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ABSTRACT
In this paper, a composite learning control scheme was proposed for underactuated
marine surface vessels (MSVs) subject to unknown dynamics, time-varying external
disturbances and output constraints. Based on the line-of-sight (LOS) approach, the
underactuation problem of the MSVs was addressed. To deal with the problem of
output constraint, the barrier Lyapunov function-based method was utilized to ensure
that the output error will never violate the constraint. The composite neural networks
(NNs) are employed to approximate unknown dynamics. The prediction errors can
be obtained using the serial-parallel estimation model (SPEM). Both the prediction
errors and the tracking errors were employed to construct the NN weight updating.
Using approximation information, the disturbance observers were designed to estimate
unknown time-varying disturbances. The stability analysis via the Lyapunov approach
indicates that all signals of unmanned marine surface vessels are uniformly ultimate
boundedness. The simulation results verify the effectiveness of the proposed control
scheme.

Subjects Adaptive and Self-Organizing Systems, Autonomous Systems
Keywords Disturbance observer, Trajectory tracking, Line-of-sight, Output constraints,
Composite learning

INTRODUCTION
In recent years, with the development of the marine economy, marine transport vehicles
have gained much attention (Shen et al., 2020; Yu, Guo & Yan, 2019). Marine surface
vehicles (MSVs) have been widely used in marine exploration, marine transportation,
marine survey and other fields (Liu et al., 2016; Shao et al., 2019). To accomplish these
tasks, the trajectory tracking control of MSVs plays a significant role. Due to the influence
of the external environment, the kinetics of MSVs inevitably have unknown dynamics and
unknown time-varying environmental disturbances.

In view of this, a series of control approaches have been utilized for control of MSVs,
including neural network (NN) control (Zhu et al., 2021; Li et al., 2015), fuzzy logic
system (FLS) control (Peng, Wang & Wang, 2018; Wang, Sun & Er, 2018), disturbance
observer-based (DOB) control (Guo & Zhang, 2020; Hu et al., 0000), and the finite-time
control (Zhu, Ma & Hu, 2020; Wang, Pan & Su, 2019; Wang & Deng, 2020). In Zhu et
al. (2021), Li et al. (2015), Peng, Wang & Wang (2018), Wang, Sun & Er (2018), NNs
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and FLSs are used to approximate the uncertain terms, such as unmodeled dynamics,
unknown dynamics. InGuo & Zhang (2020),Hu et al. (0000), a DOB control approach was
adopted to compensate compound uncertainty of parameter perturbations and unknown
disturbances. In Do (2016) and Ghommam & Saad (2018), the dynamic uncertainties of
MSVs were dealt with by parameter adaptive technique and a backstepping design tool.

To address the underactuation problem of MSVs, several control methods are
introduced, such as additional control method (Do, 2010; Park, Kwon & Kim, 2017; Chen
et al., 2020), output redefinition control (Shojaei & Arefi, 2015; Shojaei, 2017), line-of-
sight (LOS) (Shojaei, 2015; Gao et al., 2016; Jia, Hu & Zhang, 2019; Liu, 2019), etc. Three
additional control terms were adopted to address the underactuation problem of MSV
in Do (2010), Park, Kwon & Kim (2017), Chen et al. (2020). To achieve the design of
trajectory tracking control laws, the output redefinition control approach in Shojaei &
Arefi (2015) and Shojaei (2017) was introduced to handle the underactuation problem, the
combination of adaptive technique, NNs and saturation function to solve the unknown
disturbances, unknown dynamic and input saturation, respectively. In Shojaei (2015), Gao
et al. (2016), Jia, Hu & Zhang (2019) and Liu (2019), the LOS method was utilized to solve
the underactuation problem of MSVs, the combination of parameter adaptive technology
and NN approximation are used to successfully solve the time-varying external disturbance
and parameter uncertainty.

For the sake of navigation safety, the output constraint problem is inevitably in practice.
In practice, the navigable water areas are restricted, and then surface vessels should
navigate in the navigable water areas. When the position error is too large, it may
lead to collision accident of MSVs. When the yaw angle errors become excessive, the
actuator will be damaged due to overload. Therefore, it is necessary to further study the
MSVs trajectory tracking system with output constraints. Several methods have been
presented to solve the output constraint problem, such as moving-horizon optimal control
(Mayne & Michalska, 1990), artificial potential field (Sun & Ge, 2014), barrier Lyapunov
function (BLF) (Tee et al., 2011) and output error transformation method (Zheng et al.,
2020; Zhu, Du & Kao, 2020). In Zheng et al. (2020) and Zhu, Du & Kao (2020), the output
constraint problem is transformed into a tracking error constraint problem by using the
coordinate transformation. Coordinate transformation ensures that the tracking error
always stays within predefined boundaries. Duo to the structure of Lyapunov function
can be constructed by a barrier function, the BLF-based approach can solve the problem
of trajectory tracking control for MSVs under the output constraint (Zhu, Du & Kao,
2020; Zhao, He & Ge, 2014). In simultaneous consideration of unknown dynamics and
time-varying disturbances, Zhu, Du & Kao (2020) use a log-BLF method to solve the
constant symmetric output constraint, Zhao, He & Ge (2014) utilize the asymmetric BLF
method to deal with the asymmetric output constraints.

All the literature mentioned before have concentrated on the tracking and stability of the
system. Most literature have not mentioned the precision accuracy of identifying models.
In practice, the model uncertainty should be approximated as precisely as possible. In
generally, the unknown dynamics of the system can be compensated by using adaptive
control technique. In order to achieve better control performance, composite adaptive
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control scheme is developed in Patre & Bhasin (2010). It makes the system realize faster
parameter convergence as well as smaller tracking error, and has been applied in various
fields (Sun, Pan & Yang, 2017; Pan, Sun & Yu, 2016). By approximating the unknown
dynamic items faster and more accurately to obtain better control performance, the
prediction errors can be constructed by the serial-parallel estimation model (SPEM) (Peng,
Wang & Wang, 2017). Then, the updating law of the neural network is designed by using
the prediction error, which improves the transient performance effectively. To update the
laws and optimize the system’s transient performance, Yucelen & Haddad (2013) presented
an adaptive control modification. An error feedback term was included in the reference
model in Pan, Sun & Yu (2016) and Stepanyan & Krishnakumar (2010) to improve the
transient performance of the model. In Xu & Sun (2018), both the prediction errors and
the tracking errors were applied to construct the updating law of NNs weights. The index of
learning performance is introduced in the update rate, some literature focus on constructing
composite learning laws by introducing auxiliary filter (Na et al., 2015; Huang et al., 2018)
or using time interval data (Xu et al., 2019; Xu et al., 2018).

In this paper, we propose a composite learning control strategy for underactuated MSVs
subject to unknown dynamics, ocean environmental disturbances, and output constraints
based on the discussion above. The main contributions can be summarized as follows.

• Position error and yaw angle error constraints are addressed by employing the BLF-based
method. The dynamic surface control approach is used to decrease the computation of
the explosion problem that exists in the backstepping method.
• The composite NNs are employed to approximate the unknown dynamics of MSVs.
Different from the traditional NN in which only the tracking errors are used to update
the NN weights, both the tracking errors and prediction errors are used to update the
NN weights. Therefore, the unknown dynamics can be approximated faster and more
accurately.
• Using the approximation to the unknown dynamics ofMSVs, the NDOs are constructed
to estimate time-varying disturbances. By combining the dynamic surface control
technique with disturbance observers and composite NNs, a trajectory tracking control
system is developed. Compared with the control scheme based on neural networks,
the proposed control scheme can effectively improve the transient and steady-state
performance of MSVs trajectory tracking control.

The rest of this paper is arranged as follows. In Section 2, the mathematical model of
MSVs and the problem formulation are introduced. In Section 3, the principle of intelligent
approximation using NN is presented. In Section 4, proposes the details of controller design
procedures. In Section 5, the simulation results are given to show the effectiveness of the
controller. In Section 6, the entire work is summarized.
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PROBLEM FORMULATION AND PRELIMINARIES
MSV kinematic and dynamic models
The mathematical model of underactuated MSVs with 3 degrees of freedom can be
described as

ẋ = ucosϕ−v sinϕ (1a)

ẏ = usinϕ+v cosϕ (1b)

ϕ̇ = r (1c)

u̇=
1

m11
(m22vr−d11u+τu+1fu+du) (2a)

v̇ =
1

m22
(−m11ur−d22v+1fv+dv) (2b)

ṙ =
1

m33

[
(m11−m22)uv−d33r+τr+1fr+dr

]
(2c)

where [x,y,ϕ]T denotes the position and heading angle in the inertial reference frame.
[u,v,r]T denotes surge, sway and angular velocity in the body-fixed frame. Themii, i= 1,2,3
represent the inertia including added mass. The dii, i= 1,2,3 stand for the hydrodynamic
damping in surge, sway and yaw. The dj , j = u,v,r denote unknown environmental
disturbances. 1fu, 1fv and 1fr represent unknown dynamics of the MSVs. τu and τr are
the control force and moment in the surge and yaw directions.

Assumption 1: The environmental disturbances dj are unknown bounded and there
exists

∣∣ḋj∣∣≤ d̄j , j = u,v,r , d̄j are unknown positive constants.
Remark 1: The ocean disturbances include slowly changing disturbances caused by

second-order waves, currents, winds and unknown dynamics, as well as norm-bound
disturbances caused by ocean uncertainties. The energy in the marine environment is
finite. The rate of change of ocean disturbance is unknown bounded.

Remark 2: Since these parameters of MSVs are affected by operational conditions and
marine environment. These factors change frequently, which makes these parameters of
MSVs are uncertainties. wheremii and dii, i= 1,2,3 represent nominal values of the inertia
including added mass and the hydrodynamic damping, respectively. Where 1fj , j = u,v,r
represent unknown dynamics includes uncertain parts of the model parameters.

Assumption 2: The desired smooth reference signal xd , yd and its first two time
derivatives are bounded.
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The position errors and orientation tracking errors will be defined in the body-fixed
frame

xe = (x−xd)cosϕ+
(
y−yd

)
sinϕ (3a)

ye =−(x−xd)sinϕ+
(
y−yd

)
cosϕ (3b)

The time derivative of Eqs. (3a) and (3b) can be expressed as

ẋe = u+ rye− ẋd cosϕ− ẏd sinϕ (4a)

ẏe = v− rxe+ ẋd sinϕ− ẏd cosϕ (4b)

In engineering practice, the MSV position, heading, velocities in surge and sway, and
yaw rate can be measured by the global positioning system, the gyro compass, the Doppler
log, and the rate gyro, respectively. Then, we define the tracking position error ρs and yaw
angle error θ as

ρs = ρe−ρ0=

√
x2e +y2e −ρ0 (5a)

θ = arctan2(ye,xe) (5b)

By combining Eqs. (3a)–(3b) and Eqs. (5a)–(5b) we can get

xe = ρe cosθ (6a)

ye = ρe sinθ. (6b)

To avoid the possible singularity of the virtual control law, a positive constant ρ0 is
introduced. Considering Assumption 1 and Assumption 2, the control objective is to
construct the composite intelligent learning control law τu and τr for MSVs to make
sure the ρs and θ can converge to arbitrarily small errors under unknown dynamics,
time-varying disturbances and output constraints.

Radial basis function neural network (RBFNN) approximation
In this paper, the RBF NNs are employed for approximation. For an arbitrary continuous
function f (ς) over a compact set �(ς)→Rn, there exists an RBF NN with the following
form:

f (ς)=ωTψ(ς)+ξw ,∀ς ∈�(ς) (7a)

ψ(ς)= exp(−(ς− cj)T (ς− cj)/b2jl),j = 1,2,...,l (7b)
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Figure 1 Schematic of the MSV closed-loop tracking control.
Full-size DOI: 10.7717/peerjcs.863/fig-1

where f (ς)∈Rp denotes the output vector of the RBF NN, ς ∈Rq denotes the input vector
of the RBF NN. ψ(ς) is Gaussian basis function. cj is the center of the basis function and bj
is the width of the Gaussian function. ξw is the approximation error that satisfies |ξw | ≤ ξ̄ ,
ξ̄ is an unknown positive constant.

According to Eq.(43), ω is the ideal weight parameter that satisfies ω =
argminω∈R`

{
supς∈�(ς)

∣∣f (ς)−ωTψ(ς)
∣∣} represent NN weights parameter. However,

it is very difficult to determine the ideal weight parameter. ω̂ is the estimate of the NN
weights parameter. However, it is very difficult to determine the ideal weight parameter.
The estimate of the NN weights parameter is usually used to approximate the unknown
nonlinear term such as f̂ = ω̂Tψ in practice.

CONTROL LAW DESIGN
In this section, we can design the control law for the MSVs under Assumption 1–2. The
block diagram of the trajectory tracking control system of MSVs is presented in Fig. 1.
Combing Eqs. (5a) and (5b) with Eqs. (6a) and (6b), the time derivative of ρs can be written
as

ρ̇s = ucosθ+v sinθ+cosθζ1+ sinθζ2 (8)

where ζ1 and ζ2 are defined as follows

ζ1 =−ẋd cosϕ− ẏd sinϕ (9a)

ζ2 = ẋd sinϕ− ẏd cosϕ (9b)

When MSV pass through a narrow passage, it is necessary to limit the position error ρs to
prevent vehicle collisions. The BLF can be selected as the following form

V1 =
1
2
log

k2a
k2a−ρ2s

(10)
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where log (∗) is the natural logarithm of (∗), ka is the constraint of ρs, there exist |ρs|< ka.
Taking time derivative of Eq. (10) , it can be further written as

V̇1=
ρsρ̇s

k2a−ρ2s

=
ρs

k2a−ρ2s
(ucosθ+v sinθ+cosθζ1+ sinθζ2) (11)

The virtual control law can be designed as

αu = secθ(−kρρs−v sinθ−cosθζ1− sinθζ2) (12)

where kρ is a positive constant.
In the surge direction, Let αu pass through a first-order filter with a time constant Tu> 0

to get a new state variable βu.

Tuβ̇u+βu =αu,βu(0)=αu(0) (13)

Then, the filter error and velocity error can be defined as λu and ue , respectively. So, it
can be expressed as

λu =βu−αu,ue = u−βu (14)

The time derivative of λu can be calculated as

λ̇u=−
λu

Tu
− α̇u

=−
λu

Tu
+Bu (15)

where Bu is a continuous function and has a maximum value Hu.
Then, V2 can be further chosen as

V2=
1
2
log

k2a
k2a−ρ2s

+
1
2
m11u2e (16)

The time derivative of Eq. (16) can be written as

V̇2=
ρsρ̇s

k2a−ρ2s
+m11ue u̇e

=
ρs

k2a−ρ2s
(−ue cosθ−λucosθ−kρρs)

+m11ue u̇e (17)

According to Eqs. (2a) and (12), we can obtain the time derivative of as

m11u̇e = m22vr−d11u+τu
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+1fu+du−m11β̇u (18)

The unknown term can be approximate using NN. We have m22vr −d11u+1fu =
ωu

Tψu+ξu. Here, letDu= ξu+du. The ξu is the approximation error that satisfies the time
derivative of ξu is bound. With Assumption 1, we can get

|Du| ≤χu0,
∣∣Ḋu

∣∣≤χu (19)

where χu0 and χu are unknown positive constants.
Therefore, the time derivative of V2 can be further written as

V̇2=
ρsρ̇s

k2a−ρ2s
+m11ue u̇e

=
ρs

k2a−ρ2s
(ue cosθ+λucosθ−kρρs)

+ue(ωu
Tψu+Du+τu−m11β̇u) (20)

Then, we can design the control law as

τu=−ω̂
T
u ψu− D̂u+m11β̇u−kuue−

ρscosθ
(k2a−ρ2s )

(21)

where ku is a positive constant. ω̂u is the estimation of the ωu.D̂u is the estimation of the
Du.

ω̃u =ωu− ω̂u,D̃u=Du− D̂u (22)

From Eq. (21) along Eq. (20), we can get

V̇2=
ρsλucosθ−kρρs2

k2a−ρ2s
+ueω̃T

u ψu

+ueD̃u−kuue2 (23)

Then, we can define zu as prediction error

zu= u− û (24)

û can be defined with SPEM

˙̂u=
1

m11
(τu+ ω̂T

u ψu+ D̂u+φuzu) (25)

where û(0)= u(0), φu is a positive constant.
The prediction error is employed to construct the weight updating

˙̂ωu= γu[(ue+γzuzu)ψu−ϑuω̂u] (26)

where γu , γzu and ϑu are the positive constants to be designed.
The approximation information is employed to construct the NDO in the following

form

D̂u=m11u−σu (27a)
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σ̇u= ω̂
T
u ψu+ D̂u+τu−(ue+γzuzu) (27b)

According to Eqs. (2a), (27a) and (27b), the derivative of D̂u can be expressed as

˙̂Du= ω̃
T
u ψu+ D̃u+ue+γzuzu (28)

Then, the ˙̃Du can be calculated

˙̃Du= Ḋu− ω̃
T
u ψu− D̃u−ue−γzuzu (29)

Combining Eqs. (5a)–(5b) with Eqs. (6a)–(6b), the time derivative of θ can be written
as

θ̇ =−r+
1
ρe

(−usinθ+v cosθ− sinθζ1

+cosθζ2) (30)

It is also necessary to restrict θ in practice, there exist |θ |< kb. Similar to the above, we
select the following BLF candidates as

V3=
1
2
log

k2b
k2b−θ2

(31)

Taking time derivative of Eq. (31), it can be further written as

V̇3=
θ

k2b−θ2
(−r+

1
ρe

(−usinθ+v cosθ

−sinθζ1+cosθζ2)) (32)

According to Eq. (32), we can get virtual control law αr for the yaw direction

αr = kθθ+
1
ρe

(−usinθ+v cosθ− sinθζ1

+cosθζ2) (33)

where kθ is a positive constant.
Remark 3: From Eq. (33), it can be seen αr is undefined when ρe = 0. The positive

constant ρ0 is designed to make ρe−ρ0 can converge to the neighbor of zero. It means that
ρe can converge to the neighbor of ρe . Therefore, the singularity of αr can be avoided.

Let αr pass through a first-order filter with a time constant Tr > 0 to get a new state
variable βr .

Tr β̇r+βr =αr ,βr (0)=αr (0) (34)

Then, the filter error and velocity error can be defined as λr and re , respectively. So, it
can be expressed as

λr =βr−αr ,re = r−βr (35)

The time derivative of λr can be calculated as

λ̇r =−
λr

Tr
− α̇r
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=−
λr

Tr
+Br (36)

where Br is a continuous function and has a maximum value Hr .
Then, V4 can be further chosen as

V4 =
1
2
log

k2b
k2b−ϕ2e

+
1
2
m33r2e (37)

The time derivative of Eq. (37) can be written as

V̇4=
θ θ̇

k2b−θ2
+m33re ṙe

=
θ

k2b−θ2
(−re−λr−kθθ)+m33re ṙe (38)

According to Eqs. (2c) and (35), we can obtain the derivative of re as

m33ṙe = (m11−m22)uv−d33r+τr+1fr
+dr−m33β̇r (39)

The unknown termcanbe approximate usingNN.Wehave (m11−m22)uv−d33r+1fr =
ωr

Tψr+ξr . we can define Dr = ξr+dr , The ξr is the approximation error that satisfies the
time derivative of ξr is bound. With Assumption 1, we can get

|Dr | ≤χr0,
∣∣Ḋr

∣∣≤χu (40)

where χr0 and χr are unknown positive constants.
Then, the time derivative of V4 can be further written as

V̇4=
θ

k2b−θ2
(−re−λr−kθθ)

+re(ωr
Tψr+Dr+τr−m33β̇r ) (41)

Then, we can get

τr =−ω̂
T
r ϕr− D̂r+m33β̇r−kr re+

θ

k2b−θ2
(42)

where kr is a positive constant. ω̂r is the estimation of the ωr .D̂r is the estimation of the
Dr .

ω̃r =ωr− ω̂r ,D̃r =Dr− D̂r (43)

From Eqs. (41) along (40), we can get

V̇4=
θ

k2b−θ2
(−λr−kθθ)+ reω̃T

r ψr+ reD̃r−kr re2 (44)
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Then, we can define zr as prediction error

zr = r− r̂ (45)

r̂ can be defined with SPEM

˙̂r =
1

m33
(τr+ ω̂T

r ψr+ D̂r+φrzr ) (46)

where r̂(0)= r(0), φr is a positive constant.
The prediction error is employed to construct the weight updating

˙̂ωr = γr [(re+γzrzr )ψr−ϑr ω̂r ] (47)

where γr , γzr and ϑr are the positive constants to be designed.
The approximation information is employed to construct the NDO in the following

form

D̂r =m33r−σr (48a)

σ̇r = ω̂
T
r ψr+ D̂r+τr−(re+γzrzr) (48b)

According to Eqs. (2a), (48a) and (48b), the derivative of D̂r can be expressed as

˙̂Dr = ω̃
T
r ψr+ D̃r+ re+γzrzr (49)

Then, the ˙̃Dr can be calculated

˙̃Dr = Ḋr− ω̃
T
r ψr− D̃r− re−γzrzr (50)

Remark 4: FromEqs. (26) and (47), it can easily obtain the weight updating of composite
NN is designed by employing tracking error and prediction error. The prediction error
can provide extra information for learning NN weight updating. Thus, better tracking
performance can be achieved.

Remark 5: In Eqs. (26) and (47), γu and γr are positive constants used to optimize the
learning rate. The ω̂u and ω̂r mainly tuned by the prediction errors if and are chosen larger,
while if γzu and γzr are chosen smaller, the ω̂u and ω̂r mainly tuned by the tracking errors.

The compound unknown terms consist of unknown dynamics and time-varying
disturbances are expressed as

∑
u and

∑
r .

m22vr−d11u+1fu+du=6u (51a)

(m11−m22)uv−d33r+1fr+τwr =6r (51b)

Remark 6: The disturbance observer and neural network contain each other’s
information. If compound unknown terms can be perfect follow by ω̂T

u ψu+ D̂u and
ω̂T
r ψr+ D̂r , the system’s estimation of unknown information can be more accurate. As a

result, the objective of composite learning combining NN and NDO is accomplished.
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Remark 7: Through trial and error, we first choose the appropriate design parameters
kρ , kθ , ku, and kr to ensure that the system is stable. Furthermore, we properly regulate
the other design parameters γu,γzu,γr ,γzr ,ϑu, ϑr , φu and φr to get the satisfactory control
performance. A large number of simulations in many cases show that the larger kρ , kθ ,, ku,
kr , γzu, γzr , φu and φr are, the MSVs can obtain higher tracking accuracy.

Theorem 1: Considering the closed-loop system Eqs. (1a)–(1c) and Eqs.(2a)–(2c) with
unknown dynamics, time-varying disturbances and output constraint under Assumption
1–Assumption 2, if virtual control law Eqs. (12), (33), control law Eqs. (21), (42), the NN
updating laws Eqs. (26), (47) and NDOs Eqs. (27a)–(27b), Eqs. (48a)–(48b) are designed. It
is guaranteed that all signals include in Eq. (52) are uniformly ultimately bounded (UUB).

Proof: Consider the following Lyapunov function

V = V2+V4+
1
2
(
1
γu
ω̃T
u ω̃u+ D̃2

u+λu
2

+m11γzuz2u+
1
γr
ω̃T
r ω̃r+ D̃2

r

+λr
2
+m33γzrz2r ) (52)

The time derivative of Eq. (52) can be calculated as

V̇ = V̇2+ V̇4+
1
γu
ω̃T
u (− ˙̂ωu)+ D̃u(− ˙̂Du)

+m11γzuzużu+λuλ̇u+λr λ̇r

+
1
γr
ω̃T
r (− ˙̂ωr )+ D̃r (− ˙̂Dr )+m33γzrzr żr (53)

In the view of Eqs. (15), (36) and Young’s inequality, we can get

λuλ̇u≤−
λu

2

Tu
+

1
2ι
λu

2
+2ιHu

2 (54)

λr λ̇r ≤−
λr

2

Tr
+

1
2ι
λr

2
+2ιHr

2 (55)

Using Eqs. (26) and (47), we have

1
γu
ω̃T
u (− ˙̂ωu)=−ω̃T

u [(ue+γzuzu)ψu−ϑuω̂u] (56)

1
γr
ω̃T
r (− ˙̂ωr )=−ω̃T

r [(re+γzrzr )ψr−ϑr ω̂r ] (57)

From Eqs. (29) and (50), we have

D̃u
˙̃Du= D̃u(Ḋu− ω̃

T
u ψu− D̃u−ue−γzuzu) (58)

D̃r
˙̃Dr = D̃r (Ḋr− ω̃

T
r ψr− D̃r− re−γzrzr ) (59)
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Combining Eqs. (2a)–(2c), (24), (25), (45) with Eq. (46), we can get

m11γzuzużu= γzuzu
(
ω̃T
u ψu+ D̃u−φuzu

)
(60)

m33γzrzr żr = γzrzr
(
ω̃T
r ψr+ D̃r−φrzr

)
(61)

Combining Eqs. (23), (44), (52)–(58) and Young’s inequality, Eq. (53) can be expressed
as

V̇ ≤ −(kρ−
A
2
)
ρs

2

k2a−ρ2s
−kuue2−γzuφuzu2

−D̃2
u− (

1
Tu
−

1
2A(k2a−ρ2s )

−
1
2ι
)λu2

+2ιHu
2
+ ω̃T

u ϑuω̂u+ D̃uḊu− D̃uω̃
T
u ψu

−(kθ−
1
2
)

θ2

k2b−θ2
−kr re2− D̃2

r

−(
1
Tr
−

1
2(k2b−θ2)

)λr 2−γzrφrzr 2+
1
2ι
λr

2

+2ιHr
2
+ ω̃T

r ϑr ω̂r+ D̃r Ḋr− D̃r ω̃
T
r ψr (62)

According to Young’s inequality, we can obtain

−D̃g ω̃
T
g ψg ≤

1
2
ζg D̃2

g$
2
g +

1
2ζg

ω̃T
g ω̃g (63)

D̃g Ḋg ≤
1
2
D̃2
g +

1
2
χ2
g (64)

ω̃T
g ω̂g ≤−

1
2
ω̃T
g ω̃g +

1
2
‖ωg
∗
‖
2 (65)

where ζg is positive user-defined parameter, ‖ψg‖≤$g ,
∣∣Ḋg

∣∣≤χg , g = u,r .χg and ‖ωg
∗
‖

are positive constants.
From Eqs. (63)–(65), Eq. (62) can be expressed as

V̇ ≤ −(kρ−
A
2
)
ρs

2

k2a−ρ2s
−kuue2− (

1
2
ϑu−

1
2µu

)ω̃T
u ωu

−(
1
Tu
−

1
2A(k2a−ρ2s )

−
1
2ι
)λu2− (

1
2
−

1
2
µu$

2
u )D̃

2
u

−γzuφuzu2− (kθ−
1
2
)

θ2

k2b−θ2
−kr re2−γzrφrzr 2

−(
1
Tr
−

1
2(k2b−θ2)

−
1
2ι
)λr 2− (

1
2
ϑr−

1
2µr

)ω̃T
r ωr

−(
1
2
−

1
2
µr$

2
r )D̃

2
r +2ιHu

2
+

1
2
ϑu‖ωu‖

2
+

1
2
χ2
u

Yan et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.863 13/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.863


+2ιHr
2
+

1
2
ϑr‖ωr‖

2
+

1
2
χ2
r

≤−2aV +b (66)

where a=min((kρ− A
2 ),ku,(

1
Tu
−

1
2A(k2a−ρ2s )

−
1
2ι),γzuφu,(

1
2ϑu−

1
2µu

),( 12 −
1
2µu$

2
u ),(kθ −

1
2),kr ,(

1
Tr
−

1
2(k2b−θ2)

−
1
2ι),(

1
2ϑr −

1
2µr

),( 12 −
1
2µr$

2
r ),γzrφr ) , b= 2ιHu

2
+

1
2ϑu‖ωu‖

2

+
1
2χ

2
u+2ιHr

2
+

1
2ϑr‖ωr‖

2
+

1
2χ

2
r .

By choosing the appropriate design parameters to make kρ > A
2 ,ku> 0,( 1

Tu
−

1
2A(k2a−ρ2s )

−

1
2ι)> 0,γzuφu> 0,( 12ϑu−

1
2µu

)> 0,( 12−
1
2µu$

2
u )> 0,kθ > 1

2 ,kr > 0,( 1
Tr
−

1
2(k2b−θ2)

−
1
2ι)>

0,( 12ϑr−
1

2µr
)> 0,( 12−

1
2µr$

2
r )> 0,γzrφr > 0.

By solving Eq. (66), we have

0≤V ≤
b
2a
+[V (0)−

b
2a
]e−2at (67)

From Eq. (67), we can obtain that V → b
2a as t→∞. All signals in the Lyapunov

function Eq. (52) are UUB. This concludes the proof.

SIMULATION RESULTS
In this section, to demonstrate the effectiveness of the proposed control system, the dynamic
model of an MSV in Do, Jiang & Pan (2004) is considered.

The model parameters of the MSV are presented as follows: m11 = 120×103 kg ,m22=

177.9×103 kg ,m33= 636×105 kg m2. d11 = 215×102 kg/s,d22= 147×103 kg/s,d33=
802×104 kg/m2s.

The proposed control scheme is marked as τCL. The control strategy without considering
the prediction error is denoted as τNN .

Case 1: The reference trajectory is selected as xd = 200sin(0.02t ),yd = 200cos(0.02t ).
Unknown dynamics are selected as [1fu,1fv ,1fr ]T =
[(−0.2d11 |u|)u,(−0.2d22 |v|)v,(−0.2|r |)r]T . The external disturbances are given as
[du,dv ,dr ]T = [104sin(0.3t −π/4)+104cos(0.2t +π/4)+2×104,103sin(0.2t −π/4))
+103cos(0.3t−π/4)+3×103,105sin(0.2t+π/6)+105cos(0.5t−π/4) (−3×105]T .

The initial condition is chosen as [x(0),y(0),ϕ(0),u(0),v(0),r(0)]
= [20,190,−0.02π,0,0,0]. The control laws design parameters are designed as ρ0= 10,
kρ = 0.4, ku= 6×103, kr = 3.18×106, Tu= 0.8, Tr = 0.3, γu= 10000, γr = 100, γzu= 20,
γzr = 3000, ϑu= 0.00001, ϑr = 0.0001, φu= 10, φr = 1.

Figures 2A–2F illustrate the simulation results for the MSV under the two control
strategies. Fig. 2A clearly illustrates that the MSV can track the reference trajectory in the
presence of unknown dynamics, time-varying disturbances and output constraint under
two control methods. The result in Fig. 2B shows that MSV can accomplish faster and
more precise tracking under τCL. The results of approximation of unknown information
in Figs. 2C and 2D further support this conclusion. The estimates of 2-norms weights are
more sensitive under as illustrated in Fig. 2E. The control inputs τu and τr are plotted in
Fig. 2F.
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Figure 2 Simulation results under τNN and τCL for case 1. (A) Reference and actual trajectories of the
MSV. (B) Tracking position error and yaw angle error. (C)

∑
u and its estimation. (D)

∑
r and its estima-

tion. (E) 2-norms ‖ω̂u‖, ‖ω̂r‖ of parameter estimates ω̂u and ω̂r . (F) Control signals τu and τr .
Full-size DOI: 10.7717/peerjcs.863/fig-2
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Case 2: The MSV’s unknown dynamics are raised 1.2×1fn. The control law’s initial
conditions and design parameters are the same as in Case 1, and the larger time-varying
disturbances can be chosen as [du,dv ,dr ]T = [1.5×104sin(0.3t−π/4)+1.5×104cos(0.2t+
π/4)+ 3× 104,1.5× 103sin(0.2t −π/4)+1.5× 103cos(0.3t −π/4)+3× 103,1.5×
105sin(0.2t+π/6)+1.5×105cos(0.5t−π/4)−4.5×105]T .

Under two control systems, MSV can track a reference trajectory in the presence of
unknown dynamics, time-varying disturbances and output constraint as shown in Fig. 3A.
As demonstrated in Fig. 3B, MSV can obtain higher tracking performance under τCL. The
proposed control scheme has better robustness performance. As shown in Figs. 3C–3D,
a similar result can be illustrated in case 1. The estimates of 2-norms weights are more
sensitive under as illustrated in Fig. 3E. The control inputs are presented in Fig. 3F.

Case 3: The initial conditions and design parameters of the control law are the same as
those in case 1. To further verify the superiority and effectiveness of the control scheme,
another form of environmental disturbance are given as [du,dv ,dr ]T = d+h. where d is d
= [104sin(0.3t−π/4)+104cos(0.2t+π/4)+2×104,103sin(0.2t−π/4)+103cos(0.3t−
π/4)+3×103,105sin(0.2t +π/6)+105cos(0.5t −π/4)−3×105]T . h is selected by the
first-order Markov process. ḣ=−3h+0℘, where℘ ∈R3 is the zero-mean Gaussian white
noise.

The simulation results are depicted in Figs. 4A–4F. Under two control systems, MSV
can track a reference trajectory under unknown dynamics, time-varying disturbances and
output constraint as shown in Fig. 4A. As demonstrated in Fig. 4B, MSV can achieve better
tracking performance under τCL. As shown in Figs. 4C–4D, a similar result can be verified.
The estimates of 2-norms weights are more sensitive under as shown in Fig. 4E. The control
inputs are presented in Fig. 4F.

CONCLUSIONS
In this paper, a composite learning trajectory tracking control scheme is proposed for
underactuated MSVs in the presence of unknown dynamics, time-varying disturbances
and output constraints. The underactuation problem of the MSVs is addressed by the
LOS approach. The barrier Lyapunov function is introduced to deal with the problem
of output constraint. The composite learning control scheme is utilized to approximate
unknown dynamics. The prediction errors and the tracking errors are adopted to construct
the NN weight updating. Using approximation information, the disturbance observers are
designed to estimates unknown time-varying disturbances. The Lyapunov method is used
to demonstrate the stability of a closed-loop system. The simulation results demonstrate
the effectiveness and superiority of the proposed control scheme.

Furthermore, the finite-time control can be further considered. The control scheme in
this paper can be easily combined with event-triggered control.
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Figure 3 Simulation results under τNN and τCL for case 2. (A) Reference and actual trajectories of the
MSV. (B) Tracking position error and yaw angle error. (C)

∑
u and its estimation. (D)

∑
r and its estima-

tion. (E) 2-norms ‖ω̂u‖, ‖ω̂r‖ of parameter estimates ω̂u and ω̂r . (F) Control signals τu and τr .
Full-size DOI: 10.7717/peerjcs.863/fig-3
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Figure 4 Simulation results under τNN and τCL for case 3. (A) Reference and actual trajectories of the
MSV. (B) Tracking position error and yaw angle error. (C)

∑
u and its estimation. (D)

∑
r and its estima-

tion. (E) 2-norms ‖ω̂u‖, ‖ω̂r‖ of parameter estimates ω̂u and ω̂r . (F) Control signals τu and τr .
Full-size DOI: 10.7717/peerjcs.863/fig-4
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