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ABSTRACT
Depth estimation has been an essential task for many computer vision applications,
especially in autonomous driving, where safety is paramount. Depth can be estimated
not only with traditional supervised learning but also via a self-supervised approach
that relies on camera motion and does not require ground truth depth maps. Recently,
major improvements have been introduced to make self-supervised depth prediction
more precise. However, most existing approaches still focus on single-frame depth
estimation, even in the self-supervised setting. Since most methods can operate with
frame sequences, we believe that the quality of current models can be significantly
improved with the help of information about previous frames. In this work, we
study different ways of integrating recurrent blocks and attention mechanisms into a
common self-supervised depth estimation pipeline. We propose a set of modifications
that utilize temporal information from previous frames and provide new neural
network architectures for monocular depth estimation in a self-supervised manner.
Our experiments on the KITTI dataset show that proposed modifications can be an
effective tool for exploiting temporal information in a depth prediction pipeline.

Subjects Artificial Intelligence, Computer Vision, Robotics
Keywords Computer Vision, Depth Reconstruction, Autonomous Vehicles, Deep Convolutional
Neural Networks, Recurrent Neural Networks, Self-Supervised Learning, Attention Mechanism,
Augmented Reality

INTRODUCTION
Depth estimation is an essential basic problem for a variety of computer vision applications.
It is key to understanding 3D scene geometry and can provide essential cues in many tasks,
including object detection (Gupta et al., 2014), scene reconstruction (Menze, Heipke &
Geiger, 2015; Menze, Heipke & Geiger, 2018; Shin et al., 2019), simultaneous localization
and mapping (SLAM) (Yang et al., 2018), image classification (He, 2017), and others. In
practice, depth maps can be obtained directly, e.g., with the help of light detection and
ranging (LiDAR) devices. Although LiDARs are widely used in practice, they produce
low-resolution results, and their perception distance is short. Modern methods of depth
estimation from image sequences do not suffer from these limitations, and due to the
growing success and generally excellent performance of modern computer vision models
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and algorithms they can often supplement or even replace hardware sensors. In this work,
we consider the problem of depth estimation through joint optimization of scene structure
and camera motion across sequences of RGB images. This approach is called Structure
from Motion (SfM) (Schnberger & Frahm, 2016), and it implies training in a self-supervised
manner.

Over the past decade, depth estimation has been considered in numerous studies. Many
theoretical and conceptual frameworks have been put forward to boost depth prediction
quality (Eigen, Puhrsch & Fergus, 2014; Laina et al., 2016b; Eigen & Fergus, 2014; Fu et al.,
2018). Recent improvements in self-supervised depth estimation have also resulted in
important performance improvements (Zhou et al., 2017; Godard et al., 2019; Guizilini et
al., 2020a). We especially note methods that combined both approaches: depth prediction
and information produced by a LiDAR sensor or SLAM (Ma & Karaman, 2017; Ma,
Cavalheiro & Karaman, 2018).

Despite the progress of modern depth estimation methods, a number of challenging
problems still remain. One key problem is the fact that depth estimation is ill-posed: the
same input image can project to different depths. Moreover, existing depth estimation
models are often very sensitive to changing external conditions such as lighting and noise.
Self-supervised approaches to depth estimation rely on ego-motion information and do
not take into account ground truth depth maps, which implies that these methods usually
perform worse than supervised ones.

Existing approaches, both supervised and self-supervised, usually estimate depth based
on a single image, although in practice it is very often possible to utilize information
from image sequences. There do exist state-of-the-art self-supervised methods that already
use frame sequences for camera pose estimation and view synthesis further down the
line (Zhou et al., 2017; Godard et al., 2019). However, most of them still do not utilize this
temporal information in depth prediction. We believe that the performance of current
state-of-the-art methods can be further improved with temporal knowledge. To achieve
this, we aim to provide new modifications that can potentially increase depth accuracy in
the monocular setting from an image sequence.

In this study, we focus on self-supervised depth estimation. We propose a modified
architecture that can utilize temporal information in a depth model, integrating recurrent
ConvGRU and Fusion blocks with self-attention into existing self-supervised training
pipelines. To summarize, our main contributions are as follows:

1. We propose a set of modifications that result in new network architectures that utilize
temporal information across frame sequences. These modifications are based on recurrent
blocks and fusion of their hidden states.

2. We design a training strategy for the recurrent self-supervised depth prediction task.
3.We conduct experiments and provide results of the impact of our modifications. We

provide an ablation study that helps to estimate the effect of each component that we
propose. Our experiments show that the proposed methods can be an effective tool for
exploiting temporal information for depth estimation in real time.

The code for reproducing experiments is also released accompanying our paper
(https://github.com/MariBax/self-supervised-depth-estimation). The paper is structured as
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follows. Section 2 gives an overview of the current methods in depth estimation. In Section
3, we provide a theoretical basis for our experiments. Section 4 describes our experimental
setup, Section 5 provides their results, and in Section 6 we provide visual examples and
their analysis. Section 7 summarizes and concludes the paper.

RELATED WORK
In this section, we provide an overview of existing depth estimation methods. We begin
with supervised models that directly learn to predict depth maps from single RGB images.
Next, we address the problem of self-supervised learning and SfM-based methods. Finally,
we proceed to existing self-supervised approaches which are most relevant to our work.

Supervised depth estimation
The idea of supervised depth estimation implies direct learning of a hidden mapping
between the input image and its depth. Usually, this approach includes regression-based
methods because of the continuous nature of depth maps.

One of the earliest applications of deep learning to this problem (Eigen, Puhrsch & Fergus,
2014) introduced a network that consists of two components: one estimates the global scene
structure, and the other refines the results using local information. In the stereo-based
approach, Xie, Girshick & Farhadi (2016) designed a convolution neural network that
generates a corresponding right view of a stereo pair by combining information from
multiple levels. Disparity distribution for pixels is optimized with supervised photometric
loss. Cao, Wu & Shen (2016) reformulated the supervised depth estimation task as a
pixel-wise classification problem that was solved with a fully convolutional deep residual
network.

Supervised methods mostly rely on convolutional architectures. One important
difference between methods is that they tend to utilize a large variety of objective functions
that define the difference between the ground truth depth map and its prediction. The
most straightforward approach is to use L1 or L2 distances. Reverse Huber loss (Laina
et al., 2016b) is a popular example of a combination of these two distances. To address
the scale problem, some studies focused on the loss as a distance between predicted and
real depth in log space (Eigen, Puhrsch & Fergus, 2014; Eigen & Fergus, 2014). Yin et al.
(2019) argued that most metrics neglect geometric constraints in the three-dimensional
space, so they developed a loss that enforces geometrical constraints. Another alternative
to pixel-wise metrics is perceptual loss (Johnson, Alahi & Li, 2016), which was successfully
used in many depth-related tasks (Makarov, Aliev & Gerasimova, 2017; Makarov et al.,
2017; Makarov, Korinevskaya & Aliev, 2018a; Makarov & Korinevskaya, 2019; Makarov,
Korinevskaya & Aliev, 2018b; Makarov, Korinevskaya & Aliev, 2018c; Makarov et al., 2019;
Maslov & Makarov, 2021). To reduce blurring of estimated depths, a new model with
fusion mechanisms was proposed by Hu et al. (2019). It consists of a module that can fuse
multi-scale information produced by an encoder, a refine module to fuse decoder outputs
and multi-scale fusion modules. In their objective function, the authors combined the
difference in gradients and surface normals with balanced Euclidean loss in log space.
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State of the art performance in the supervised setting has been achieved by Fu et al.
(2018), who proposed the SID policy and ordinal regression loss. Despite the excellent
performance of the model, its main disadvantage is a huge number of parameters that
leads not only to long training time but also to large inference times in practice. Therefore,
a challenge arises to build a lightweight model that is able to process frame sequences
in real-time with reasonable quality. Recently, Maslov & Makarov (2020a) proposed an
architecture that appears to be suitable for real-time robotic applications. The model
utilizes temporal information from image sequences with the help of a convolutional gated
recurrent unit (ConvGRU) and convolutional long short-termmemory (ConvLSTM). The
authors showed that these recurrent blocks can lead to improvements in depth estimation
accuracy.

Self-supervised depth estimation
As deep learning models for computer vision become larger and more expressive, the data
requirements for training them rapidly grow as well. Creating a labeled dataset for depth
estimation by hand or with special hardware is extremely laborious and expensive. One
solution would be to use synthetic data (Nikolenko, 2021) that has indeed been extensively
used for depth estimation. An alternative approach would be to learn from unlabeled
monocular sequences or stereo image pairs, as has been done, e.g., in Garg, G & Reid
(2016) and Godard, Aodha & Brostow (2016). This approach does not utilize ground truth
depth maps. One of the first models to perform self-supervised depth estimation (Garg, G
& Reid, 2016) consists of a convolutional neural network that estimates depth maps from
paired stereo images. A predicted depth map is used in the geometrical transformation
of the left image into the synthesized right image or vice versa. The loss function here
consists of the difference between the synthesized and real images, defined as the structural
similarity index measure (Wang et al., 2004), and depth regularization terms.

Further studies mostly focused on generalizations of this approach in the monocular
setting. Monocular video-based methods usually utilize consecutive frames to
simultaneously learn the depth and pose. Given a target image and adjacent frames as
input, a model produces the depth for the target image and estimates relative poses
between the target image and nearby images. Next, the target view is reconstructed with
the predicted depth map and relative poses. The main difference between stereo-based and
monocular video-based approaches is that poses for stereo data are known and fixed, while
in the monocular setting, they also need to be predicted.

Most state-of-the-artmethods in self-supervised depth estimation are based on encoder–
decoder architectures. Next, we highlight a few such models that are the most relevant
for our study. Monodepth2 Godard et al. (2019) has been probably the most influential
approach in self-supervised depth estimation because of its simplicity. Its architecture
consists of a depth net and a pose net; both nets consist of a ResNet encoder and a decoder.
The main contribution of Monodepth2 is a set of improvements that together lead to
superior results in depth estimation. The authors introduced the minimum reprojection
loss as a substitute for the average reprojection loss and showed that the new loss is more
effective in handling occlusions. In addition, Godard et al. (2019) proposed a multi-scale
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pyramidal upsampling method and auto-masking loss that reduced visual inconsistency.
As a result, the model showed high-quality results on the KITTI benchmark, and since
then has become a starting point for many researchers. In this work, we mostly follow
Monodepth2 architecture and propose a set of additional components that can be used to
extract information from previous frames.

Guizilini et al. (2020a) recently proposed a new architecture called PackNet-SfM. Its key
feature is the design of packing and unpacking blocks that are considered to preserve the
3D geometrical structure of depth maps. Moreover, the authors presented a new velocity
supervision loss that solves the problem of scale ambiguity. Depth scale ambiguity implies
that predicted depthmaps are usually scaled with predefined constants. In PackNet, camera
velocity is estimated and used to compute the loss function that helps reduce the problem
with scaling. PackNet has achieved excellent performance on KITTI, but it utilizes heavy
3D convolutions, resulting in a long processing time.

In this work, we intend to investigate the effect of temporal information in depth
estimation in the self-supervised setting. Despite the fact that most existing models do not
focus on capturing temporal knowledge, there is a number of novel models that try to
follow a multi-frame or sequential approach in depth estimation (Watson et al., 2021; Hur
& Roth, 2021; Kuznietsov, Proesmans & Van Gool, 2021). In particular,Watson et al. (2021)
proposed to utilize nearby frames if they are available at test time and designed a model
called ManyDepth. Its key feature is a cost volume block that helps overcome the scale
ambiguity that arises from self-supervised training. Experiments on KITTI and Cityscapes
show that ManyDepth outperforms most existing self-supervised approaches. Hur & Roth
(2021) focused on the scene flow task where 3D scene flow and depth are estimated jointly
in a self-supervised setting. They propose a multi-frame model that uses triplets of frames
and recurrent blocks, and it shows state-of-the-art performance for the scene flow task.

METHODS
The self-supervised setting implies that ground truth depth maps are not available during
training. The standard approach here would be to train the model using input image
reconstruction as supervision. In this case, the model takes as input a list of monocular
images or stereo pairs, where one of the images is called the target image. By estimating
the depth in the target image and projecting it to nearby views, we reconstruct the target
image and try to minimize the reconstruction error.

In this section, we describe our model in detail. First, we review a common approach to
self-supervised depth estimation. We provide details about network structure and objective
functions. Next, we describe the components of our network: recurrent block ConvGRU,
self-attention layer, and the fusion technique.

Problem formulation
In the self-supervised monocular setting, we operate with frame sequences extracted from
videos. Given these consecutive frames, we predict the target view from the viewpoint of
another image. In order to synthesize the target image, we use a hidden variable, the depth
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Figure 1 Self-supervised monocular SfM network architecture. First, the target image It is processed
by Depth Net. At the same time, target and context frames (It ,Is) are passed through Pose Net. Then, us-
ing 6-DoF relative pose Pt→s and depth map D̂t , the target image Ît is reconstructed via the inverse warp-
ing transformation. The loss consists of two parts: photometric reprojection error between the real target
image and the synthesized one and a depth smoothness term. Road images and ground truth depth maps
taken fromMenze & Geiger (2015).

Full-size DOI: 10.7717/peerjcs.865/fig-1

map, and estimated relative pose between the target image and nearby view. The overall
self-supervised pipeline is illustrated in Fig. 1.

Formally, the problem can be described as follows. Suppose that we are givenN adjacent
images that can be considered as a frame sequence {I1,...,IN }. Usually, one image It is
chosen as the target image, while other frames S= {Is}Ns=1, s6=t are considered as context.
This sequence is an input for our model, which consists of two parts:

• the depth network (Depth Net in Fig. 1) fD : I→D that predicts scale-ambiguous depth
D= fD(I (p)) for every pixel p in the input image I ; using this depth network, we estimate
the depth for the target image;
• the pose network (Pose Net in Fig. 1) fP : (It ,Is)→ Pt→s that estimates a set of 6-DoF
relative poses Pt→s, Is ∈ S between the target image It and nearby context frames; for
example, if N = 3 then It = I2 and Is= Ii, where i∈ {1,3}.

Given a pair (Is,It ) consisting of the target image and source image, we can inversely
warp It to the source frame Is. In order to do this view synthesis, we need to know an
estimated depth map Dt for the target image It and the transformation Pt→s from It to
Is. For a given pixel coordinate pt from It which is co-visible in Is, its corresponding pixel
coordinate ps in Is can be defined by the inverse warping transformation as follows:

ps∼Ks[Pt→s]Dt (pt )K−1t pt , (1)

where ∼ denotes equality in the homogeneous coordinates (Shen et al., 2019), and Ks and
Kt are intrinsic matrices that are known and fixed. Dt (pt ) is the depth value for a pixel pt ,
and [Pt→s] is the transformation matrix. Thus, given the depth map and transformation
matrix, we can construct a matching function between pixels of the source and target
images. This approach can be considered as a geometric projection relationship, and it
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helps us synthesize views. The difference between a real image and a synthesized one is a
key component in the loss function described below.

Objective function
In the objective function, we follow Zhou et al. (2017): the overall self-supervised loss
function consists of the photometric reprojection error Lp and depth regularization term
Ls.

Let It be a ground truth target image, and let Is→t be the target image synthesized from
the source image Is. Then the basic photometric reprojection error Lp is defined as

Lp=
∑
Is∈S

pe(It ,Is→t ), (2)

where the reprojection error is defined as the weighted combination of the structural
similarity index measure (SSIM; seeWang et al. (2004)) and L1 pixelwise difference:

pe(Ia,Ib)=α
(1−SSIM (Ia,Ib))

2
+ (1−α)‖Ia− Ib‖1. (3)

Following Godard et al. (2019), we set α= 0.85.
The depth regularization term, first introduced by Godard, Aodha & Brostow (2016),

helps to regularize the depth in texture-less low-image gradient regions and is defined as

Ls(D̂t )= |δxD̂t |e−|δx It |+|δyD̂t |e−|δy It |. (4)

As we have mentioned above, we calculate the reprojection loss for a set of source images
Is. A common strategy used to compute the final loss is to average the reprojection error
from multiple sources, i.e., to average the expression in Eq. (2). However, this approach
may cause problems with pixels that may be not visible in some source images. Such pixels
represent a common problem in the ego-motion study because there is a high probability
of encountering objects blocking each other, especially in outdoor scenes. Several works
have shown that this problem can be overcome by using masking (Mahjourian, Wicke &
Angelova, 2018; Vijayanarasimhan et al., 2017); however, they do not take into account
the recovery of occluded regions. This phenomenon has been carefully studied by Godard
et al. (2019), and a simple solution was proposed: the authors replaced averaging with
minimum. As a result, the total photometric loss is defined as

Lp=min
Is∈S

pe(It ,Is→t ). (5)

Multi-scale image reconstruction is a common technique in computer vision tasks used
to prevent the objective function getting stuck in local minima. Following Godard et al.
(2019), we also use multi-scaling in our model. More formally, the photometric loss is
defined not just as on the final decoder output but as a combination of loss terms on
every scale of the decoder. In this work, we consider 4 scales. Godard et al. (2019) revealed
that this approach may result in ‘‘holes’’ in low-texture parts of the image, so Godard et al.
(2019) provided a modification for the multi-scaling approach. They upsample depth maps
at low scales of the decoder and then compute the photometric loss with these upscaled
maps, so that decoder outputs in the loss computation are upscaled to the original image
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resolution. This approach has proven to be very effective in the self-supervised multi-scale
depth estimation pipeline.

Self-supervised depth estimation mostly relies on ego-motion. Nevertheless, sometimes
motion assumptionsmay be violated when the camera is in a stationary position but objects
move in the scene. As a result, we may have stationary pixels that need to be processed by
the model. To overcome these issues, some approaches have been using per-pixel masking
(Zhou et al., 2017; Vijayanarasimhan et al., 2017; Luo et al., 2018). The mask is usually
incorporated into the loss function, and it can be either predictive, as in Zhou et al. (2017),
or computed by some direct algorithm. In this work, we use the auto-masking method
proposed in Godard et al. (2019). The idea is to track pixels that remain the same between
nearby frames, which implies a static position of the camera. The mask is binary, µ∈ {0,1},
where the value 0 corresponds to pixels where the reprojection error of the synthesized
image Is→t is lower than the error of the original unwrapped image Is:

µ=

[
min
Is∈S

pe(It ,Is→t )<min
Is∈S

pe(It ,Is)
]
. (6)

Overall loss function. The final loss is computed as a sum of the masked photometric
reprojection term and a smoothness term. We average this result over each pixel and every
image in the batch:

L=µLp+Ls. (7)

In the next sections, we provide an overview of three components that we incorporate
into our model to account for multiple frames at the input: recurrent block ConvGRU,
self-attention layer, and fusion. Each of the components is essential to our model as will be
shown in the ablation study section.

Recurrent block ConvGRU
Recurrent neural networks (RNNs) have been widely adopted in the field of computer
vision. However, initial RNN models appeared to face difficult training problems, such as
exploding or vanishing gradient effects (Pascanu, Mikolov & Bengio, 2012). A common way
to overcome the vanishing gradient problem is to use long short-termmemory units, LSTM
(Hochreiter & Schmidhuber, 1997; Gers, Schmidhuber & Cummins, 2000). LSTMs have
become one of the most popular approaches in sequence-to-sequence settings, especially in
natural language processing (NLP) tasks, including speech recognition (Graves, Mohamed
& Hinton, 2013) and machine translation (Parmar & Devi, 2019). By definition, an LSTM
block operates with one-dimensional inputs and is not naturally suited to image processing.
Nevertheless, Shi et al. (2015) recently proposed a new architecture called ConvLSTM that
extends the basic LSTM construction to two-dimensional inputs.

Over the past few years, some studies have used an alternative recurrentmechanism called
ConvGRU (Zhang et al., 2019). It was first introduced for the video representation task
(Ballas et al., 2015) and has proven to be quite effective in subsequent studies (Siam et al.,
2016; Maslov & Makarov, 2020a). ConvGRU has a simpler architecture than ConvLSTM
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while preserving the same gated structure. In this work, we use ConvGRU cells since it has
fewer parameters, and it has been proven to be effective in capturing temporal information
for online depth estimation (Maslov & Makarov, 2020a).

Next, we describe the ConvGRU cell as a particular type of RNN network applied to a
sequence of 2D objects with an arbitrary length. ConvGRU can be viewed as a modification
of the original GRU cell (Cho et al., 2014). Themain difference between these GRU versions
is that ConvGRU utilized convolution operations instead of fully connected units used
in the original GRU. Each recurrent unit of the ConvGRU cell is designed to capture
dependencies on different time scales. Moreover, due to convolution operation, these
recurrent units share their parameters across different spatial locations in the input (Ballas
et al., 2015). The hidden state ht of the ConvGRU can be described by the following
equations:

zt = σ (Wxz ∗xt +Whz ∗ht−1+bz), (8)

rt = σ (Wxr ∗xt +Whr ∗ht−1+br ), (9)

h̃t = tanh(Wx ∗xt +Wh(rt ◦ht−1)+bh), (10)

ht = (1−zt )◦ht−1+zt ◦ h̃t , (11)

where ∗ denotes convolution, weight matrices Wxz , Whz , Wxr , Whr , Wx , Wh are 2D-
convolutional kernels, and bz , br , bh are the corresponding bias terms. In order to
preserve the same spatial size of hidden representations, zero-padding is used in recurrent
convolutions. The ConvGRU architecture is illustrated in Fig. 2.

Our main idea of using convGRU unit is similar toMaslov & Makarov (2020a), in which
authors used combinations of convolutions and recurrent blocks for temporal information
aggregation for supervised depth estimation. We believe that in self-supervised setting
temporal consistency is even more essential for robust depth estimation in both, single
image and sequential settings. The key component to it is properly chosen self-attention
mechanism described next.

Self-attention
Convolutional neural networks are widely used in many neural network architectures,
especially in computer vision. However, a single convolutional layer can only capture
dependencies in a small neighborhood. Therefore, alternative approaches based on
self-attention are also starting to arise (Ramachandran et al., 2019). Self-attention can
be considered as an independent layer that can be a good substitute for convolutions.
Experiments byRamachandran et al. (2019) show that simply replacing spatial convolutions
with self-attention in a ResNet-type architecture leads to higher accuracy in ImageNet
classification and COCO object detection. In this work, we use self-attention layers to fuse
temporal features.

Next, we describe the self-attention layer used in our architecture in detail; our exposition
directly follows the original paper by Ramachandran et al. (2019). Similar to a convolution,
given a pixel xij ∈Rdin , we first take a neighborhood Nk(i,j) centered on this pixel that
extends for k pixels around xij . This region is called a memory block.
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Figure 2 ConvGRU block with feature map as input.
Full-size DOI: 10.7717/peerjcs.865/fig-2

One-headed attention is calculated as follows:

yij =
∑

a,b∈Nk (i,j)

softmaxab(qTij kab)vab, (12)

where yij ∈Rdout , queries qij =WQxij , keys kab=WK xab, values vab=WV xab.WQ, WK , WV

∈Rdout×din are linear transforms. Similar to convolutions, self-attention aggregates spatial
information over a neighborhood region but aggregation is a convex combination of value
vectors with weights defined by the softmax operator. This procedure repeats for every pair
of indices (i,j). Moreover, it is possible to use multiple attention heads, splitting the pixels
xij depthwise intoN groups x(n)ij ∈Rdin/N , computing the output for each group separately,
and then concatenating these outputs.

Next, to aggregate information from different resolutions, frames, and components, we
need efficient fusion model taking the best out of convolutional and attention aggregation
mechanisms.

Fusion
Fusion is a technique commonly used to aggregate multimodal features. Multimodality
implies that objects have different semantic characteristics. Traditional fusion methods
include concatenation or simple averaging. Numerous studies employ fusion for processing
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multimodal inputs, and many more complex fusion methods have been proposed over the
last decade.

In this work, to fuse temporal features we use residual convolutional units as introduced
by Lin et al. (2016) and their modification that we call residual self-attention units. A
residual convolution unit itself is a simplified version of the convolution unit in the original
ResNet (He et al., 2015). It consists of two spatial convolutions with ReLU activations and
batch normalization. It also has a skip connection between the input and the output of
convolution layers. In this work, we propose a modification of the residual convolution
unit: we replace the spatial convolutional layer with a self-attention layer. We believe
that this modification helps capture dependencies from different neighborhoods of the
input’s representation, potentially resulting in more accurate predictions. Figure 3 shows a
schematic overview of the residual self-attention unit (Fig. 3B) and residual convolutional
unit (Fig. 3C).

Residual convolutional and self-attention units are used to fuse ConvGRU outputs and
hidden states. Fusion modules progressively combine and upscale feature maps in order to
generate a fine-grained prediction. Figure 3A presents a schematic overview of our Fusion
block.

Finally, we are ready to describe overall model.

Recurrent self-supervised depth estimation
In this section, we describe the depth network pipeline and illustrate the role of recurrent
blocks and fusion units in it. For this study, we have attempted to investigate and propose
a modification to existing pipelines that would utilize temporal information across
frame sequences. To examine the impact of temporal knowledge, we tested different
modifications, and in this section, we describe them in more detail. We have experimented
with depth network components, while the pose network remains the same as in previous
models (Godard et al., 2019; Guizilini et al., 2020a; Zhou et al., 2017). The pose network
consists of the ResNet18 encoder and pose decoder that is presented in Fig. 4.

The key feature of the proposed depth model is the use of two types of temporal
information; it is schematically illustrated in Fig. 5. The first type of temporal information
is the content of previous frames transferred via a recurrent block, i.e., via the hidden
state. The second type of temporal knowledge comes from the dependencies between
different scales of decoder outputs (indicated by green arrows in Fig. 5). The architecture
design is inspired by Sun et al. (2021) who used similar types of temporal knowledge and
connections between them for the real-time 3D scene reconstruction task. In Sun et al.
(2021), the recurrent part of the model is based on 3D convolutions, and in this work we
simplify their approach and adapt it to our task.

The depthmodel consists of three consecutive parts. The first part is an encoder–decoder
block with skip connections, where the encoder is a ResNet18 and the decoder is a sequence
of upsampling convolutional blocks as shown in Fig. 4. The decoder produces outputs on
four different scales. We consider two types of decoder outputs: single-channel outputs
and multi-channel outputs with n∈ {16,32,64,128} channels. In the decoder architecture,
multi-channel outputs are usually mapped to single-channel ones via a convolutional layer,
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Figure 3 (A) Fusion block; (B) residual self-attention unit; (C) residual convolutional unit.
Full-size DOI: 10.7717/peerjcs.865/fig-3

Figure 4 (A) Depth decoder. (B) Pose decoder. Progressively upsample and fuse depth encoder outputs.
Pose encoder outputs pass through convolutions layers with ReLU activations, then flattened to six de-
grees of freedom translation.

Full-size DOI: 10.7717/peerjcs.865/fig-4

as in Godard et al. (2019). However, in this work we do not complete the depth prediction
process at this stage but rather continue to process internal feature representations produced
in the decoder. These representations are fed into the second part of our model, recurrent
ConvGRU blocks. ConvGRU on a particular scale takes as input a concatenation of the
depth output at this scale and an upscaled representation from the previous scale (except
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Figure 5 The Depth Net pipeline. First, a target frame is passed through the encoder–decoder architec-
ture. The decoder produces outputs on four different scales, they are passed through recurrent ConvGRU
and Fusion blocks, and finally, the depth prediction comes from upscaled maps passed through the convo-
lution disparity layer. Road images and ground truth depth maps taken fromMenze & Geiger (2015).

Full-size DOI: 10.7717/peerjcs.865/fig-5

for, obviously, the first scale where ConvGRU receives only the depth output). The third
part of the model is the Fusion block that helps aggregate temporal information. The head
of the model consists of simple convolution blocks that produce disparity for a target
image.

Next, we give a formal description of the full depth estimation pipeline for a given image.
Let Xt be an input image, and let (H 1

t ,H
2
t ,H

3
t ,H

4
t ) be the hidden states of the recurrent

block on four scales produced from previous frames. The encoder–decoder network
produces outputs on four scales s ∈ {1,2,3,4}. We denote by F s

t the encoder–decoder
output on scale s at time t :

(F1
t ,F

2
t ,F

3
t ,F

4
t )= fDec(fEnc(Xt )). (13)

Then,we feed decoder outputsF s
t andupscaledmaps fromprevious scales intoConvGRU

blocks:

Gs
t = f sConvGRU (concat (F

s
t ,U

s−1
t )), s∈ {2,3,4}, (14)

Gs
t = f sConvGRU (F

s
t ), s= 1. (15)

Next, we fuse ConvGRU outputs and hidden states from the previous timestamp:

Z s
t = f sFusion(G

s
t ,H

s
t ). (16)

Fusion outputs then go to an upscaling block, resulting in U s
t , and to the convolution

disparity block that produces final depth map on this scale:

U s
t = f sUpscale(Z

s
t ), s∈ {0,1,2}, (17)

D̂s
t = f sConvDisp(Z

s
t ), s∈ {0,1,2,3}. (18)
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For upscaling, we use bilinear interpolation while working with single-channel decoder
outputs and the PixelShuffle operation (Shi et al., 2016) while working with multi-channel
decoder outputs.

EXPERIMENTS
In this section, we first describe our experimental setup, starting with the dataset, then
providing the training details and baseline architectures, and finally detailing the system
configuration.

KITTI Dataset
In order to compare the results with previously proposed monocular self-supervised
methods, we evaluate our models on the KITTI 2015 dataset (Menze & Geiger, 2015).
The data consists of outdoor driving scenes which usually include up to 15 cars and 30
pedestrians. Accurate ground truth depth maps that are needed for further evaluation are
also provided.

We use the data split proposed by Eigen & Fergus (2014), with monocular frame
sequences.We use the preprocessing technique suggested byZhou et al. (2017) that removes
static frames. In order to train the model on sequences, we randomly sample consecutive
frames from available scenes. As a result, the training set contains 2685 monocular samples,
and the validation set contains 176, where a sample is a sequence of frames. The length of
the sequence is set to 10. Following Godard et al. (2019), we use the same camera intrinsics
for all images, setting the principal point of the camera to the center of the image and
focal length to the average of all focal lengths in KITTI. Training on image sequences is a
challenging task for GPU memory limits. Therefore, we had to resize all input images to
resolution 194×640. The same resizing technique was used in previous works (Godard
et al., 2019; Guizilini et al., 2020a; Zhou et al., 2017), so comparison with existing models
appears to be fair.

Training details
Working with recurrent neural networks introduces certain complications in the training
strategy. We need to choose how to initialize hidden states and how to train the network.
The approach to initializing hidden states with zeros is commonly used in many sequence-
to-sequence natural language processing tasks, including machine translation (Parmar
& Devi, 2019). For monocular sequences, we usually use relatively short hidden states
because of limited memory resources. Therefore, the impact of the hidden state becomes
very important. We follow Maslov & Makarov (2020a) and Patil et al. (2020) and use two
training stages. On the first stage, we train a model for hidden states considering them
as parameters, at the second stage we use learned hidden states as initial states for every
sequence.

All models are trained for 20 epochs with batch size 2, where one sample in the batch
is one sequence of length 10. We use the Adam optimizer with β1= 0.9 and β2= 0.999,
learning rate 10−4 for the first 15 epochs which is then reduced to 10−5 for the remainder.
The smoothness term λ is set to 0.001, and SSIM weight α is set to 0.85. Following
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Godard et al. (2019), we use pretrained ImageNet weights for the encoder. We also apply
the following augmentations: horizontal flips with 50% chance; brightness, contrast,
saturation, and hue jitter with ranges of ±0.2, ±0.2, ±0.2, and ±0.1 respectively.

For the baseline model, we follow Godard et al. (2019): we take the U-net model, where
the encoder is a ResNet18 (He et al., 2015), and the decoder consists of upconvolutional
filters, use the average reprojection term for the loss function, and do not apply scaling to
decoder outputs before computing the loss.

System configuration
All experiments were conducted using a free distribution of Anaconda with Python 3.8.
The models were implemented with the Pytorch library (Paszke et al., 2019). We used an
RTX6000 GPU with 32 GB RAM. The operating system was Ubuntu 18.04.5 LTS.

RESULTS
In this section, we present the evaluation results for our model and show that it produces
competitive results by comparing it with existing self-supervised models. For evaluation
metrics, we use standard depth evaluation metrics from Eigen, Puhrsch & Fergus (2014);
Eigen & Fergus (2014) and the Eigen split setting from Eigen, Puhrsch & Fergus (2014). As
has usually been done for KITTI Eigen split evaluation (Godard et al., 2019; Watson et al.,
2021), we clip predicted depths at 80 m, and only evaluate on depth maps with ground
truth under 80 m.

Ablation Study
In order to estimate the effect of each component that we use in our pipeline, we provide an
ablation study of the proposed modifications. An ablation study implies changing various
components of our model, and its results help to better understand how each component
contributes to the overall performance in monocular training. We first compare models
with single-image evaluation settings (Table 1). Then we evaluate our models on sequences.
The results are illustrated in Table 2. We can see that the baseline, without any of our
modifications and contributions from Godard et al. (2019), performs the worst.

There are five different modifications; all models have the ConvGRU block but they
differ in the number of channels in decoder outputs, the use of the upscaling block, and
the use of the Fusion block. In particular, models #1 and #4 have only ConvGRU layers,
other models use the Fusion block and upscaling, and differ only in Fusion block type.

Since our model was trained on sequences, we hypothesize that if we make use of
sequence information at test time, we can achieve higher depth prediction accuracy.
As a result, we propose two evaluation settings: single-image evaluation and sequential
evaluation. Single-image evaluation means that we process each test frame separately. The
model, initialized with trained hidden states, takes a single test frame as input and produces
a depth map. On the other hand, sequential evaluation implies that we run the model
on the previous n frames before producing the depth map for the target test image. We
experimented with different values of n and empirically found that 10 frames of history
appear to be optimal. During sequential evaluation we ‘‘gather’’ temporal information
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Table 1 Ablation study for single-image based methods. Results for different variants of our model with monocular training on KITTI Eigen split.
Best results in each group are marked in bold.

Model Eval Dec.
output

Upscale &
concat

Fuse:
ResConv

Fuse:
ResSA

RMSE RMSE
log

Abs Rel Sq Rel δ< 1.25 δ< 1.252 δ< 1.253

Baseline image 1-ch – – – 5.512 0.223 0.140 1.610 0.852 0.946 0.973
Monodepth2 image 1-ch – – – 4.862 0.193 0.115 0.903 0.877 0.959 0.981
Model #1 image 1-ch – – – 5.615 0.216 0.137 1.007 0.816 0.941 0.978
Model #2 image 1-ch + – + 5.123 0.203 0.129 0.861 0.846 0.953 0.982
Model #3 image 1-ch + + – 4.982 0.199 0.120 0.877 0.861 0.955 0.981
Model #4 image n-ch – – – 4.998 0.201 0.123 0.891 0.857 0.956 0.981
Model #5 image n-ch + + – 4.851 0.200 0.124 0.875 0.859 0.956 0.980

Table 2 Ablation study for sequence-based methods. Results for different variants of our model with monocular training on KITTI Eigen split.
Best results in each group are marked in bold.

Model Eval Dec.
output

Upscale &
concat

Fuse:
ResConv

Fuse:
ResSA

RMSE RMSE
log

Abs Rel Sq Rel δ< 1.25 δ< 1.252 δ< 1.253

Model #1 seq 1-ch – – – 5.198 0.208 0.133 0.926 0.828 0.948 0.981
Model #2 seq 1-ch + – + 4.811 0.199 0.126 0.910 0.858 0.957 0.981
Model #3 seq 1-ch + + – 4.976 0.199 0.120 0.874 0.861 0.955 0.981
Model #4 seq n-ch – – – 4.963 0.199 0.122 0.879 0.859 0.956 0.981
Model #5 seq n-ch + + – 4.847 0.199 0.124 0.883 0.860 0.957 0.981

from previous frames via hidden states and utilize this information in the final prediction
for the test image. This sequential evaluation approach does reflect real-life scenarios well
since in these scenarios the depth estimation component usually does have access to the
frame history. As for the KITTI dataset, previous frames are available for all test images
except for those at the beginning of a scene; for these frames, we use the maximum available
number of previous frames during evaluation.

Despite the fact that most of our models still lose in the final quality in terms of some
evaluationmetrics toMonodepth2, we canmake some interesting conclusions regarding the
proposed components. For example, all models perform better when they use sequences
during evaluation. The upscaling technique also gives a boost to the depth prediction
quality. As for the Fusion block, residual self-attention units slightly improve the quality
compared to residual convolutional units, as we expected. In contrast, it is hard to say that
the use of multi-channel decoder outputs leads to significantly better results. Therefore,
this component may be considered redundant, i.e., not contributing to the overall model
performance.

In order to choose the best model, we focus on the RMSE metric. Since the errors are
squared before averaging, the RMSE score gives a relatively high weight to large errors.
Therefore, we consider RMSE to be more reasonable in the depth estimation task, where
large errors are particularly undesirable. According to these considerations, we choose
model #2 to be the best in our experiments.
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Table 3 Comparison with state-of-the-art image-based methods on KITTI Eigen split. Input image resolution is 640× 192. The first column
classifies methods as ‘s’ (supervised) or ‘u’ (self-supervised/unsupervised). Best results in each group are marked as bold.

Model Setting RMSE RMSE log Abs Rel Sq Rel δ< 1.25 δ< 1.252 δ< 1.253

DORN (Fu et al., 2018) s 2.727 0.120 0.072 0.307 0.932 0.984 0.994
Struct2depth (Casser et al., 2018) u 5.291 0.215 0.141 1.026 0.816 0.945 0.979
Monodepth2 (Godard et al., 2019) u 4.862 0.193 0.115 0.903 0.877 0.959 0.981
PackNet SfM (Guizilini et al., 2020a) u 4.601 0.189 0.111 0.785 0.878 0.960 0.982
Guizilini et al. (2020b) u 4.381 0.178 0.102 0.698 0.896 0.964 0.984
Ours u 4.851 0.200 0.124 0.875 0.859 0.956 0.980

Finally, we also provide results of speed tests on RTX6000 GPU. We find that our model
runs in real-time with 124±16 FPS on resolution 192×640 compared to DORN with
15±3 FPS.

Results on the KITTI dataset
We compare our best model with previous single-image approaches such as Godard et al.
(2019), Guizilini et al. (2020a); Casser et al. (2018) and multi-frame sequential approaches
such as Kuznietsov, Proesmans & Van Gool (2021), McCraith et al. (2020) and Watson et al.
(2021). The results are presented in Tables 3 and 4, respectively. We provide scores on
the KITTI Eigen split with input resolution 192×640. In addition, we compare to state-
of-the-art supervised models such as Fu et al. (2018) and Maslov & Makarov (2020a). We
observe that our approach outperforms most single-image self-supervised models in terms
of the RMSE score. Our model achieves worse metrics than some sequential approaches,
but next, we show that the proposed method better in qualitative comparison.

DISCUSSION
Our experiments have shown that the model benefits from information collected from
previous frames.We assume that incorporation of the recurrent block into a self-supervised
training pipeline may provide a potential boost in the results not only in our setting but
also in supervised or online supervised training strategies.

We used the KITTI dataset to evaluate our models with standard metrics from Eigen,
Puhrsch & Fergus (2014) and Eigen & Fergus (2014). In addition to quantitative results,
we also provide several visual samples. We present a qualitative comparison with the
Monodepth2 model (Godard et al., 2019), since this model served as the basis for our
modifications. In Fig. 6 we provide some prediction examples and error maps that are
calculated as the absolute difference between the ground truth and predicted depth maps.
These visual results show that our model appears to be more accurate in far areas with
higher depth variance. We also provide a qualitative comparison with ManyDepth (Watson
et al., 2021) model, that is the current state-of-the-art self-supervised sequential method.
The examples in Fig. 7 illustrate that our model better predicts depth for moving objects
like cyclists and cars.

In addition, we noticed that our model produces more accurate depth maps in the
neighborhood of objects with non-trivial and triangular shapes, such as people and road
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Table 4 Comparison with state-of-the-art sequence-based methods on KITTI Eigen split. Input image resolution is 640×192. The ‘‘Setting’’ col-
umn classifies methods as ‘‘s-seq’’ (supervised sequential, i.e., using previous frame information) or ‘‘u-seq’’ (self-supervised sequential). Best results
in each group are marked in bold.

Model Setting RMSE RMSE log Abs Rel Sq Rel δ< 1.25 δ< 1.252 δ< 1.253

Maslov & Makarov (2020a) s-seq 4.104 0.170 0.101 0.707 0.887 0.964 0.986
Luo et al. (2020) u-seq 4.876 0.205 0.130 2.086 0.878 0.946 0.970
CoMoDA (Kuznietsov, Proesmans & Van Gool, 2021) u-seq 4.594 0.183 0.103 0.862 0.899 0.961 0.981
McCraith et al. (2020) u-seq 4.275 0.173 0.089 0.747 0.912 0.964 0.982
ManyDepth (Watson et al., 2021) u-seq 4.261 0.170 0.090 0.713 0.914 0.966 0.983
Ours u-seq 4.811 0.199 0.126 0.910 0.858 0.957 0.981

Figure 6 Qualitative comparison of our model with single-image evaluation setting andMonodepth2
(Godard et al., 2019). A, B, C correspond to RGB images. D, E, F correspond to depth output produced
byMonodepth2. G, H, I correspond to depth output produced by our model. J, K, L correspond to er-
ror maps ofMonodepth2. M, N, O correspond to error maps of our model. Brighter colors on error maps
mean higher errors. Road images and ground truth depth maps taken fromMenze & Geiger (2015).

Full-size DOI: 10.7717/peerjcs.865/fig-6

signs. We assume that the model performs quite reasonably in these regions because it
captures historical information about the frames, resulting in more precise predictions.
Qualitative proofs of this evidence are presented in Fig. 8, where we zoom in on the most
interesting regions.

Although ourmodel does not achieve state-of-the-art performance in the self-supervised
setting, it appears to outperformMonodepth2 Godard et al. (2019) andManyDepth (Watson
et al., 2021) in view synthesis quality. We measured the Frechet Inception Distance(FID)
(Heusel et al., 2017) of reconstructed test images and saw that our method with FID of
16.863 visually outperforms (Godard et al., 2019) and ManyDepth with FID of 16.911 and
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Figure 7 Examples where our model with single-image evaluation setting produces more accurate
maps thanMonodepth2 (Godard et al., 2019) in the neighborhood of objects of non-trivial and angular
shapes. A, B, C correspond to RGB images and their zoomed in regions. D, E, F correspond to the depth
output produced by our model. G, H, I correspond to the depth output produced byMonodepth2. Road
images and ground truth depth maps taken fromMenze & Geiger (2015).

Full-size DOI: 10.7717/peerjcs.865/fig-7

16.902 respectively. From the nature of FID, it means that the distribution of features
from our model lies more closely to the distribution of features of the ground truth depth
maps compared to Godard et al. (2019) and ManyDepth, which also leads to more precise
boundary localization as shown in the qualitative comparison.

One important open question remains regarding the length of the input sequence. As
we have mentioned before, we selected the optimal number empirically. However, we
experimented only with short sequences of length up to 12 frames due to memory limits.
Patil et al. (2020) also tested different sequence lengths and decided that 30 is the optimal
value for their setting. In contrast, Maslov & Makarov (2020a) used sequences consisting
of 10 frames. We assume that this number might be different for different models, and it
would be interesting to investigate the effect of the history length and devise optimization
strategies to find the optimal value for this parameter for a given model and setting.

CONCLUSION
In this study, we have presented a self-supervised method that predicts depth from a single
image or a sequence of images when available. We provided an ablation study testing
different configurations of model components. Experiments show that we have achieved
improvements over the basic architecture from both recurrent ConvGRU layer and Fusion
module with a self-attention mechanism. We also demonstrate that our method can be
applied to real-time. It means that the use of previous frames during training and on test
time can provide a significant boost in the accuracy of self-supervised depth estimation.
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Figure 8 Qualitative comparison of our model with sequential evaluation setting andManyDepth
(Watson et al., 2021). A, B, C correspond to RGB images. D, E, F correspond to depth output produced
byManyDepth. G, H, I correspond to depth output produced by our model. J, K, L correspond to er-
ror maps ofManyDepth. M, N, O correspond to error maps of our model. Brighter colors on error maps
mean higher errors. Road images and ground truth depth maps taken fromMenze & Geiger (2015).

Full-size DOI: 10.7717/peerjcs.865/fig-8

Future work. As an interesting direction of future work we suggest the following
problems. First, it would be interesting to find an optimal sequence length in both training
and evaluation modes. Second, we need to find stabilization techniques for training
recurrent networks in a self-supervised pipeline. Third, we expect that our results could
be further improved via more advanced modifications such as cost volume (Watson et al.,
2021) or more stable feature-based losses (Shu et al., 2020).
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