
Detecting phishing webpages via homology
analysis of webpage structure
Jian Feng1, Yuqiang Qiao1, Ou Ye1 and Ying Zhang2

1 College of Computer Science & Technology, Xi’an University of Science and Technology,
Xi’an, Shaanxi, China

2 Information Technology Department for Head Office of SPD Bank, National Institute of
Standards and Technology Application Development Service Sub-centre (Xi’an),
Xi’an, Shaanxi, China

ABSTRACT
Phishing webpages are often generated by phishing kits or evolved from existing
kits. Therefore, the homology analysis of phishing webpages can help curb the
proliferation of phishing webpages from the source. Based on the observation that
phishing webpages belonging to the same family have similar page structures, a
homology detection method based on webpage clustering according to structural
similarity is proposed. The method consists of two stages. The first stage realizes
model construction. Firstly, it extracts the structural features and style attributes of
webpages through the document structure and vectorizes them, and then assigns
different weights to different features, and measures the similarity of webpages and
guides webpage clustering by webpage difference index. The second phase completes
the detection of webpages to be tested. The fingerprint generation algorithm using
double compressions generates fingerprints for the centres of the clusters and the
webpages to be tested respectively and accelerates the detection process of the
webpages to be tested through bitwise comparison. Experiments show that,
compared with the existing methods, the proposed method can accurately locate the
family of phishing webpages and can detect phishing webpages efficiently.

Subjects Computer Networks and Communications, Security and Privacy, World Wide Web and
Web Science
Keywords Phishing detection, Homology, Document object model (DOM), Cluster, Fingerprint

INTRODUCTION
Phishing is a kind of social engineering attack, which is a malicious behaviour that deceives
network users to visit phishing webpages and attempts to steal various private information
(including passwords, bank card numbers, etc.) of users. According to the latest report
of the APWG (Anti-Phishing Working Group), the total number of phishing webpages in
the second quarter of 2020 increased by 17.2% over the same period in 2019 (APWG,
2020). The continued growth of phishing attacks has become one of the key factors
threatening Internet security, and timely and effective detection of phishing webpages is
very important.

In the attack and defence game, phishing webpage detection technologies have been
continuously developed, mainly includes traditional and emerging methods. The former
includes blacklist-based (Liang et al., 2016), heuristic-based (Xiang et al., 2011;Moghimi &
Varjani, 2016), visual similarity (Raj & Vithalpura, 2018; Rao & Pais, 2020), and

How to cite this article Feng J, Qiao Y, Ye O, Zhang Y. 2022. Detecting phishing webpages via homology analysis of webpage structure.
PeerJ Comput. Sci. 8:e868 DOI 10.7717/peerj-cs.868

Submitted 14 September 2021
Accepted 10 January 2022
Published 1 February 2022

Corresponding author
Jian Feng, fengjian@xust.edu.cn

Academic editor
Xiaolong Li

Additional Information and
Declarations can be found on
page 21

DOI 10.7717/peerj-cs.868

Copyright
2022 Feng et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.868
mailto:fengjian@�xust.�edu.�cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.868
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

machine learning-based methods (Aleroud & Zhou, 2017; Rao & Pais, 2019). And the latter
is based on deep learning (Bahnsen et al., 2017; Feng, Zou & Nan, 2019; Yang, Zhao &
Zeng, 2019; Feng et al., 2020). These detection methods regard phishing webpage detection
as a problem of binary classification, by manually or automatically extracting features
from URL and content of webpages, and then realizing the identification of phishing
webpages through supervised learning models.

However, phishing webpages become complex with the extensive use of various social
engineering methods in phishing attacks. This makes more and more difficult to find and
extract significant features from webpages, so although the classification-based methods
can accurately detect known phishing webpages, but cannot effectively track the source of
phishing webpages, so cannot be curbed the proliferation of phishing webpages from the
root.

In order to achieve the purpose of fraud quickly and effectively, more than 90% of
phishing webpages are automatically generated by phishing webpage generation kits, as
shown in Fig. 1; at the same time, to avoid plug-in interception and the higher cost of
modifying the template, the newly generated phishing webpages are often gradually
evolved from their earlier versions (Oest et al., 2018). The phishing webpages generated or
evolved by the same kit form a phishing webpage cluster, which has similar characteristics.
Therefore, intuitively, tracing the source of phishing webpages through homology
analysis would help to find clusters of phishing webpages and effectively prevent attacks.

Based on this point and different from mainstream classification detection methods,
this paper regards phishing webpage detection as a clustering problem for homology
discovery, hopes to establish the feature model of different categories of phishing
webpages, and then guide the detection of phishing webpages by calculating the homology
of different categories of phishing webpages to be tested. The key to the paper is the
similarity learning of webpages, which is very challenging, because the subtle differences in

Figure 1 Typical phishing attack process: (I) phisher uses toolkit to generate phishing webpages; (II)
induces users; (III) user accesses phishing webpage; (IV) phisher obtains user’s privacy information.

Full-size DOI: 10.7717/peerj-cs.868/fig-1

Feng et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.868 2/23

http://dx.doi.org/10.7717/peerj-cs.868/fig-1
http://dx.doi.org/10.7717/peerj-cs.868
https://peerj.com/computer-science/

text can make two webpages very different semantically, while webpages with different
text may still be similar. Therefore, a successful model should: (1) use the structure of
webpages instead of text, (2) infer the similarity of webpages from the structural
information of webpages, (3) be fast and efficient.

Based on the above analysis, a Structure based Phish Homology Detection Model
(SPHDM) is proposed. Firstly, the structural features of webpages are extracted, and the
similarity calculation method is proposed to find clusters of the phishing webpages;
secondly, an efficient fingerprint algorithm is designed to accelerate the comparison and
classification of the webpages to be tested. The results show that SPHDM has fast and
effective detection capabilities comparing to clustering-based baselines. Notices that
SPHDM can also be easily extended to some related tasks, such as phishing email
detection, network intrusion detection, binary code cloning, etc., by performing structural
similarity detection.

In particular, the key contributions are listed as follows:

� A method for analysing the homology of phishing webpages is proposed. Based on the
structural similarity of phishing webpages belonging to the same family, two kinds of
structural features are extracted to form webpage representations, including DOM
(Document Object Model) structure and Class attribute corresponding to CSS
(Cascading Style Sheets) styles, and similarity calculation method is designed. The
method provides new ideas for homology analysis of phishing webpages.

� In order to speed up the detection of webpages to be tested, a fingerprint generation
algorithm is proposed. Through twice compression, fingerprints are generated for each
cluster and webpage to be tested, simplifying the comparison and classification of
webpages.

� Further, four experiments on the SPHDM are conducted from different aspects. The
results show that the classification performance is good.

The paper is organized as follows. In “Related Works”, we present related works on
phishing webpage detection. Then, the framework and the detailed process of SPHDM
is described in “Proposed Method”. In “Experimental Results and Analysis”, the
performance of the SPHDM is evaluated. Finally, we conclude the paper and discuss future
works.

RELATED WORKS
The typical methods for detecting phishing webpages as classification problems include
blacklisting, heuristics, machine learning, and deep learning (Liang et al., 2016; Xiang et al.,
2011; Moghimi & Varjani, 2016; Raj & Vithalpura, 2018; Rao & Pais, 2020; Aleroud &
Zhou, 2017; Rao & Pais, 2019; Bahnsen et al., 2017; Feng, Zou & Nan, 2019; Yang, Zhao &
Zeng, 2019; Feng et al., 2020). There have been a lot of researches and they have reached a
relatively mature stage. At the same time, there are relatively few studies that regard
phishing webpage detection as a clustering problem, which can be divided into visual
similarity-based method and structural similarity-based method.

Feng et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.868 3/23

http://dx.doi.org/10.7717/peerj-cs.868
https://peerj.com/computer-science/

The method based on visual similarity starts from the visual characteristics of webpages
and can effectively identify brand attacks. The earliest representative research result is the
literature Liu et al. (2005). This research compares the similarity of phishing webpages
with the imitated original webpages from visual features such as text, style and layout of
webpages. Inspired by literature Liu et al. (2005) etc., CANTINA+ (Xiang et al., 2011)
enhanced the detection effect of phishing webpages by analysing specific tags in the DOM
tree by adopting a classification method. With the development of researches, Li et al.
(2019) introduces a visual similarity matching algorithm based on the rendering tree
constructed through the DOM and CSS rule trees. Generally speaking, comparing the
similarity of webpages from a visual perspective requires a large amount of image
calculations, and the complexity and resource consumption are high.

The work of phishing detection based on structural similarity is not limited to brand
attacks. It usually aims at discovering the family of phishing webpages by clustering
webpages based on the DOM structure of webpages. For webpages, DOM of HTML
(HyperText Markup Language) is a kind of semi-structured document consisted of HTML
tags and their attributes, and as the skeleton structure of webpages can provide effective
clues for structural similarity. Typical research includes the literature Rosiello et al.
(2007), which compares the similarity of the DOM tree extracted from the HTML source
code through simple tag comparison and isomorphic subgraph recognition. Among
them, the tag comparison uses a tag-by-tag comparison method, which results in low
efficiency, while the isomorphic subgraph method requires a large amount of calculation.
In order to improve the comparison efficiency, some works map the DOM structural
features into simplified vectors. For example, the HTMLTagAntiPhish method proposed
by Zou et al. (2016). Only encodes the representative tag sequences in the DOM, and
measures the similarity according to the alignment scores between different sequences. Cui
et al. (2017) proposed a method TC (Tag Counting) to measure the similarity between
webpages by counting the frequency of tags and generate a fixed-length tag vector for each
webpage. Considering that shallow nodes are more important than deep nodes in the
DOM structure, literature Feng & Zhang (2018) uses the Hierarchical Distance (HD)
of hierarchical DOM tags to characterize the structural characteristics of the DOM, thereby
measuring differences between webpages. The above-mentioned typical webpage structure
similarity calculation methods based on string (Rosiello et al., 2007), symbolic (Zou
et al., 2016; Cui et al., 2017), tree (Feng & Zhang, 2018) and figure (Rosiello et al., 2007) still
have problems of low precision and low efficiency.

Table 1 summarizes and compares the clustering-based methods mentioned above.
The research on the structural similarity comparison of webpages is very meaningful

but not sufficient until now. Both the depth and breadth of the research need to be
improved. In essence, the key step of webpage similarity calculation is webpage
representation. The way of representing webpages determines the degree and granularity
of information extraction, which in turn affects the accuracy and efficiency of similarity
comparison. Based on the existing structure-oriented webpage similarity comparison
method, considering the characteristics of the generation and evolution of phishing
webpages and integrating structural related features, this paper designs a new webpage

Feng et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.868 4/23

http://dx.doi.org/10.7717/peerj-cs.868
https://peerj.com/computer-science/

similarity measurement method to improve accuracy and efficiency of phishing webpages
detection through webpage traceability. To address the drawbacks of existing researches,
on the one hand, by proposing a new hierarchical tag vector construction method and
considering Class style attributes besides the DOM tree, SPHDM optimizes the expression
of structure; on the other hand, SPHDM designs an fingerprint algorithm to improve the
detection efficiency by low computational load.

PROPOSED METHOD
In this section, the problem statement of phishing detection is given firstly, and then the
overall framework of SPHDM and its key technologies are gone into detail.

Problem statement
The basic idea of our work is to regard the detection of phishing webpages as the clustering
of webpages with the same or similar structure. Firstly, based on the hierarchical structure
of webpages and other structural elements that affect page layout to establish a feature
library for each phishing family, and to select a representative collection of phishing
webpages to realize the traceability. Secondly, when an unknown webpage appears, its
structural characteristics are extracted and compared with the most representative
collection of phishing webpages to determine whether it belongs to a certain phishing
family. The process of pairwise enumeration and comparison should be simplified to
reduce the complexity of comparison and also weaken the influence of kit evolution on
structural similarity.

Proposed framework
Architecture of SPHDM is shown in Fig. 2. SPHDM is divided into two stages: modelling
and prediction.

The input of the modelling is training set, includes benign webpages and phishing
webpages. First, to extract the structural features of these webpages to construct
representation vectors. Then, the webpages are clustered according to the similarity
calculation method between vectors. Finally, according to the third-party blacklist library,
each cluster is labelled as benign or phishing.

Table 1 Clustering-based phishing detection methods.

Research Type Research object Innovation Drawbacks

Liu et al. (2005)
Visual similarity

Block and layout First work of visual similarity For brand attacks

Li et al. (2019) RenderLayer tree RenderLayer tree built High complexity

Rosiello et al. (2007) DOM Tag comparison/Isomorphic
subgraph recognition

Low efficiency/High computational load

Zou et al. (2016)
Structural Similarity

DOM Sequence alignment Only consider the representative tags

TC (Cui et al., 2017) DOM Tag vector built Based only on the frequency of tags

HD (Feng & Zhang, 2018) DOM Distinguish importance of
tags hierarchically

No CSS properties

Feng et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.868 5/23

http://dx.doi.org/10.7717/peerj-cs.868
https://peerj.com/computer-science/

In the prediction stage, the webpage to be tested and the webpages as centre of the
clusters are represented as vectors by a fingerprint generation algorithm. Then the
webpage to be tested is classified into a certain cluster according to the similarity between
the vectors and has the same label to the cluster it belongs to.

Phase 1 modelling
The key to tracing the source of phishing webpages through clustering is to measure the
homology of webpages. The modelling stage includes three processes: structure feature
extraction, webpage representation and clustering.

Structural feature extraction
HTML documents are typical semi-structured documents, in which there is a nested
relationship between tags, which reflects the hierarchical structure of the webpage and can
be described by the DOM tree. At the same time, when using the kits to generate a number
of webpages, attackers usually reuse CSS style, which results in the generated webpages
using a consistent set of CSS properties. However, existing research has neglected the
importance of CSS styles for webpage layout, so as a supplement to the DOM structure,
this paper also extracts the Class attribute of CSS style as a structural feature.

DOM structural characteristics

The DOM represents an HTML document as a tree structure with tags, attributes, and text
nodes. In order to simplify the calculation, only the DOM tag tree is used to represent the
HTML document, and attributes, text and comment nodes are ignored.

In order to highlight the hierarchical information of the tag tree, a structure table is
constructed, which stores the hierarchy and tag sequence of the DOM tree in order, and
the traversal strategy is depth first. Since the information is mainly within the element
<body>, the part under <head> is not extracted. Figure 3 converts an HTML document

Figure 2 Architecture of SPHDM. Full-size DOI: 10.7717/peerj-cs.868/fig-2

Feng et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.868 6/23

http://dx.doi.org/10.7717/peerj-cs.868/fig-2
http://dx.doi.org/10.7717/peerj-cs.868
https://peerj.com/computer-science/

into a corresponding DOM tag tree and stores it in the structure table. The resulting
hierarchy tag sequence is [html1, body2, div3, nav4, div5, li5, li5, div3, img4, div4, p4],
shown as Fig. 3.

Class attribute characteristics

CSS rules are used to formulate layout of webpages, which contain selectors and
declaration information, as shown in Fig. 4. The declaration contains attributes and
corresponding values.

Figures 5 and 6 show the CSS styles in the DOM of a certain webpage and the page after
the corresponding styles are set. Because values of the attributes often change a lot, only the
attributes are extracted as structural features. As shown in Fig. 5, the Class attribute set
extracted is [intro, important].

Figure 3 DOM tag tree and structure table. Full-size DOI: 10.7717/peerj-cs.868/fig-3

Figure 4 CSS rule. Full-size DOI: 10.7717/peerj-cs.868/fig-4

Figure 5 CSS settings in DOM. Full-size DOI: 10.7717/peerj-cs.868/fig-5

Feng et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.868 7/23

http://dx.doi.org/10.7717/peerj-cs.868/fig-3
http://dx.doi.org/10.7717/peerj-cs.868/fig-4
http://dx.doi.org/10.7717/peerj-cs.868/fig-5
http://dx.doi.org/10.7717/peerj-cs.868
https://peerj.com/computer-science/

Webpage representation
Although the DOM hierarchy tag sequence and the Class attribute set are extracted, the
commonly used sequence comparison method is not used for its complexity. Instead, we
calculate its representation for each webpage by the hierarchical tag vector and the
Class attribute vector, and through the vector similarity calculation to reduce the
complexity of comparison between webpages.

Hierarchical tag vector

In order to reduce the complexity of DOM tree comparison, it is necessary to simplify
the representation of the tree-level tag sequence, and at the same time express the
hierarchical characteristics of the webpage and distinguish the differences in the structural
elements of the webpage, so as to improve the effect of feature expression. TF-IDF
(Term Frequency-Inverse Document Frequency) is a statistical document representation
method widely used in the field of information retrieval (Khan et al., 2010), in which the
word vector is determined according to TF, and IDF is used to adjust the weight. But
IDF cannot effectively express the importance of tags and their distribution. Therefore, we
assign weights through the role of tags, and use improved TF-IDF to vectorize the DOM
hierarchical tag sequence.

Suppose there are m types of hierarchical tags in a webpage set, this is TagType = [tag1,
tag2,…,tagm], using TF and IDF to determine the frequency and importance of tags with
hierarchical information as follows:

TFij ¼ jtagjjpiPm
a¼1 jtagajpi

(1)

IDFij ¼ log
n

1þ jpi; tagj 2 pij
� �

(2)

where in TFij represents the ratio of the number of occurrences jtagjjpi of tagj in webpage pi
to the total number of occurrences

Pm
a¼1 jtagajpi of all tags, namely, frequency; IDFij is

the importance of tagj. Among them, n represents the total number of webpages, and
|pi,tagj ∈ pi| represents the number of webpages containing tagj.

There are 117 commonly used HTML tags, can be roughly divided into three categories:
layout-related tags, text-related tags, and other tags. Different tags have different effects on
webpages. For example, layout-related tags have larger effects on the page layout, and
text-related tags only affect the text display. The existing similarity comparison methods

Figure 6 HTML page using CSS settings. Full-size DOI: 10.7717/peerj-cs.868/fig-6

Feng et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.868 8/23

http://dx.doi.org/10.7717/peerj-cs.868/fig-6
http://dx.doi.org/10.7717/peerj-cs.868
https://peerj.com/computer-science/

for DOMs ignore this observation, but in our opinion, the use frequencies of tags can
reflect the importance of the tag categories. Through the statistics of DOM trees from
benign webpages collected, it is found that the use frequency of layout-related tags such as
div, span, li, option, etc. is 7/3 times than that of text-related tags, showed in Fig. 7, so we
set the weights for each category: layout-related tags are 7/3, text-related tags are 1, and
other cases are 0.

After weighting, the hierarchical tag vector of pi is:

Vpi
T ¼ ½zi1; zi2;…; zim� (3)

where zij = TFij � IDFij � weight.

Class attribute vector

Class attribute is set type, and each set contains multiple attribute strings. Therefore, the
sets of webpages with similar styles and layouts will have some common elements, so they
can be directly embedded.

Vpi
C ¼ ½ssi1; ssi2;…; ssiq� (4)

In the Eq. (4), the attribute vector of webpage pi contains q attributes.

Similarity measurement
The tag vector and the Class attribute vector are the basis for similarity calculation. Firstly,
the tag hierarchical representation matrix is used as input, and the tag difference is
calculated by comparing the maximum dissimilarity. Secondly, the Dice coefficient is used
to measure the Class attribute difference. Finally, the combined value of the two is used to
measure the total difference of webpages to express the similarity between webpages.

Definition 1 Tag difference (DT)

DTðp1; p2Þ ¼ DiffValue
MaxValue

(5)

DiffValue ¼
Xm
i¼1

jz1i � z2ij (6)

The tag vector of webpage p1 is V
p1
T ¼ ½z11; z12;…; z1m� and the tag vector of webpage p2

is Vp2
T ¼ ½z21; z22;…; z2m�, MaxValue is the maximum value of DiffValue.

Definition 2 Class attribute difference (DC)

Figure 7 Frequency of tag usage. Full-size DOI: 10.7717/peerj-cs.868/fig-7

Feng et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.868 9/23

http://dx.doi.org/10.7717/peerj-cs.868/fig-7
http://dx.doi.org/10.7717/peerj-cs.868
https://peerj.com/computer-science/

DCðp1; p2Þ ¼ 1� 2 � jVp1
C \ Vp2

C j
jVp1

C j þ jVp2
C j (7)

where “| |” means getting the number of elements in a set.
Definition 3 Total difference between webpages (D)

Dðp1; p2Þ ¼ a � DTðp1; p2Þ þ b � DCðp1; p2Þ (8)

In order to distinguish the influence of structure and attribute on similarity calculation,
set the tag vector importance factor α and the Class attribute vector importance factor
β separately, where α + β = 1. It can be seen from Eq. (8) that if the total difference value
is larger, the two HTML pages are less similar.

Figure 8 provide an illustrative example for above process.

Clustering
The partition-based method is a typical clustering method. It often divides the dataset into k
groups, each of which represents a category, such as k-means and k-medoide algorithm
(Modak, Chattopadhyay & Chattopadhyay, 2020). However, such methods need to set
the number of clusters in advance. Since the number of phishing clusters cannot be
determined in advance, they cannot be directly adopted. So, a k-cluster algorithm is
proposed to determine the number of clusters according to actual situation. Firstly, the
selection of the initial centre set is performed. After k initial centre points are obtained, the
webpage set is divided iteratively using the k-medoide clustering method until the clustering
results no longer change. The steps for selecting the initial cluster centre are as follows:

1. Set a webpage selected randomly from the webpages as the initial centre point.

2. Use Eq. (8) to calculate the difference between other webpages and the central point,
group webpages and central points smaller than the threshold θ into one cluster, and
find a new central point which is the closest webpage to the mean of this cluster.

3. Randomly select a webpage from the webpages outside existed cluster(s) as the initial
centre point and repeat step 2.

4. Repeat step 3 until the clustering is completed, get k initial centre points.

Although random webpage is selected at the beginning, a reasonable one will be got
iteratively. This will eliminate the influence of random initial cluster centre on the number
of clusters. After the clustering is completed, phishing clusters with similar structures are
obtained, and the clusters are labelled by known webpage labels.

Phase 2 prediction
The webpage to be tested is usually classified according to its distance from the centre of
clusters, and then the webpage is marked according to label of the cluster. The problem
is that when there are many clusters, the computational efficiency is low. In order to
improve computational efficiency, a Fingerprint Generation (FG) algorithm is proposed to
generate fingerprints for webpages by extracting their key structural features, so as to
realize the fuzzy and fast detection.

Feng et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.868 10/23

http://dx.doi.org/10.7717/peerj-cs.868
https://peerj.com/computer-science/

Fingerprint generation
A fingerprint can be understood as a short fixed-length character string. In order to
generate fingerprints, the original webpage needs to be compressed. FG is divided into two
stages, FGμ and FGη.

FGμ stage

The tag sequence is read sequentially, and the initial fingerprint is generated using the
LZ78 compression algorithm (Barua et al., 2017). That is, if a certain HTML tag has not
appeared, the code is 0; if it has appeared, the longest prefix record of the tag is searched,

Figure 8 An illustrative example of two webpages. Full-size DOI: 10.7717/peerj-cs.868/fig-8

Feng et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.868 11/23

http://dx.doi.org/10.7717/peerj-cs.868/fig-8
http://dx.doi.org/10.7717/peerj-cs.868
https://peerj.com/computer-science/

and the code is value of the longest prefix index. A code table is constructed to record
the above information.

By analysing DOM trees, it is found that the shallow nodes of the trees have greater
impact on the webpage structure. If two webpages are not similar, the shallow tags will be
quite different; but if two webpages are similar, the shallow tags are similar, but the deeper
the level, the difference bigger. That is to say, the in-depth information of the DOMs
will interfere with the expression of the structures, so exact comparison between DOMs is
not desirable. Set threshold l for the length of fingerprint to limit the length of the output
fingerprint and weaken the influence of the deep nodes of the DOM structure.

FGη stage

Perform second compression based on the initial fingerprint, that is, convert the repetitive
codes in the initial fingerprint into codewords and the number of occurrences to form the
final webpage fingerprint sequence newFP = FGη(FinP). Specifically, the rules are as
follows:

� If there is no continuous repetition of the code: only the code is added in newFP;

� If the number of consecutive occurrences of the code ≥ 2: add the code and the
corresponding number of repetitions to newFP.

Here is an example of the above fingerprint generation process. Assume that the tag
sequence of a webpage is shown in Fig. 9.

According to the tag sequence, give serial number to the tags, shown in Fig. 10. Read the
label in sequence, if a tag is appeared for the first time, give it a serial number; otherwise,
if an existing tag occurs, continue to read the next tag for combination judgment. If
the combination did not appear before, connect the tag below the existing one and
number it.

After all tags are numbered, the code table will be constructed, shown in Fig. 11.

Figure 9 Tag sequence. Full-size DOI: 10.7717/peerj-cs.868/fig-9

Feng et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.868 12/23

http://dx.doi.org/10.7717/peerj-cs.868/fig-9
http://dx.doi.org/10.7717/peerj-cs.868
https://peerj.com/computer-science/

Figure 10 Numbered tags. Full-size DOI: 10.7717/peerj-cs.868/fig-10

Figure 11 Code table. Full-size DOI: 10.7717/peerj-cs.868/fig-11

Feng et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.868 13/23

http://dx.doi.org/10.7717/peerj-cs.868/fig-10
http://dx.doi.org/10.7717/peerj-cs.868/fig-11
http://dx.doi.org/10.7717/peerj-cs.868
https://peerj.com/computer-science/

According to FG algorithm, after the FGμ stage, use the code table to output the number
of the longest prefix index, FGμ(Seq) = FinP = [0, 0, 0, 0, 4, 0, 6, 0, 0, 4, 0, 11, 11, 9, 0, 8].
Then, after the FGη stage, the longest prefix index column is further converted, so
FGη(FinP) = newFP = [0, 4, 4, 0, 6, 0, 2, 4, 0, 11, 2, 9, 0, 8], this is the final fingerprint
generated after twice compressions.

To improve the comparison efficiency, unlike the modelling stage, the Class attribute is
not considered in the fingerprint generation process.

In some special circumstances, the fingerprints may be the same even facing different
webpages. Because in FGμ stage, only partial front DOMs are taken to generate l bytes
fingerprint. If two webpages have same part of their DOMs, the fingerprints will be the
same. FGη stage only convert repetitive codes into codewords and there is no information
loss, so the same fingerprints created in FGμ stage will keep same after that. But for
two different clusters, the fingerprints will be different because centre points of two clusters
have different low lever DOMs, or they will be in one cluster. This is what we need: to
simplify the comparison of webpages, remove the redundancy of internal information
while realize the fuzzy and fast detection.

Webpage classification
After generating fingerprints for the webpage to be tested, make a bitwise comparison to
the fingerprints of the various clusters, and classify the webpage into the cluster with
the difference value D less than the threshold φ, and make it labelled according to the
category of the cluster.

EXPERIMENTAL RESULTS AND ANALYSIS
In order to verify the validity of the SPHDMmodel, two sets of experiments were designed
to try to answer the following questions:

� Question 1: Can SPHDM accurately detect phishing webpages?

� Question 2: Does SPHDM improve detection efficiency?

Experiment preparation
Experimental environment and dataset

The experimental development environment is shown in Table 2.
The webpages used in the experiments come from Internet. Among them, the benign

webpage collection is from Alexa. Alexa is a website maintained by Amazon that publishes
the world rankings of websites. We collect webpages in the top list provided by Alexa
which are considered as benign webpages. After filtering out invalid, error, and duplicate
pages, 10,922 benign webpages are collected.

The phishing webpage collection comes from PhishTank.com. PhishTank is an
internationally well-known website which collects suspected phish submitted by anyone,
verifies it according to whether it has a fraudulent attempt or not, and then publish a
timely and authoritative list of phishing webpages for research. Due to the short survival
time of phishing webpages, we collected totally 10,944 phishing webpages listed on

Feng et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.868 14/23

http://PhishTank.com
http://dx.doi.org/10.7717/peerj-cs.868
https://peerj.com/computer-science/

PhishTank every day from September 2019 to November 2019, and processed the
webpages that did not meet the grammar rules.

Evaluation indicators
To summarize various evaluation indicators in the literatures, the most commonly used
are the following: Precision, True Positive Rate (TPR) and False Positive Rate (FPR), and
their calculation formulas are shown in Table 3.

Among them, TP (True Positive) denotes the number of phishing webpages correctly
classified as phishing webpages, FP (False Positive) denotes the number of benign
webpages classified as phishing webpages, TN (True Negative) denotes the number of
benign webpages classified as benign webpages, and FN (False Negative) denotes the
number of phishing webpages classified as benign webpages.

Baselines

In SPHDM, although modelling and prediction are highly related tasks, they are often
processed and solved independently in practical applications, so their effects are also
verified separately in experiments.

For the modelling part, since the starting point is structural similarity of DOM, the
typical methods are compared, which mainly include tree edit distance (ED (Alpuente &
Romero, 2010)) method, tag frequency statistics (TC) method, and hierarchical distance
(HD) method. In addition, it is compared with the traditional TF-IDF to illustrate the
advantages of the improved TF-IDF similarity.

In the prediction part, it is compared with the typical web fingerprint generation
algorithm Simhash (Charikar, 2002) and the encoding compression algorithm Huffman
(Henzinger, 2006).

Notice that classification-based methods are not compared because SPHDM is a
clustering-based method.

Experimental evaluation
Experiment 1
In order to evaluate the effectiveness of SPHDM, Experiment 1 compares SPHDMwith the
classic phishing webpage detection method based on structural similarity.

Table 2 Development environment.

Operating system Processor Memory Development environment Development language

Windows 10 Intel Core i5-3337U 4 GB Eclipse Python2.7

Table 3 Evaluation indicators.

Evaluation indicator Calculation formula

Precision TP/(TP + FP)

TPR TP/(TP + FN)

FPR FP/(TN + FP)

Feng et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.868 15/23

http://dx.doi.org/10.7717/peerj-cs.868
https://peerj.com/computer-science/

Parameter setting for SPHDM

In order to select suitable parameters, the experiment adjusts the two parameters α and β

in Eq. (8), shown in Table 4, and selects the best set of parameters.
From Table 4, as α decreases and β increases, TPR fluctuates between 89.36%–91.78%.

When α ≤ 0.9 and β ≥ 0.1, FPR gradually increases, while Precision gradually decreases.
Since the results are better when TPR and Precision take high values and FPR takes
low values, it is obvious that α = 0.9 and β = 0.1 are appropriate. Therefore, the experiment
finally chooses the tag coefficient α = 0.9 and the Class coefficient β = 0.1. This is in line
with the actual situation. In webpages, the DOM reflects the global information of the
webpage structure, while the Class attribute only reflects the detailed information, and the
amount of the Class attribute is relatively small compared to the DOM, so the effect of the
DOM tree is far greater on structure than the Class attribute.

The key to clustering is to find the optimal threshold θ. The larger the value of θ,
the looser the clustering restriction, so the FPR will increase; on the contrary, the stricter
the clustering restriction, the lower the FPR will be. The results under different θ are shown
in Table 5.

It can be concluded from Table 5 that as the threshold gradually increases, both TPR
and FPR are increasing. Especially when the threshold is greater than 0.3, the value of

Table 4 Selection of parameters α and β.

Tag coefficient α Class coefficient β TPR/% FPR/% Precision/%

1.0 0.0 90.75 0.22 99.8

0.9 0.1 90.10 0.05 99.9

0.8 0.2 91.12 0.10 99.9

0.7 0.3 90.54 0.25 99.7

0.6 0.4 89.36 0.55 99.4

0.5 0.5 90.90 0.98 98.9

0.4 0.6 90.35 3.24 96.5

0.3 0.7 91.26 8.12 91.8

0.2 0.8 91.74 8.62 91.4

0.1 0.9 91.34 8.60 91.4

0 1.0 91.78 8.62 91.4

Table 5 Results under different θ.

Threshold θ TPR/% FPR/%

0.05 88.63 0.02

0.1 91.12 0.10

0.2 92.80 3.73

0.3 93.86 10.63

0.4 98.98 91.69

0.5 100.00 100.00

0.6 100.00 100.00

Feng et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.868 16/23

http://dx.doi.org/10.7717/peerj-cs.868
https://peerj.com/computer-science/

FPR rises rapidly. When θ is 0.1, TPR and FPR reach a good compromise. Therefore, set θ
to 0.1.

Detection effect

Table 6 shows the number of clusters and effects after the execution of each method under
the above parameters.

It can be seen from Table 6 that SPHDMhas the best effect. ED is based on edit distance.
In the case of complex webpage layout, it causes more mismatches, so the effect is
worse than other methods. On the other hand, TC is based on tag frequency. When the
webpage layout is complex, the similarity calculation result is better; but for the webpage
with simple structure, because the total number of tags is small, the discrimination
ability of tag frequency is low. TF-IDF weights the word frequency, which weakens the less
influential tags to a certain extent, so the TPR is improved. HD not only compares the tags,
but also considers the level of tags, so the overall performance is better. However, for
webpages with strong homology, in order to improve the comparison efficiency, HD only
extracts shallow tags for calculation, which has caused certain misjudgements. SPHDM
combines tags and style attribute in the page structure, comprehensively considers the tag
frequency, tag category and weight, and can better reflect the structural characteristics of
webpages. Therefore, TPR and FPR have reached the optimal results.

From the perspective of the number of clusters, ED has the largest number of
clusters due to its strict matching mode. SPHDM has the least number of clusters because
it focuses on expressing homology and can better classify webpages with similar overall
structures but small differences into one category. When more webpages are collected and
used, the detection effect will be more accurate, because more cluster will be found.

In addition, the clustering of ED takes the longest time because it requires bitwise
comparisons between sequences, while others are all based on statistical methods. TC
and HD are simpler statistical method than TF-IDF. Comparing to TF-IDF, SPHDM
considers both structure and semantics, and takes the CSS information into account, so
needs longer clustering time.

Cluster analysis

By observing the clustering results, we find that phishing webpages mostly target at the
mailboxes of some famous websites. The title information of the phishing webpages is
extracted and listed in Table 7 together with the imitation targets.

Table 6 Clustering results.

Method Number of clusters Clustering time/s TPR/% FPR/%

ED 2,048 6,818 84.25 1.91

TC 1,701 3,631 86.90 0.29

TF-IDF 1,700 4,503 88.89 0.73

HD 1,655 1,917 89.23 1.22

SPHDM 1,598 4,925 90.10 0.05

Feng et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.868 17/23

http://dx.doi.org/10.7717/peerj-cs.868
https://peerj.com/computer-science/

It can be seen that the title of the phishing webpage basically corresponds to the target
brand, which is easy to be confused in visual effect. It is worth noting that the same target
brand often has many corresponding phishing webpages, but these phishing webpages
are different in structure and created by different toolkits, so they belong to different
clusters.

Experiment 2
Experiment 2 conducted an experimental analysis on the efficiency improvement of the
prediction stage in SPHDM.

Parameter setting

Table 8 shows the detection effect of webpage fingerprints with different lengths.
It can be observed from Table 8 that when the length of the fingerprint is increased to a

certain extent, the effect becomes not very significant, but on the contrary, it will increase
the comparison time. When l = 35, the result of is better than other values, so set
l = 35. Notice that FG is basically a data compression algorithm, when the original data is
long enough, the compressed result will be valid. In general, the DOM tree of a webpage is
composed of a large number of tag sequences, which is enough to generate a 35-byte
fingerprint.

Table 7 Brands imitated frequently by phishing webpages.

Title of phishing webpages Target brands

only the best-yahoo Yahoo

secure login Mail box

google docs Google

dropbox Dropbox

yahoo-login Yahoo

Login-PαyPαl Paypal

Table 8 The effect of fingerprints with different length.

Length l TPR/% FPR/%

10 98.10 5.23

15 98.23 4.72

20 90.28 0.27

25 88.08 0.09

30 88.71 0.08

35 89.86 0.06

40 87.76 0.06

50 87.68 0.05

60 87.65 0.06

70 87.61 0.05

80 86.59 0.05

Feng et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.868 18/23

http://dx.doi.org/10.7717/peerj-cs.868
https://peerj.com/computer-science/

Table 9 shows the influence of the fingerprint difference threshold φ on the detection
result. This parameter is the classification condition of the unknown webpage. It can be
seen from Table 9 that FPR increases with the increase of the threshold. Therefore,
considering TPR and FPR, set φ = 0.2.

Detection effect

When detecting the webpage to be tested, Table 10 shows the effect of combining SPHDM
with different compression methods.

Observing Table 10, it can be seen that in the prediction phase, directly using the
features of the modelling phase, the detection effect is the best. SPHDM+FG adopts FG to
collect fingerprints and compare fingerprints during prediction. Although the effect is
slightly reduced, but the gap is very small. The problem of using LZ78 after clustering is
that the information in front of the coding table has no index for reference at first, and
most of it will be 0, which causes the number of identical elements to be increased
when comparing fingerprints, which affects the similarity. Twice compression of FG
weakens the influence of such situations, so the result is slightly better. TPR of Simhash is
quite ideal because it uses the MD5 algorithm to hash webpages, which can achieve a
high degree of similarity for similar webpages. But at the same time, Simhash is very
sensitive to differences in webpages, and can distinguish slightly different hash values, so
fuzzy comparison cannot be achieved well. Huffman only considers the feature frequency,
so the discrimination effect is poor.

Table 9 Results under different φ.

Threshold φ TPR/% FPR/% Precision/%

0.1 87.94 0.03 99.9

0.2 89.86 0.06 99.9

0.3 89.84 0.19 99.7

0.4 89.58 0.70 99.2

0.5 91.26 1.93 97.9

0.6 92.73 9.39 90.8

0.7 98.76 82.55 54.5

0.8 100.0 99.94 50.0

0.9 100.0 100.0 50.0

Table 10 Detection results.

Method TPR/% FPR/%

SPHDM 90.10 0.05

SPHDM+Huffman 86.37 0.20

SPHDM+Simhash 89.88 14.81

SPHDM+LZ78 89.56 0.10

SPHDM+FG 89.86 0.06

Feng et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.868 19/23

http://dx.doi.org/10.7717/peerj-cs.868
https://peerj.com/computer-science/

Detection efficiency

FG is proposed to improve the prediction efficiency. Figure 12 shows the average webpage
classification time under different methods, which refers to the average time, including
fingerprint generation time.

It can be seen from Fig. 12 that Simhash takes the longest time and FG takes the shortest
time, that is, the efficiency is the highest. This is because fingerprint generation process of
Simhash is more complicated. It needs to perform pre-processing operations such as
word segmentation on the tag sequence, and then perform operations such as hash
calculation, feature weighting, accumulation and merging, and fingerprint dimensionality
reduction. On the other hand, FG can accelerate the comparison process due to the simple
calculation but fixed-length fingerprint.

Notice the SPHDM only needs to cluster once to capture the basic structure information
and represent a phishing family. The newly generated phishing webpages still have high
structural similarity with some existing phishing webpages over a period of time if they
belong to the same family. But for the classification methods, because feature evolution
may make feature learning invalid, adjustments for classification model are required,
which increases the time required for training and the difficulty of deployment, so SPHDM
could be more efficient from this perspective.

Through the above two sets of experiments, it can be seen that from the perspective of
homology, SPHDM is feasible to extract the structural features of webpages for family
tracing, and FG can effectively improve the detection efficiency.

CONCLUSIONS
From the perspective of whether webpages have homology, a cluster-based phishing
webpage detection model SPHDM is proposed. The model combines the DOM hierarchy
tags and the Class attribute corresponding to the CSS style to express the structural
characteristics of webpages, realizes the traceability of the phishing kits through clustering,
and proposes FG algorithm to accelerate the classification of unknown pages. Experiments

Figure 12 Comparison of average webpage classification time.
Full-size DOI: 10.7717/peerj-cs.868/fig-12

Feng et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.868 20/23

http://dx.doi.org/10.7717/peerj-cs.868/fig-12
http://dx.doi.org/10.7717/peerj-cs.868
https://peerj.com/computer-science/

show that compared with the existing phishing webpage detection methods based on
structure clustering, SPHDM has a good detection effect and high efficiency.

The research hypothesis of the paper is to treat the DOM structure of a webpage as a
tree. More generally, if the DOM structure is regarded as a graph, then the similarity
comparison between two webpages is a similarity comparison problem between the two
graphs, and the underlying scientific problem is graph matching or network alignment.
At present, the research of graph neural network (GNN) is in full swing. If GNN can be
used to solve scientific problems such as graph matching and network alignment, and
establish a more effective detection model, it will be important to improve the effect of
phishing webpage detection and homology analysis.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the Shaanxi Provincial Natural Science Foundation Project
(Nos. 2020JM-533 and 2020JM-526) and the Chinese Postdoctoral Science Foundation
(No. 2020M673446), and there was no additional external funding received for this study.
The funders had no role in study design, data collection and analysis, decision to publish,
or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
Shaanxi Provincial Natural Science Foundation Project: 2020JM-533 and 2020JM-526.
Chinese Postdoctoral Science Foundation: 2020M673446.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Jian Feng conceived and designed the experiments, authored or reviewed drafts of the
paper, and approved the final draft.

� Yuqiang Qiao performed the experiments, analyzed the data, performed the
computation work, prepared figures and/or tables, and approved the final draft.

� Ou Ye performed the computation work, authored or reviewed drafts of the paper, and
approved the final draft.

� Ying Zhang conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables, and
approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The complete code and data are available in GitHub: https://github.com/qiaodaben/
SPHDM/.

Feng et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.868 21/23

https://github.com/qiaodaben/SPHDM/
https://github.com/qiaodaben/SPHDM/
http://dx.doi.org/10.7717/peerj-cs.868
https://peerj.com/computer-science/

REFERENCES
Aleroud A, Zhou L. 2017. Phishing environments, techniques, and countermeasures: a survey.

Computers & Security 68(9):160–196 DOI 10.1016/j.cose.2017.04.006.

Alpuente M, Romero D. 2010. A tool for computing the visual similarity of web pages. In: 10th
IEEE/IPSJ International Symposium on Applications and the Internet. 19–23 July 2010, Seoul,
Piscataway: IEEE, 45–51.

APWG. 2020. Phishing activity trends report, 3rd quarter 2020. Available at https://docs.apwg.org/
reports/apwg_trends_report_q3_2020.pdf.

Bahnsen AC, Bohorquez EC, Villegas S, Vargas J, González FA. 2017. Classifying phishing urls
using recurrent neural networks. In: 2017 APWG Symposium on Electronic Crime Research
(eCrime). 25–27 April 2017, Scottsdale, 1–8.

Barua L, Dhar PK, Alam L, Echizen I. 2017. Bangla text compression based on modified Lempel-
ziv-welch algorithm. In: 2017 International Conference on Electrical, Computer and
Communication Engineering (ECCE). 16–18 February 2017, Cox’s Bazar, 855–859.

Charikar MS. 2002. Similarity estimation techniques from rounding algorithms. In: Proceedings of
the 34h Annual ACM Symposium on Theory of Computing. 19–21 May 2002, Montreal, 380–388.

Cui Q, Jourdan GV, Bochmann GV, Couturier R, Onut IV. 2017. Tracking phishing attacks over
time. In: Proceedings of the 26th International Conference on World Wide Web. 3–7 April 2017,
Perth, 667–676.

Feng J, Zhang Y. 2018. A detection method for phishing webpage based on document object model
structure clustering. Science Technology and Engineering 18:81–89
DOI 10.3969/j.issn.1671-1815.2018.23.012.

Feng J, Zou LY, Nan TZ. 2019. A phishing webpage detection method based on stacked
autoencoder and correlation coefficients. Journal of Computing and Information Technology
27(2):41–54 DOI 10.20532/cit.2019.1004702.

Feng J, Zou LY, Ye O, Han JZ. 2020. Web2vec: phishing webpage detection method based on
multidimensional features driven by deep learning. IEEE Access 8:221214–221224
DOI 10.1109/ACCESS.2020.3043188.

Henzinger M. 2006. Finding near-duplicate web pages: a large-scale evaluation of algorithms. In:
Proceedings of the 29th Annual International ACM SIGIR Conference on Research and
Development in Information Retrieval. 6–11 August 2006, Seattle, New York: ACM, 284–291.

Khan A, Baharudin B, Lee LH, Khan K. 2010. A review of machine learning algorithms for
text-documents classification. Journal of Advances in Information Technology 1(1):4–20
DOI 10.4304/jait.1.1.4-20.

Li XC, ZhangWZ,Wang DS, Zhang B, He H. 2019. Algorithm of web page similarity comparison
based on visual block. Computer Science and Information Systems 16(3):815–830
DOI 10.2298/CSIS180915028L.

Liang B, Su MQ, You W, Shi WC, Yang G. 2016. Cracking classifiers for evasion: a case study on
the Google’s phishing pages filter. In: Proceedings of the 25th International Conference on World
Wide Web. Montreal, 11–15 April 2016, 345–356.

Liu WY, Huang GL, Liu XY, Zhang M, Deng XT. 2005. Detection of phishing webpages based on
visual similarity. In: 14th International World Wide Web Conference, WWW2005. 10–14 May
2005Chiba, 10–14.

Modak S, Chattopadhyay T, Chattopadhyay AK. 2020. Unsupervised classification of eclipsing
binary light curves through k-medoids clustering. Journal of Applied Statistics 47(2):376–392
DOI 10.1080/02664763.2019.1635574.

Feng et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.868 22/23

http://dx.doi.org/10.1016/j.cose.2017.04.006
https://docs.apwg.org/reports/apwg_trends_report_q3_2020.pdf
https://docs.apwg.org/reports/apwg_trends_report_q3_2020.pdf
http://dx.doi.org/10.3969/j.issn.1671-1815.2018.23.012
http://dx.doi.org/10.20532/cit.2019.1004702
http://dx.doi.org/10.1109/ACCESS.2020.3043188
http://dx.doi.org/10.4304/jait.1.1.4-20
http://dx.doi.org/10.2298/CSIS180915028L
http://dx.doi.org/10.1080/02664763.2019.1635574
http://dx.doi.org/10.7717/peerj-cs.868
https://peerj.com/computer-science/

Moghimi M, Varjani AY. 2016. New rule-based phishing detection method. Expert Systems with
Applications 53(13):231–242 DOI 10.1016/j.eswa.2016.01.028.

Oest A, Safei Y, Doupé A, Ahn GJ, Wardman B, Warner G. 2018. Inside a phisher’s mind:
understanding the anti-phishing ecosystem through phishing kit analysis. In: 2018 APWG
Symposium on Electronic Crime Research (eCrime). 15–17 May 2018, San Diego, 15–17.

Raj MN, Vithalpura PJ. 2018. A survey on phishing detection based on visual similarity of web
pages. International Journal of Scientific Research in Science, Engineering and Technology
4:81–86.

Rao RS, Pais AR. 2019. Detection of phishing websites using an efficient feature-based machine
learning framework. Neural Computing and Applications 31(8):3851–3873
DOI 10.1007/s00521-017-3305-0.

Rao RS, Pais AR. 2020. Two level filtering mechanism to detect phishing sites using lightweight
visual similarity approach. Journal of Ambient Intelligence and Humanized Computing
11(9):1–20 DOI 10.1007/s12652-019-01637-z.

Rosiello AP, Kirda E, Kruegel C, Ferrandi F. 2007. A layout-similarity-based approach for
detecting phishing pages. In: 2007 Third International Conference on Security and Privacy in
Communications Networks and the Workshops. 17–21 September 2007, Nice, 454–463.

Xiang G, Hong J, Rose CP, Cranor L. 2011. Cantina+ a feature-rich machine learning framework
for detecting phishing web sites. ACM Transactions on Information and System Security
14(2):1–28 DOI 10.1145/2019599.2019606.

Yang P, Zhao GZ, Zeng P. 2019. Phishing website detection based on multidimensional features
driven by deep learning. IEEE Access 7:15196–15209 DOI 10.1109/ACCESS.2019.2892066.

Zou XQ, Zhang P, Huang CY, Chen ZP, Sun Y, Liu QY. 2016. Phishing attacks discovery based
on html layout similarity. Journal on Communications 37:116–124
DOI 10.11959/j.issn.1000-436x.2016257.

Feng et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.868 23/23

http://dx.doi.org/10.1016/j.eswa.2016.01.028
http://dx.doi.org/10.1007/s00521-017-3305-0
http://dx.doi.org/10.1007/s12652-019-01637-z
http://dx.doi.org/10.1145/2019599.2019606
http://dx.doi.org/10.1109/ACCESS.2019.2892066
http://dx.doi.org/10.11959/j.issn.1000-436x.2016257
http://dx.doi.org/10.7717/peerj-cs.868
https://peerj.com/computer-science/

	Detecting phishing webpages via homology analysis of webpage structure
	Introduction
	Related works
	Proposed method
	Experimental results and analysis
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

