a method to generate the temporal dynamics of negative ratings of a
software requirements cluster by using time series. Our method uses equal-interval
segmentation to calculate the frequency of software requirements mentions in each time
interval. Thus, a time series is obtained and used to analyze and visualize the temporal
dynamics of the cluster, where we are especially interested in intervals where sudden
changes happen.

e Time series forecasting is useful to identify in advance an upward trend of negative
reviews for a given software requirement. However, most existing forecasting models do
not consider domain-specific information that affects user behavior, such as holidays,
new app releases and updates, marketing campaigns, and other external events. In the
MAPP-Reviews method, we investigate the incorporation of software domain-specific
information through trend changepoints. We explore both automatic and manual
changepoint estimation.

We carried out an experimental evaluation involving approximately 85,000 reviews over
2.5 years for three food delivery apps. The experimental results show that it is possible to
find significant points in the time series that can provide information about the future
behavior of the requirement through app reviews. Our method can provide important

Alves de Lima et al. (2022), Peerd Comput. Sci., DOl 10.7717/peetrj-cs.874 3/26

http://dx.doi.org/10.7717/peerj-cs.874
https://peerj.com/computer-science/

PeerJ Computer Science

information to software engineers regarding software development and maintenance.
Moreover, software engineers can act preventively through the proposed MAPP-Reviews
approach and reduce the impacts of a defective requirement.

This paper is structured as follows. Section “Background and Related Work” presents
the literature review and related work about mining user opinions to support requirement
engineering and emerging issue detection. In “MAPP-Reviews method” section, we
present the architecture of the proposed method. We present the main results in “Results”
section. Thereafter, we evaluate and discuss the main findings of the research in
“Discussion” section. Finally, in “Conclusions” section, we present the final considerations
and future work.

BACKGROUND AND RELATED WORK

The opinion mining of app reviews can involve several steps, such as software
requirements organization from reviews (Araujo ¢ Marcacini, 2021), grouping similar
apps using textual features (Al-Subaihin et al., 2016; Harman, Jia ¢» Zhang, 2012), reviews
classification in categories of interest to developers (e.g., Bug and New Features) (Araujo
et al., 2020), sentiment analysis of the users’ opinion about the requirements (Dragoni,
Federici ¢ Rexha, 2019; Malik, Shakshuki ¢ Yoo, 2020), and the prediction of the review
utility score (Zhang ¢ Lin, 2018). The requirements extraction has an essential role in
these steps since the failure in this task directly affects the performance of the other steps.

Dabrowski et al. (2020) evaluated the performance of the three state-of-the-art
requirements extraction approaches: SAFE (Johann et al., 2017), ReUS (Dragoni, Federici
¢ Rexha, 2019) and GuMa (Guzman ¢ Maalej, 2014). These approaches explore rule-
based information extraction from linguistic features. GuMa (Guzman ¢ Maalej, 2014)
used a co-location algorithm, thereby identifying expressions of two or more words that
correspond to a conventional way of referring to things. SAFE (Johann et al., 2017) and
ReUS (Dragoni, Federici ¢ Rexha, 2019) defined linguistic rules based on grammatical
classes and semantic dependence. The experimental evaluation of Dabrowski et al. (2020)
revealed that the low accuracy presented by the rule-based approaches could hinder its use
in practice.

Araujo & Marcacini (2021) proposed RE-BERT (Requirements Engineering using
Bidirectional Encoder Representations from Transformers) method for software
requirements extraction from reviews based on Local Context Word Embeddings (i.e. deep
neural language model). RE-BERT models the requirements extraction as a token
classification task from deep neural networks. To solve some limitations of rule-based
approaches, RE-BERT allows the generation of word embeddings for reviews according to
the context of the sentence in which the software requirement occurs. Moreover, RE-BERT
explores a multi-domain training strategy to enable software requirements extraction from
app reviews of new domains without labeled data.

After extracting requirements from app reviews, there is a step to identify more relevant
requirements and organize them into groups of similar requirements. Traditionally,
requirements obtained from user interviews are prioritized with manual analysis
techniques, such as the MoSCoW (Tudor ¢ Walter, 2006) method that categorizes each

Alves de Lima et al. (2022), Peerd Comput. Sci., DOl 10.7717/peetrj-cs.874 4/26

http://dx.doi.org/10.7717/peerj-cs.874
https://peerj.com/computer-science/

PeerJ Computer Science

requirement into groups, and applies the AHP (Analytical Hierarchy Process) decision-
making (Saaty, 1980). These techniques are not suitable for prioritizing large numbers of
software requirements because they require domain experts to categorize each
requirement. Therefore, recent studies have applied data mining approaches and statistical
techniques (Pagano & Maalej, 2013).

The statistical techniques have been used to find issues such as to examine how app
features predict an app’s popularity (Chen ¢ Liu, 2011), to analyze the correlations
between the textual size of the reviews and users’ dissatisfaction (Vasa et al., 2012), lower
rating and negative sentiments (Hoon et al., 2012), correlations between the rating assigned
by users and the number of app downloads (Harman, Jia ¢ Zhang, 2012), to the word
usage patterns in reviews (Gomez et al., 2015; Licorish, Savarimuthu & Keertipati, 2017), to
detect traceability links between app reviews and code changes addressing them (Palomba
et al., 2018), and explore the feature lifecycles in app stores (Sarro et al., 2015). There also
exists some work focus on defining taxonomies of reviews to assist mobile app developers
with planning maintenance and evolution activities (Di Sorbo et al., 2016; Ciurumelea
et al., 2017; Nayebi et al., 2018). In addition to user reviews, previous works (Guzman,
Alkadhi & Seyff, 2016, 2017; Nayebi, Cho & Ruhe, 2018) explored how a dataset of tweets
can provide complementary information to support mobile app development.

From a labeling perspective, previous works classified and grouped software reviews
into classes and categories (lacob ¢ Harrison, 2013; Galvis Carreiio ¢ Winbladh, 2013;
Pagano & Maalej, 2013; Mcilroy et al., 2016, Khalid et al., 2015; Chen et al., 2014; Gomez
et al., 2015; Gu & Kim, 2015; Maalej & Nabil, 2015; Villarroel et al., 2016; Nayebi et al.,
2017), such as feature requests, requests for improvements, requests for bug fixes, and
usage experience. Noei, Zhang ¢ Zou (2021) used topic modeling to determine the key
topics of user reviews for different app categories.

Regarding analyzing emerging issues from app reviews, existing studies are usually
based on topic modeling or clustering techniques. For example, LDA (Latent Dirichlet
Allocation) (Blei, Ng & Jordan, 2003), DIVER (iDentifying emerging app Issues Via usER
feedback) (Gao et al., 2019) and IDEA (Gao et al., 2018) approaches were used for app
reviews. The LDA approach is a topic modeling method used to determine patterns of
textual topics, i.e., to capture the pattern in a document that produces a topic. LDA is a
probabilistic distribution algorithm for assigning topics to documents. A topic is a
probabilistic distribution over words, and each document represents a mixture of latent
topics (Guzman ¢ Maalej, 2014). In the context of mining user opinions in app reviews,
especially to detect emerging issues, the documents in the LDA are app reviews, and the
extracted topics are used to detect emerging issues. The IDEA approach improves LDA
by considering topic distributions in a context window when detecting emerging topics by
tracking topic variations over versions (Gao ef al., 2020). In addition, the IDEA approach
implements an automatic topic interpretation method to label each topic with the most
representative sentences and phrases (Gao et al., 2020). In the same direction, the DIVER
approach was proposed to detect emerging app issues, but mainly in beta test periods
(Gao et al., 2019). The IDEA, DIVER and LDA approaches have not been considered
sentiment of user reviews. Recently, the MERIT (iMproved EmeRging Issue deTection)

Alves de Lima et al. (2022), Peerd Comput. Sci., DOl 10.7717/peetrj-cs.874 5/26

http://dx.doi.org/10.7717/peerj-cs.874
https://peerj.com/computer-science/

PeerJ Computer Science

(Gao et al., 2020) approach was proposed and explore word embedding techniques to
prioritize phrases/sentences of each positive and negative topic. Phong et al. (2015) and Vu
et al. (2016) grouped the keywords and phrases using clustering algorithms and then
determine and monitor over time the emergent clusters based on the occurrence
frequencies of the keywords and phrases in each cluster. Palomba et al. (2015) proposes an
approach to tracking informative user reviews of source code changes and to monitor the
extent to which developers addressing user reviews. These approaches are descriptive
models, i.e., they analyze historical data to interpret and understand the behavior of past
reviews. In our paper, we are interested in predictive models that aim to anticipate the
growth of negative reviews that can impact the app’s evaluation.

In short, app reviews formed the basis for many studies and decisions ranging from
feature extraction to release planning of mobile apps. However, previous related works do
not explore the temporal dynamics with a predictive model of requirements in reviews, as
shown in Table 1. Related works that incorporate temporal dynamics cover only
descriptive models. In addition, existing studies focus on only a few steps of the opinion
mining process from app reviews, which hinders its use in real-world applications. Our
proposal instantiates a complete opinion mining process and incorporates temporal
dynamics of software requirements extracted from app reviews into forecasting models to
address these drawbacks.

THE MAPP-REVIEWS METHOD

In order to analyze the temporal dynamics of software requirements, we present the
MAPP-Reviews approach with five stages, as shown in Fig. 1. First, we collect mobile app
reviews in app stores through a web crawler. Second, we group the similar extracted
requirements by using clustering methods. Third, the most relevant clusters are identified
to generate time series from negative reviews. Finally, we train the predictive model from
time series to forecast software requirements involved with negative reviews, which will
potentially impact the app’s rating.

App reviews

The app stores provide the textual content of the reviews, the publication date, and the
rating stars of user-reported reviews. In the first stage of MAPP-Reviews, raw reviews are
collected from the app stores using a web crawler tool through a RESTful API. At this
stage, there is no pre-processing in the textual content of reviews. Data is organized in the
appropriate data structure and automatically batched to be processed by the requirements
extraction stage of MAPP-Reviews. In the experimental evaluation presented in this article,
we used reviews collected from three food delivery apps: Uber Eats, Foodpanda, and
Zomato.

Requirements extraction

This section describes stages 2 of the MAPP-Reviews method, where there is the software
requirements extraction from app reviews and text pre-processing using contextual word
embeddings.

Alves de Lima et al. (2022), Peerd Comput. Sci., DOl 10.7717/peetrj-cs.874 6/26

http://dx.doi.org/10.7717/peerj-cs.874
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 Overview of related works.

References Data Pre-processing and Requirements/topics clustering and labeling Temporal
representation extraction of dynamics
requirements
Araujo & Marcacini Word Token classification No. No.
(2021) embeddings
Gao et al. (2020) Word Rule-based and topic Yes. It combines word embeddings with topic distributions as the Yes. Descriptive
embeddings modeling semantic representations of words model
Malik, Shakshuki & Bag-of-words Rule-based No. No.
Yoo (2020)
Gao et al. (2019) Vector space Rule-based and topic Yes. Anomaly clustering algorithm Yes. Descriptive
modelling model
Dragoni, Federici & Dependency ~ Rule-based No. No.
Rexha (2019) tree
Gao et al. (2018) Probability Rule-based and topic Yes. AOLDA - Adaptively Online Latent Dirichlet allocation. The Yes. Descriptive
vector modelling topic labeling method considers the semantic similarity between = model
the candidates and the topics
Johann et al. (2017) Keywords Rule-based No. No.
Vu et al. (2016) Word Pre-defined Yes. Soft clustering algorithm that uses vector representation of = Yes. Descriptive
embeddings words from Word2vec model
Villarroel et al. (2016) Bag-of-words Rule-based Yes. DBSCAN clustering algorithm. Each cluster has a label No.
composed of the five most frequent terms
Gu & Kim (2015) Semantic Rule-based Yes. Clustering aspect-opinion pairs with the same aspects Yes. Descriptive
dependence model
graph
Phong et al. (2015) Vector space Rule-based Yes. Word2vec and K-means Yes. Descriptive
model
Guzman & Maalej Keywords Rule-based and topic Yes. LDA approach No.
(2014) modeling
Chen et al. (2014) Bag-of-words Topic modelling Yes. LDA and ASUM approach with labelling Yes. Descriptive
model
Tacob & Harrison Keywords Rule-based and topic Yes. LDA approach No.
(2013) modelling
Galvis Carrefio & Bag-of-words Topic modelling Yes. Aspect and Sentiment Unification Model (ASUM) approach No.
Winbladh (2013)
Harman, Jia & Zhang Keywords Pre-defined Yes. Greedy-based clustering algorithm No.
(2012)
Palomba et al. (2018) Bag-of-words Topic-modeling Yes. AR-Miner approach with labeling No.

MAPP-Reviews uses the pre-trained RE-BERT (Araujo ¢ Marcacini, 2021) model to
extract software requirements from app reviews. RE-BERT is an extractor developed from
our previous research. We trained the RE-BERT model using a labeled reviews dataset
generated with a manual annotation process, as described by Dabrowski et al. (2020). The
reviews are from 8 apps of different categories as showed in Table 2. RE-BERT uses a cross-
domain training strategy, where the model was trained in 7 apps and tested in one
unknown app for the test step. RE-BERT software requirements extraction performance
was compared to SAFE (Johann et al., 2017), ReUS (Dragoni, Federici ¢» Rexha, 2019) and
GuMa (Guzman ¢ Maalej, 2014). Since RE-BERT uses pre-trained models for semantic

Alves de Lima et al. (2022), Peerd Comput. Sci., DOl 10.7717/peetrj-cs.874 7/26

http://dx.doi.org/10.7717/peerj-cs.874
https://peerj.com/computer-science/

PeerJ Computer Science

MAPP-Reviews

STAGE 1 -— STAGE 5
App s Predictive
Reviews Models
Raw reviews are collected from e oo o e
the app stores. ° higher trends of negative
p— evaluation.
© e
= Al
. JRISINIT}
iy |
r.'l
STAGE 2 STAGE 4
Requirements Time Series
Extraction | Generation
Sogi;:irEeR;g;?rii]q;zlesxgiﬁ T\me. series for each software
e STAGE 3 requirements cluster.
Requirements
Clustering

K-means algorithm to obtain a
clustering model of semantically
similar software requirements.

Figure 1 Overview of the proposed method for analyzing temporal dynamics of requirements
engineering from mobile app reviews. Full-size K&l DOT: 10.7717/peerj-cs.874/fig-1

Table 2 Statistics about the datasets from 8 apps of different categories used to train the RE-BERT model.

eBay Evernote Facebook Netflix Photo editor Spotify Twitter WhatsApp
Reviews 1,962 4,832 8,293 14,310 7,690 14,487 63,628 248,641
Category ~ Shopping Productivity =~ Social Entertainment ~ Photography Music and Audio Social Communication
ExTRACTED REQUIREMENT
1 “ORDERING”
®
R EVI EW EXTRACTED REQUIREMENT

e 2 “DELIVERY”

Bifordering L

but it is automatically

o . ®
pIaCIng LGl with : EXTRACTED REQUIREMENT

3 “PLACING ORDER”

EXTRACTED REQUIREMENT

“PICK UP”

Figure 2 Example of a review and extracted requirements.
Full-size K&l DOT: 10.7717/peerj-cs.874/fig-2

representation of texts, the extraction performance is significantly superior to the rule-
based methods. Given this scenario, we selected RE-BERT for the requirement extraction
stage. Figure 2 shows an example of review and extracted software requirements. In the
raw review “I am ordering with delivery but it is automatically placing order with pick-up”,

Alves de Lima et al. (2022), Peerd Comput. Sci., DOl 10.7717/peetrj-cs.874 8/26

http://dx.doi.org/10.7717/peerj-cs.874/fig-1
http://dx.doi.org/10.7717/peerj-cs.874/fig-2
http://dx.doi.org/10.7717/peerj-cs.874
https://peerj.com/computer-science/

PeerJ Computer Science

» o« » <«

four software requirements were extracted (“ordering”, “delivery”, “placing order”, and
“pick-up”). Note that “placing order” and “ordering” are the same requirement in practice.
In the clustering step of the MAPP-Reviews method, these requirements are grouped in the
same cluster, as they refer to the same feature.

RE-BERT returns the probability that each token (e.g. word) is a software requirement.
Consecutive tokens in a sentence are concatenated to obtain software requirements
expressions composed of two or more tokens. We filter reviews that are more associated
with negative comments through user feedback. Consider that the user gives a star rating
when submitting a review for an app. Generally, the star rating ranges from 1 to 5.

This rating can be considered as the level of user satisfaction. In particular, we are
interested in defective software requirements, and only reviews with 1 or 2 rating stars
were considered. Thus, we use RE-BERT to extract only software requirements mentioned
in reviews that may involve complaints, bad usage experience, or malfunction of app
features.

RE-BERT extracts software requirements directly from the document reviews and we
have to deal with the drawback that the same requirement can be written in different
ways by users. Thus, we propose a software requirement semantic clustering, in which
different writing variations of the same requirement must be standardized. However, the
clustering step requires that the texts be pre-processed and structured in a format that
allows the calculation of similarity measures between requirements.

We represent each software requirement through contextual word embedding. Word
embeddings are vector representations for textual data in an embedding space, where we
can compare two texts semantically using similarity measures. Different models of word
embeddings have been proposed, such as Word2vec (Mikolov et al., 2013), Glove
(Pennington, Socher ¢ Manning, 2014), FastText (Bojanowski et al., 2017) and BERT
(Devlin et al., 2018). We use the BERT Sentence-Transformers model (Reimers ¢
Gurevych, 2019) to maintain an neural network architecture similar to RE-BERT. BERT is
a contextual neural language model, where for a given sequence of tokens, we can learn
a word embedding representation for a token. Word embeddings can calculate the
semantic proximity between tokens and entire sentences, and the embeddings can be used
as input to train the classifier. BERT-based models are promising to learn contextual word
embeddings from long-term dependencies between tokens in sentences and sentences
(Araujo & Marcacini, 2021). However, we highlight that a local context more impacts the
extraction of software requirements from reviews, i.e., tokens closer to those of software
requirements are more significant (Araujo & Marcacini, 2021). Therefore, RE-BERT
explores local contexts to identify relevant candidates for software requirements. Formally,
let E = {ry, r5,..., r,} be a set of n extracted software requirements, where r; = (t;,...,t;) are a
sequence of k tokens of the requirement ;. BERT explore a masked language modeling
procedure, i.e., BERT model first generates a corrupted x version of the sequence, where
approximately 15% of the words are randomly selected to be replaced by a special token
called (MASK) (Araujo ¢ Marcacini, 2021). One of the training objectives is the noisy
reconstruction defined in Eq. (1),

Alves de Lima et al. (2022), Peerd Comput. Sci., DOl 10.7717/peetrj-cs.874 9/26

http://dx.doi.org/10.7717/peerj-cs.874
https://peerj.com/computer-science/

PeerJ Computer Science

Jlist items for sell

bid on stuff
enlarge item photos
Notifications items listed
items | list ;
idtes :notnﬂca;tons . follc)lw progress of sale
updating the settings getimmediate notifications g4r2 items browsing items W sale
selling
installing pay for ur item check of items auctions
settings
compare prices displays'a brief popup check up on 31 item
sellers
change prices
osts W
P watch list @find items resubmits auctions
Text ®payment]selection of any item
finding special items
interface customer service
u esearch items
buying find certain things
buy means move around
J navigate handles m hy
9 andles my searches $bidding
purchasing items ~
buyiP!] searches
shop browse search for great deals closing in on a bid
browsing tools keep track of all purchases

|Browsing filters

create new bids
5|gn

check listings W link to the full site
n

see what deals
watching auctions &

Login

|Oglﬂ access to items

accessing your account
monitor bids check my ebay listings ing your .
-

check auctions

® connects to PayPal
check my auctions

syncs with my account

check ebay messages @connect to the network

Figure 3 Set of software requirements in a two-dimensional space obtained from contextual word
embeddings. Full-size K&] DOT: 10.7717/peerj-cs.874/fig-3

k exp(hzwt‘)
PR =) mye (1)
le > exp(hgww)
t’

where 7 is a corrupted token sequence of requirement r, 7 is the masked tokens, m; is
equal to 1 when ¢; is masked and 0 otherwise. The ¢, represents context information
for the token t;, usually the neighboring tokens. We extract token embeddings from the
pre-trained BERT model, where h,; is a context embedding and wy, is a word embedding
of the token #;. The term Y, exp(h!wy) is a normalization factor using all tokens ¢
from a context c. BERT uses the Transformer deep neural network to solve p(7|#) of
the Eq. (1). Figure 3 illustrates a set of software requirements in a two-dimensional
space obtained from contextual word embeddings. Note that the vector space of
embeddings preserves the proximity of similar requirements, but written in different
ways by users such as “search items”, “find items”, “handles my searches” and “find special
items”.

Alves de Lima et al. (2022), Peerd Comput. Sci., DOl 10.7717/peetrj-cs.874 10/26

http://dx.doi.org/10.7717/peerj-cs.874/fig-3
http://dx.doi.org/10.7717/peerj-cs.874
https://peerj.com/computer-science/

PeerJ Computer Science

Table 3 Example of software requirement cluster “Payment” and some tokens allocated in the
cluster with their respective silhouette values.

Cluster Tokens with silhouette (s)
label

Payment “payment getting” (s = 0.2618), “payment get” (s = 0.2547), “getting payment” (s = 0.2530),
“take payment” (s = 0.2504), “payment taking” (s = 0.2471), “payment” (s = 0.2401)

Requirements clustering

After mapping the software requirements into word embeddings, MAPP-Reviews uses the
k-means algorithm (MacQueen, 1967) to obtain a clustering model of semantically similar
software requirements.

Formally, let R = {ry, r,,...,r,,} a set of extracted software requirements, where each
requirement r is a m-dimensional real vector from an word embedding space. The k-means
clustering aims to partition the n requirements into k (2 < k < n) clusters C = {C;, C,,...,
Cy}, thereby minimizing the within-cluster sum of squares as defined in Eq. (2), where
pi is the mean vector of all requirements in C,.

SN il = wl?)

C;eC recC;

We observe that not all software requirements cluster represents a functional
requirement in practice. Then, we evaluated the clustering model using a statistical
measure called silhouette (Rousseeuw, 1987) to discard clusters with many different terms
and irrelevant requirements. The silhouette value of a data instance is a measure of how
similar a software requirement is to its own cluster compared to other clusters. The
silhouette measure ranges from —1 to +1, where values close to +1 indicate that the
requirement is well allocated to its own cluster (Vendramin, Campello & Hruschka, 2010).
Finally, we use the requirements with higher silhouette values to support the cluster
labeling, i.e., to determine the software requirement’s cluster name. For example, Table 3
shows the software requirement cluster “Payment” and some tokens allocated in the
cluster with their respective silhouette values.

To calculate the silhouette measure, let r; € C; a requirement 7; in the cluster C;.
Equation (3) compute the mean distance between r; and all other software requirements in

the same cluster, where d(r;, r;) is the distance between requirements r; and r; in the

_1
|Ci[-1

the sum. A smaller value of the silhouette measure a(i) indicates that the requirement i is

cluster C;. In the equation, the expression means the distance d(r;,r;) is not added to

far from neighboring clusters and better assigned to its cluster.

1
a(f,’) = ‘C1|7_1 Z d(?‘i, rj) (3)

rjec,‘,ﬂ#rj

Analogously, the mean distance from requirement r; to another cluster C; is the mean
distance from r; to all requirements in Cy, where C; # C,. For each requirement r; € C;,
Eq. (4) defines the minimum mean distance of r; for all requirements in any other cluster,

Alves de Lima et al. (2022), Peerd Comput. Sci., DOl 10.7717/peetrj-cs.874 11/26

http://dx.doi.org/10.7717/peerj-cs.874
https://peerj.com/computer-science/

PeerJ Computer Science

KoY N S

Figure 4 Two-dimensional projection of clustered software requirements from approximately
85,000 food delivery app reviews. Full-size K&l DOT: 10.7717/peerj-cs.874/fig-4

of which r; is not a member. The cluster with this minimum mean distance is the neighbor
cluster of ;. So this is the next best-assigned cluster for the r; requirement. The silhouette
(value) of the software requirement r; is defined by Eq. (5).

b(r;) = min— Z d(ri, 1)) (4)

ki |Ck| r;€Ck

_ b(ri) —a(n)
s(ri) = max{a(r;), b(r;)}’

At this point in the MAPP-Reviews method, we have software requirements pre-
processed and represented through contextual word embeddings, as well as an organization
of software requirements into k clusters. In addition, each cluster has a representative text
(cluster label) obtained according to the requirements with higher silhouette values.

Figure 4 shows a two-dimensional projection of clustered software requirements from
approximately 85,000 food delivery app reviews, which were used in the experimental
evaluation of this work. High-density regions represent clusters of similar requirements
that must be mapped to the same software requirement during the analysis of temporal
dynamics. In the next section, techniques for generating the time series from software
requirements clusters are presented, as well as the predictive models to infer future trends.

Alves de Lima et al. (2022), Peerd Comput. Sci., DOl 10.7717/peetrj-cs.874 12/26

http://dx.doi.org/10.7717/peerj-cs.874/fig-4
http://dx.doi.org/10.7717/peerj-cs.874
https://peerj.com/computer-science/

PeerJ Computer Science

0.015

Normalized Frequecy

0.005

8102
810C
8102
8102
6102
6102
6102
6102
6102
6102
610C
6102
610C
6102
610C
6102
610C
6102
610C
6102
6102
0cozT
020
0cozT
020
0cozT
020
0cozT
0202
0cozT
0202
(414
0202
0coz
0202
(414
(1404
0c0zT
0cozT
T20T
T20T

R E
EEREUSOCEHNENNNUWGIRIEENOSSREENNNNUWBORERGOOOS
LWOoONQRAONUNORAIOWOOLNIIRNIORANOWIVRNTGRRIOWW S

Figure 5 Time series with the normalized frequency of “Arriving time” requirement from Zomato
App in negative reviews. Full-size K&l DOT: 10.7717/peerj-cs.874/fig-5

Time series generation

Time series can be described as an ordered sequence of observations (Chatfield ¢ Xing,
2019). A time series of size s is defined as X = (xy, x5,...,x;) in which x; € R represents an
observation at time t.

MAPP-Reviews generates time series for each software requirements cluster, where the
observations represent how many times each requirement occurred in a period.
Consequently, we know how many times a specific requirement was mentioned in the app
reviews for each period. Each series models the temporal dynamics of a software
requirement, i.e., the temporal evolution considering occurrences in negative reviews.

Some software requirements are naturally more frequent than others, as well as the
tokens used to describe these requirements. For the time series analysis to be compared
uniformly, we generate a normalized series for each requirement. Each observation in the
time series is normalized according to Eq. (6),

X
Xnormalized = —— (6)
Zp

where X,,o,malizeq 1S the result of the normalization, where x is the frequency of cluster (time
series observation) C in the period p, z, is the total frequency of the period.

Figure 5 shows an example of one of the generated time series for a software
requirement. The time dynamics represented in the time series indicate the behavior of the
software requirement concerning negative reviews. Note that in some periods there are
large increases in the mention of the requirement, thereby indicating that users have
negatively evaluated the app for that requirement. Predicting the occurrence of these
periods for software maintenance, aiming to minimize the number of future negative
reviews is the objective of the MAPP-Reviews predictive model discussed in the next
section.

Predictive models
Predictive models for time series are very useful to support an organization in its planning
and decision-making. Such models explore past observations to estimate observations in

Alves de Lima et al. (2022), Peerd Comput. Sci., DOl 10.7717/peetrj-cs.874 13/26

http://dx.doi.org/10.7717/peerj-cs.874/fig-5
http://dx.doi.org/10.7717/peerj-cs.874
https://peerj.com/computer-science/

PeerJ Computer Science

0.007

0.006

0.005

0.004

0.003

Normalized Frequency

0.002

0.001

2018-08 2018-11 2019-02 2019-05 2019-08 2019-11 2020-02 2020-05 2020-08 2020-11 2021-02

Figure 6 Prophet forecasting with automatic change points of a requirement.
Full-size K&l DOT: 10.7717/peerj-cs.874/fig-6

future horizons, given a confidence interval. In our MAPP-Reviews method, we aim to
detect the negative reviews of a software requirement that are starting to happen and make
a forecast to see if they will become serious in the subsequent periods, i.e., high frequency
in negative reviews. The general idea is to use p points from the time series to estimate the
next p + h points, where h is the prediction horizon.

MAPP-Reviews uses the Prophet Forecasting Model (Taylor ¢» Letham, 2018). Prophet
is a model from Facebook researchers for forecasting time series data considering non-
linear trends at different time intervals, such as yearly, weekly, and daily seasonality. We
chose the Prophet model for the MAPP-Reviews method due to the ability to incorporate
domain knowledge into the predictive model. The Prophet model consists of three main
components, as defined in Eq. (7),

y(t) = g(t) +s(t) + h(t) + te (7)

where g(f) represents the trend, s(f) represents the time series seasonality, h(t) represents
significant events that impacts time series observations, and the error term t represents
noisy data.

During model training, a time series can be divided into training and testing. The terms
g(1), s(t) and h(t) can be automatically inferred by classical statistical methods in the
area of time series analysis, such as the Generalized Additive Model (GAM) (Hastie ¢
Tibshirani, 1987) used in Prophet. In the training step, the terms are adjusted to find an
additive model that best fits the known observations in the training time series. Next, we
evaluated the model in new data, i.e., the testing time series.

In the case of the temporal dynamics of the software requirements, domain knowledge
is represented by specific points (e.g. changepoints) in the time series that indicate
potential growth of the requirement in negative reviews. Figure 6 shows the forecasting for
a software requirement. Original observations are the black dots and the blue line
represents the forecast model. The light blue area is the confidence interval of the
predictions. The vertical dashed lines are the time series changepoints.

Alves de Lima et al. (2022), Peerd Comput. Sci., DOl 10.7717/peetrj-cs.874 14/26

http://dx.doi.org/10.7717/peerj-cs.874/fig-6
http://dx.doi.org/10.7717/peerj-cs.874
https://peerj.com/computer-science/

PeerJ Computer Science

Changepoints play an important role in forecasting models, as they represent abrupt
changes in the trend. Changepoints can be estimated automatically during model training,
but domain knowledge, such as the date of app releases, marketing campaigns, and server
failures, are changepoints that can be added manually by software engineers. Therefore,
the changepoints could be specified by the analyst using known dates of product launches
and other growth-altering events or may be automatically selected given a set of
candidates. In MAPP-Reviews, we have two possible options for selecting changepoints in
the predictive model. The first option is automatic changepoint selection, where the
Prophet specifies 25 potential changepoints which are uniformly placed in the first 80% of
the time series. The second option is the manual specification which has a set of dates
provided by a domain analyst. In this case, the changepoints could be entirely limited to a
small set of dates. If no known dates are provided, by default we use the most recent
observations which have a value greater than the average of the observations, i.e., we want
to emphasize the highest peaks of the time series, as they indicate critical periods of
negative revisions from the past.

In the experimental evaluation, we show the MAPP-Reviews ability to predict
perceptually important points in the software requirements time series, allowing the
identification of initial trends in defective requirements to support preventive strategies in
software maintenance.

Table 4 shows an emerging issue being predicted 6 weeks in advance in the period from
October 2020 to January 2021. The table presents a timeline represented by the horizon (h)
in weeks, with the volume of negative raw reviews (Vol.). An example of a negative
review is shown for each week until reaching the critical week (peak), with /1 = 16. The table
row with /& = 10 highlighted in bold shows when MAPP-Reviews identified the uptrend.
In this case, we show the MAPP-Reviews alert for the “Time of arrival” requirement of
the Uber Eats app. In particular, the emerging issue identified in the negative reviews is the
low accuracy of the estimated delivery time in the app. The text of the user review samples
has been entered in its entirety, without any pre-treatment. A graphical representation
of this prediction is shown in Fig. 7.

RESULTS

The proposed approach is validated through an experimental evaluation with popular food
delivery apps. These apps represent a dynamic and complex environment consisting of
restaurants, food consumers, and drivers operating in highly competitive conditions
(Williams et al., 2020). In addition, this environment means a real scenario of commercial
limitations, technological restrictions, and different user experience contexts, which makes
detecting emerging issues early an essential task. For this experimental evaluation, we
used a dataset with 86,610 reviews of three food delivery apps: Uber Eats, Foodpanda, and
Zomato. The dataset was obtained in the first stage (App Reviews) of MAPP-Reviews and
is available at https://github.com/vitormesaque/mapp-reviews. The choice of these apps
was based on their popularity and the number of reviews available. The reviews are from
September 2018 to January 2021.

Alves de Lima et al. (2022), Peerd Comput. Sci., DOl 10.7717/peetrj-cs.874 15/26

https://github.com/vitormesaque/mapp-reviews
http://dx.doi.org/10.7717/peerj-cs.874
https://peerj.com/computer-science/

PeerJ Computer Science

Table 4 Example of emerging issue prediction alert for the “Time of arrival” requirement of the Uber Eats app reviews triggered by MAPP-
reviews.

H Vol. Token Review
1 768 Delivery Listed delivery times are inaccurate majority of the time.
time

2 849 Time frame This app consistently gives incorrect, shorter delivery time frame to get you to order, but the deliveries are always late. The
algorithm to predict the delivery time should be fixed so that you’ll stop lying to your customers.

3 896 Arrival time Ordered food and they told me it was coming. The wait time was supposed to be 45 min. They kept pushing back the arrival
time, and we waited an hour and 45 min for food, only to have them CANCEL the order and tell us it wasn’t coming. If an
order is unable to be placed you need to tell customers BEFORE they’ve waited almost 2 h for their food.

4 1247 Delivery The app was easy to navigate but the estimated delivery time kept changing and it took almost 2 h to receive food and I live
time less than 4 blocks away pure ridiculousness if I would of know that I would of just walked there and got it.

5 1056 Estimated Everyone cancels and it ends up taking twice the estimated time to get the food delivered. You don’t get updated on delays
time unless you actively monitor. Uber has failed at food delivery.

6 997 More time Uber Eats lies. Several occasions showed delays because “the restaurant requested more time” but really it was Uber Eats
unable to find a driver. I called the restaurants and they said the food has been ready for over an hour!

7 939 Delivery Your app is unintuitive. Delivery times are wildly inaccurate and orders are cancelled with no explanation, information or
time help.

8 854 Estimated This service is terrible. Delivery people never arrive during the estimated time.
time

9 994 Time Delivery times increase significantly once your order is accepted. 25-45 min went up to almost 2 h! Not easy to cancel. Also

one restaurant that looked available said I was too far away after I had filled my basket. Other than that the app is easy to use.

10 1257 Time Use door dash or post mates, Uber eats has definitely gone down in quality. Extremely inaccurate time estimates and they
estimate ignore your support requests until its to late to cancel an order and get a refund.

11 1443 Delivery Delivery times are constantly updated, what was estimated at 25-35 min takes more than 2 h. I understand it’s just an
time estimate, but 4X that is ridiculous.

12 1478 Delivery Inaccurate delivery time
time
13 1376 Estimated Used to use this app a lot. Ever since they made it so you have to pay for your delivery to come on time the app is useless. You
time will be stuck waiting for food for an hour most of the time. The estimated time of arrival is never accurate. Have had my
food brought to wrong addresses or not brought at all. I will just take the extra time out of my day to pick up the food myself
rather than use this app.

14 1446 Estimated Terrible, the estimated time of arrival is never accurate and has regularly been up to 45 MINUTES LATE with no refund.
time Doordash is infinitely better, install that instead, it also has more restaurants

15 1354 Estimated App is good but this needs to be more reliable on its service. the estimated arrival time needs to be matched or there should be
time a option to cancel the order if they could not deliver on estimated time. Continuously changing the estimated delivery time
after the initial order confirmation is inappropriate.

16 1627 Estimated I use this app a lot and recently my order are always late at least double the time in originally quoted. Every time my food is
time cold. Maybe the estimated time should be adjusted to reflect what the actual time may be.

After the software requirements extraction and clustering stage (with k = 300 clusters),
the six most popular (frequent) requirements clusters were considered for time series
prediction. The following software requirements clusters were selected: “Ordering”, “Go

» «

pick up”, “Delivery

» o« » o«

, “Arriving time”, “Advertising”, and “Payment”. The requirements
clusters are shown in Table 5 with the associated words ordered by silhouette.

In the MAPP-Reviews prediction stage, we evaluated two scenarios using Prophet. The
first scenario is the baseline, where we use the automatic parameters fitting of the Prophet.

By default, Prophet will automatically detect the changepoints. In the second scenario, we

Alves de Lima et al. (2022), Peerd Comput. Sci., DOl 10.7717/peetrj-cs.874 16/26

http://dx.doi.org/10.7717/peerj-cs.874
https://peerj.com/computer-science/

PeerJ Computer Science

0.012

0011

0.010

0.009

0.008

Normalized Frequency

0.007

0.006

0005
2018-08 2018-11 2019-02 201905 2019-08 2019-11 2020-02 2020-05 2020-08 202011 2021-02

Figure 7 Forecasting for software requirement cluster (Arriving time) from Uber Eats app reviews.
Full-size Kal DOI: 10.7717/peerj-cs.874/fig-7

Table 5 Software requirements clusters for food delivery apps used in the experimental evaluation. Tokens well allocated in each cluster
(silhoutte measure) were selected to support the cluster labeling.

Cluster Tokens with Silhouette values (s)

label

Ordering “ordering” (s = 0.1337), “order’s” (s = 0.1250), “order from” (s = 0.1243), “order will” (s = 0.1221), “order” (s = 0.1116), “the order” (s =

0.1111)

Go pick up “go pick up” (s = 0.1382), “pick up the” (s = 0.1289)”, “pick up at” (s = 0.1261), “to take” (s = 0.1176), “go get” (s = 0.1159)
Delivery “delivering parcels” (s = 0.1705), “delivery options” (s = 0.1590), “waive delivery” (s = 0.1566), “delivery charges” (s = 0.1501), “accept

delivery” (s = 0.1492)

Arriving “arrival time” (s = 0.3303), “waisting time” (s = 0.3046), “arriving time” (s = 0.3042), “estimate time” (s = 0.2877), “delivery time” (s =

time 0.2743)

Advertising “anoyning ads” (s = 0.3464), “pop-up ads” (s = 0.3440), “ads pop up” (s = 0.3388), “commercials advertise” (s = 0.3272), “advertising” (s =

0.3241)

Payment “payment getting” (s = 0.2618), “payment get” (s = 0.2547), “getting payment” (s = 0.2530), “take payment” (s = 0.2504), “payment
taking” (s = 0.2471), “payment” (s = 0.2401)

specify the potential changepoints, thereby providing domain knowledge for software
requirements rather than automatic changepoint detection. Therefore, the changepoint
parameters are used when we provide the dates of the changepoints instead of the Prophet
determining them. In this case, we use the most recent observations that have a value
greater than the average of observations, i.e., critical periods with high frequencies of
negative reviews in the past.

We used the MAPE (Mean Absolute Percentage Error) metric to evaluate the
forecasting performance (Makridakis, 1993), as defined in Eq. (8),

_ 1=n |real; — pred,|
MAPE = > —r (8)

where real, is the real value and pred, is the predicted value by the method, and # is the
number of forecast observations in the estimation period (prediction horizon). In practical
terms, MAPE is a measure of the percentage error that, in a simulation, indicates how close

Alves de Lima et al. (2022), Peerd Comput. Sci., DOl 10.7717/peetrj-cs.874 17/26

http://dx.doi.org/10.7717/peerj-cs.874/fig-7
http://dx.doi.org/10.7717/peerj-cs.874
https://peerj.com/computer-science/

PeerJ Computer Science

Table 6 Comparison of MAPE in general.

h MAPE (Mean + SD)
(1) Automatic changepoint (2) Specifying the changepoints
1 13.82 + 16.42 15.47 + 14.42
2 15.58 + 19.09 16.94 + 17.20
3 16.26 + 20.18 17.60 + 18.71
4 16.09 + 19.24 17.47 + 18.37

Table 7 MAPE analysis (at the peaks of the time series) of each scenario considering the software

requirements.
h MAPE (Mean + SD)
(1) Automatic changepoint (2) Specifying the changepoints
1 10.65 + 8.41 10.30 = 8.06
2 11.61 + 8.80 11.00 + 8.71
3 11.81 + 8.86 11.42 + 8.52
4 11.49 +8.71 11.19 + 8.34

the prediction was made to the known values of the time series. We consider a prediction
horizon (h) ranging from 1 to 4, with weekly seasonality.

Table 6 summarizes the main experimental results. The first scenario (1) with the
default parameters obtains superior results compared to the second scenario (2) for all
forecast horizons. In general, automatic changepoints obtains 9.33% of model
improvement, considering the average of MAPE values from all horizons (h =1 to h = 4).

In particular, we are interested in the peaks of the series since our hypothesis is that the
peaks represent potential problems in a given software requirement. Thus, Table 7 shows
MAPE calculated only for time series peaks during forecasting. In this case, predictions
with the custom changepoints locations (scenario 2) obtained better results than the
automatic detection for all prediction horizons (h = 1 to h = 4), obtaining 3.82% of
forecasting improvement. These results provide evidence that domain knowledge can
improve the detection of potential software requirements to be analyzed for preventive
maintenance.

In particular, analyzing the prediction horizon, the results show that the best predictions
were obtained with & = 1 (1 week). In practical terms, this means the initial trend of a
defective requirement can be identified 1 week in advance.

Finally, to exemplify MAPP-Reviews forecasting, Fig. 7 shows the training data
(Arriving time software requirement) represented as black dots and the forecast as a blue
line, with upper and lower bounds in a blue shaded area. At the end of the time series, the
darkest line is the real values plotted over the predicted values in blue. The lines plotted
vertically represent the changepoints.

For reproducibility purposes, we provide a GitHub repository at https://github.com/
vitormesaque/mapp-reviews containing the source code and details of each stage of the
method, as well as the raw data and all the results obtained.

Alves de Lima et al. (2022), Peerd Comput. Sci., DOl 10.7717/peetrj-cs.874 18/26

https://github.com/vitormesaque/mapp-reviews
https://github.com/vitormesaque/mapp-reviews
http://dx.doi.org/10.7717/peerj-cs.874
https://peerj.com/computer-science/

PeerJ Computer Science

DISCUSSION

Timely and effective detection of software requirements issues is crucial for app
developers. The results show that MAPP-Reviews can detect significant points in the time
series that provide information about the future behavior of a software requirement,
allowing software engineers to anticipate the identification of emerging issues that may
affect app evaluation. An issue related to a software requirement reported in user reviews is
defined as an emerging issue when there is an upward trend for that requirement in
negative reviews. Our method trains predictive models to identify requirements with
higher negative evaluation trends, but a negative review will inevitably impact the rating.
However, our objective is to mitigate this negative impact.

The prediction horizon (h) is an essential factor in detecting emerging issues to mitigate
negative impacts. Software engineers and the entire development team need to know as
soon as possible about software problems to anticipate them. In this context would not
be feasible to predict the following months as it is tough to find a correlation between what
happens today and what will happen in the next few months about bug reports. Therefore,
MAPP-Reviews forecasts at the week level. This strategy allows us to identify the issues
that are starting to happen and predict whether they will worsen in the coming weeks.
Even at the week level, the best forecast should be with the shortest forecast horizon,
i.e., 1 week (h =1). A longer horizon, i.e., three (h = 3) or 4 weeks (h = 4), could be too late
to prevent an issue from becoming severe and having more impact on the overall app
rating. The experimental evaluation shows that our method obtains the best predictions
with the shortest horizon (h = 1). In practical terms, this means that MAPP-Reviews
identifies the initial trend of a defective requirement a week in advance. In addition, we can
note that a prediction error rate (MAPE) of up to 20% is acceptable. For example, consider
that the prediction is 1,000 negative reviews for a specific requirement at a given point,
but the model predicts 800 negative reviews. Even with 20% of MAPE, we can identify a
significant increase in negative reviews for a requirement and trigger alerts for preventive
software maintenance, i.e., when MAPP-Reviews predicts an uptrend, the software
development team should receive an alert. In the time series forecast shown in Fig. 7, we
observe that the model would be able to predict the peaks of negative reviews for the
software requirement 1 week in advance.

The forecast presented in Fig. 7 shows that the model was able to predict the peak of
negative reviews for the “Arriving time” requirement. An emerging issue detection system
based only on the frequency of a topic could trigger many false detections, i.e., it would
not detect defective functionality but issues related to the quality of services offered.
Analyzing user reviews, we found that some complaints are about service issues rather than
defective requirements. For example, the user may complain about the delay in the delivery
service and negatively rate the app, but in reality, they are complaining about the
restaurant, i.e., a problem with the establishment service. We've seen that this pattern of
user complaints is repeated across other app domains, not just the food delivery service.
In delivery food apps, these complaints about service are constant, uniform, and
distributed among all restaurants available in the app. In Table 4, it is clear that the

Alves de Lima et al. (2022), Peerd Comput. Sci., DOl 10.7717/peetrj-cs.874 19/26

http://dx.doi.org/10.7717/peerj-cs.874
https://peerj.com/computer-science/

PeerJ Computer Science

emerging issue refers to the deficient implementation of the estimated delivery time
prediction functionality. Our results show that when there is a problem in the app related
to a defective software requirement, there are increasing complaints associated with
negative reviews regarding that requirement.

An essential feature in MAPP-Reviews is changepoints. Assume that a time series
represents the evolution of a software requirement over time, observing negative reviews for
this requirement. Also, consider that time series frequently have abrupt changes in their
trajectories. Given this, the changepoints describe abrupt changes in the time series trend,
i.e., means a specific date that indicates a trend change. Therefore, specifying custom
changepoints becomes significantly important for the predictive model because the uptrend
in time series can also be associated with domain knowledge factors. By default, our
model will automatically detect these changepoints. However, we have found that specifying
custom changepoints improves prediction significantly in critical situations for the emerging
issue detection problem. In general, the automatic detection of changepoints had better
MAPE results in most evaluations. However, the custom changepoints obtained the best
predictions at the time series peaks for all horizons (h = 1 to h = 4) of experiment simulations.
Our experiment suggests a greater interest in identifying potential defective requirements
trends in the time series peaks. As a result, we conclude that specifying custom changepoints
in the predictive model is the best strategy to identify potential emerging issues.

Furthermore, the results indicate the potential impact of incorporating changepoints
into the predictive model using the information of app developers, i.e., defining specific
points over time with a meaningful influence on app evaluation. In addition, software
engineers can provide sensitive company data and domain knowledge to explore and
improve the predictive model potentially. For this purpose, we depend on sensitive
company data related to the software development and management process, e.g., release
planning, server failures, and marketing campaigns. In particular, we can investigate
the relationship between the release dates of app updates and the textual content of the
update publication with the upward trend in negative evaluations of a software
requirement. In a real-world scenario in the industry, software engineers using
MAPP-Reviews will provide domain-specific information.

We show that MAPP-Reviews provides software engineers with tools to perform
software maintenance activities, particularly preventive maintenance, by automatically
monitoring the temporal dynamics of software requirements.

The results of our research show there are new promising prospects for the future, and
new possibilities for innovation research in this area emerge with our results so far.

We intend to explore further our method to deeply determine the input variables that most
contribute to the output behavior and the non-influential inputs or to determine some
interaction effects within the model. In addition, sensitivity analysis can help us reduce the
uncertainties found more effectively and calibrate the model.

Limitations
Despite the significant results obtained, we can still improve the predictive model. In the
scope of our experimental evaluation, we only investigate the incorporation of software

Alves de Lima et al. (2022), Peerd Comput. Sci., DOl 10.7717/peetrj-cs.874 20/26

http://dx.doi.org/10.7717/peerj-cs.874
https://peerj.com/computer-science/

PeerJ Computer Science

domain-specific information through trend changepoints. Company-sensitive information
and the development team’s domain knowledge were not considered in the predictive
model because we don’t have access to this information. Therefore, we intend to evaluate
our proposed method in the industry and explore more specifics of the domain knowledge
to improve the predictive model.

Another issue that is important to highlight is the sentiment analysis in app reviews.
We assume that it is possible to improve the classification of negative reviews by
incorporating sentiment analysis techniques. We can incorporate a polarity classification
stage (positive, negative, and neutral) of the extracted requirement, allowing a software
requirements-based sentiment analysis. In the current state of our research, we only
consider negative reviews with low ratings and associate them with the software
requirements mentioned in the review.

Finally, to use MAPP-Reviews in a real scenario, there must be already a sufficient
amount of reviews distributed over time, i.e., a minimum number of time-series
observations available for the predictive model to work properly. Therefore, in practical
terms, our method is more suitable when large volumes of app reviews are available to be
analyzed.

CONCLUSIONS

Opinion mining for app reviews can provide useful user feedback to support software
engineering activities. We introduced the temporal dynamics of requirements analysis to
predict initial trends on defective requirements from users’ opinions before negatively
impacting the overall app’s evaluation. We presented the MAPP-Reviews (Monitoring
App Reviews) approach to (1) extract and cluster software requirements, (2) generate time
series with the time dynamics of requirements, (3) identify requirements with higher
trends of negative evaluation.

The experimental results show that our method is able to find significant points in the
time series that provide information about the future behavior of a requirement through
app reviews, thereby allowing software engineers to anticipate the identification of
requirements that may affect the app’s evaluation. In addition, we show that it’s beneficial
to incorporate changepoints into the predictive model by using domain knowledge, i.e.,
defining points over time with significant impacts on the app’s evaluation.

We compared the MAPP-Reviews in two scenarios: first using automatic changepoint
detection and second specifying the changepoint locations. In particular, the automatic
detection of points of change had better MAPE results in most evaluations. On the other
hand, the best predictions at the time series peaks (where there is a greater interest in
identifying potential defective requirements trends) were obtained by specifying
changepoints.

Future work directions involve evaluating MAPP-Reviews in other scenarios to
incorporate and compare several other types of domain knowledge into the predictive
model, such as new app releases, marketing campaigns, server failures, competing apps,
among other information that may impact the evaluation of apps. Another direction for

Alves de Lima et al. (2022), Peerd Comput. Sci., DOl 10.7717/peetrj-cs.874 21/26

http://dx.doi.org/10.7717/peerj-cs.874
https://peerj.com/computer-science/

PeerJ Computer Science

future work is to implement a dashboard tool for monitoring app reviews, thus allowing
the dispatching of alerts and reports.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This study was supported by the Brazilian National Council for Scientific and
Technological Development (CNPq) [process number 426663/2018-7], the Federal
University of Mato Grosso do Sul (UFMS), the Sao Paulo Research Foundation (FAPESP)
[process number 2019/25010-5 and 2019/07665-4], BIRDIE.AI (Project CEIA/UFG-
PEIA-2105.0011), and the Brazilian Company of Research and Industrial Innovation
(EMBRAPII). The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

Brazilian National Council for Scientific and Technological Development (CNPq):
426663/2018-7.

Federal University of Mato Grosso do Sul (UFMS), Sédo Paulo Research Foundation
(FAPESP): 2019/25010-5 and 2019/07665-4.

BIRDIE.AI: CEIA/UFG-PEIA-2105.0011.

Brazilian Company of Research and Industrial Innovation (EMBRAPII).

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

e Vitor Mesaque Alves de Lima conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures and/
or tables, authored or reviewed drafts of the paper, and approved the final draft.

e Adailton Ferreira de Aradjo conceived and designed the experiments, analyzed the data,
performed the computation work, authored or reviewed drafts of the paper, and
approved the final draft.

e Ricardo Marcondes Marcacini performed the computation work, authored or reviewed
drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:
The data and codes are available at GitHub: https://github.com/vitormesaque/mapp-

reviews.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.874#supplemental-information.

Alves de Lima et al. (2022), Peerd Comput. Sci., DOl 10.7717/peetrj-cs.874 22/26

https://github.com/vitormesaque/mapp-reviews
https://github.com/vitormesaque/mapp-reviews
http://dx.doi.org/10.7717/peerj-cs.874#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.874#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.874
https://peerj.com/computer-science/

PeerJ Computer Science

REFERENCES

Al-Subaihin AA, Sarro F, Black S, Capra L, Harman M, Jia Y, Zhang Y. 2016. Clustering mobile
apps based on mined textual features. In: Proceedings of the 10th ACM/IEEE International
Symposium on Empirical Software Engineering and Measurement. 1-10.

AlSubaihin A, Sarro F, Black S, Capra L, Harman M. 2019. App store effects on software
engineering practices. IEEE Transactions on Software Engineering 47(2):300-319
DOI 10.1109/TSE.2019.2891715.

April A, Abran A. 2012. Software maintenance management: evaluation and continuous
improvement. Vol. 67. Hoboken: John Wiley & Sons.

Araujo A, Golo M, Viana B, Sanches F, Romero R, Marcacini R. 2020. From bag-of-words to
pre-trained neural language models: improving automatic classification of app reviews for
requirements engineering. In: Anais do XVII Encontro Nacional de Inteligéncia Artificial e
Computacional. Porto Alegre: SBC, 378-389.

Araujo A, Marcacini RM. 2021. Re-bert: automatic extraction of software requirements from app
reviews using Bert language model. In: The 36th ACM/SIGAPP Symposium On Applied
Computing. New York: Association for Computing Machinery.

Bennett KH, Rajlich VT. 2000. Software maintenance and evolution: a roadmap. In: Proceedings of
the Conference on The Future of Software Engineering. ICSE '00. Limerick: Association for
Computing Machinery, 73-87.

Blei DM, Ng AY, Jordan MI. 2003. Latent Dirichlet allocation. Journal of Machine Learning
Research 3:993-1022.

Bojanowski P, Grave E, Joulin A, Mikolov T. 2017. Enriching word vectors with subword
information. DOI 10.1162/tacl_a_00051.

Chatfield C, Xing H. 2019. The analysis of time series: an introduction with R. Boca Raton: CRC
Press.

Chen N, Lin J, Hoi SC, Xiao X, Zhang B. 2014. Ar-miner: mining informative reviews for
developers from mobile app marketplace. In: Proceedings of the 36th International Conference on
Software Engineering. New York: Association for Computing Machinery, 767-778.

Chen M, Liu X. 2011. Predicting popularity of online distributed applications: Itunes app store case
analysis. DOI 10.1145/1940761.1940859.

Ciurumelea A, Schaufelbiihl A, Panichella S, Gall HC. 2017. Analyzing reviews and code of
mobile apps for better release planning. In: 2017 IEEE 24th International Conference on Software
Analysis, Evolution and Reengineering (SANER). Piscataway: IEEE, 91-102.

Dabrowski J, Letier E, Perini A, Susi A. 2020. Mining user opinions to support requirement
engineering: an empirical study. In: Dustdar S, Yu E, Salinesi C, Rieu D, Pant V, eds. Advanced
Information Systems Engineering. Cham: Springer International Publishing, 401-416.

Devlin J, Chang M, Lee K, Toutanova K. 2018. BERT: pre-training of deep bidirectional
transformers for language understanding. Available at https://arxiv.org/abs/1810.04805.

Di Sorbo A, Panichella S, Alexandru CV, Shimagaki J, Visaggio CA, Canfora G, Gall HC. 2016.
What would users change in my app? Summarizing app reviews for recommending software
changes. In: Proceedings of the 2016 24th ACM SIGSOFT International Symposium on
Foundations of Software Engineering, FSE 2016. New York: Association for Computing
Machinery, 499-510.

Dragoni M, Federici M, Rexha A. 2019. An unsupervised aspect extraction strategy for
monitoring real-time reviews stream. Information Processing Management 56(3):1103-1118
DOI 10.1016/j.ipm.2018.04.010.

Alves de Lima et al. (2022), Peerd Comput. Sci., DOl 10.7717/peetrj-cs.874 23/26

http://dx.doi.org/10.1109/TSE.2019.2891715
http://dx.doi.org/10.1162/tacl_a_00051
http://dx.doi.org/10.1145/1940761.1940859
https://arxiv.org/abs/1810.04805
http://dx.doi.org/10.1016/j.ipm.2018.04.010
http://dx.doi.org/10.7717/peerj-cs.874
https://peerj.com/computer-science/

PeerJ Computer Science

Galvis Carreiio LV, Winbladh K. 2013. Analysis of user comments: an approach for software
requirements evolution. DOI 10.1109/ICSE.2013.6606604.

Gao C, Zeng J, Lyu MR, King I. 2018. Online app review analysis for identifying emerging issues.
DOI 10.1145/3180155.3180218.

Gao C, Zeng J, Wen Z, Lo D, Xia X, King I, Lyu MR. 2020. Emerging app issue identification via
online joint sentiment-topic tracing. Available at https://arxiv.org/abs/2008.09976.

Gao C, Zheng W, Deng Y, Lo D, Zeng J, Lyu MR, King I. 2019. Emerging app issue identification
from user feedback: experience on Wechat. In: 2019 IEEE/ACM 41st International Conference on
Software Engineering: Software Engineering in Practice (ICSE-SEIP). Piscataway: IEEE, 279-288.

Gu X, Kim S. 2015. What parts of your apps are loved by users? In: 2015 30th IEEE/ACM
International Conference on Automated Software Engineering (ASE). Piscataway: IEEE, 760-770.

Guzman E, Alkadhi R, Seyff N. 2016. A needle in a haystack: what do twitter users say about
software? In: 2016 IEEE 24th International Requirements Engineering Conference (RE).
Piscataway: IEEE, 96-105.

Guzman E, Alkadhi R, Seyff N. 2017. An exploratory study of twitter messages about software
applications. Requirements Engineering 22(3):387-412 DOI 10.1007/s00766-017-0274-x.

Guzman E, Maalej W. 2014. How do users like this feature? A fine grained sentiment analysis of
app reviews. In: 2014 IEEE 22nd International Requirements Engineering Conference (RE).
Piscataway: IEEE, 153-162.

Gomez M, Rouvoy R, Monperrus M, Seinturier L. 2015. A recommender system of buggy app
checkers for app store moderators. DOI 10.1109/MobileSoft.2015.8.

Harman M, Jia Y, Zhang Y. 2012. App store mining and analysis: MSR for app stores.
DOI 10.1109/MSR.2012.6224306.

Hastie T, Tibshirani R. 1987. Generalized additive models: some applications. Journal of the
American Statistical Association 82(398):371-386 DOI 10.1080/01621459.1987.10478440.

Hoon L, Vasa R, Schneider J-G, Mouzakis K. 2012. A preliminary analysis of vocabulary in
mobile app user reviews. DOI 10.1145/2414536.2414578.

Iacob C, Harrison R. 2013. Retrieving and analyzing mobile apps feature requests from online
reviews. DOI 10.1109/MSR.2013.6624001.

Johann T, Stanik C, Alizadeh AM, Maalej W. 2017. Safe: a simple approach for feature extraction
from app descriptions and app reviews. In: 2017 IEEE 25th International Requirements
Engineering Conference (RE). Piscataway: IEEE, 21-30.

Johanssen JO, Kleebaum A, Bruegge B, Paech B. 2019. How do practitioners capture and utilize
user feedback during continuous software engineering? In: 2019 IEEE 27th International
Requirements Engineering Conference (RE). Piscataway: IEEE, 153-164.

Khalid H, Shihab E, Nagappan M, Hassan AE. 2015. What do mobile app users complain about?
IEEE Software 32(3):70-77 DOI 10.1109/MS.2014.50.

Licorish SA, Savarimuthu BTR, Keertipati S. 2017. Attributes that predict which features to fix:
Lessons for app store mining. DOI 10.1145/3084226.3084246.

Lientz BP, Swanson EB. 1980. Software maintenance management. Boston: Addison-Wesley
Longman Publishing.

Liu B. 2012. Sentiment analysis and opinion mining. Synthesis Lectures on Human Language
Technologies 5(1):1-167 DOI 10.2200/S00416ED1V01Y201204HLTO016.

Maalej W, Nabil H. 2015. Bug report, feature request, or simply praise? On automatically
classifying app reviews. In: 2015 IEEE 23rd International Requirements Engineering Conference
(RE). Piscataway: IEEE, 116-125.

Alves de Lima et al. (2022), Peerd Comput. Sci., DOl 10.7717/peetrj-cs.874 24/26

http://dx.doi.org/10.1109/ICSE.2013.6606604
http://dx.doi.org/10.1145/3180155.3180218
https://arxiv.org/abs/2008.09976
http://dx.doi.org/10.1007/s00766-017-0274-x
http://dx.doi.org/10.1109/MobileSoft.2015.8
http://dx.doi.org/10.1109/MSR.2012.6224306
http://dx.doi.org/10.1080/01621459.1987.10478440
http://dx.doi.org/10.1145/2414536.2414578
http://dx.doi.org/10.1109/MSR.2013.6624001
http://dx.doi.org/10.1109/MS.2014.50
http://dx.doi.org/10.1145/3084226.3084246
http://dx.doi.org/10.2200/S00416ED1V01Y201204HLT016
http://dx.doi.org/10.7717/peerj-cs.874
https://peerj.com/computer-science/

PeerJ Computer Science

MacQueen J. 1967. Some methods for classification and analysis of multivariate observations. In:
Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability. 1:
Oakland: University of California Press, 281-297.

Makridakis S. 1993. Accuracy measures: theoretical and practical concerns. International Journal
of Forecasting 9(4):527-529 DOI 10.1016/0169-2070(93)90079-3.

Malik H, Shakshuki EM, Yoo W-S. 2020. Comparing mobile apps by identifying ‘hot’ features.
Future Generation Computer Systems 107:659-669 DOI 10.1016/j.future.2018.02.008.

Martin W, Sarro F, Jia Y, Zhang Y, Harman M. 2016. A survey of app store analysis for software
engineering. IEEE Transactions on Software Engineering 43(9):817-847
DOI 10.1109/TSE.2016.2630689.

Mcilroy S, Ali N, Hassan AE. 2016. Fresh apps: an empirical study of frequently-updated mobile
apps in the google play store. Empirical Software Engineering 21(3):1346-1370
DOI 10.1007/s10664-015-9388-2.

Mcilroy S, Ali N, Khalid H, Hassan AE. 2016. Analyzing and automatically labelling the types of
user issues that are raised in mobile app reviews. Empirical Software Engineering 21(3):1067-
1106 DOI 10.1007/s10664-015-9375-7.

Mikolov T, Chen K, Corrado G, Dean J. 2013. Efficient estimation of word representations in
vector space. Available at http://arxiv.org/abs/1301.3781.

Nayebi M, Adams B, Ruhe G. 2016. Release practices for mobile apps—what do users and
developers think? In: 2016 IEEE 23rd International Conference on Software Analysis, Evolution,
and Reengineering (SANER). Suita, Osaka, Japan, 1:Piscataway: IEEE, 552-562.

Nayebi M, Cho H, Ruhe G. 2018. App store mining is not enough for app improvement. Empirical
Software Engineering 23(5):2764-2794 DOI 10.1007/s10664-018-9601-1.

Nayebi M, Kuznetsov K, Chen P, Zeller A, Ruhe G. 2018. Anatomy of functionality deletion: an
exploratory study on mobile apps. In: Proceedings of the 15th International Conference on
Mining Software Repositories, MSR °18. New York: Association for Computing Machinery, 243-
253.

Nayebi M, Marbouti M, Quapp R, Maurer F, Ruhe G. 2017. Crowdsourced exploration of mobile
app features: a case study of the fort McMurray wildfire. In: 2017 IEEE/ACM 39th International
Conference on Software Engineering: Software Engineering in Society Track (ICSE-SEIS).
Piscataway: IEEE, 57-66.

Noei E, Zhang F, Zou Y. 2021. Too many user-reviews! What should app developers look at first?
IEEE Transactions on Software Engineering 47(2):367-378 DOI 10.1109/TSE.2019.2893171.
Pagano D, Maalej W. 2013. User feedback in the appstore: an empirical study. In: 2013 21st IEEE

International Requirements Engineering Conference (RE). Piscataway: IEEE, 125-134.

Palomba F, Linares-Vasquez M, Bavota G, Oliveto R, Di Penta M, Poshyvanyk D, De Lucia A.
2015. User reviews matter! Tracking crowdsourced reviews to support evolution of successful
apps. In: 2015 IEEE International Conference on Software Maintenance and Evolution (ICSME).
Piscataway: IEEE, 291-300.

Palomba F, Linares-Vasquez M, Bavota G, Oliveto R, Penta MD, Poshyvanyk D, Lucia AD.
2018. Crowdsourcing user reviews to support the evolution of mobile apps. Journal of Systems
and Software 137(10):143-162 DOI 10.1016/j.jss.2017.11.043.

Panichella S, Di Sorbo A, Guzman E, Visaggio CA, Canfora G, Gall HC. 2015. How can i
improve my app? Classifying user reviews for software maintenance and evolution. In: 2015
IEEE International Conference on Software Maintenance and Evolution (ICSME). Piscataway:
IEEE, 281-290.

Alves de Lima et al. (2022), Peerd Comput. Sci., DOl 10.7717/peetrj-cs.874 25/26

http://dx.doi.org/10.1016/0169-2070(93)90079-3
http://dx.doi.org/10.1016/j.future.2018.02.008
http://dx.doi.org/10.1109/TSE.2016.2630689
http://dx.doi.org/10.1007/s10664-015-9388-2
http://dx.doi.org/10.1007/s10664-015-9375-7
http://arxiv.org/abs/1301.3781
http://dx.doi.org/10.1007/s10664-018-9601-1
http://dx.doi.org/10.1109/TSE.2019.2893171
http://dx.doi.org/10.1016/j.jss.2017.11.043
http://dx.doi.org/10.7717/peerj-cs.874
https://peerj.com/computer-science/

PeerJ Computer Science

Panichella S, Di Sorbo A, Guzman E, Visaggio CA, Canfora G, Gall HC. 2016. Ardoc: app
reviews development oriented classifier. In: Proceedings of the 2016 24th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, FSE 2016. New York:
Association for Computing Machinery, 1023-1027.

Pennington J, Socher R, Manning C. 2014. GloVe: global vectors for word representation. In:
Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
(EMNLP). Doha: Association for Computational Linguistics.

Phong MV, Nguyen TT, Pham HV, Nguyen TT. 2015. Mining user opinions in mobile app
reviews: a keyword-based approach (T). In: 2015 30th IEEE/ACM International Conference on
Automated Software Engineering (ASE). Piscataway: IEEE, 749-759.

Reimers N, Gurevych I. 2019. Sentence-bert: sentence embeddings using Siamese bert-networks.
In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and
the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP).
Stroudsburg: Association for Computational Linguistics, 3973-3983.

Rousseeuw PJ. 1987. Silhouettes: a graphical aid to the interpretation and validation of cluster
analysis. Journal of Computational and Applied Mathematics 20:53-65
DOI 10.1016/0377-0427(87)90125-7.

Saaty T. 1980. The analytic hierarchy process: planning, priority setting, resource allocation:
advanced book program. New York: McGraw-Hill International Book Company.

Sarro F, Al-Subaihin AA, Harman M, Jia Y, Martin W, Zhang Y. 2015. Feature lifecycles as they
spread, migrate, remain, and die in app stores. In: 2015 IEEE 23rd International Requirements
Engineering Conference (RE). Piscataway: IEEE, 76-85.

Taylor SJ, Letham B. 2018. Forecasting at scale. The American Statistician 72(1):37-45
DOI 10.1080/00031305.2017.1380080.

Tudor D, Walter G. 2006. Using an agile approach in a large, traditional organization. In: Agile
Development Conference (AGILE06). Piscataway: IEEE, 7-373.

Vasa R, Hoon L, Mouzakis K, Noguchi A. 2012. A preliminary analysis of mobile app user
reviews. In: Proceedings of the 24th Australian Computer-Human Interaction Conference. OzCHI
’12. Melbourne: Association for Computing Machinery, 241-244.

Vendramin L, Campello RJ, Hruschka ER. 2010. Relative clustering validity criteria: a
comparative overview. Statistical Analysis and Data Mining 3(4):209-235
DOI 10.1002/sam.10080.

Villarroel L, Bavota G, Russo B, Oliveto R, Di Penta M. 2016. Release planning of mobile apps
based on user reviews. In: 2016 IEEE/ACM 38th International Conference on Software
Engineering (ICSE). New York: Association for Computing Machinery, 14-24.

Vu PM, Pham HV, Nguyen TT, Nguyen TT. 2016. Phrase-based extraction of user opinions in
mobile app reviews. In: 2016 31st IEEE/ACM International Conference on Automated Software
Engineering (ASE). New York: Association for Computing Machinery, 726-731.

Williams G, Tushev M, Ebrahimi F, Mahmoud A. 2020. Modeling user concerns in sharing
economy: the case of food delivery apps. Automated Software Engineering 27(3-4):229-263
DOI 10.1007/s10515-020-00274-7.

Zhang Y, Lin Z. 2018. Predicting the helpfulness of online product reviews: a multilingual
approach. Electronic Commerce Research and Applications 27(2):1-10
DOI 10.1016/j.elerap.2017.10.008.

Zhao L, Alhoshan W, Ferrari A, Letsholo KJ, Ajagbe MA, Chioasca E-V, Batista-Navarro RT.
2020. Natural language processing (nlp) for requirements engineering: a systematic mapping
study. Available at https://arxiv.org/abs/2004.01099.

Alves de Lima et al. (2022), Peerd Comput. Sci., DOl 10.7717/peetrj-cs.874 26/26

http://dx.doi.org/10.1016/0377-0427(87)90125-7
http://dx.doi.org/10.1080/00031305.2017.1380080
http://dx.doi.org/10.1002/sam.10080
http://dx.doi.org/10.1007/s10515-020-00274-7
http://dx.doi.org/10.1016/j.elerap.2017.10.008
https://arxiv.org/abs/2004.01099
http://dx.doi.org/10.7717/peerj-cs.874
https://peerj.com/computer-science/

	Temporal dynamics of requirements engineering from mobile app reviews
	Introduction
	Background and related work
	The mapp-reviews method
	Results
	Discussion
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

