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ABSTRACT
Background. Ultrasound imaging has been recognized as a powerful tool in clinical
diagnosis. Nonetheless, the presence of speckle noise degrades the signal-to-noise of
ultrasound images. Various denoising algorithms cannot fully reduce speckle noise and
retain image features well for ultrasound imaging. The application of deep learning in
ultrasound image denoising has attracted more and more attention in recent years.
Methods. In the article, we propose a generative adversarial networkwith residual dense
connectivity and weighted joint loss (GAN-RW) to avoid the limitations of traditional
image denoising algorithms and surpass the most advanced performance of ultrasound
image denoising. The denoising network is based on U-Net architecture which includes
four encoder and four decoder modules. Each of the encoder and decoder modules
is replaced with residual dense connectivity and BN to remove speckle noise. The
discriminator network applies a series of convolutional layers to identify differences
between the translated images and the desired modality. In the training processes, we
introduce a joint loss function consisting of a weighted sum of the L1 loss function,
binary cross-entropy with a logit loss function and perceptual loss function.
Results. We split the experiments into two parts. First, experiments were performed on
Berkeley segmentation (BSD68) datasets corrupted by a simulated speckle. Compared
with the eight existing denoising algorithms, the GAN-RW achieved the most advanced
despeckling performance in terms of the peak signal-to-noise ratio (PSNR), structural
similarity (SSIM), and subjective visual effect. When the noise level was 15, the average
value of the GAN-RW increased by approximately 3.58% and 1.23% for PSNR and
SSIM, respectively. When the noise level was 25, the average value of the GAN-RW
increased by approximately 3.08% and 1.84% for PSNR and SSIM, respectively. When
the noise level was 50, the average value of the GAN-RW increased by approximately
1.32% and 1.98% for PSNR and SSIM, respectively. Secondly, experiments were
performed on the ultrasound images of lymph nodes, the foetal head, and the brachial
plexus. The proposed method shows higher subjective visual effect when verifying on
the ultrasound images. In the end, through statistical analysis, the GAN-RW achieved
the highest mean rank in the Friedman test.

Subjects Bioinformatics, Artificial Intelligence, Computer Vision
Keywords Deep learning, Ultrasound image denoising, Generative adversarial network

How to cite this article Zhang L, Zhang J. 2022. Ultrasound image denoising using generative adversarial networks with residual dense
connectivity and weighted joint loss. PeerJ Comput. Sci. 8:e873 http://doi.org/10.7717/peerj-cs.873

https://peerj.com/computer-science
mailto:jhzhang@ynu.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.873
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.873


INTRODUCTION
Ultrasound has been widely used in clinical diagnosis. Compared with CT and MRI, it
has the advantages of cost-effectiveness and non-ionizing radiation. However, due to
the coherent nature, speckle noise is inherent in ultrasound images (Singh, Mukundan
& Ryke, 2017). The speckle noise is the primary cause of low contrast resolution and the
signal-to-noise ratio. It makes image processing and analysis more challenging, such as
image classification and segmentation. Therefore, eliminating speckle noise is of great
significance for improving the ultrasound images signal-to-noise ratio and diagnosing
disease accurately.

There are various traditional methods for image denoising, which include frequency
domain, time-domain and joint time-domain/frequency-domain methods. Among the
traditional methods, the most widely used denoising method is based on wavelets (Jaiswal,
Upadhyay & Somkuwar, 2014; Srivastava, Anderson & Freed, 2016; Gupta, Chauhan &
Sexana, 2004). Shih, Liao & Lu (2003) proposed an iterated two-band filtering method
to solve the selective image smoothing problem. Yue et al., (2006) introduced a novel
nonlinear multiscale wavelet diffusion for speckle noise removal and edge enhancement,
which proved that this method is better than wavelet-transform alone in removing speckle
noise. Among the above methods, speckle noise is transformed into additive noise and
removed. Because speckle noise is not purely multiplicative noise, the selection of wavelets
is based on experience, which creates artefacts. Traditional methods based on the spatial
domain include the Kuan filter (Kuan et al., 1987), speckle reducing anisotropic diffusion
filter (Yu & Acton, 2002) and Frost filter (Frost et al., 1982). These methods mainly use
local pixel comparison. The nonlocal means (NLM) method was proposed which is based
on a nonlocal averaging of all pixels in the image (Buades, Coll & Morel, 2005). However,
the NLM filter cannot preserve the fine details and edge features in the image. Dabov et
al. (2007) proposed a block-matching and 3D transform-domain collaborative filtering
(BM3D) method, which reduced the computing time and effectively suppressed noise by
grouping 3D data arrays of similar 2D image fragments. However, the disadvantage of
these methods is that they cannot maintain a balance between noise suppression and image
detail preservation.

The development of deep learning provides a perfectly feasible solution for image
denoising. Zhang et al. (2017) introduced feed-forward denoising convolutional neural
network (DnCNN), where residual learning (He et al., 2016) was adopted to separate
noise from noisy image and batch normalization (BN) (Salimans & Kingma, 2016) was
integrated to speed up the training process and boost the denoising performance. Using the
small medical image datasets, Jifara et al. (2019) designed a denoising convolutional neural
network with residual learning and BN for medical image denoising (DnCNN-Enhanced).
More specifically, they used residual learning by multiplying a very small constant and
added it to better approximate the residual to improve performance. Tian, Xu & Zuo
(2020) proposed a novel algorithm called a batch-renormalization denoising network
(BRDNet) for image denoising. This network combines two networks to expand the width
to capture more feature information. Meanwhile, BRDNet adopted BN to address small
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mini-batch problems and dilated convolution to enlarge the receptive field to extract more
feature information. In addition to feed-forward denoising algorithm, there are some
algorithms based on the encoder–decoder network. The U-Net is the most widely used
encoder–decoder networkwhich used the segmentation of biomedical images (Ronneberger,
Fischer & Brox, 2015). These are various algorithms based on U-Net for image processing,
such as U-Net++ (Zhou et al., 2019), residual-dilated-attention-gate network (RDAU-Net)
(Zhuang et al., 2019), Wasserstein GAN algorithm (RDA-UNET-GAN) (Negi et al., 2020),
Attention Gate-Dense Network-Improved Dilation Convolution-U-Net (ADID-UNET)
(Raj et al., 2021), VGG-UNet (Fawakherji et al., 2019), Ens4B-UNet (Abedalla et al., 2021)
and so on. Park, Yu & Jeong (2019) designed a densely connected hierarchical image
denoising network (DHDN) for removing additive white Gaussian noise of natural images.
Based on the U-Net, it applied the hierarchical architecture of the encoder–decoder module
with dense connectivity and residual learning to solve the vanishing-gradient problem.
Guo et al. (2019) suggested training a convolutional blind denoising network (CBDNet)
using noisy-clean image pairs and realistic noise model. To further provide an interactive
strategy to conveniently correct the denoising results, the noise estimation subnetwork
with asymmetric learning was embedded in CBDNet to suppress the underestimation
of the noise level. Couturier, Perrot & Salomon (2018) applied the deep encoder–decoder
network (EDNet) to address additive white Gaussian and multiplicative speckle noises.
The encoder module used to extract features and remove the noise, whereas the decoder
module recovered a clean image. To yield a performance improvement, there are some
methods using generative adversarial network (GAN) in the training phase. Lsaiari et al.
(2019) performed image denoising using generative adversarial network (GAN). Yang et
al. (2018) introduced a new CT image denoising method based on GAN with Wasserstein
distance and perceptual similarity. Dong et al. (2020) developed a custom GAN to denoise
optical coherence tomography. Lee et al. (2020) proposed a model consisting of multiple
U-Nets (MuNet) for three-dimensional neural image denoising. It consisted of multiple
U-Nets and using GAN in the training phase. These methods perform well in removing
Gaussian noise, but they cannot accurately suppress speckle noise. Wang, Zhang & Patel
(2017) proposed a set of convolutional layers along with a componentwise division residual
layer and a rectified linear unit (ReLU) activation function and BN to remove speckle noise.
However, such a method cannot deal with the speckle noise of ultrasound images well.

In this thesis, we proposed a generative adversarial network with residual dense
connectivity and weighted joint loss (GAN-RW) to overcome the limitations of traditional
image denoisingmethods and surpass the most advanced performance of ultrasound image
denoising. The proposed network consists of a denoising network and a discriminator
network. The denoising network is based on U-Net architecture which includes four
encoder and four decoder modules. Each block of the encoder and decoder is replaced with
residual dense connectivity and BN to remove speckle noise. The discriminator network
applies a series of convolutional layers to identify differences between the translated images
and the desired modality. In the training processes, we introduced a joint loss function
consisting of a weighted sum of the L1 loss, the perceptual loss function and the binary
cross-entropy with logit loss (BCEWithLogitsLoss) function. Experiments on natural
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images and ultrasound images illustrate that the proposed algorithm surpasses the deep
learning-based algorithms and conventional denoising algorithms.

The rest of the paper is organized as follows: Section 2 provides the proposed method
and implementation details. Extensive experiments are conducted to evaluate our proposed
methods in Section 3. We discuss these results in Section 4 and conclude in Section 5.

MATERIALS & METHODS
An overview of the proposed network framework for ultrasound image denoising is shown
in Fig. 1. In this section, the network architecture is introduced in detail.

Speckle noise model
Due to speckle noise, ultrasound image processing is a very challenging task. Speckle noise
is an interferencemode generated by the coherent accumulation of random scattering in the
ultrasonic beam resolution element, so it has the characteristics of asymmetrical intensity
distribution and significant spatial correlation (Slabaugh et al., 2006). This characteristic
has an adverse effect on the image quality and interpretability. Because these characteristics
are difficult to model, many methods of ultrasound image processing only assume that
speckle noise is Gaussian noise, resulting in these speckle noise models are more suitable
for X-ray and MRI image than ultrasound image. The gamma distribution (Sarti et al.,
2005) and Fisher-Tippett distribution (Michailovich & Adam, 2003) have been proposed to
approximate speckle noise. Slabaugh et al. (2006) argued that Fisher-Tippett distribution
was suitable for fully formed speckle noise in the ultrasound image. In this article, the
speckle noise model of the ultrasound image is given as:

v
(
x,y

)
= u

(
x,y

)
+u

(
x,y

)r
θ(x,y) (1)

where v(x, y) is the pixel location of the speckle noise image, u(x, y) is the pixel location
of the noise-free ultrasound image, θ(x, y) is additive white Gaussian noise (AWGN) with
zero-mean and variance σ 2, and r is associated with ultrasonic equipment. A large number
of studies have shown that r = 0.5 is the best value that can be used to simulate speckle
noise in ultrasonic images (Yu et al., 2018; Lan & Zhang, 2020).

Denoising network
The architecture of denoising network is shown in Fig. 2A. The denoising network
is based on U-Net, which consists of a contracting path and an expanding path. The
expanding function of the decoder module is to gradually restore the spatial and boundary
information. The contracting function of the encoder module is to gradually reduce
the spatial dimensions and capture high-level feature information (Zhang et al., 2020).
Nevertheless, these successive convolutions and pooling layers cause the loss of spatial
information. Additionally, the problem of vanishing gradient is a key point that hinders
the networks from training as the networks deepen. Some densely connected methods
capture more information and avoid the appearance of vanishing-gradient problem
(Huang et al., 2017; Zhang et al., 2018; Park, Yu & Jeong, 2019). Inspired by these methods,
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Figure 1 Architecture of the proposed network. The denoising network is tasked with translating input
images to the target domain through encoder–decoder networks. The discriminator is trained to distin-
guish between standard and denoising images. The pre-trained VGG-19 is used to acquire more features
as perceptual loss.

Full-size DOI: 10.7717/peerjcs.873/fig-1

we applied two residual dense connectivity blocks (RDCBs) to each module of the encoder
and decoder modules. The architecture of RDCBs is shown in Fig. 2B. The RDCBs is
composed of three convolutional layers followed by BN and ReLU. Each module applies
the previous feature map through dense connectivity. We adopt dense connectivity and
local residual learning to improve the information flow so that the proposed algorithm can
avoid the vanishing gradient problem and accurately remove speckle noise. Meanwhile,
RDCBs can capture more features to improve denoising performances.

The network architecture of the encoder module is shown in Fig. 2C. The encoder
module is composed of two RDCBs, a downsampling module and a convolution module.
The downsampling module is a 2×2 max-pooling layer. The convolutional module is a
1×1 convolution layer followed by BN and ReLU. The feature map is fed into two RDCBs
to preserve more feature information and avoid vanishing gradient. Subsequently, the
feature map is fed into 2×2 max-pooling layers decreasing the size of feature map. Finally,
the feature map is fed into a 1×1 convolution layer followed by BN and ReLU. The size of
the output feature maps of the encoder module is half the size of the input feature maps.

The architecture of the decoder module is shown in Fig. 2D. It is the inverse process of
the encoder module. It consists of three modules: two RDCBs, a 1×1 convolution layer
followed by BN and ReLU and a subpixel interpolation layer. We use a 1×1 convolution
layer to refine the feature maps. Compared with the 2×2 deconvolution layer, subpixel
interpolation can expand the feature maps size more accurately and efficiently. Therefore,
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Figure 2 Architecture of the denoising network. (A) Architecture of the denoising network. H×W×C specify the output dimensions of each
component (C = 1, 128, 256, 512, 1024). (B) Architecture of the RDCBs. (C) The architecture of the encoder module. (D) The architecture of the
decoder module. Conv denotes a 3×3 convolution layer.

Full-size DOI: 10.7717/peerjcs.873/fig-2

the size of the output feature map of the upsampling block is twice the size of the input
feature map, and the number of channels of the input feature map is one second.

Discriminator
The discriminator is trained to distinguish the difference between the denoising image and
the standard image, where the denoising attempts to fool the discriminator. It uses a set of
convolutional layers to build a discriminative network. It consists of an input convolutional
layer and nine convolutional layers followed by BN and ReLU. The output channels of
consecutive convolutional layers are 64, 128, 256, 512 and 1. Therefore, when the input
image is passed through each convolution block, the spatial dimension is decreased by a
factor of two. The architecture of the discriminator network framework for ultrasound
image denoising is shown in Fig. 3.

Loss function
Traditionally, learning-based image restoration uses the per-pixel loss between the restored
image and ground truth as the optimization target, and excellent quantitative scores can
be obtained. Nevertheless, in recent studies, relying only on low-level pixels to minimize
pixelwise errors has proven that it can lead to the loss of details and smooth the results
(Johnson, Alahi & Li, 2016). In this paper, we use a weighted sum of the loss function.
It consists of the denoising loss, the perceptual loss of the feature extractor and the
discriminator loss.

The denoising network loss is the L1 loss function, which minimizes the pixelwise
differences between the standard image and the denoising image. The L1 loss is used and
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Figure 3 The architecture of the discriminator network.
Full-size DOI: 10.7717/peerjcs.873/fig-3

calculated as follows:

L1=
n∑

i=1

|x−y| (2)

where x is the denoising image and y is the corresponding ground truth.
Recent studies have shown that the target image and the output image have similar

feature representations, not just every low-level pixel that matches them Johnson, Alahi
& Li (2016). The critical point is that the pretrained convolutional neural model used for
image semantic segmentation or classification has learned to encode image features, and
these features can be directly used for perceptual loss.

To preserve image details more effectively in removing noise, we use perceptual loss as
one of the loss functions, which is calculated by:

Lper =
∥∥θ (ytrue)−θ (yout )∥∥22 (3)

where θ represents the feature extraction operator of the pretrained network. The
convolution neural network pre-trained for image classification which has already learned
to capture features. These features can be used as perceptual loss. In our proposed method,
we adopt the output before the first pooling layer from the pretrained VGG-19 network
to extract features as perceptual loss (Gong et al., 2018). To the discriminator network, we
use BCEWithLogitsLoss to discern the output image quality from the denoising network
and the standard image. Then, we obtain the weighted joint loss function, which consists
of L1 loss(L1), perceptual loss (Lper) and BCEWithLogitsLoss (LBCE). λ1, λ2, λ3 are scalar
weights for Lloss.

Lloss= λ1L1+λ2Lper+λ3LBCE . (4)

λ1= 1, λ2= 0.1, λ3= 1.
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Training and testing details
To train our network, we use the Berkeley segmentation dataset (BSD400) composed of
400 images of size 180× 180 for training (Martin et al., 2001; Zhang et al., 2017; Chen &
Pock, 2016). Then, according to Eq. (1), speckle noise is added to the datasets and the noisy
images are generated. For training data that have three noise levels, we train the model
for speckle denoising with noise levels σ =15, 25 and 50 independently. We set the patch
sizes to 40×40 to train our model. To avoid overfitting, we apply data augmentation by
randomly rotating and flipping. The initial learning rate is set to 1e−4 and halved every
2000 epochs. We use Adam optimizer and a batch size of 32 during training.

For the test images, we adopt Berkeley segmentation (BSD68) (Martin et al., 2001; Roth
& Black, 2009) datasets for grey synthetic noisy images, which include 68 natural images,
321×481 or 481×321 in size. To further verify the practicality of the proposed GAN-RW
method, we also illustrate the results of our method as well as eight existing denoising
methods for ultrasound images from the Kaggle Challenge (Rebetez, 2016), the Grand
Challenge (Thomas et al., 2018) and lymph node datasets (Zhang, Wang & Shi, 2009). We
applied PyTorch (version 1.7.0) as the framework to implement our network. Training
takes place on a workstation equipped with an NVIDIA 2080Ti graphic card with 11 GB of
memory.

There is a phenomenon that deep learning-based networks with the same training data
and seed points will get different results. Therefore, we repeated each training three times
with the same parameters and seeds, and then used the results of three experiments on test
datasets to obtain the mean value and standard deviation.

Evaluation metrics
In order to test the performance of the proposed method, the peak signal-to-noise ratio
(PSNR) (Chan &Whiteman, 1983) and the structural similarity (SSIM) (Wang et al., 2004)
are used to verify quantitative metrics. Meanwhile, the denoising results are used to show
the visual quality of denoising images. If the denoising method has higher the PSNR and
SSIM results on the test datasets, the denoising network shows better performance. In
addition, to clarify the visual effect on the denoised images, we zoom in on the area of the
denoising image for display. If the magnified area is clearer, it shows that the denoising
method is more effective than others.

RESULTS
To demonstrate the superiority of our proposedmethod in despeckling effect, we compared
our proposed network with deep learning-based methods and traditional denoising
algorithms. Themethods for these comparisons were as follows: BM3D (Dabov et al., 2007),
DnCNN (Zhang et al., 2017), DnCNN_Enhanced (Jifara et al., 2019), BRDNet (Tian, Xu
& Zuo, 2020), DHDN (Park, Yu & Jeong, 2019), CBDNet (Guo et al., 2019), MuNet (Lee
et al., 2020) and EDNet (Couturier, Perrot & Salomon, 2018). Two performance metrics
are used, namely, PSNR and SSIM, which are expressed in terms of average value and
standard deviation. Statistical analysis was performed with SPSS statistics software (version
26.0; IBM Inc., Armonk, NY, USA). All deep-learning based methods were trained three
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Table 1 The mean and standard deviation of the PSNR (dB) and SSIM values of different methods for denoising BSD68 gray images. The best
result is highlighted with bold.

Method BSD68

σ = 15 σ = 25 σ = 50

PSNR SSIM PSNR SSIM PSNR SSIM

Noisy 32.06 0.8377 27.71 0.6984 21.86 0.4599
BM3D 33.30± 0.2178 0.9045± 0.0045 30.62± 0.1747 0.8512± 0.0055 27.43± 0.1737 0.7683± 0.0049
DnCNN 33.86± 0.0043 0.9332± 0.0001 30.98± 0.0091 0.8862± 0.0002 27.24± 0.0124 0.7907± 0.0005
DnCNN- Enhanced 33.87± 0.0036 0.9332± 0.0004 31.00± 0.0057 0.8862± 0.0006 27.22± 0.0066 0.7907± 0.0007
BRDNet 33.79± 0.0202 0.9319± 0.0006 30.95± 0.0283 0.8843± 0.0015 27.20± 0.0140 0.7888± 0.0018
DHDN 35.18± 0.0203 0.9393± 0.0003 32.03± 0.0388 0.8938± 0.0013 27.62± 0.0374 0.8035± 0.0009
CBDNet 33.83± 0.0206 0.9334± 0.0004 31.01± 0.0145 0.8875± 0.0006 27.24± 0.0161 0.7926± 0.0015
MuNet 34.67± 0.1099 0.9296± 0.0024 31.51± 0.0956 0.8780± 0.0022 27.53± 0.1049 0.7929± 0.0035
EDNet 34.07± 0.3938 0.9277± 0.0039 31.42± 0.1916 0.8799± 0.0049 27.53± 0.0261 0.7993± 0.0022
GAN-RW-WD 35.13± 0.0334 0.9389± 0.0003 31.98± 0.0378 0.8919± 0.0009 27.63± 0.0537 0.8015± 0.0028
GAN_RW 35.28± 0.0193 0.9404± 0.0004 32.15± 0.0243 0.8969± 0.0010 27.74± 0.0151 0.8064± 0.0003

times and BM3D used three different parameters to obtain the average value and standard
deviation. Experiments were performed on the BSD68 and ultrasound images.

The BSD68
Table 1 shows the mean, standard deviation of the proposed methods and the compared
methods for the BSD68 test datasets. In Table 1, the best result is highlighted in bold. When
the noise level was 15, the average PSNR and SSIM of our proposed method improved by
1.21dB and 0.0113, which were better than those of the compared method. The average
performance of the GAN-RW increased by approximately 3.58% and 1.23% for PSNR
and SSIM, respectively. When the noise level was 25, the average PSNR and SSIM of this
method improved by 0.96dB and 0.0160, and increased by approximately 3.08% and 1.84%
for PSNR and SSIM, respectively. When the noise level was 50, the average PSNR and SSIM
of this method improved by 0.36dB and 0.0156 and increased by approximately 1.32%
and 1.98% for PSNR and SSIM, respectively. As shown in Table 1, the proposed method is
superior to the traditional methods for three noise levels.

To compare subjective performance, we compared the denoising images for different
methods. Figures 4, 5 and 6 show the grey scale denoising image of the proposed methods
and the compared method at different noise levels. To easily observe the performance of
GAN-RW and other methods, we zoomed in on an area from denoising images obtained
using the compared methods. In Fig. 4, the proposed method accurately restored the
pattern, while the comparedmethods achieved blurred denoising image. As shown in Fig. 5,
the compared methods failed to exactly restore the windows or achieved blurred denoising
image. However, the proposed method restored the windows accurately. Similarly, unlike
the compared methods, the details of the zebra stripes could not be restored. The proposed
method restored the details in Fig. 6. As shown in these images under different noise levels,
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Figure 4 Speckle denoising results of the compared methods and the proposed method on noise level σ =15.
Full-size DOI: 10.7717/peerjcs.873/fig-4

Figure 5 Speckle denoising results of the compared methods and the proposed method on noise level σ =25.
Full-size DOI: 10.7717/peerjcs.873/fig-5
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Figure 6 Speckle denoising results of the compared methods and the proposed method on noise level σ =50.
Full-size DOI: 10.7717/peerjcs.873/fig-6

the traditional methods produced blurred results and could not restore the details of the
patterns, while the proposed method accurately restored the patterns.

Ultrasound images
We used the ultrasound images of lymph nodes, the foetal head and the brachial plexus
with a noise level of 25 to verify the practicality of the proposed GAN-RW. To observe the
performance of GAN-RW and other eight existing algorithms, we marked the fine details
with red box in the figure. Figure 7 shows the despeckling images of different methods
on the lymph node ultrasound image. Compared methods either failed to removed noise
effectively or produced blurry and artifact results. Obviously, the results showed that the
proposed method effectively removed speckle noise while better retaining image details
and improving the subjective visual effect.

In addition, other foetal ultrasound images were applied to visually compare the
despeckling performance of all evaluated methods. In Fig. 8, it is easy to observe that our
proposed algorithm produced a smoother outline and retained the image details better
than the other methods.
In the end, we compare the different methods on the brachial plexus ultrasound images.

In Fig. 9, the proposed GAN-RW can smoother background regions and preserve image
hierarchy structure information better than the other methods.

Ablation study
To justify the effectiveness of the RDCBs, we conducted the following experiments on
BSD68. In a section of denoising network, RDCBs is composed of three convolutional
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Figure 7 Speckle denoising results of the compared methods and the proposed method on the real ultrasound images of Lymph nodes.
Full-size DOI: 10.7717/peerjcs.873/fig-7

Figure 8 Speckle denoising results of the compared methods and the proposed method on the real ultrasound images of foetal head.
Full-size DOI: 10.7717/peerjcs.873/fig-8

layers followed by BN and ReLU and each module applied the previous feature map
through dense connectivity. We used two successive convolutional layers followed by
BN and ReLU without dense connectivity (GAN-RW-WD) to replace two RDCBs. The
experimental results compared with GAN-RW are shown in Table 1. When the noise level
was 15, RDCBs can enhance the average PSNR by approximately 0.44% and the average
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Figure 9 Speckle denoising results of the compared methods and the proposed method on the real ultrasound images of Brachia Plexus.
Full-size DOI: 10.7717/peerjcs.873/fig-9

SSIM by approximately 0.16% for the BSD68, respectively. When the noise level was 25,
RDCBs can enhance the average PSNR by approximately 0.53% and the average SSIM by
approximately 0.57% for the BSD68, respectively. When the noise level was 50, RDCBs can
enhance the average PSNR by approximately 0.37% and the average SSIM by approximately
0.61% for the BSD68, respectively.

Statistical analysis
Statistical analysis is necessary to verify the superiority of the proposed method. Due to
the PSNR and SSIM values were not Gaussian distribution, we used the nonparametric
Friedman test (Friedman, 1937) to assess the performance of different denoising algorithms.
The mean rank and p-Value of PSNR and SSIM of all algorithms are shown in Table 2.
Usually, a p-value of less than 0.05 is deemed the significant difference. The mean rank
presents the performance of different algorithms, and the higher value of mean rank
has the better performance. It can be seen from Table 2 that GAN-RW has a significant
improvement over other algorithm.

DISCUSSION
In this paper, we proposed a generative adversarial network for ultrasound image
despeckling. The GAN-RW is based on U-Net with residual dense connectivity, BN
and a joint loss function to remove speckle noise. We used natural images and ultrasound
images to verify our method.

For the BSD68 test datasets, when the noise level was 15, our method achieved 35.28dB
and 0.9404 for PSNR and SSIM. Compared with the original noise image, the average
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Table 2 The mean rank (Friedman test) of the PSNR (dB) and SSIM values of the different methods for denoising BSD68 gray images.

Methods σ = 15 σ = 25 σ = 50

PSNR SSIM PSNR SSIM PSNR SSIM

Mean
Rank

p-Value Mean
Rank

p-Value Mean
Rank

p-Value Mean
Rank

p-Value Mean
Rank

p-Value Mean
Rank

p-Value

BM3D 1.90 1.47 2.12 1.69 4.96 2.39
DnCNN 4.32 5.16 3.56 4.98 3.91 4.26
DnCNN-
Enhanced

4.34 5.32 4.03 5.21 3.10 4.00

BRDNet 2.13 0.000 3.26 0.000 2.29 0.000 3.25 0.000 2.21 0.000 2.77 0.000
DHDN 7.97 7.65 7.81 7.37 7.46 7.09
CBDNet 3.75 6.07 4.26 6.38 4.22 5.53
MuNet 6.51 3.51 6.13 2.96 5.60 4.66
EDNet 5.18 3.87 6.07 4.63 6.06 5.99
GAN-RW 8.90 8.67 8.72 8.53 7.49 8.31

values of the GAN-RW increased by approximately 10.05% and 12.26% for PSNR and
SSIM, respectively. When the noise level was 25, our method achieved 32.15dB and 0.8969
for PSNR and SSIM, respectively. Compared with the original noise image, the average
performance of the GAN-RW increased by approximately 16.01% and 28.43% for PSNR
and SSIM.When the noise level was 50, our method achieved 27.74dB and 0.8064 for PSNR
and SSIM, respectively. Compared with the original noise image, the average performance
of the GAN-RW increased by approximately 26.88% and 75.35% for PSNR and SSIM,
respectively. In Fig. 10, boxplots show the comparison of PSNR and SSIM under different
noise levels for BSD68. In the end, we used the ultrasound images of lymph nodes, the
brachial plexus and the foetal head to verify the practicality of the proposed GAN-RW.
In contrast, GAN-RW can effectively eliminate speckle noise while retaining image details
better and improving the visual effect.

CONCLUSIONS
In conclusion, we developed and verified a new ultrasound image despeckling method.
GAN-RW is based on U-Net and uses residual dense connectivity, BN and joint loss
functions to remove speckle noise. Compared with BM3D, DnCNN, DnCNN-Enhanced,
BRDNet, DHDN, CBDNet, MuNet, EDNet and GAN-RW achieves better despeckling
performance on three fixed noise levels of BSD68. We also effectively verified the proposed
method on ultrasound images of lymph nodes, the brachial plexus and the foetal head.
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Figure 10 Boxplots of average PSNR (dB) and SSIM results of compared methods and proposed
method for BSD68.
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