
Efficient UAV-based mobile edge
computing using differential evolution and
ant colony optimization
Mohamed H. Mousa1,2,* and Mohamed K. Hussein2,*

1Department of Information Technology, College of Computer Science at AlKamil, University of
Jeddah, Jeddah, Saudi Arabia

2Department of Computer Science, Faculty of Computers and Informatics, Suez Canal University,
Ismailia, Egypt

* These authors contributed equally to this work.

ABSTRACT
Internet of Things (IoT) tasks are offloaded to servers located at the edge network for
improving the power consumption of IoT devices and the execution times of tasks.
However, deploying edge servers could be difficult or even impossible in hostile
terrain or emergency areas where the network is down. Therefore, edge servers are
mounted on unmanned aerial vehicles (UAVs) to support task offloading in such
scenarios. However, the challenge is that the UAV has limited energy, and IoT tasks
are delay-sensitive. In this paper, a UAV-based offloading strategy is proposed where
first, the IoT devices are dynamically clustered considering the limited energy of
UAVs, and task delays, and second, the UAV hovers over each cluster head to
process the offloaded tasks. The optimization problem of dynamically determining
the optimal number of clusters, specifying the member tasks of each cluster, is
modeled as a mixed-integer, nonlinear constraint optimization. A discrete
differential evolution (DDE) algorithm with new mutation and crossover operators is
proposed for the formulated optimization problem, and compared with the particle
swarm optimization (PSO) and genetic algorithm (GA) meta-heuristics. Further,
the ant colony optimization (ACO) algorithm is employed to identify the shortest
path over the cluster heads for the UAV to traverse. The simulation results validate
the effectiveness of the proposed offloading strategy in terms of tasks delays and
UAV energy consumption.

Subjects Adaptive and Self-Organizing Systems, Artificial Intelligence, Mobile and Ubiquitous
Computing
Keywords Internet of things, Mobile edge computing, Computation offloading, Differential
evolution, Ant colony optimization, Particle swarm optimization

INTRODUCTION
Mobile edge computing (MEC) has emerged as a promising foundation for providing
quality of service (QoS) requirements for the Internet of Things (IoT) and mobile devices
to overcome the limited resource capabilities of these devices in terms of processing cycles
and energy (Hussein & Mousa, 2020). MEC is an edge network of servers supported by
a backend layer of cloud computing located near the IoT and mobile devices network.
Offloading computational tasks of the IoT and mobile devices to the edge servers improves
execution delay and power consumption of devices by taking advantage of low bandwidth

How to cite this article MHM, Hussein MK. 2022. Efficient UAV-based mobile edge computing using differential evolution and ant
colony optimization. PeerJ Comput. Sci. 8:e870 DOI 10.7717/peerj-cs.870

Submitted 11 October 2021
Accepted 10 January 2022
Published 4 February 2022

Corresponding author
Mohamed K. Hussein,
m_khamiss@ci.suez.edu.eg

Academic editor
Yilun Shang

Additional Information and
Declarations can be found on
page 21

DOI 10.7717/peerj-cs.870

Copyright
2022 Mousa and Hussein

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.870
mailto:m_khamiss@�ci.�suez.�edu.�eg
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.870
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

and high latency (Wang et al., 2017). However, there are certain locations where deploying
edge servers could be difficult or even impossible, such as hostile terrain, deserts,
mountains, underwater, wilderness areas, and disaster areas where the network is down
(Mohamed et al., 2017; Cheng et al., 2018).

Unmanned aerial vehicles (UAVs) have significantly advanced in both technological
aspects and cost aspects and have shown prominent success in distinct applications,
including military, traffic control, farming and wilderness monitoring applications
(Bejaoui, Park & Alouini, 2020). This outstanding success is motivated by the agility,
mobility, and cost-effective deployment of UAVs (Zhang et al., 2019). UAVs can be
employed in MEC architecture in two distinct ways: (1) UAV-assisted communication
MEC architectures, and (2) UAV-based computation offloading MEC architecture. In the
former approach, UAVs serve as relays for distant ground base stations, allowing fast,
flexible, and cost-effective network coverage for IoT devices (Wang et al., 2019; Fu et al.,
2020). In the latter approach, an edge server is mounted on a UAV for processing offloaded
computation tasks of ground mobile devices. This integration of a UAV with an MEC
network and the short distance line-of-sight (LoS) wireless communication between the
UAV and wireless devices improves the QoS requirements of mobile applications in terms
of delay sensitivity as well as the energy consumption of the wireless devices (Mao et al.,
2017; Zhou et al., 2020). However, UAVs suffer from limited energy and computation
capacity constraints, which affect the delay of offloaded tasks. These constraints represent a
major challenge that needs to be addressed in UAV-based computation offloading MEC
architectures.

In this paper, an intelligent, UAV-based, computation offloading strategy is investigated
using evolutionary metaheuristics, where a single UAV-based edge server is utilized to
provide computation offloading service to ground IoT and mobile devices. The proposed
intelligent architecture aims to minimize the optimization objective of UAV energy and
task delays. Two key challenges need to be addressed: (1) the deployment of the UAV, and
(2) the shortest trajectory path for the UAV over the set of deployments coordinates.
The IoT devices are partitioned into clusters, and the UAV hovers over each cluster head to
process the offloaded tasks of the cluster members. A UAV shortest trajectory over the
cluster heads is optimized.

UAV energy, deployment, UAV trajectory, and task delays are key challenges in several
UAV-based, MEC architecture (Wu et al., 2019; Li et al., 2020a;Wang et al., 2021; Fu et al.,
2021). However, approaches such as greedy search and exhaustive search cannot be
applied to such optimization problems because there are many discrete and continuous
decision parameters, including number, location of deployment, the offloading decision in
each deployment, and the shortest trajectory path. Consequently, the complexity of
these approaches is extensive and the execution time is extremely high. Further, deep
learning approaches require training data, which may not be feasible in a mobile and
stochastic environment. Therefore, the optimization problem is divided into two
subproblem in order to find a near optimal solution in real-time for such nondeterministic
polynomial-time (NP)-hard problems in an acceptable complexity and time. The first
subproblem is clustering the IoT devices into groups where the UAV hovers over each

Mousa and Hussein (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.870 2/24

http://dx.doi.org/10.7717/peerj-cs.870
https://peerj.com/computer-science/

group for processing the offloaded tasks of each group members. This problem is an
NP-hard complex optimization problem, and evolutionary algorithms can be applied to
find a near optimal solution in an acceptable computation time (Hu et al., 2019, 2020;
Wu et al., 2020). Therefore, we investigate the use of evolutionary meta-heuristics,
including differential evolution (DE), particle swarm optimization (PSO), and genetic
algorithms (GAs), to obtain a near-optimal solution for the clustering problem considering
energy and time. The second subproblem is the determination of the shortest UAV
trajectory over the clusters head considering the time and energy of the UAV flying. The
contributions of this paper are presented as follows:

� The distribution of mobile devices in a specific area is non-uniform. Therefore,
partitioning and load balancing offloaded computing tasks into a set of regions severely
impacts the performance of the offloading system. Performance degradation may occur,
as some regions may become heavily loaded with requests while other regions are
lightly loaded with requests. As a result, the waiting time increases in the heavily loaded
regions, and some offloading requests could fail. In addition, the UAV energy may
be lost if a large number of clusters is set. Therefore, the UAV deployment optimization
problem is formulated as mixed-integer, nonlinear constraint optimization that is aimed
at minimizing the number of clusters while considering the energy consumption of
the UAV and the delays of the offloaded tasks.

� Two discrete differential meta-heuristics are proposed with mutation and crossover
operators, namely, discrete DE (DDE) and discrete PSO (DPSO), for the formulated
optimization problem. The proposed DDE algorithm is proposed to obtain a
near-optimal solution for the number of clusters, members of each cluster and load
balancing tasks in the determined clusters.

� The energy of the UAV is limited, and the UAV follows a determined trajectory over
different regions to process the offloaded computational tasks and to return the results.
Therefore, the UAV trajectory should be optimized to address the energy limitations
considering the communication, computation, and mechanical operations of flying and
hovering. The partitioned regions are employed as an initial population for an ant
colony optimization (ACO) algorithm to obtain a near-optimal solution for minimizing
the UAV trajectory.

� Several extensive experiments are performed with the proposed strategy. The
evaluations show that the proposed offloading system is effectively capable of
significantly improving the task delay and energy consumption compared with a
discrete particle swarm optimization (DPSO) and the genetic algorithm (GA).

The remainder of the paper is organized as follows: “Related Work” introduces the
related work of UAV-assisted, mobile edge environments. “UAV-Based Offloading System
Model and Problem Formulation” presents a system model and a formulation of the
optimization problem, while “Proposed Meta-Heuristics” outlines the proposed
optimization using DDE, DPSO, and ACO. In “Experimental Results”, the experimental
results of the proposed strategy are presented and evaluated, followed by a summary and

Mousa and Hussein (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.870 3/24

http://dx.doi.org/10.7717/peerj-cs.870
https://peerj.com/computer-science/

conclusion of the paper with a discussion of future research directions in “Conclusion and
Future Work”.

RELATED WORK
The MEC architecture is a successful solution for the limited computational resources in
terms of computation and energy, and thus, the performance of the offloaded tasks are
improved by taking advantage of the low latency and high bandwidth of the edge servers
(Yu, 2016; Zakaryia, Ahmed & Hussein, 2020). UAVs have the advantages of agility,
mobility and fast deployment and can provide on-demand communication and
computation services when mounted with communication equipment and MEC servers
with a LoS advantage, which will produce better transmission rates with reduced energy
consumption of the mobile devices. However, the limitation of the energy of the UAV
affects the communication and computational capacity, as well as the service time offered
to the ground mobile equipment (Nguyen et al., 2020). Therefore, different research
efforts are conducted for the key challenges based on the different configurations,
optimization objectives, and underlying constrains.

In Hu et al. (2019a), the UAV trajectory and ratio of offloading tasks are jointly
optimized with the aim of minimizing the sum of the maximum delay of all users in
different time slots, as statistically specified. In Wang et al. (2020a), the task offloading
decisions are reached based on the objective of minimizing offloading delay and energy
consumption considering bandwidth, size of the data, and power consumption. The
offloading decision for each mobile task includes offloading to the UAV or offloading to
the ground MEC through the UAV. However, the study does not consider the
optimization of UAV trajectories. In Tang et al. (2020), a partial offloading UAV-based
MEC system that is aimed at maximizing the number of offloading tasks is proposed. The
offloading problem is formulated as a mixed-integer, nonlinear programming problem and
is solved using block coordinate descent (BCD) and a convex optimization technique.
However, the mobility of the UAV is not considered in the proposed model. In Yang et al.
(2020), DE with deep reinforcement learning is selected for the deployment of multi-UAVs
with the aim of minimizing the offloaded task delays and load balancing UAVs loads.
In Li et al. (2020a), a successive complex optimization technique is utilized to jointly
optimize the UAV trajectory and computational load allocation with the aim of
minimizing UAV energy. However, the proposed system does not consider the
distribution of the mobile devices on the ground area or the time requirements of the
offloaded tasks. In Wang et al. (2020b), a two-layer optimization method is proposed to
jointly optimize multi-UAV deployment and mobile task allocation and to minimize UAV
energy consumption. The upper layer of the optimization method uses a DE algorithm that
minimizes the number of UAVs, and in the lower layer, a greedy algorithm is proposed
for identifying an optimal solution whether tasks are offloaded or processed locally. In
Chen et al. (2020), an intelligent task offloading system is proposed. The proposed system
intelligently perceives the network environment and makes offloading decisions using a
Monte Carlo tree search. Furthermore, a deep neural network is applied to optimize the
search based on the latency delay. However, the proposed offloading strategy requires

Mousa and Hussein (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.870 4/24

http://dx.doi.org/10.7717/peerj-cs.870
https://peerj.com/computer-science/

training data, a prediction model for the channel state, and time for the self-learning
process. In Hu et al. (2019b), a UAV is connected with a cellular base station as either a
relay to the base station or as a computing server for the offloaded computation tasks of the
mobile equipment. A greedy search based on nonconvex optimization is proposed with
the aim of minimizing the weighted sum energy of the UAV and the mobile devices by
jointly optimizing the computational resource scheduling, allocation of bandwidth
resources, and trajectory of the UAV. In Li et al. (2020b), an energy-efficient, UAV-based,
offloading architecture that optimizes the bit allocations in different regions of user tasks
and the trajectory of the UAV using successive approximation is proposed. However,
the proposed scheme does not address how to partition the fixed clustered slots, and
further, the time delay is not considered in the proposed scheme. In Zhan et al. (2020), a
joint optimization of computation offloading, resource allocation, and UAV trajectory is
proposed with the aim of minimizing the energy consumption of the UAV. In Guo &
Liu (2020), the UAV energy is optimized considering the transmitted bits in both the
uplink and downlink and the UAV trajectory using a greedy search based on the successive
convex approximation. In Yu et al. (2020), an alternative optimization algorithm based on
successive convex approximation (SCA) is proposed to minimize the weighted sum of
the service delay of the IoT tasks by jointly optimizing computing offloading, resource
allocation and trajectory.

In summary, approaches such as greedy search and exhaustive search cannot be applied
to such an optimization problem because there are many discrete and continuous
decision parameters, including the number, location of deployment, offloading decision in
each deployment, and shortest trajectory path. Therefore, most research uses heuristic
approaches with fixed partitions; these approaches are not scalable because their
complexity is extensive. Further, deep learning approaches, such as Lan et al. (2019),Wang
et al. (2021), requires training data which may not feasible in the mobile and stochastic
environment. Therefore, we opt to use evolutionary meta-heuristics, including DE, PSO,
and GAs, to obtain a near-optimal solution for such NP-hard problems in an acceptable
time. The proposed UAV-based offloading system determines the optimal number of
clusters and specifies the member tasks of each cluster which are permitted to offload when
the UAV hover the cluster head considering the UAV energy and task delay constraints.

UAV-BASEDOFFLOADING SYSTEMMODEL AND PROBLEM
FORMULATION
A UAV-based offloading system consists of two layers. The first layer, the ground layer, is
the IoT and mobile device layer, which has N stationary wireless devices S = {s1, s2,…, sN}
on the ground. The wireless devices offload their computations to the edge layer to
accelerate computations and to optimize energy consumption of the IoT devices. The
second layer is the flying MEC layer, which consists of a single UAV that is supported with
an edge server that offers computation offloading services for the ground layer with
minimum latency. The UAV flies at a steady altitude H > 0. The UAV has the
communication coverage radius Rc. The UAV flies according to a specified trajectory over
a set of K regions starting from a specific predetermined starting point. The UAV hovers

Mousa and Hussein (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.870 5/24

http://dx.doi.org/10.7717/peerj-cs.870
https://peerj.com/computer-science/

over each region k to process the offloaded tasks that are scheduled in this region, and the
UAV returns to the starting point by the end of the trajectory cycle.

The coordinates of each si device location in the ground layer are known in advance
and are given by si = {xi, yi}. The coordinates of the UAV position in region k are given by
uk = {xk, yk}, and the distance between the UAV and si is calculated using the Euclidean
distance:

distik ¼ ½ðxk � xiÞ2 þ ðyk � yiÞ2 þ H2�12 (1)

where device si should be in the cover radius Rc of the UAV.

distik ,Rc (2)

Device si is requesting to offload task ti ¼ ftci ; tsi ; tdatai g, where tci , tsi , and tdatai are the
required computing cycles, task delay, and data size, respectively. In the proposed
UAV-based offloading system, the set of ground devices si∀i ∈ N are partitioned into K
regions, where the UAV hovers over each region to process the offloaded tasks, and δik = 1
when mobile device si offloads its task ti to be processed when the UAV hovers over
region k. The following subsection presents the system formulation, followed by a
formulation of the objective function. The key abbreviations used in the paper are listed in
Table 1. The following subsections present the formulations for the computation, the
communication, and the power consumption model for the optimization problem.

Communication model
Assume that the UAV has a ground coverage range with a radius of Rc. Similar to Bejaoui,
Park & Alouini (2020), the time-varying channel gain between a ground IoT device si
within partition k to the UAV via orthogonal frequency division multiplex access
(OFDMA) is calculated using Eq. (3).

hik ¼ q0
dist2ik

(3)

where ρ0 is the received power at a reference distance of 1 m.

Table 1 List of abbreviations.

Abbreviation Definition

UAV Unmanned arial vehicle

IoT Internet of Things

QoS Quality of service

MEC Mobile edge computing

DE Differential evolution

DDE Discrete differential evolution

PSO Particle swarm optimization

DPSO Discrete particle swarm optimization

GA Genetic algorithm

Mousa and Hussein (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.870 6/24

http://dx.doi.org/10.7717/peerj-cs.870
https://peerj.com/computer-science/

The transmission rate between sensor i and the UAV in region k at position uk = {xk, yk}
is calculated as (He et al., 2018) using Eq. (4).

rik ¼ Blog2ð1þ
Pihik
N0

Þ (4)

where B is the bandwidth of the uplink channel, Pi is the maximum transmit power of the
wireless device si, and N0 is the channel noise.

The transmission time Ttrans
ik for offloading a task from the ith IoT device to the UAV at

region k is calculated using Eq. (5).

Ttrans
ik ¼ tdatai

rik
(5)

The total transmission time at region k with position {xk, yk} is calculated using Eq. (6).

Ttrans
k ðxk; yk; dikNi¼1Þ ¼

XN
i¼1

dikT
trans
ik (6)

where δik represents the offloading decision for task ti in region k with coordinates {xk, yk},
where δik = 1 means that the task is processed when the UAV hovers over region k.

3.2 Computation model
The computation time Tcomp

ik for processing task ti at the UAV is calculated using Eq. (7).

Tcomp
ik ¼ tci

f u
(7)

where fu is the processing capacity of the UAV.
Assume that the edge server executes the offloaded tasks in a queue ordered by first

come first served. The overall computation time in region k when the UAV hovers at
position {xk, yk} is calculated using the following equation:

Tcomp
k ðxk; yk; dikNi¼1Þ ¼

XN
i¼1

dikT
comp
ik (8)

The total time for the UAV in region k is the total offloading delay, which is calculated
as the sum of the transmission delay and computation delay using the following equation:

Tkðxk; yk; dikNi¼1Þ ¼ Ttrans
k ðxk; yk; dikNi¼1Þ þ Tcomp

k ðxk; yk; dikNi¼1Þ (9)

Energy consumption model
The energy model which is used in this study follows the energy model described in
Bejaoui, Park & Alouini (2020) for a fixed wing UAV. The UAV works under limited
charged energy capacity, and the propulsion energy consumption is much higher than
computation and communication energy (Wang et al., 2020b). The adopted model is
simple where the energy is computed using a constant coefficient that depends on the

Mousa and Hussein (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.870 7/24

http://dx.doi.org/10.7717/peerj-cs.870
https://peerj.com/computer-science/

architecture. For example, the hovering energy is calculated by multiplying a hovering
energy coefficient by the hovering time. The total UAV energy consumption is a result of
several operations, including (1) wireless communication with IoT devices to receive
offloaded tasks and to return results, (2) computation of the offloaded tasks, and (3)
propulsion energy consumption of flying and hovering. The transmission energy
consumption at region k is calculated using Eq. (10).

Etrans
k ðxk; yk; dikNi¼1Þ ¼ j1

XN
i¼1

dikt
data
i (10)

where κ1 is an energy factor for wireless communication.
The computation energy consumption in region k is calculated using Eq. (11).

Ecomp
k ðxk; yk; dikNi¼1Þ ¼ j2

XN
i¼1

dikt
c
i f

u2 (11)

where κ2 is an energy factor for computation processing.
Following the propulsion energy model of the UAV proposed in reference to the

propulsion model proposed in Wu et al. (2019), the propulsion energy consumption for
hovering in region k is calculated using Eq. (12).

Eh
kðxk; yk; dikNi¼1Þ ¼ cTkðxk; yk; dikNi¼1Þ (12)

where γ is an energy factor for hovering and Tkðxk; yk; dikNi¼1Þ is the time in which the UAV
hovers in region k to process the offloaded tasks, calculated using Eq. (9).

The propulsion energy consumption for flying to region k is calculated using Eq. (13).

Efly
k ðxk; ykÞ ¼ �

jjuk � uk�1jj2
l

(13)

where Γ is an energy factor for flying and μ is the UAV speed between the coordinates of
regions uk−1 and uk.

The total energy consumption of the UAV is the sum of the resulting transmission
energy consumption, resulting computing energy, and propulsion energy consumption for
hovering and flying. Therefore, the total energy consumption for region k is calculated
using the following equation:

Ekðxk; yk; dikNi¼1Þ ¼Etrans
k ðxk; yk; dikNi¼1Þ þ Ecomp

k ðxk; yk; dikNi¼1Þ þ Efly
k ðxk; ykÞ

þ Eh
kðxk; yk; dikNi¼1Þ (14)

UAV deployment and optimization
The aim of the study is to design an intelligent UAV-based offloading strategy where the
IoT devices are dynamically clustered considering the number of clusters K, members of
the clusters, and total energy. The cluster members can be measured using the maximum

Mousa and Hussein (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.870 8/24

http://dx.doi.org/10.7717/peerj-cs.870
https://peerj.com/computer-science/

number of members in the clusters _mðdikÞ and the sum of the distances between the
members and their cluster centers _DðdikÞ according to the following Equations:

_mðK; dikNi¼1Þ ¼ max
K

k¼1

�XN
i¼1

dik

�
(15)

_DðK; dikNi¼1Þ ¼
XK
k¼1

XN
i¼1

dikdistik (16)

The total energy E over K clusters are calculated using the following Equation:

EðK; dikNi¼1Þ ¼
XK
k¼1

Ekðxk; yk; dikNi¼1Þ (17)

The optimization problem of dynamically determining the optimal number of clusters,
specifying the member tasks of each cluster, is modeled as mixed-integer, nonlinear
constraint optimization and is formulated as follows:

Minimize : F ¼ K EðK; dikNi¼1Þ
_mðK; dikNi¼1Þ _DðK; dikNi¼1Þ

(18)

Minimize : F ¼
K

PK
k¼1

Ekðxk; yk; dikNi¼1Þ

maxKk¼1ð
PN
i¼1

dikÞ
PK
k¼1

PN
i¼1

dikdistik

(19)

Subject to the following constraints:

C1 ¼ R2
c � ðdist2ik þ H2Þ � 0; 8 i ¼ f1;…;Ng; k ¼ f1;…;Kg (20)

C2 ¼
XK
k¼1

Tkðxk; yk; dikNi¼1Þ � Tu < 0 (21)

C3 ¼
XK
k¼1

Ekðxk; yk; dikNi¼1Þ � Eu < 0 (22)

C4 ¼
XK
k¼1

dik ¼ 1 8 i ¼ f1;…;Ng (23)

C1 ensures that the determined cluster members fall within the communication radius
of the cluster. Constraint C2 states that the overall time required for the transmission
and computations over all regions is less than the maximum flaying time of the UAV, Tu.
Constraint C3 states that the overall energy required for the UAV over all regions,
including communication and computation as well as hovering, is less than the maximum
energy of the UAV, Eu. C4 states that the offloading decision of each task is allocated to

Mousa and Hussein (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.870 9/24

http://dx.doi.org/10.7717/peerj-cs.870
https://peerj.com/computer-science/

only one offloading region. To address the constraints, a penalty value is added to the
optimization function for each violated constraint using the following Equation:

_F ¼ F þ �
X
ck

C2
k (24)

where λ is a penalty value. C2
k is the value of the violated constraint k squared.

PROPOSED META-HEURISTICS
UAV energy, deployment, UAV trajectory, and task delays are key challenges in a
UAV-based MEC architecture. Obtaining the optimal solution for this problem using
greedy search and exhaustive search optimization requires very high complexity algorithm
with extremely high execution time. Also, the optimization problems involves many
discrete and continuous decision parameters, including number, location of deployment,
the offloading decision in each deployment, and the shortest trajectory path. Further, deep
learning approaches require training data, which may not be feasible in a mobile and
stochastic environment. Therefore, the optimization problem is divided into two
subproblem in order to find a near optimal solution in real-time for such complex
(NP)-hard optimization problem in an acceptable complexity and time. The first
subproblem is the clustering the IoT devices into groups where the UAV hovers over each
group for processing the offloaded tasks of each group members. In this section, we
investigate the use of evolutionary meta-heuristics, including differential evolution
(DE), particle swarm optimization (PSO), and genetic algorithms (GAs), to obtain a
near-optimal solution for the clustering problem considering energy and time. Also, the
second subproblem is the determination of the shortest UAV trajectory over the clusters
head considering the time and energy of the UAV flying. Also, in this section, we
investigate the use of the ACO optimization algorithm to identify the shorest trajectory
that satisfy the time and energy constrains. Evolutionary and nature-inspire optimization
meta-heuristics, such as DE, PSO, GA, and ACO, have the potential to obtain a
near-optimal solution in an acceptable time (Islambouli & Sharafeddine, 2019). The
following subsections describe the use of different meta-heuristics, namely DE, PSO, and
ACO, to optimize the UAV-based MEC offloading system.

DE meta-heuristic
DE is a population-based stochastic search process. DE has a few control parameters and
strong search capabilities compared to most search meta-heuristics and is able to solve
complex, nonlinear optimization functions (Deng et al., 2021). The DE simulates biological
evolution in nature using mutation, crossover, and selection operations. The process
iterates for a fixed number of iterations, and the population is continuously updated. The
process starts with initialization of the population, where Np individuals, Xi, i∈ [1 Np],
are randomly initialized. Each individual represents a possible solution to the underlying
problem. The DE mutation step generates new candidate individuals Vi to provide

Mousa and Hussein (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.870 10/24

http://dx.doi.org/10.7717/peerj-cs.870
https://peerj.com/computer-science/

diverse mutants for better exploration of the search space. The most common mutation
strategies are:

DE=rand=1 V ¼ Xr1 þ F:ðXr2 � Xr3Þ (25)

DE=best=1 V ¼ Xbest þ F:ðXr1 � Xr2Þ (26)

where r1, r2, and r3 are randomly generated integers numbers ∈ [1 Np]. F is a positive
factor to scale difference individuals. Xbest is the best individual with the best fitness value
in the population.

In the crossover operator, the target individual Xi is combined with mutant individual
Vi, which resulted from the mutation operation, to produce trial individual Ui according to
probability cr using the following Equation:

Uij ¼ Vij; if rand � cr or j ¼ jrand
Xij; otherwise

�
(27)

where jrand is a random integer from the dimension of the search space.
In the selection process, a greedy selection is applied to the trial and corresponding

individual from the previous generation. The objective function value of the trial individual
f(Ui) is compared with the objective function value of the corresponding target vector f(Xi),
and the individual with the least function value will survive to the next generation.

Xi ¼ Ui; if f ðUiÞ < f ðXiÞ
Xi; otherwise

�
(28)

Proposed DDE algorithm
The first step in the proposed algorithm is the encoding of the individual solution. Each
individual Xi is composed of N genes, representing the IoT devices. Each gene will have an
ID of the device, which will be the center of the cluster. The center of each cluster
represents the cluster head where certain IoT devices belongs to, in which the members
only offload their computation tasks once the UAV hoovers over that cluster head. For
example, X1 = {2, 2, 2, 4, 4, 4} represents an individual solution for six IoT devices, and
there are two clusters. The first cluster contains three devices 1, 2, and 3, and the
second cluster contains three devices 4, 5, and 6. Devices {2, 4} are the centers of the
clusters. This section shows that the cluster heads and their members are optimized by
applying the proposed DDE algorithm using the objective function shown in Eq. (24)
which considers the total time, energy, number of clusters, cluster members, and the
distances between the members in the clusters.

The DE algorithm is designed to solve continuous optimization problems. Therefore,
the algorithmmust be converted to output a discrete value. A discrete differential evolution
(DDE) is designed using mutation and crossover operators. Algorithm 1 shows the
detailed steps of the proposed DDE algorithm. The first step of the algorithm is the
initialization of the parameters followed by the random initialization of the population

Mousa and Hussein (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.870 11/24

http://dx.doi.org/10.7717/peerj-cs.870
https://peerj.com/computer-science/

individuals. After that, the mutation step using Eq. (25), is changed to the following
Equation:

V ¼ f3ðXbest; f2ðF � f1ðXÞ;Xr1ÞÞ (29)

where f1 represents a mutation operation on individual X with probability F. For each
gene in the individual, the random number r ∈ [0 1] is generated, and the gene is perturbed
with a random value while r < F. A single point crossover operator, f2, is applied to the
resulting perturbed individual with a random individual from the population. A uniform
crossover, f3, is applied to the result of the single point crossover with the best solution
found, Xbest. A greedy selection is applied to the crossover operators f2 and f3. The last step
involves the crossover and the greedy selection operations described using Eqs. (27) and
(28) are applied.

PSO meta-heuristic
The PSO is a stochastic, population-based, search meta-heuristic that simulates the social
behavior of a swarm of birds searching for food. Each particle, an individual bird in the
swarm, searches for food in the search space to identify the best food source based on
the particle position, particle best found solution, and swarm best found global solution
(Zakaryia, Ahmed & Hussein, 2020). Each individual particle represents a possible solution
in the search space of the problem under observation. In the iterative search process of
PSO, each individual particle Xi updates its value Xi(t + 1) by updating its corresponding
velocity Vi(t + 1) using the following Eqs. (30) and (31):

Algorithm 1 Proposed DDE algorithm.

Result: bestFitness, Xbest

Initialize N, Np, Niter, cr, and F

Random initialize Xi with random clustering IDs

Calculate the fitness of each possible solution Xi using an optimization function with penalty, Eq. (24)

Set bestFitness = min(X)

Set Xbest for the individual with the minimum fitness

for each iter in Niter do

for each Xi in Np do

Apply the mutation operation, and calculate the mutated individual Vi(t) using Eq. (29)

Apply the crossover operation, and calculate the target individual Ui(t) using Eq. (27)

Apply the greedy selection, calculate the new population Xi(t + 1) using Eq. (28)

end

Calculate the fitness of each possible solution in the new population

if bestFitness > best fitness of the new population then

update Xbest and bestFitness

end

end

Mousa and Hussein (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.870 12/24

http://dx.doi.org/10.7717/peerj-cs.870
https://peerj.com/computer-science/

Viðt þ 1Þ ¼ xViðtÞ þ C1a ðXli � XiÞ þ C2b ðXg � XiðtÞÞ (30)

Xiðt þ 1Þ ¼ XiðtÞ þ Viðt þ 1Þ (31)

where Vi and Xi are the velocity position and particle position, respectively, of individual i,
and t is the iteration number. Xli is the best position of individual Xi, and Xg is the global
best position for all individuals. ω is the inertia weight. C1 and C2 are the cognitive
coefficient and social coefficient. α and β are random numbers ∈N[0 1]. PSO is an effective
solution for optimization problems in the continuous domain, and a discrete version of the
PSO algorithm must be adopted to suit the problem under study (Zakaryia, Ahmed &
Hussein, 2020). A new Discrete PSO (DPSO) is designed and presented in the following
subsection.

DPSO algorithm
In the DPSO, each individual is updated using mutation and crossover operators similar to
the method used in DDE. The same encoding described in the DDE algorithm is
employed. The particle position is updated using mutation, and a crossover operator is
proposed using the following Equation:

Xi ¼ C2 � f3ðC1 � f2ðx� f1ðXiÞ;XliÞ;XgÞ (32)

where ω4f1(Xi) represents a mutation operation applied on individual Xi with probability
w. f2 is a single point crossover operator, and f3 is a uniform crossover operator. C1 and C2

serve as probabilities for the single point and uniform crossover operators.
Algorithm 2 shows the steps of the proposed DPSO algorithm. The algorithm starts by

initializing the parameters, including the number of devices N, population size Np, number
of iterations Niter, and mutation and crossover probabilities ω, C1, and C2. The second
step involves initializing the particles with random numbers. In the third step, an
evaluation of the population with the objective function is performed using Eq. (24). Steps
5, 6, the local best of each particle and the global best of all particles, are updated.
Steps 7–14 are iterated for Niter iterations. In each iteration, each particle is updated with
mutation and crossover operators using Eq. (32), and a greedy selection is applied to
the new individuals. The fitness of each particle in the new population is updated. The local
best and global best are updated.

UAV shortest trajectory using ACO
The solution of the proposed DDE algorithm identifies a set of clusters with their
members. The following algorithm optimizes the shortest path among the cluster centers
for the UAV to traverse using ACO. Compared to the classical algorithms of path
planning, the ACO has the capability to deal with complex, dynamically changing
environments, and several research studies have shown that ACO can obtain a near
optimal path solution for the shortest path problem in an acceptable computational time
for small and large-scale networks (Ouyang et al., 2021). Also, the ACO meta-heuristic
has the advantage that it can escape the local optima and finding the global optima (Puris,
Bello & Herrera, 2010).

Mousa and Hussein (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.870 13/24

http://dx.doi.org/10.7717/peerj-cs.870
https://peerj.com/computer-science/

ACO is a meta-heuristic search algorithm that is based on the behavior of a group
of ants in the process of searching for food. The behavior of the group optimizes an
objective through a feedback strategy that ants use to identify the optimal path between the
colony and the food source. Ants start leaving the colony and select random path searching
of food sources. Ants communicate with each other by releasing a chemical, referred to
as a pheromone, with a quantity proportional to the quantity and quality of the discovered
food. This pheromone is considered an evaluation for the optimization objective.
Eventually, all ants discover the shortest path by following the path corresponding to the
highest pheromone concentration. The ACO meta-heuristic is an efficient search
algorithm for NP-hard problems, including traveling salesman, job shop scheduling, and
scheduling in mobile edge computing (Hussein, Mousa & Alqarni, 2019).

Given the set of points K that represent the cluster head locations. The goal is to identify
the shortest path among the points for the UAV to traverse for hovering to process the
offloaded tasks. The length of the path from the first cluster head to the last cluster head is
considered because the flying time and the flying energy are completely dependent on
the length of the trajectory path of the UAV. The following two conditions must be
satisfied on the the determined UAV trajectory path:

C1 ¼ T þ Tfly � Tu (33)

C2 ¼ E þ Efly � Eu (34)

where C1 ensures that the total time including communication, computation, and flying,
Tfly, is less than the total flying time of the UAV Tu. Also, constraint C2 states that the
overall energy including computation, communication, hovering and flying is less than the

Algorithm 2 Proposed DPSO algorithm.

Result: bestFitness, Xbest

Initialize N, Np, Niter, ω, C1 and C2

Randomly initialize Xi and Vi with random clustering IDs

Calculate the fitness of each possible solution Xi using an optimization function with penalty, Eq. (24)

Update the best position Xli for each individual

Update the global position Xg for all individuals

Set Xg = min(Xl)

for each iter in Niter do

for each Xi in Np do

Apply mutation and crossover operations using Eq. (32)

end

Calculate the fitness of each possible solution in the new population

Update Xli for each individual

Update Xg = min(Xl)

end

Mousa and Hussein (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.870 14/24

http://dx.doi.org/10.7717/peerj-cs.870
https://peerj.com/computer-science/

maximum energy of the UAV, Eu. T
fly and Efly are calculated using the following two

Equations:

Tfly ¼

PK�1

i¼1;j¼iþ1
jjui � ujjj2

l
(35)

Efly ¼ � Tfly (36)

where Γ and μ are the flying energy factor and the UAV speed between the clusters head,
and ui is the position of the cluster head i.

Initially, all ants are randomly placed on cluster heads. The algorithm iterates for a fixed
number of iterations Niter. During each iteration, each ant m selects the next cluster head j
from cluster i with probability Pm

ij ðtÞ, calculated using Eq. (37).

Pk
ijðtÞ ¼

ðsijðtÞÞaðgijðtÞÞbP
j
ðsijðtÞÞaðgijðtÞÞb

(37)

where t is an iteration number, and α is a heuristic variable that controls the effect of the
pheromone quantity and β is a heuristic parameter that specifies the quality of the
node selection. ηij(t) is a heuristic function that represents the quality of the next node
selection; it is calculated using Eq. (38).

gijðtÞ ¼
Q

dði; jÞ (38)

where Q is a constant and d(i, j) is the Euclidean distance between the points i and j. smij ðtÞ
represents the pheromone trail quantity for the selected path for an ant m in iteration t,
calculated using Eq. (39).

smij ðt þ 1Þ ¼ ð1� qÞsmij ðtÞ þ qDsmij ðtÞ (39)

where Dsmij ðtÞ ¼ 1=Lm and ρ is a constant that represents the rate of pheromone
evaporation at each step. Lm is the length of the trajectory path determined by ant m.

Once all ants have completed their path finding, i.e., a complete iteration has been
performed, the pheromone trail is updated globally. The global pheromone update is
calculated using Eq. (40).

smij ðt þ 1Þ ¼ ð1� qgÞsmij ðtÞ þ qgDs
m
ij ðtÞ (40)

where Dsmij ðtÞ ¼ 1=Lbest , Lbest is the best shortest path discovered, and ρg is the global
evaporation rate.

Algorithm 3 shows the steps of the proposed ACO-based UAV shortest path among a
set of cluster heads. The proposed algorithm starts by initializing the parameter settings α
and β; the local pheromone concentration Q; the local pheromone decay parameter ρ;
the global pheromone decay parameter ρg; the number of ants Nants; the number of
iterationsNiter; and the number of cluster heads pointsNk. Step 2 initializes the pheromone
matrix smij ð0Þ ¼ 1=dði; jÞ for each ant m. During each iteration, for each ant, antm

Mousa and Hussein (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.870 15/24

http://dx.doi.org/10.7717/peerj-cs.870
https://peerj.com/computer-science/

searches for a complete path journey. All ants are randomly placed on initial points.
The selection of the next point j is calculated with probability Pm

ij ðtÞ using Eq. (37).
The selection of the next point is performed using the roulette wheel selection method
(Holland, 1992). When an ant finishes a complete journey, the local pheromone trail
matrix is updated using Eq. (39). After each iteration, the ACO-based algorithm updates
the global pheromone trail matrix smij ðtÞ using Eq. (40). The algorithm iterates until the
maximum number of iterations is reached.

EXPERIMENTAL RESULTS
This section provides the simulation results that verify the performance of the proposed
UAV-based offloading systems using the proposed meta-heuristics. The IoT devices are
randomly deployed in a 200 m × 200 m area with the simulation parameters that are
established according to the values described in Table 2. Different possible values of the
meta-heuristics parameters are tested in the experiments, and the best value that obtained
the best results are reported. However, there are many methods for tuning
hyperparameters of the meta-heuristics, including grid search, artificial neural network,

Algorithm 3 The ACO-based UAV trajectory planning algorithm.

Result: Shortest path for the UAV to traverse.

Initialize the parameters α, β, Q, ρ, ρg, Nants, Niter, and Nk

Create an initial population of ants

Initialize the pheromone matrix smij ð0Þ ¼ 1=dði; jÞ
While iter ≤ Niter do

Randomly place all ants at the starting nodes

for each antm do

while antm has not finished its journey do

for each j in Nk ∉ Journeym do

//ADD node j to the current journey of the antm solution

Calculate gmij ðtÞ using Eq. (38)

Calculate Pm
ij ðtÞ using Eq. (37)

antm chooses the cluster head j using the roulette method

end

end

Update smij ðt þ 1Þ using Eq. (39)

end

Compare all ant solutions with the previous best solution and update the best solution Journeybest

if the current solution is the best then

Update smij ðt þ 1Þ using Eq. (40)

end

end

Mousa and Hussein (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.870 16/24

http://dx.doi.org/10.7717/peerj-cs.870
https://peerj.com/computer-science/

and bayesian optimization across continuous spaces which can be considered in our future
works. The proposed DDE algorithm has two parameters F and Cr, and Fig. 1 shows the
impact of the different values of the DDE algorithm parameters on the value of the
objective function. The figure shows that the best values that maintain lowest objective
function value are F = 0.9 and CR = 0.2. The GA has a crossover value set to 1 and a
mutation probability set to 0.05. The DPSO parameters are set to w = 0.2, c1 = 0.9, and c2 =
0.9. The maximum number of iterations is set to 500. The collected results are based on
applying 10 different runs, and the average is calculated.

To evaluate the convergence of the proposed meta-heuristics in terms of clustering
efficiency, Fig. 2 shows the value of the objective function of the DDE, DPSO, and GA

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

O
bj

ec
tiv

e
fu

nc
ti

on

F Cr

Figure 1 The value of the objective function for different values of the DDE algorithm parameters.
Full-size DOI: 10.7717/peerj-cs.870/fig-1

Table 2 Parameter settings for the evaluation experiments.

Parameter Description Value

B Bandwidth 40 MHz

hi Channel gain −30 dB

N0 Noise power 10−9 W

κ1 UAV energy communication coefficient 10−18

κ2 UAV energy computation coefficient 10−26

c UAV energy hoovering coefficient 10−10 W

Γ UAV energy flying coefficient 10−8 W

Pik Maximum transmission power 0.4 W

m Maximum flying speed of the UAV 20 m/s

H Flying altitude of the UAV 50 m

tdata Task data size 200 KB−3 MB

tc Required task computing cycles 6 × 109−9 × 1010

fu CPU-cycle frequency of the UAV 300 MHz

Eu Battery storage capacity of the UAV 5 × 105J

Mousa and Hussein (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.870 17/24

http://dx.doi.org/10.7717/peerj-cs.870/fig-1
http://dx.doi.org/10.7717/peerj-cs.870
https://peerj.com/computer-science/

meta-heuristics during the iterations of a single run. The DDE algorithm is capable of
achieving the best convergence compared to DPSO and the GA within the fewer number of
iterations. Also, the DPSO with with the mutation and crossover operators can achieve
better performance than the GA algorithm.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

1 51 101 151 201 251 301 351 401 451 501

O
bj

ec
tiv

e
fu

nc
tio

n

Iterations

GA DPSO DDE

Figure 2 The value of the objective function using the proposed meta-heuristics during the
iterations. Full-size DOI: 10.7717/peerj-cs.870/fig-2

0 20 40 60 80 100 120 140 160 180 200

X-axis

-50

0

50

100

150

200

250

Y
-A

xi
s

Figure 3 Example of the clustering process using the DDE algorithm for 30 IoT devices.
Full-size DOI: 10.7717/peerj-cs.870/fig-3

Mousa and Hussein (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.870 18/24

http://dx.doi.org/10.7717/peerj-cs.870/fig-2
http://dx.doi.org/10.7717/peerj-cs.870/fig-3
http://dx.doi.org/10.7717/peerj-cs.870
https://peerj.com/computer-science/

Figure 3 shows the clusters resulting from the DDE algorithm for 50 IoT devices. The
algorithm successfully produced 30 clusters and their members fall within the
communication radius of the cluster heads. Further, the shortest path for the UAV is
efficiently produced using the ACO algorithm. To evaluate the clustering process in terms
of the number of clusters, Fig. 4 shows the resulting average number of clusters using the
proposed meta-heuristics for different runs as increasing the number of IoT devices. The
proposed DDE algorithm maintains the lowest number clusters. The DDE algorithm is
able to obtain the global optimum compared to the PSO and GA algorithms, and thus, a
better clustering is maintained using the DDE algorithm.

For the evaluation in terms of time delay, Fig. 5 shows the resulting delay during the
iterations of the algorithms. The figure assures that the DDE algorithm is capable of
identifying the lowest time delay faster than the DPSO and GA algorithms, which

0

20

40

60

80

100

120

140

25 50 75 100 125 150 175 200

N
o.

 o
f

cl
us

te
rs

No. of IoT devices

GA DDE DPSO

Figure 4 Average number of clusters obtained using the proposed meta-heuristics as increasing the
IoT devices. Full-size DOI: 10.7717/peerj-cs.870/fig-4

75

75.5

76

76.5

77

77.5

78

78.5

1 51 101 151 201 251 301 351 401 451 501

D
el

ay
 (

s)

Iterations

GA DPSO DDE

Figure 5 Optimization of the time delay using the DDE, PSO, and GA algorithms.
Full-size DOI: 10.7717/peerj-cs.870/fig-5

Mousa and Hussein (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.870 19/24

http://dx.doi.org/10.7717/peerj-cs.870/fig-4
http://dx.doi.org/10.7717/peerj-cs.870/fig-5
http://dx.doi.org/10.7717/peerj-cs.870
https://peerj.com/computer-science/

effectively reduces the time delay. Further, Fig. 6 presents the average total time delay with
an increasing number of IoT devices. This figure shows that the proposed strategy
outperforms the comparison algorithm and successfully decreases the delay with an
increasing number of offloaded tasks.

In terms of energy, Fig. 7 shows the energy achieved during the iterations of a single run.
The proposed meta-heuristics are capable of reducing the energy while the DDE algorithm
maintains the lowest energy consumption. Further, Fig. 8 shows the average of the
UAV energy as increasing the number of the IoT devices. This figure shows that as the
number of IoT devices increases, the corresponding energy consumption increases.
This increase is attributed to increasing the transmission and processing times, and
consequently, the hovering time will increase. The DDE algorithm outperforms the PSO
and GA algorithms and saves energy.

8,750

8,800

8,850

8,900

8,950

9,000

9,050

9,100

1 51 101 151 201 251 301 351 401 451 501

E
ne

rg
y

(J
)

Iterations

GA DPSO DDE

Figure 7 Optimization of the UAV energy using the DDE, PSO, and GA algorithms.
Full-size DOI: 10.7717/peerj-cs.870/fig-7

0

100

200

300

400

500

600

25 50 75 100 125 150 175 20200

D
el

ay
 (

s)
D

el
ay

 (
s)

IoTIoT devicesdevices

GA DPSODPSO DDE

Figure 6 Average time delay obtained using the proposed meta-heuristics as increasing the IoT
devices. Full-size DOI: 10.7717/peerj-cs.870/fig-6

Mousa and Hussein (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.870 20/24

http://dx.doi.org/10.7717/peerj-cs.870/fig-7
http://dx.doi.org/10.7717/peerj-cs.870/fig-6
http://dx.doi.org/10.7717/peerj-cs.870
https://peerj.com/computer-science/

CONCLUSION AND FUTURE WORK
This paper proposed a UAV-based offloading system that is aimed at minimizing the delay
and the UAV energy consumption. Two different subproblems for the proposed system
are investigated. The first subproblem is the clustering of the IoT devices, where the
proposed offloading system partitions the ground devices into clusters, and the UAV
hovers over each cluster head to process the offloaded tasks for the cluster members. The
second problem is the shortest path for the UAV to traverse the cluster heads. For the
first sub-problem, two different discrete meta-heuristic are proposed for the clustering
process, namely, DDE and DPSO. The proposed meta-heuristics are compared with the
GA. For the second subproblem, ACO is employed to identify the shortest path among
the cluster heads. The experimental results show the effectiveness of the proposed
offloading system using DDE and ACO in terms of delay, energy, the number of resulting
clusters, and optimized trajectory of the UAV. Future work will consider the mobility of
ground devices. We will investigate UAV-based, offloading MEC with multi-cooperative
UAVs to study the effect of using multi-cooperative UAVs on the scope of the problem and
the performance of the proposed strategy algorithm. Another interesting point for the
future work is to test the proposed offloading strategy on real-time tasks where the tasks
execution time must meet a specified delay tolerance in the optimization, and to do a
complete analysis on different type of tasks, including compute-bound, network-bound,
and real-time.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was funded by the University of Jeddah, Saudi Arabia, under grant No. (UJ-20-
102-DR). The funders had no role in study design, data collection and analysis, decision to
publish, or preparation of the manuscript.

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

25 50 75 100 125 150 175 200

E
ne

rg
y

(J
)

IoT devices

GA DPSO DDE

Figure 8 Average energy achieved using the proposed meta-heuristics as increasing the IoT devices.
Full-size DOI: 10.7717/peerj-cs.870/fig-8

Mousa and Hussein (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.870 21/24

http://dx.doi.org/10.7717/peerj-cs.870/fig-8
http://dx.doi.org/10.7717/peerj-cs.870
https://peerj.com/computer-science/

Grant Disclosures
The following grant information was disclosed by the authors:
University of Jeddah, Saudi Arabia: UJ-20-102-DR.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Mohamed H. Mousa conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures and/
or tables, authored or reviewed drafts of the paper, and approved the final draft.

� Mohamed K. Hussein conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures and/
or tables, authored or reviewed drafts of the paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The code is available at GitHub: https://github.com/mkhamiss/PeerJ.git.

REFERENCES
Bejaoui A, Park K, Alouini M. 2020. A QoS-oriented trajectory optimization in swarming

unmanned-aerial-vehicles communications. IEEE Wireless Communications Letters 9(6):1
DOI 10.1109/LWC.2020.2970052.

Chen J, Chen S, Luo S, Wang Q, Cao B, Li X. 2020. An intelligent task offloading algorithm
(ITOA) for UAV edge computing network.Digital Communications and Networks 6(4):433–443
DOI 10.1016/j.dcan.2020.04.008.

Cheng N, XuW, ShiW, Zhou Y, Lu N, Zhou H, Shen X. 2018. Air-ground integrated mobile edge
networks: architecture, challenges, and opportunities. IEEE Communications Magazine
56(8):26–32 DOI 10.1109/MCOM.2018.1701092.

Deng W, Shang S, Cai X, Zhao H, Song Y, Xu J. 2021. An improved differential evolution
algorithm and its application in optimization problem. Soft Computing 25(7):5277–5298
DOI 10.1007/s00500-020-05527-x.

Fu S, Tang Y, Wu Y, Zhang N, Gu H, Chen C, Liu M. 2021. Energy-efficient UAV-enabled data
collection via wireless charging: a reinforcement learning approach. IEEE Internet of Things
Journal 8(12):10209–10219 DOI 10.1109/JIOT.2021.3051370.

Fu S, Tang Y, Zhang N, Zhao L, Wu S, Jian X. 2020. Joint unmanned aerial vehicle (UAV)
deployment and power control for internet of things networks. IEEE Transactions on Vehicular
Technology 69(4):4367–4378 DOI 10.1109/TVT.2020.2975031.

Guo H, Liu J. 2020. UAV-enhanced intelligent offloading for internet of things at the edge. IEEE
Transactions on Industrial Informatics 16(4):2737–2746 DOI 10.1109/TII.2019.2954944.

He H, Zhang S, Zeng Y, Zhang R. 2018. Joint altitude and beamwidth optimization for UAV-
enabled multiuser communications. IEEE Communications Letters 22(2):344–347
DOI 10.1109/LCOMM.2017.2772254.

Holland JH. 1992. Adaptation in natural and artificial systems: an introductory analysis with
applications to biology, control and artificial intelligence. Cambridge, MA, USA: MIT Press.

Mousa and Hussein (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.870 22/24

https://github.com/mkhamiss/PeerJ.git
http://dx.doi.org/10.1109/LWC.2020.2970052
http://dx.doi.org/10.1016/j.dcan.2020.04.008
http://dx.doi.org/10.1109/MCOM.2018.1701092
http://dx.doi.org/10.1007/s00500-020-05527-x
http://dx.doi.org/10.1109/JIOT.2021.3051370
http://dx.doi.org/10.1109/TVT.2020.2975031
http://dx.doi.org/10.1109/TII.2019.2954944
http://dx.doi.org/10.1109/LCOMM.2017.2772254
http://dx.doi.org/10.7717/peerj-cs.870
https://peerj.com/computer-science/

Hu Q, Cai Y, Yu G, Qin Z, Zhao M, Li GY. 2019a. Joint offloading and trajectory design for UAV-
enabled mobile edge computing systems. IEEE Internet of Things Journal 6(2):1879–1892
DOI 10.1109/JIOT.2018.2878876.

Hu B, Ding X, Yang F, Liu J. 2019. A modified algorithm for computation issues in UAV-enabled
wireless communications. EURASIP Journal on Wireless Communications and Networking
2019(1):269 DOI 10.1186/s13638-019-1593-z.

Hu B, Sun Z, Hong H, Liu J. 2020. UAV-aided networks with optimization allocation via artificial
bee colony with intellective search. EURASIP Journal on Wireless Communications and
Networking 2020(1):40 DOI 10.1186/s13638-020-1659-y.

Hu X, Wong K, Yang K, Zheng Z. 2019b. UAV-assisted relaying and edge computing: scheduling
and trajectory optimization. IEEE Transactions on Wireless Communications 18(10):4738–4752
DOI 10.1109/TWC.2019.2928539.

Hussein MK, Mousa MH. 2020. Efficient task offloading for iot-based applications in fog
computing using ant colony optimization. IEEE Access 8:37191–37201
DOI 10.1109/ACCESS.2020.2975741.

Hussein MK, Mousa MH, Alqarni MA. 2019. A placement architecture for a container as a service
(CaaS) in a cloud environment. Journal of Cloud Computing 8(1):7
DOI 10.1186/s13677-019-0131-1.

Islambouli R, Sharafeddine S. 2019. Optimized 3D deployment of uav-mounted cloudlets to
support latency-sensitive services in iot networks. IEEE Access 7:172860–172870
DOI 10.1109/ACCESS.2019.2956150.

Lan Y,Wang X,Wang C,Wang D, Li Q. 2019. Collaborative computation offloading and resource
allocation in cache-aided hierarchical edge-cloud systems. Electronics 8(12):1430
DOI 10.3390/electronics8121430.

Li M, Cheng N, Gao J, Wang Y, Zhao L, Shen X. 2020a. Energy-efficient UAV-assisted mobile
edge computing: resource allocation and trajectory optimization. IEEE Transactions on
Vehicular Technology 69(3):3424–3438 DOI 10.1109/TVT.2020.2968343.

Li L, Wen X, Lu Z, Jing W. 2020b. An energy efficient design of computation offloading enabled
by UAV. Sensors 20(12):3363 DOI 10.3390/s20123363.

Mao Y, You C, Zhang J, Huang K, Letaief KB. 2017. A survey on mobile edge computing: the
communication perspective. IEEE Communications Surveys Tutorials 19(4):2322–2358
DOI 10.1109/COMST.2017.2745201.

Mohamed N, Al-Jaroodi J, Jawhar I, Noura H, Mahmoud S. 2017. UAVFog: a UAV-based fog
computing for internet of things. In: 2017 IEEE SmartWorld, Ubiquitous Intelligence Computing,
Advanced Trusted Computed, Scalable Computing Communications, Cloud Big Data Computing,
Internet of People and Smart City Innovation (SmartWorld/SCALCOM/UIC/ATC/CBDCom/
IOP/SCI). Piscataway: IEEE, 1–8.

Nguyen V, Khanh TT, Van Nam P, Thu NT, Seon Hong C, Huh E. 2020. Towards flying mobile
edge computing. In: 2020 International Conference on Information Networking (ICOIN). 723–
725.

Ouyang Y, Liu W, Yang Q, Mao X, Li F. 2021. Trust based task offloading scheme in UAV-
enhanced edge computing network. Peer-to-Peer Networking and Applications 14(5):3268–3290
DOI 10.1007/s12083-021-01137-y.

Puris A, Bello R, Herrera F. 2010. Analysis of the efficacy of a two-stage methodology for ant
colony optimization: case of study with TSP and QAP. Expert Systems with Applications
37(7):5443–5453 DOI 10.1016/j.eswa.2010.02.069.

Mousa and Hussein (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.870 23/24

http://dx.doi.org/10.1109/JIOT.2018.2878876
http://dx.doi.org/10.1186/s13638-019-1593-z
http://dx.doi.org/10.1186/s13638-020-1659-y
http://dx.doi.org/10.1109/TWC.2019.2928539
http://dx.doi.org/10.1109/ACCESS.2020.2975741
http://dx.doi.org/10.1186/s13677-019-0131-1
http://dx.doi.org/10.1109/ACCESS.2019.2956150
http://dx.doi.org/10.3390/electronics8121430
http://dx.doi.org/10.1109/TVT.2020.2968343
http://dx.doi.org/10.3390/s20123363
http://dx.doi.org/10.1109/COMST.2017.2745201
http://dx.doi.org/10.1007/s12083-021-01137-y
http://dx.doi.org/10.1016/j.eswa.2010.02.069
http://dx.doi.org/10.7717/peerj-cs.870
https://peerj.com/computer-science/

Tang Q, Chang L, Yang K, Wang K, Wang J, Sharma PK. 2020. Task number maximization
offloading strategy seamlessly adapted to uav scenario. Computer Communications
151(3):19–30 DOI 10.1016/j.comcom.2019.12.018.

Wang R, Cao Y, Noor A, Alamoudi TA, Nour R. 2020a. Agent-enabled task offloading in
UAV-aided mobile edge computing. Computer Communications 149(4):324–331
DOI 10.1016/j.comcom.2019.10.021.

Wang J, Jiang C, Wei Z, Pan C, Zhang H, Ren Y. 2019. Joint uav hovering altitude and power
control for space-air-ground IoT networks. IEEE Internet of Things Journal 6(2):1741–1753
DOI 10.1109/JIOT.2018.2875493.

Wang Y, Ru ZY, Wang K, Huang PQ. 2020b. Joint deployment and task scheduling optimization
for large-scale mobile users in multi-UAV-enabled mobile edge computing. IEEE Transactions
on Cybernetics 50(9):3984–3997 DOI 10.1109/TCYB.2019.2935466.

Wang L, Wang K, Pan C, Xu W, Aslam N, Nallanathan A. 2021. Deep reinforcement learning
based dynamic trajectory control for UAV-assisted mobile edge computing. IEEE Transactions
on Mobile Computing. Epub ahead of print 16 February 2021 DOI 10.1109/TMC.2021.3059691.

Wang S, Zhang X, Zhang Y, Wang L, Yang J, Wang W. 2017. A survey on mobile edge networks:
convergence of computing, caching and communications. IEEE Access 5:6757–6779
DOI 10.1109/ACCESS.2017.2685434.

Wu F, Yang D, Xiao L, Cuthbert L. 2019. Energy consumption and completion time tradeoff in
rotary-wing UAV enabled wpcn. IEEE Access 7:79617–79635
DOI 10.1109/ACCESS.2019.2922651.

Wu W, Zhou F, Hu RQ, Wang B. 2020. Energy-efficient resource allocation for secure noma-
enabled mobile edge computing networks. IEEE Transactions on Communications 68(1):493–
505 DOI 10.1109/TCOMM.2019.2949994.

Yang L, Yao H, Wang J, Jiang C, Benslimane A, Liu Y. 2020. Multi-UAV-enabled load-balance
mobile-edge computing for iot networks. IEEE Internet of Things Journal 7(8):6898–6908
DOI 10.1109/JIOT.2020.2971645.

Yu Y. 2016. Mobile edge computing towards 5G: vision, recent progress, and open challenges.
China Communications 13(Supplement2):89–99 DOI 10.1109/CC.2016.7405725.

Yu Z, Gong Y, Gong S, Guo Y. 2020. Joint task offloading and resource allocation in UAV-enabled
mobile edge computing. IEEE Internet of Things Journal 7(4):3147–3159
DOI 10.1109/JIOT.2020.2965898.

Zakaryia SA, Ahmed SA, Hussein MK. 2020. Evolutionary offloading in an edge environment.
Egyptian Informatics Journal 22(3):257–267 DOI 10.1016/j.eij.2020.09.003.

Zhan C, Hu H, Sui X, Liu Z, Niyato D. 2020. Completion time and energy optimization in the
uav-enabled mobile-edge computing system. IEEE Internet of Things Journal 7(8):7808–7822
DOI 10.1109/JIOT.2020.2993260.

Zhang J, Chen T, Zhong S, Wang J, Zhang W, Zuo X, Maunder RG, Hanzo L. 2019.
Aeronautical ad hoc networking for the internet-above-the-clouds. Proceedings of the IEEE
107(5):868–911 DOI 10.1109/JPROC.2019.2909694.

Zhou F, Hu RQ, Li Z, Wang Y. 2020. Mobile edge computing in unmanned aerial vehicle
networks. IEEE Wireless Communications 27(1):140–146 DOI 10.1109/MWC.001.1800594.

Mousa and Hussein (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.870 24/24

http://dx.doi.org/10.1016/j.comcom.2019.12.018
http://dx.doi.org/10.1016/j.comcom.2019.10.021
http://dx.doi.org/10.1109/JIOT.2018.2875493
http://dx.doi.org/10.1109/TCYB.2019.2935466
http://dx.doi.org/10.1109/TMC.2021.3059691
http://dx.doi.org/10.1109/ACCESS.2017.2685434
http://dx.doi.org/10.1109/ACCESS.2019.2922651
http://dx.doi.org/10.1109/TCOMM.2019.2949994
http://dx.doi.org/10.1109/JIOT.2020.2971645
http://dx.doi.org/10.1109/CC.2016.7405725
http://dx.doi.org/10.1109/JIOT.2020.2965898
http://dx.doi.org/10.1016/j.eij.2020.09.003
http://dx.doi.org/10.1109/JIOT.2020.2993260
http://dx.doi.org/10.1109/JPROC.2019.2909694
http://dx.doi.org/10.1109/MWC.001.1800594
http://dx.doi.org/10.7717/peerj-cs.870
https://peerj.com/computer-science/

	Efficient UAV-based mobile edge computing using differential evolution and ant colony optimization
	Introduction
	Related work
	Uav-based offloading system model and problem formulation
	Proposed meta-heuristics
	Experimental results
	Conclusion and future work
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

