
Deep convolutional neural networks for
regular texture recognition
Ni Liu1, Mitchell Rogers2, Hua Cui1, Weiyu Liu3, Xizhi Li4 and
Patrice Delmas2

1 School of Information Engineering, Chang’an University, Xi’an, ShaanXi Province, China
2 Department of Computer Science, The University of Auckland, Auckland, New Zealand
3 School of Electronics and Control Engineering, Chang’an University, Xi’an, China
4 Henan Highway Development Co. Ltd. Anxin Branch, Xinxiang City, Henan Province, China

ABSTRACT
Regular textures are frequently found in man-made environments and some
biological and physical images. There are a wide range of applications for recognizing
and locating regular textures. In this work, we used deep convolutional neural
networks (CNNs) as a general method for modelling and classifying regular and
irregular textures. We created a new regular texture database and investigated two
sets of deep CNNs-based methods for regular and irregular texture classification.
First, the classic CNN models (e.g. inception, residual network, etc.) were used in a
standard way. These two-class CNN classifiers were trained by fine-tuning networks
using our new regular texture database. Next, we transformed the trained filter
features of the last convolutional layer into a vector representation using Fisher
Vector pooling (FV). Such representations can be efficiently used for a wide range of
machine learning tasks such as classification or clustering, thus more transferable
from one domain to another. Our experiments show that the standard CNNs
attained sufficient accuracy for regular texture recognition tasks. The Fisher
representations combined with support vector machine (SVM) also showed high
performance for regular and irregular texture classification. We also find CNNs
performs sub-optimally for long-range patterns, despite the fact that their
fully-connected layers pool local features into a global image representation.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning
Keywords Convolutional neural networks (CNNs), Regular texture, Repetitive patterns, Texture
recognition, Long-range features

INTRODUCTION
Textures are composed of atomic units called textons. The layout of textons can be regular
or irregular (Hettiarachchi, Peters & Bruce, 2014). Regular textures exhibit strongly
periodic or quasi-periodic behavior, often found on building surfaces, bricks, floor tiles,
fences, vegetation and crop fields. A period describes the distance between repeating
textons. For images, we consider the spatial distance. In contrast to regular textures,
irregular textures have “noisy” or “stochastic” patterns with random intensity variations.
In practice, strong periodicity rarely occurs in nature, these textures are usually
quasi-periodic, which means patterns recur, but the periodicity has random components
(Hettiarachchi, Peters & Bruce, 2014; Liu et al., 2015).

How to cite this article Liu N, Rogers M, Cui H, Liu W, Li X, Delmas P. 2022. Deep convolutional neural networks for regular texture
recognition. PeerJ Comput. Sci. 8:e869 DOI 10.7717/peerj-cs.869

Submitted 9 June 2021
Accepted 10 January 2022
Published 9 February 2022

Corresponding author
Ni Liu, niliu@chd.edu.cn

Academic editor
Nageswara Rao Moparthi

Additional Information and
Declarations can be found on
page 18

DOI 10.7717/peerj-cs.869

Copyright
2022 Liu et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.869
mailto:niliu@�chd.�edu.�cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.869
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

The layout of regular textures are an important property that allows an object to be
correctly identified. The recognition and segmentation of regular textures could be used
across many domains such as computer vision, computer graphics, and medical imaging
(Cai & Baciu, 2011; Sun, Kingdom & Baker, 2019). Applications of regular texture
detection include: analysis and quantification of building patterns for urban planning
(Yu et al., 2017), terrain segmentation (Aksoy, Yalniz & Tasdemir, 2012), texture
replacement in images (Liu, Lin & Hays, 2004; Hettiarachchi, Peters & Bruce, 2014),
texture synthesis (Lin et al., 2006), quantification of drosophila eye surface regularity
(Diez-Hermano et al., 2020), and pattern segmentation in woven fabric (Cai & Baciu,
2011).

The analysis of repetitive patterns is a long standing problem in texture analysis (Yu
et al., 2017). A pioneering work by Leung and Malik in the 90’s used a spatial tracking
approach to find repeating elements of images (Leung & Malik, 1996). First, they
detected windows of possible candidates for textons. Then, neighboring regions of each
candidate were searched for similar structures. Regions with similar repeating elements
were grouped together, and individual elements were marked. The main drawback of this
method is that it did not consider complex textons, periods or texton regularity. In
Schaffalitzky & Zisserman (1998), they proposed a grouping algorithm based on local affine
transformations. However, their method was sensitive to structural distortions. More
recently, the texton grouping problem was reformulated as a lattice detection problem
(Hays et al., 2006; Park et al., 2009). InHays et al. (2006) the solution is found by iteratively
proposing textons and assigning neighbors to the textons. In Park et al. (2009) a Markov
Random Field (MRF) with a Mean-Shift Belief Propagation method was used. Other
approaches to texton grouping include optimization of shape alignment (Cai & Baciu,
2011), structural regularity using symmetry groups (Liu et al., 2008), projection profiles
(Aksoy, Yalniz & Tasdemir, 2012) and frequency filtering (Hettiarachchi, Peters & Bruce,
2014; Sun et al., 2021).

As opposed to developing a specialized method for specific scenes and applications, our
objective is to develop a general method for recognizing texture regularity, that can be
easily applied to regular texture related areas only with light fine-tuning needed. According
to the level of regularity, we classify textures into two categories, regular or irregular.
This configuration allows us to seek standard representations of regular textures by
learning their common characteristics with an easy collection of a large number of
samples. Then the developed method can be fine-tuned into specific areas with only a few
labeled images needed. We envision that our work could be used to enhance image
retrieval, object recognition and 3D structure identification tasks (Leung & Malik, 1996).
For this challenging task, we therefore decided to employ the power of deep convolutional
neural networks (CNNs).

CNNs have been shown to outperform traditional approaches for image classification
tasks. This prompted the quick adoption of deep learning methods in many image
classification fields such medical (Litjens et al., 2017; Wang et al., 2021; Singh, Sengupta &
Lakshminarayanan, 2020), aerial (Mnih & Hinton, 2012; Petrovska et al., 2020), vehicle
recognition (Adu-Gyamfi et al., 2017), traffic congestion recognition (Cui et al., 2020), gait

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.869 2/22

http://dx.doi.org/10.7717/peerj-cs.869
https://peerj.com/computer-science/

recognition (Sepas-Moghaddam & Etemad, 2021), fruit recognition (Murean & Oltean,
2018; Saedi & Khosravi, 2020) as well as for general images (Krizhevsky, Sutskever &
Hinton, 2012; Simonyan & Zisserman, 2014; He et al., 2016; Szegedy, Toshev & Erhan,
2013). Unlike the first perceptrons (Rosenblatt, 1958) which have a single layer of neurons,
deep learning models consist of multiple layers of inter-connected neurons (Widrow &
Lehr, 1990) with back-propagation (Rumelhart, Hinton & Williams, 1988). CNNs can
learn increasingly complex representations of objects by exploiting the compositional
nature of images. High-level features like faces are composed of lower-level features such as
edges and lines (Llamas et al., 2017). In CNNs, the lower layers correspond to corners,
edges and color conjunctions, while deeper layers correspond to more complex high-level
features such as faces, text, wheels and flowers (Hossain & Serikawa, 2013a). CNN models
have achieved state-of-the-art performance for image recognition with architectures such
as LeNet-5 (LeCun et al., 1998), AlexNet (Krizhevsky, Sutskever & Hinton, 2012), VGGNet
(Simonyan & Zisserman, 2014), and more recently Inception network (GoogLeNet)
(Szegedy et al., 2015; Szegedy et al., 2016b), and Residual network (ResNet) (He et al., 2016).
Most of these architectures feature deeper layers, such as Inception network which has 22
layers.

In this paper, we investigated two sets of CNN based methods for regular texture
modelling and classification. First, the classic CNN models were used in a standard way.
The output layer was set to two categories while other layers maintained their original
architectures. These two-class classifiers were trained using our newly created regular
texture. The following state-of-the-art CNN models were tested: Inception network,
Residual network and Inception-ResNet-v2 (Szegedy et al., 2016a). Second, we applied
Fisher Vector pooling (FV) to the learned features (filter responses) of the above trained
CNNs (Perronnin & Dance, 2007). The generated vector representations, combined with
classifiers such as SVM, can be efficiently used for a wide range of machine learning
classification or segmentation tasks, and as such are more transferable from one
domain to another. The motivation for this method stems from the state-of-the-art texture
analysis method FV-CNN (Cimpoi et al., 2015), proposed by the Visual Geometry Group
of Oxford University. However, they only used pre-trained VGG features on ImageNet
ILSVRC data, which may not be optimal for modelling texture regularity.

The main contributions of our paper are: (1) A newly created regular texture database,
which is publicly available. This database complements well the state-of-the-art
Describable Textures Dataset (DTD) from the Visual Geometry Group (Cimpoi et al.,
2014). Their database is comprised of visual perception of textures in features such as
dotted, bumpy, cracked, striped and line-like and so on. Their dataset mainly focused on
textons (texture elements) and did not consider the global configuration of textons and the
degrees of regularity in textures. (2) A generalized regular texture modelling and
recognition framework. The trained deep CNN models and further generated Fisher
representations were robust to different texture layouts, pattern complexity, texton
variability and viewing angles, and is transferable from one domain to another. Our
experiments showed that both methods reached remarkable accuracy, with a best
performance of 98% for general regular texture classification.

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.869 3/22

http://dx.doi.org/10.7717/peerj-cs.869
https://peerj.com/computer-science/

METHODS
In this work, our main goal was to classify texture images by assigning them to a specific
label. We used Convolutional Neural Networks to learn from a set of labelled training data.
Then, the model was used to predict class labels for a test set which has not been seen
during training. Here, we consider two texture categories, namely, regular or irregular
patterns. The images were manually labelled by volunteers using a consensus approach.

Regular texture database
A considerable number of images are needed in order to train CNNs. Several image
databases have been developed for generic texture analysis including the natural texture
image database, texture of materials database, and dynamic texture database (Hossain &
Serikawa, 2013b). However, they are mainly texture image banks and contain limited
regular textures. Only a small number of databases, CMU Near-Regular Texture (NRT)
database (Liu, Lin & Hays, 2004) and PSU Near-Regular texture database (PSU-NRTDB,
2005, http://vivid.cse.psu.edu/) provide near-regular textures. However, these databases
are small in size and the data is mostly unlabelled. A related dataset is the Describable
Texture Dataset (DTD) (Cimpoi et al., 2014), which categorizes textures by adjectives
e.g., dotted, cracked, or wrinkled. This database focuses more on textons rather than the
global layout of textons. From these categories, we identified a subset of classes “grid,
banded, chequered, grooved, meshed” that can be used to describe regular textures.

We created our own texture database which focused on regular elements. Our database
consists of two categories: regular textures and irregular textures. We manually curated
this database by selecting relevant textures from existing online libraries:

� PSU near-regular texture (PSU-NRTDB, 2005, http://vivid.cse.psu.edu/)

� Texturelib (Chugai, 2019)

� Brodatz dataset (Randen, 2012)

� Columbia-Utrecht Reflectance and Texture (CUReT) (Dana et al., 1999)

� Describable Texture Dataset (DTD) (Cimpoi et al., 2014)

� Kylberg database (Sarafraz, 2011)

� Texture Library (Francv, 2010)

� Sketchuptexture (SketchupTextureClub, 2010)

To supplement our database, we also obtained images from Flickr (MidCenturyStyles,
2015) and Google images (Bayless, 2019). The number of images based on source location
and image class are listed in Table 1. Our regular database has a total of 1,230 regular
textures and 1,230 irregular textures, including images of different sizes.

As color information is irrelevant to the layout of textons, in our experiments, all images
are first transformed to grey-scale. Images are then expanded into three channels by
repeating the gray-scale data. Figure 1 shows examples of the two image categories in our
database.

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.869 4/22

http://vivid.cse.psu.edu/
http://vivid.cse.psu.edu/
http://dx.doi.org/10.7717/peerj-cs.869
https://peerj.com/computer-science/

Deep convolutional neural networks
CNNs are used commonly for image classification. The CNN architecture is formed by
several intermediate layers, which are typically convolutional layers and pooling layers.

Table 1 The number of regular and irregular textures selected from online resources.

Database 1 # Regular # Irregular

PSUN 335 98

Texturelib 363 588

Brodatz 36 46

CUReT 2 0

DTD 216 459

Kylberg 7 19

Texture Library 16 20

Sketchup texture 14 0

Google images 40 0

Flickr 201 0

Total number 1,230 1,230

Figure 1 Examples of regular (top two rows) and irregular textures (bottom two rows) from our database. Our database has a total of 1,230
regular textures and 1,230 irregular textures. Full-size DOI: 10.7717/peerj-cs.869/fig-1

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.869 5/22

http://dx.doi.org/10.7717/peerj-cs.869/fig-1
http://dx.doi.org/10.7717/peerj-cs.869
https://peerj.com/computer-science/

Followed by a fully-connected layer which performs the final classification using the
output from the previous layers. Figure 2 shows an example of a simple CNN architecture.

The layers of a CNN are described in detail below.
Convolution layer: The convolutional layer is the core building block of a CNN. A small

filter (usually 3 × 3) moves over the image, generating a map of activation called a features
map. This makes certain characteristics become more dominant in the output image. For
example, edges can be detected by filters that highlight the gradient in a particular
direction. The output of each layer can be formulated as:

al ¼ rðxl � al�1 þ blÞ (1)

where l represents the lth layer, � is a convolution operation (filter), ωl is the weight matrix,
bl is the vector (bias) and σ is the nonlinear activation function.

Activation layer: After the convolution, non-linear activation functions are applied to
the features maps. The most common used is the ReLU (Rectified Linear Unit): f(x) =
max (0, x). This function propagates the gradient efficiently and alleviates the problem of
vanishing gradient when there are many layers.

Pooling: The pooling or down-sampling layer is responsible for reducing the size of
the activation maps. Grouping operations (max-pooling) find the maximum value of a
sample window and pass this value as a summary of that area. As a result, the size of the
data is reduced by a factor equal to the size of the sample window. In general, it reduces the
computational power requirements progressively through the network. It also reinforces
invariance properties to small changes such as feature position and image distortion.

Fully-connected layer (FCL): The objective of a fully-connected layer is to take the
results of the convolution/pooling process and use them to classify the image. Adding a
fully-connected layer is beneficial when learning combinations of non-linear features.

Training a neural network consists of minimizing a global error function. The error
function calculates the error between the output class and the true class, and averages this
error over all input images. The training steps are: (i) calculate the output class using
feedforward; (ii) calculate the error; (iii) back-propagate the gradients and update the
weights.

Stochastic gradient descent iteratively minimizes the errors by updating the network
weights in the opposite direction to the gradient of the cost function (Rumelhart, Hinton &
Williams, 1988). The frequency of the error updates can be done per batch, per sample

Figure 2 A typical convolutional neural network. Full-size DOI: 10.7717/peerj-cs.869/fig-2

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.869 6/22

http://dx.doi.org/10.7717/peerj-cs.869/fig-2
http://dx.doi.org/10.7717/peerj-cs.869
https://peerj.com/computer-science/

or anywhere in between. Typically mini-batches give the best balance between
computational time and accuracy.

For this method, there are many optimizations; learning rate, weight decay
(a regularization term, which penalizes changes in the weights and prevents them from
being too large), and momentum (the average of the previous gradients which reduces
oscillations that cause local minima, thus accelerating convergence).

The following equation is used to update the values of the network weights wi:

viþ1 :¼ r � vi � k� e� wi � e� @L
@x

jxi

� �
Di

(2)

xiþ1 :¼ xi þ viþ1 (3)

where i is the iteration index, ε is the learning rate, λ is the weight decay, v is the
momentum variable, r is the momentum weight and @L

@x jxi

D E
Di

is the average error
over the ith batch D of the derivative of the objective function with respect to ω, evaluated
at wi. The cross-entropy loss function was: LðxÞ ¼ �P

j

P
c yjc log fcðgjÞ, where yjc

denotes the label for an image with indexed j and class c; fc (gj) is the prediction probability
of class c for image g.

Regular textures classification
We investigated two sets of Deep CNNs based methods for modelling regular textures and
classifying regular and irregular textures.

Standard Deep CNNs First, we used classic CNNs in a standard way. The output layer
was set to the number of texture categories while other layers maintained their original
architectures. These two-classes classifiers were trained using our newly created regular
texture database, by fine-tuning ImageNet pre-trained networks. Further details for the
three state-of-the-art CNNs are introduced as follows.

The Inception-v3 network (Szegedy et al., 2016b) uses Google’s Inception architecture
(Szegedy et al., 2015) for image recognition. The “Inception’’modules concatenate filters of
different sizes and dimensions into a single new filter. They use a combination of a
small kernel (1 × 1, 3 × 3, and 5 × 5 convolutions) and a few convolutional filters with
large kernel size (Fig. 3). Convolutions of different sizes were used to capture details at
various scales. Another feature of the module is a bottleneck layer of 1 × 1 convolutions.
This is designed to reduce the computational complexity.

Figure 3 Inception module. Full-size DOI: 10.7717/peerj-cs.869/fig-3

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.869 7/22

http://dx.doi.org/10.7717/peerj-cs.869/fig-3
http://dx.doi.org/10.7717/peerj-cs.869
https://peerj.com/computer-science/

The residual network (He et al., 2016) introduces an identity function between
layers. Conventional networks learn underlying nonlinear mappings y ¼ HðxÞ of stacked
layers (Fig. 4 (left)), with x denoting the inputs to the first of these layers. In residual
networks, a new nonlinear function y ¼ FðxÞ þ x, hereFðxÞ is called the residual (Fig. 4
(right)). The Residual mapping avoids the vanishing gradient problem, so the depth of
the neural network can be increased without increasing the number of parameters to
optimize.

The Inception-ResNet-v2 network (Szegedy et al., 2017) is considered as state-of-the-art
for ImageNet recognition. Residual connections include shortcuts in models that allow
researchers to train even deeper networks to achieve a higher performance. This has also
allowed Inception blocks to be further simplified.

Fisher Vector Representations The above standard CNN-based methods can be
interpreted as extracting local convolutional features and pooling them in a global
image representation by the Fully-Connected (FC) layers. In Cimpoi et al. (2015), FC
pooling was replaced by Fisher Vector pooling (FV) in the pre-trained VGG network
(on ImageNet ILSVRC data) for general texture representation. This allowed for
state-of-the-art performance across various texture databases and an efficient method
benefit in transferring features from one domain to another. Motivated by their work,
we further applied Fisher Vector pooling to the filter features of the last convolutional layer
of the above learned standard CNNs. Vector representations generated in this way are

Figure 4 Normal convolutional neural network (left); shortcut connections of ResNet architecture
(right) (He et al., 2016). Full-size DOI: 10.7717/peerj-cs.869/fig-4

Figure 5 Framework for Fisher vector representations of CNN features, combined with SVM for
texture classification. Full-size DOI: 10.7717/peerj-cs.869/fig-5

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.869 8/22

http://dx.doi.org/10.7717/peerj-cs.869/fig-4
http://dx.doi.org/10.7717/peerj-cs.869/fig-5
http://dx.doi.org/10.7717/peerj-cs.869
https://peerj.com/computer-science/

quite suitable for tasks such as classification with Support Vector Machine (SVM). They
proved more transferable from one domain to another and can be applied out-of-the-box
without extensive fine-tuning, with only a few labeled images needed to train SVM.

Our framework (see Fig. 5) first extracts deep convolutional features from the last
convolutional layers of CNNs trained on our regular texture dataset. Fisher Vector pooling
(FV) maps a sequence F ¼ ðf1;…; fnÞ; f i 2 RD of local convolutional descriptors to a
feature vector, where D is the dimensionality of descriptors. Local descriptors are first
assigned to elements in a visual dictionary, constructed by a K modes Gaussian Mixture
Model (GMM) (πk, μk, Sk), k = 1, …, K, where pk 2 R is the prior probability of the
component, lk 2 RD the Gaussian mean and �k 2 RD�D the Gaussian covariance. The
assignments η(fi) are given by the posterior probability of each GMM component. Rather
than storing visual word occurrences only, these representations store a statistics of the
difference between dictionary elements and pooled local features. The FV descriptor

encoder ηFV(fi) includes both first order �
� 1

2
k ðf i � lkÞ and second order statistics

�
� 1

2
k ðf i � lkÞ � ðf i � lkÞ � 1 (see (Perronnin & Dance, 2007) for more details). The

dimensionality of the Fisher representation is 2KD. Learning uses a standard non-linear
SVM solver. We denote this set of methods as FV-CNNreg.

Experimental setup
In our experiments, we evaluate the performance of standard CNNs and FV-CNNreg
for distinguishing regular and irregular textures. We set a 7:1:2 ratio in our database,
resulting in 860, 120, and 250 texture images for training, validation and testing for each
category. We used 10-fold cross-validation and the averages of 10 splits for performance
comparison. Input images were pre-processed to standardized size and transformed to
grey-scale. All the experiments involving CNNs training were implemented on the Keras
platform (Chollet, 2015). The VLFeat library in MATLAB was used for the computation of
FV and SVM solvers.

The training of these networks in Keras requires the adjustment of hyperparameters
including learning rate, weight decay, momentum etc. The initial learning rate is often the
most important hyperparameter. Its value is usually less than 1 and greater than 1e−6.
Usually, 0.01 is used as a typical value. Keras provides the Stochastic Gradient Descent
(SGD) class that implements the stochastic gradient descent optimizer with a learning rate
decay and momentum. The learning rate is calculated at the end of each mini-batch as
follows (Brownlee, 2020):

ei ¼ e0 � 1
ð1þ k� iÞ (4)

where εi is the learning rate for the current iteration i; ε0 is the initial learning rate specified
as an argument to SGD and λ is the decay rate which is greater than zero. We investigated
the effect of a set of different values of the learning rate decay for CNNs in the Results
section. We also compared the effect of using data augmentation features such as the shift,
flip and rotation from Keras.

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.869 9/22

http://dx.doi.org/10.7717/peerj-cs.869
https://peerj.com/computer-science/

RESULTS
In the first experiment, we evaluated the performance of standard CNNmodels. We report
the classification accuracy in Table 2 for three state-of-the-art classical CNN models,
InceptionV3, ResNet-50 and Inception-ResNet-v2. We also evaluated several
combinations of the parameters of the neural networks to be tuned. The hyperparameters
finally used for offering this best results are presented in Table 3. The initial learning
rate ε0 = 0.01 and the momentum v = 0.9 are typical choices (Brownlee, 2020). The
confusion matrix is shown in Table 4.

Inception-ResNet-v2 appears to be the most robust model as seen in Table 2. This is
mainly attributed to the beneficial combination of the Inception architecture with residual
connections creating a large-scale architecture with more layers and parameters than
other CNNs. Figure 6 shows the improvement of the accuracy during the training phase of
the Inception-ResNet-v2 network using the validation images of our database. It also

Table 2 Comparison of accuracy (%) for standard CNN models for 10-fold cross-validation
experiments.

Folds ResNet-50 InceptionV3 Inception-ResNet-v2

1 94.00 96.80 97.40

2 91.00 96.00 97.00

3 91.00 96.80 98.20

4 93.80 96.80 98.80

5 93.10 96.20 96.60

6 95.60 97.60 98.40

7 96.20 96.20 97.60

8 95.20 96.40 97.80

9 97.40 97.60 97.40

10 96.40 97.80 98.60

Mean 94.37 96.82 97.78

Std. dev. 2.20 0.65 0.71

Table 3 Hyperparameters used in fine-tuning the three standard CNNs.

Model Initial learning rate Learning rate decay Batch size Epoch

Inception-ResNet-v2 0.01 0.01 32 200

InceptionV3 0.01 0.1 32 200

ResNet-50 0.01 10 32 200

Table 4 The number of images misclassified by Inception-ResNet-v2. Type1 denotes the number of
regular images classified as irregular. Type2 denotes the number of irregular images classified as regular.
The test data has 250 regular and 250 irregular textures.

Folds 1 2 3 4 5 6 7 8 9 10

Type1 No. 8 4 2 2 7 5 3 2 3 4

Type2 No. 5 11 7 4 10 3 9 9 10 3

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.869 10/22

http://dx.doi.org/10.7717/peerj-cs.869
https://peerj.com/computer-science/

demonstrated how the associated cost reduced during training in one experiment. The
number of images misclassified by Inception-ResNet-v2 is shown in Table 4.

To better understand the performance benefits of Inception-ResNet-v2, we analyzed
correctly classified images (with class probabilities p ≥ 0.50, see Fig. 7), and misclassified
images (with class probabilities p < 0.50, see Fig. 8). Images are numbered in row-major
order. The predicted class probabilities are shown below each image. We observed that
the CNN correctly recognized most regular patterns: wallpapers (images 2–7), store shells
(images 8 and 9), architectural surfaces (images 10–13), floor patterns (images 15–18),
stone wall (image 19–21), fabric patterns (images 22–25). We can see that these
patterns vary in shape. These easy cases include dotted, striped, lattice, chequered and
honeycombed textons. Regular patterns with different viewing angles are also correctly
recognized (images 10–14). We observed that near-regular textures usually have lower
probabilities.

As shown in Figs. 1 and 7, our regular texture database contains many heterogeneous
images from a variety of scenes. The high accuracy achieved by Inception-ResNet-v2
suggests CNNs are highly generalizable. This also suggests that the database we built is
reasonable for regular texture recognition tasks. We believe CNNs have the potential to
be a powerful tool for building general methods for recognizing regular textures.

The wrongly classified examples are all shown in Fig. 8. These images have low
predicted probabilities (p < 0.50). It is important to take a close examination of these
images, in order to deeply understand the performance of the trained CNN on recognizing
regular textures. The first wallpaper textons have a regular layout, but very complex
patterns. This can be seen as an outlier as most patterns are relatively simple. The stonewall
(image 2) is a borderline case, with an accuracy of 0.35. We found that images with
light edges are not easily recognizable. The planks (image 3) is misclassified, with an
accuracy of 0.01. We can see that the each pile has a noisy surface (stochastic), and only the
gaps between piles has a regular pattern. This shows the CNNs donot use long-range
regular structures. Similarly for other misclassified images. They both show high levels of
noise within the larger regular patterns.

Figure 6 Training and validation accuracy of Inception-ResNet-v2 and associated cost during
training. Full-size DOI: 10.7717/peerj-cs.869/fig-6

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.869 11/22

http://dx.doi.org/10.7717/peerj-cs.869/fig-6
http://dx.doi.org/10.7717/peerj-cs.869
https://peerj.com/computer-science/

Figure 9 shows the results for the irregular textures. The wrongly classified examples are
shown in the bottom row. For images 22, 23, 24, 25, 26 and 27, potential causes are the
examples possess a considerable amount of sharp edges, and no stochastic random texture
contained in those irregular textures. This misled the CNN to only consider local
structures, which made it wrongly classify them as regular textures. Possible solutions
include adding similar samples in the training irregular images. Texture synthesis is a good
way to generate irregular images by breaking regularity of existed regular textures. This
provide a future direction to improve our irregular samples.

Figure 7 For regular textures, examples of correctly classified by Inception-ResNet-v2. Images are numbered from 1 to 30 in row-major order.
Images were scaled to 256 × 256 for visualization. Predicted class probabilities are listed under each image.

Full-size DOI: 10.7717/peerj-cs.869/fig-7

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.869 12/22

http://dx.doi.org/10.7717/peerj-cs.869/fig-7
http://dx.doi.org/10.7717/peerj-cs.869
https://peerj.com/computer-science/

In summary, standard CNNs such as Inception-ResNet-v2 achieved a high accuracy of
97.78% for classifying regular textures and irregular textures. The CNN correctly
recognized most regular patterns, but had lower accuracy on borderline cases (near-regular
textures) and hybrid textures (e.g. tiles of noisy textures).

In the second experiment, we investigated the tuning of learning rate decay for the three
standard CNN models using fold 1 data. We set the batch size and epoch as 32 and
200, and evaluated a set of the learning rate decays for the three CNN models. With the
chosen model configuration, the results suggested a moderate learning rate decay of 0.01,
0.1 and 10 resulted in good performance for Inception-ResNet-v2, InceptionV3 and
ResNet-50, respectively. Figure 10 shows oscillations in behavior for the large learning rate
of 0.1 for Inception-ResNet-v2, and the inability of the model to learn with the small
learning rate of 0.01 for InceptionV3 and 0.1 for ResNet-50.

In the above experiments, we used data argumentation provided by Keras including
horizontal and vertical flip, rotation range of 10, width and height shift range of 0.05.
Figure 11 compares the training process between using the data argumentation and not.
It can be observed that when the data argumentation was used (left), the model took much
less time to achieve convergence and had higher training accuracy.

In the third experiment, we evaluated the performance of the further generated Fisher
representations of the above trained CNNs for classifying regular and irregular textures.
Specifically, we transformed the filter features of the last convolutional layer of the
trained Inception-ResNet-v2 into Fisher vector representation. A standard SVM solver was
used as classifier. We denoted this method as FV-CNNreg-IncepResv2, as introduced in
the Methods section. The last layer of convolutional filters of Inception-ResNet-v2
outputs features of dimension 8 × 8 × 1,536. Dimensionality reduction (PCA) was further
applied to the CNN local descriptors before FV pooling, reducing the output features
dimensions to 512 and providing the best performance in our test. Gaussian Mixture
Model (GMM) was set to K = 64 modes. The traditional SIFT features were also compared.

Figure 8 For regular textures, examples of wrongly classified images by Inception-ResNet-v2. Images
are numbered from 1 to 7 in row-major order. The predicted class probabilities are shown below each
image. Full-size DOI: 10.7717/peerj-cs.869/fig-8

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.869 13/22

http://dx.doi.org/10.7717/peerj-cs.869/fig-8
http://dx.doi.org/10.7717/peerj-cs.869
https://peerj.com/computer-science/

Three kernels were exploited for the SVM classifier, including linear kernel, Hellinger’s
kernel (short for Hell) and χ2 kernel (short for Chi2) (Maji, Berg & Malik, 2008; Schölkopf,
Smola & Bach, 2002). The SVM solvers was implemented using the VLFeat library. The
hyperparameters were set as follows. Let n denote the total number of training samples
(both positive and negative), regularization coefficient was 1

n, stopping criterion epsilon
0.001 and maximum iterations n × 200. Results are shown in Table 5.

Fisher vector representation, FV-CNNregIncepresV2, gave a good result of 97.71%.
This proves the usefulness of transforming deep CNNs feature into Fisher vector
representations. In comparison, Fisher vector representation of traditional SIFT features
has a worse accuracy (90.76%) than all the CNN based methods.

DISCUSSIONS
Regularity is an important high-level characteristic of textures toward perception
understanding. The main challenge of modelling the regularity of textures is that it is not
obvious what kind of features should be extracted. We utilize the deep convolutional

Figure 9 For irregular textures, examples of correctly classified (top three rows) and all wrongly classified images by Inception-ResNet-v2.
Images are numbered from 1 to 27 in row-major order. The predicted class probabilities are shown below each image.

Full-size DOI: 10.7717/peerj-cs.869/fig-9

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.869 14/22

http://dx.doi.org/10.7717/peerj-cs.869/fig-9
http://dx.doi.org/10.7717/peerj-cs.869
https://peerj.com/computer-science/

Figure 10 Train and validation accuracy for different learning rate decays ε. Top: Inception-ResNet-v2 (ε = 0.01 vs. ε = 0.1). Middle: InceptionV3
(ε = 0.01 vs. ε = 0.1). Bottom: ResNet-50 (ε = 0.1 vs. ε = 10). Full-size DOI: 10.7717/peerj-cs.869/fig-10

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.869 15/22

http://dx.doi.org/10.7717/peerj-cs.869/fig-10
http://dx.doi.org/10.7717/peerj-cs.869
https://peerj.com/computer-science/

Figure 11 Training accuracies of Inception-ResNet-v2 between using data argumentation (left) and not (right).
Full-size DOI: 10.7717/peerj-cs.869/fig-11

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.869 16/22

http://dx.doi.org/10.7717/peerj-cs.869/fig-11
http://dx.doi.org/10.7717/peerj-cs.869
https://peerj.com/computer-science/

neural networks to automatically learn features of regular textures. Textures form
existed databases were classified into regular and irregular; each category consisted of a
variety of textures. To a large extent, we evaluated the ability of deep CNNs for modelling
the texture regularity. The results obtained can provide useful guidance for concrete
analysis of regular textures. The classic CNN model Inception-ResNet-v2 used in a
standard way and its more transferable Fisher vector representation both show a high
classification result of 98%, which is much higher than 90% obtained by the traditional
SIFT features. The trained CNN can correctly recognize most regular patterns, but has
lower accuracy on borderline cases, e.g. near-regular textures and hybrid textures. Beyond
the impressive result, there are still several limitations. First, 2,460 images may be still
insufficient to evaluate the methods. More images are needed. In addition, this experiment
shows the architectures of current CNNs do not use long-range structures and thus
decreases their ability to model complex features such as texture regularity. In the future
study we will investigate the way to learn the long range features by CNN models.

CONCLUSIONS
In this paper we have introduced a new regular texture database. It supplements state-of-
the-art texture analysis databases towards perception understanding. Based on the created
regular texture databases, we proposed a generalized regular texture modelling and
recognition framework. The trained deep CNN models and further generated Fisher
representations were robust to different texture layouts, pattern complexity, texton
variability and viewing angles, and proved transferable from one domain to another. Our

Table 5 Comparison of accuracy (%) for Fisher vector representations for 10-fold cross-validation
experiments. FV-CNNreg-IncepResv2 applies the Fisher pooling to the last convolutional layer of the
trained Inception-ResNet-v2. FV-SIFT denotes the Fisher pooling of SIFT features. Note that linear
means linear kernel, Hell denotes the Hellinger’s kernel, and Chi2 represents χ2 kernel.

Model/folds FV-SIFT FV-CNNreg-IncepResv2

Kernel Linear Hell Chi2 Linear Hell Chi2

1 89.60 89.40 89.40 98.00 98.00 98.00

2 90.4 90.00 89.20 97.20 96.40 96.80

3 90.00 87.60 90.40 97.80 98.40 98.40

4 91.20 90.20 90.00 97.80 98.00 98.20

5 92.40 91.60 91.60 96.20 96.60 96.60

6 91.00 90.00 90.00 98.20 97.80 97.80

7 90.00 89.20 92.20 97.40 97.40 97.80

8 91.20 89.40 91.00 97.40 97.40 97.60

9 91.20 92.30 91.00 98.00 98.60 97.80

10 90.60 88.60 90.20 98.20 98.40 98.40

Mean 90.76 89.96 90.50 97.62 97.70 97.71

Std. dev. 0.82 1.42 0.95 0.61 0.75 0.61

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.869 17/22

http://dx.doi.org/10.7717/peerj-cs.869
https://peerj.com/computer-science/

experiments showed that both methods reached remarkable accuracy, with a best
performance of 98% for general regular texture classification.

To further understand and improve the performance of our proposed network, an
ablation study has been presented. Although convolutional neural networks take spatial
relations into account by pooling local features into a global representation using fully-
connected layers, they are known to perform sub-optimally when learning long-range
patterns. In our future work, we will focus on applying this generalized regular texture
modelling to efficient repetitive elements detection in real-life applications.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the National Natural Science Foundation of China
(Nos. 61806023 and 61572083), the Henan Provincial Department of Transportation
Science and Technology Project (No. 2021G8). The funders had no role in study design,
data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
National Natural Science Foundation of China: 61806023 and 61572083.
Henan Provincial Department of Transportation Science and Technology Project: 2021G8.

Competing Interests
Xizhi Li is employed by Henan Highway Development Co. LTD. The authors declare that
they have no competing interests.

Author Contributions
� Ni Liu conceived and designed the experiments, performed the experiments, analyzed
the data, performed the computation work, prepared figures and/or tables, authored or
reviewed drafts of the paper, and approved the final draft.

� Mitchell Rogers performed the experiments, performed the computation work, prepared
figures and/or tables, authored or reviewed drafts of the paper, and approved the final
draft.

� Hua Cui analyzed the data, authored or reviewed drafts of the paper, and approved the
final draft.

� Weiyu Liu performed the experiments, authored or reviewed drafts of the paper, and
approved the final draft.

� Xizhi Li performed the computation work, authored or reviewed drafts of the paper, and
approved the final draft.

� Patrice Delmas conceived and designed the experiments, authored or reviewed drafts of
the paper, and approved the final draft.

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.869 18/22

http://dx.doi.org/10.7717/peerj-cs.869
https://peerj.com/computer-science/

Data Availability
The following information was supplied regarding data availability:

The code files for implementing convolutional neural networks. Fisher vector pooling
and SVM solver and the regular textures dataset are available in the Supplemental Files
and at GitHub: https://github.com/NiLiu64/Regular-texture-recognition.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.869#supplemental-information.

REFERENCES
Adu-Gyamfi YO, Asare SK, Sharma A, Titus T. 2017. Automated vehicle recognition with deep

convolutional neural networks. Transportation Research Record 2645(2645):113–122
DOI 10.3141/2645-13.

Aksoy S, Yalniz IZ, Tasdemir K. 2012. Automatic detection and segmentation of orchards using
very high resolution imagery. IEEE Transactions on Geoscience and Remote Sensing
50(8):3117–3131 DOI 10.1109/TGRS.2011.2180912.

Bayless J. 2019. 20 free subtle textures for backgrounds. Available at https://designwoop.com/free-
subtle-textures.

Brownlee J. 2020. Understand the impact of learning rate on neural network performance.
Available at https://machinelearningmastery.com/.

Cai Y, Baciu G. 2011. Detection of repetitive patterns in near regular texture images. In: 2011 IEEE
10th IVMSP Workshop: Perception and Visual Signal Analysis. Piscataway: IEEE, 60–65.

Chollet F. 2015. Keras. Available at https://keras.io.

Chugai D. 2019. Texturelib texture. Available at http://texturelib.com/.

Cimpoi M, Maji S, Kokkinos I, Mohamed S, Vedaldi A. 2014. Describing textures in the wild. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Piscataway: IEEE.

Cimpoi M, Maji S, Kokkinos I, Vedaldi A. 2015. Deep filter banks for texture recognition,
description, and segmentation. International Journal of Computer Vision 118:65–94
DOI 10.1007/s11263-015-0872-3.

Cui H, Yuan G, Liu N, Xu M, Song H. 2020. Convolutional neural network for recognizing
highway traffic congestion. Journal of Intelligent Transportation Systems 24(10):1–11
DOI 10.1080/15472450.2020.1742121.

Dana KJ, Van Ginneken B, Nayar SK, Koenderink JJ. 1999. Reflectance and texture of real-world
surfaces. ACM Transactions On Graphics (TOG) 18(1):1–34 DOI 10.1145/300776.300778.

Diez-Hermano S, Ganfornina MD, Vegas-Lozano E, Sanchez D. 2020. Machine learning
representation of loss of eye regularity in a Drosophila Neurodegenerative model. Frontiers in
Neuroscience 14(516) DOI 10.3389/fnins.2020.00516.

Francv M. 2010. Texturelibrary texture. Available at https://textures.forrest.cz/.

Hays J, Leordeanu M, Efros AA, Liu Y. 2006. Discovering texture regularity as a higher-order
correspondence problem. In: Proceedings of the European Conference on Computer Vision. Part
II:522–535.

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.869 19/22

http://dx.doi.org/10.7717/peerj-cs.869#supplemental-information
https://github.com/NiLiu64/Regular-texture-recognition
http://dx.doi.org/10.7717/peerj-cs.869#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.869#supplemental-information
http://dx.doi.org/10.3141/2645-13
http://dx.doi.org/10.1109/TGRS.2011.2180912
https://designwoop.com/free-subtle-textures
https://designwoop.com/free-subtle-textures
https://machinelearningmastery.com/
https://keras.io
http://texturelib.com/
http://dx.doi.org/10.1007/s11263-015-0872-3
http://dx.doi.org/10.1080/15472450.2020.1742121
http://dx.doi.org/10.1145/300776.300778
http://dx.doi.org/10.3389/fnins.2020.00516
https://textures.forrest.cz/
http://dx.doi.org/10.7717/peerj-cs.869
https://peerj.com/computer-science/

He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR). Piscataway: IEEE,
770–778.

Hettiarachchi R, Peters J, Bruce N. 2014. Fence-like quasi-periodic texture detection in images.
Theory and Applications of Mathematics & Computer Science 4(2):123–139.

Hossain S, Serikawa S. 2013a. Deep learning for texture and dynamic texture analysis. Pattern
Recognition Letters 34(15):2007–2022 DOI 10.1016/j.patrec.2013.02.009.

Hossain S, Serikawa S. 2013b. Texture databases-a comprehensive survey. Pattern Recognition
Letters 34(15):2007–2022 DOI 10.1016/j.patrec.2013.02.009.

Krizhevsky A, Sutskever I, Hinton GE. 2012. Imagenet classification with deep convolutional
neural networks. In: Advances in Neural Information Processing Systems. 1097–1105.

LeCun Y, Bottou L, Bengio Y, Haffner P. 1998. Gradient-based learning applied to document
recognition. Proceedings of the IEEE 86(11):2278–2324 DOI 10.1109/5.726791.

Leung TK, Malik J. 1996. Detecting, localizing and grouping repeated scene elements from an
image. In: Proceedings of the European Conference on Computer Vision. I:546–555.

Lin W-C, Hays J, Wu C, Liu Y, Kwatra V. 2006. Quantitative evaluation of near regular texture
synthesis algorithms. In: Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition (CVPR). Piscataway: IEEE, 427–434.

Litjens G, Kooi T, Bejnordi BE, Setio AAA, Ciompi F, Ghafoorian M, van der Laak JAWM, van
Ginneken B, Sánchez CI. 2017. A survey on deep learning in medical image analysis. Medical
Image Analysis 42:60–88 DOI 10.1016/j.media.2017.07.005.

Liu S, Ng T-T, Sunkavalli K, Do MN, Shechtman E, Carr N. 2015. Patchmatch-based automatic
lattice detection for near-regular textures. In: Proceedings of the IEEE International Conference
on Computer Vision. Piscataway: IEEE, 181–189.

Liu Y, Hel-Or H, Kaplan CS, Gool LJV. 2008. Computational symmetry in computer vision and
computer graphics. Foundations and Trends in Computer Graphics and Vision 5(1–2):1–195
DOI 10.1561/0600000008.

Liu Y, Lin W-C, Hays J. 2004. Near-regular texture analysis and manipulation. ACM Transactions
on Graphics (TOG) 23(3):368–376 DOI 10.1145/1015706.1015731.

Llamas JM, Lerones P, Medina R, Zalama E, Gómez-Garca-Bermejo J. 2017. Classification of
architectural heritage images using deep learning techniques. Applied Sciences 7(10):992
DOI 10.3390/app7100992.

Maji S, Berg AC, Malik J. 2008. Classification using intersection kernel support vector machines is
efficient. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:
IEEE, 1–8.

MidCenturyStyles. 2015. MidCenturyStyles. Flickr. Available at https://flickr.com/photos/
midcenturystyles/.

Mnih V, Hinton GE. 2012. Learning to label aerial images from noisy data. In: Proceedings of the
29th International Conference on Machine Learning (ICML-12). 567–574.

Murean H, Oltean M. 2018. Fruit recognition from images using deep learning. Acta Universitatis
Sapientiae: Informatica 10(1):26–42 DOI 10.2478/ausi-2018-0002.

Park M, Brocklehurst K, Collins R, Liu Y. 2009. Deformed lattice detection in real-world images
using mean-shift belief propagation. IEEE Transactions on Pattern Analysis and Machine
Intelligence 31(10):1804–1816 DOI 10.1109/TPAMI.2009.73.

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.869 20/22

http://dx.doi.org/10.1016/j.patrec.2013.02.009
http://dx.doi.org/10.1016/j.patrec.2013.02.009
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1016/j.media.2017.07.005
http://dx.doi.org/10.1561/0600000008
http://dx.doi.org/10.1145/1015706.1015731
http://dx.doi.org/10.3390/app7100992
https://flickr.com/photos/midcenturystyles/
https://flickr.com/photos/midcenturystyles/
http://dx.doi.org/10.2478/ausi-2018-0002
http://dx.doi.org/10.1109/TPAMI.2009.73
http://dx.doi.org/10.7717/peerj-cs.869
https://peerj.com/computer-science/

Perronnin F, Dance C. 2007. Fisher kernels on visual vocabularies for image categorization. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).
Piscataway: IEEE.

Petrovska B, Zdravevski E, Lameski P, Corizzo R, Štajduhar I, Lerga J. 2020. Deep learning for
feature extraction in remote sensing: a case-study of aerial scene classification. Sensors
20(14):3906 DOI 10.3390/s20143906.

Randen T. 2012. Brodatz texture. Available at https://www.ux.uis.no/~tranden/brodatz.html.

Rosenblatt F. 1958. The perceptron: a probabilistic model for information storage and
organization in the brain. Psychological Review 65(6):386–408 DOI 10.1037/h0042519.

Rumelhart DE, Hinton GE, Williams RJ. 1988. Learning representations by back-propagating
errors. Nature 323:533–536 DOI 10.1038/323533a0.

Saedi SI, Khosravi H. 2020. A deep neural network approach towards real-time on-branch fruit
recognition for precision horticulture. Expert Systems with Applications 159(4):113594
DOI 10.1016/j.eswa.2020.113594.

Sarafraz A. 2011. Kylberg texture. Available at https://computervisiononline.com/dataset/
1105138658.

Schaffalitzky F, Zisserman A. 1998. Geometric grouping of repeated elements within images. In:
British Machine Vision Conference 1998. 1–10.

Schölkopf B, Smola AJ, Bach F. 2002. Learning with kernels: support vector machines,
regularization, optimization, and beyond. Cambridge: MIT Press.

Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image
recognition. ArXiv. Available at arXiv:1409.1556.

Singh A, Sengupta S, Lakshminarayanan V. 2020. Explainable deep learning models in medical
image analysis. Journal of Imaging 6(6):52 DOI 10.3390/jimaging6060052.

SketchupTextureClub. 2010. Sketchup texture. Available at https://www.sketchuptextureclub.com/
textures/architecture/paving-outdoor/concrete/blocks-damaged.

Sun H-C, Baker CL, St-Amand D, Kingdom FAA. 2021. Visual perception of texture regularity:
conjoint measurements and a wavelet response-distribution model. PLoS Computational Biology
17(10):e1008802 DOI 10.1371/journal.pcbi.1008802.

Sun H-C, Kingdom FA, Baker CL. 2019. Perceived regularity of a texture is influenced by the
regularity of a surrounding texture. Scientific Reports 9(1):1–11
DOI 10.1038/s41598-018-37631-2.

Szegedy C, Ioffe S, Vanhoucke V, Alemi A. 2016a. Inception-v4, inception-resnet and the impact
of residual connections on learning. In: AAAI'17: Proceedings of the Thirty-First AAAI
Conference on Artificial Intelligence. Menlo Park: AAAI Press, 4278–4284.

Szegedy C, Ioffe S, Vanhoucke V, Alemi AA. 2017. Inception-v4, inception-resnet and the impact
of residual connections on learning. In: Thirty-first AAAI Conference on Artificial Intelligence.

Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V, Rabinovich
A. 2015. Going deeper with convolutions. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR). Piscataway: IEEE, 1–9.

Szegedy C, Toshev A, Erhan D. 2013. Deep neural networks for object detection. In: Advances in
Neural Information Processing Systems. 26:2553–2561.

Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z. 2016b. Rethinking the inception
architecture for computer vision. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition (CVPR). Piscataway: IEEE, 2818–2826.

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.869 21/22

http://dx.doi.org/10.3390/s20143906
https://www.ux.uis.no/~tranden/brodatz.html
http://dx.doi.org/10.1037/h0042519
http://dx.doi.org/10.1038/323533a0
http://dx.doi.org/10.1016/j.eswa.2020.113594
https://computervisiononline.com/dataset/1105138658
https://computervisiononline.com/dataset/1105138658
arXiv:1409.1556
http://dx.doi.org/10.3390/jimaging6060052
https://www.sketchuptextureclub.com/textures/architecture/paving-outdoor/concrete/blocks-damaged
https://www.sketchuptextureclub.com/textures/architecture/paving-outdoor/concrete/blocks-damaged
http://dx.doi.org/10.1371/journal.pcbi.1008802
http://dx.doi.org/10.1038/s41598-018-37631-2
http://dx.doi.org/10.7717/peerj-cs.869
https://peerj.com/computer-science/

Sepas-Moghaddam A, Etemad A. 2021. Deep Gait Recognition: A Survey. ArXiv preprint.
Available at arXiv:2102.09546.

Wang J, Zhu H, Wang S-H, Zhang Y-D. 2021. A review of deep learning on medical image
analysis. Mobile Networks and Applications 26(1):351–380 DOI 10.1007/s11036-020-01672-7.

Widrow B, Lehr M. 1990. 30 years of adaptive neural networks: perceptron, madaline, and
backpropagation. Proceedings of the IEEE 78(9):1415–1442 DOI 10.1109/5.58323.

Yu W, Ai T, Liu P, Cheng X. 2017. The analysis and measurement of building patterns using
texton co-occurrence matrices. International Journal of Geographical Information Science
31(6):1079–1100 DOI 10.1080/13658816.2016.1265121.

Liu et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.869 22/22

arXiv:2102.09546
http://dx.doi.org/10.1007/s11036-020-01672-7
http://dx.doi.org/10.1109/5.58323
http://dx.doi.org/10.1080/13658816.2016.1265121
http://dx.doi.org/10.7717/peerj-cs.869
https://peerj.com/computer-science/

	Deep convolutional neural networks for regular texture recognition
	Introduction
	Methods
	Results
	Discussions
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

