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ABSTRACT
There is an increasing number of big data science projects aiming to create value for
organizations by improving decision making, streamlining costs or enhancing
business processes. However, many of these projects fail to deliver the expected value.
It has been observed that a key reason many data science projects don’t succeed is not
technical in nature, but rather, the process aspect of the project. The lack of
established and mature methodologies for executing data science projects has been
frequently noted as a reason for these project failures. To help move the field forward,
this study presents a systematic review of research focused on the adoption of big
data science process frameworks. The goal of the review was to identify (1) the key
themes, with respect to current research on how teams execute data science projects,
(2) the most common approaches regarding how data science projects are organized,
managed and coordinated, (3) the activities involved in a data science projects life
cycle, and (4) the implications for future research in this field. In short, the review
identified 68 primary studies thematically classified in six categories. Two of the
themes (workflow and agility) accounted for approximately 80% of the identified
studies. The findings regarding workflow approaches consist mainly of adaptations to
CRISP-DM (vs entirely new proposed methodologies). With respect to agile
approaches, most of the studies only explored the conceptual benefits of using an
agile approach in a data science project (vs actually evaluating an agile framework
being used in a data science context). Hence, one finding from this research is that
future research should explore how to best achieve the theorized benefits of agility.
Another finding is the need to explore how to efficiently combine workflow and agile
frameworks within a data science context to achieve a more comprehensive approach
for project execution.

Subjects Data Mining and Machine Learning, Data Science
Keywords Big data science, Project execution, Process frameworks, Big data science workflows,
Agile data science

INTRODUCTION
There is an increasing use of big data science across a range of organizations. This means
that there is a growing number of big data science projects conducted by organizations.
These projects aim to create value by improving decision making, streamlining costs or
enhancing business processes.
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However, many of these projects fail to deliver the expected value (Martinez, Viles &
Olaizola, 2021). For example, VentureBeats (2019) noted that 87% of data science projects
never make it into production and a NewVantage survey (NewVantage Partners, 2019)
reported that for 77% of businesses, the adoption of big data and artificial intelligence
(AI) initiatives is a big challenge. A systematic review over the grey and scientific literature
has found 21 cases of failed big data projects reported over the last decade (Reggio &
Astesiano, 2020). This is due, at least in part, to that fact that data science teams generally
suffer from immature processes, often relying on trial-and-error and Ad Hoc processes
(Bhardwaj et al., 2015; Gao, Koronios & Selle, 2015; Saltz & Shamshurin, 2015). In short,
big data science projects often do not leverage well-defined process methodologies
(Martinez, Viles & Olaizola, 2021; Saltz & Hotz, 2020). To further emphasize this
point, in a survey to data scientists from both industry as well as from not-for-profit
organizations, 82% of the respondents did not follow an explicit process methodology for
developing data science projects, and equally important, 85% of the respondents stated
that using an improved and more consistent process would produce more effective data
science projects (Saltz et al., 2018).

While a literature review in 2016 did not identify any research focused on improving
data science team processes (Saltz & Shamshurin, 2016), more recently, there has been
increase in the studies specifically focused on how to organize and manage big data science
projects in more efficient manner (e.g. Martinez, Viles & Olaizola, 2021; Saltz & Hotz,
2020).

With this in mind, this paper presents a systematic review of research focused on
the adoption of big data science process frameworks. The purpose is to present an overview
of research works, findings, as well as implications for research and practice. This is
necessary to identify (1) the key themes, with respect to current research on how teams
execute data science projects, (2) the most common approaches regarding how data
science projects are organized, managed and coordinated, (3) the activities involved in a
data science projects life cycle, and (4) the implications for future research in this field.

The rest of the paper is organized as follows: “Background and Related Work” section
provides information on big data process frameworks and the key challenges with respect
to teams executing big data science projects. In the “Survey Methodology” section, the
adopted research methodology is discussed, while the “Results” section presents the
findings of the study. The insights from this SLR as well as implications for future research
and limitations of the study are highlighted in the “Discussion” section. “Conclusions”
section concludes the paper.

BACKGROUND AND RELATED WORK
It has been frequently noted that project management (PM) is a key challenge for
successfully executing data science projects. In other words, a key reason many data
science projects fail is not technical in nature, but rather, the process aspect of the project
(Ponsard et al., 2017). Furthermore, Espinosa & Armour (2016) argue that task
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coordination is a major challenge for data projects. Likewise, Chen, Kazman & Haziyev
(2016) conclude that coordination among business analysts, data scientists, system
designers, development and operations is a major obstacle that compromises big data
science initiatives. Angée et al. (2018) summarized the challenge by noting that it is
important to use an appropriate process methodology, but which, if any, process is the
most appropriate is not easy to know.

The importance of using a well-defined process framework
This data science process challenge, in terms of knowing what process framework to use
for data science projects, is important because it has been observed that big data
science projects are non-trivial and require well-defined processes (Angée et al., 2018).
Furthermore, using a process model or methodology results in higher quality outcomes
and avoids numerous problems that decrease the risk of failure in data analytics projects
(Mariscal, Marbán & Fernández, 2010). Example problems that occur when a team does
not use a process model include the team being slow to share information, deliver the
wrong result, and in general, work inefficiently (Gao, Koronios & Selle, 2015; Chen et al.,
2017).

The most common framework: CRISP-DM
The CRoss-Industry Standard Process for Data Mining (CRISP-DM) (Chapman et al.,
2000) along with Knowledge Discovery in Databases (KDD) (Fayyad, Piatetky-Shapiro &
Smyth, 1996), which both were created in the 1990s, are considered ‘canonical’
methodologies for most of the data mining and data science processes and methodologies
(Martinez-Plumed et al., 2019; Mariscal, Marbán & Fernández, 2010). The evolution of
those methodologies can be traced forward to more recent methodologies such as Refined
Data Mining Process (Mariscal, Marbán & Fernández, 2010), IBM’s Foundational
Methodology for Data Science (Rollins, 2015) and Microsoft’s Team Data Science Process
(Microsoft, 2020).

However, recent surveys show that when data science teams do use a process,
CRISP-DM has been consistently the most commonly used framework and de facto
standard for analytics, data mining and data science projects (Martinez-Plumed et al.,
2019; Saltz & Hotz, 2020). In fact, according to many opinion polls, CRISP-DM is the only
process framework that is typically known by data science teams (Saltz, n.d.), with roughly
half the respondents reporting to use some version of CRISP-DM.

Specifically, CRISP-DM defines the following six phases:

� Business understanding—includes identification of business objectives and data mining
goals

� Data understanding—involves data collection, exploration and validation

� Data preparation—involves data cleaning, transformation and integration

� Modelling—includes selecting modelling technique and creating and assessing models
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� Evaluation—evaluates the results against business objectives

� Deployment—includes planning for deployment, monitoring and maintenance.

CRISP-DM allows some high-level iteration between the steps (Gao, Koronios & Selle,
2015). Typically, when a project uses CRISP-DM, the project moves from one phase (such
as data understanding) to the next phase (e.g., data preparation). However, as the team
deems appropriate, the team can go back to a previous phase. In a sense, one can think of
CRISP-DM as a waterfall model for data mining (Gao, Koronios & Selle, 2015).

While CRISP-DM is popular, and CRISP-DM’s phased based approach is helpful to
describe what the team should do, there are some limitations with the framework. For
example, the framework provides little guidance on how to know when to loop back to a
previous phase, iterate on the current phase, or move to the next phase. In addition,
CRISP-DM does not contemplate the need for operational support after deployment.

The stated need for more research
Given that many data science teams do not use a well-defined process and that others use
CRISP-DM with known challenges, it is not surprising that there has been a consistent
calling for more research with respect to data science team process. For example, in
Cao’s discussion of Data Science challenges and future directions (Cao & Fayyad, 2017),
it was noted that one of the key challenges in analyzing data includes developing
methodologies for data science teams. Gupte (2018) similarly noted that the best approach
to execute data science projects must be studied. However, even with this noted challenge
on data science process, there is a well-accepted view that not enough has been written
about the solutions to tackle these problems (Martinez, Viles & Olaizola, 2021).

Is there still a need for more research?
This lack of research on data science process frameworks was certainly true 6 years ago,
when the need for concise, thorough and validated information regarding the ways data
science projects are organized, managed and coordinated was noted (Saltz, 2015). This
need was further clarified when, in a literature review of big data science process research,
no papers were found that focused on improving a data science team’s process or
overall project management (Ransbotham, David & Prentice, 2015). This was also
consistent with the view that most big data science research has focused on the technical
capabilities required for data science and has overlooked the topic of managing data
science projects (Saltz & Shamshurin, 2016).

However, much has happened during the past 6 years, with respect to research on data
science process frameworks. With this in mind, to help move the field forward, this
research aims to focus on the following research questions:

� RQ1: Has research in this domain increased recently?

� RQ2: What are the most common approaches regarding how data science projects are
organized, managed and coordinated?

� RQ3: What are the phases or activities in a data science project life cycle?
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SURVEY METHODOLOGY
While there are many approaches to a literature review, one approach, which is followed in
this research, is to combine quantitative and qualitative analysis to provide deeper insights
(Joseph et al., 2007). Furthermore, the systematic literature review conducted in this
study leveraged the guidelines for performing SLRs suggested by Kitchenham & Charters
(2007) and the data were collected in a similar manner as described in Saltz & Dewar
(2019). Hence, the SLR process consisted of three phases: planning, conducting and
reporting the review. The subsections below present the outcomes of the first two phases,
while the results of the review are reported in the next section.

Planning the review
In general, systematic reviews address the need to summarize and present the existing
information about some phenomenon in a thorough and unbiased manner (Kitchenham&
Charters, 2007). As previously noted, the need for concise, thorough and validated
information regarding the ways data science projects are organized, managed and
coordinated is justified by the lack of established and mature methodologies for executing
data science projects. This has led to our previously defined research questions, which are
the drivers for how we structured our research.

The study search space comprises the following five online sources: ACM Digital
Library, IEEEXplore, Scopus, ScienceDirect and Google Scholar. In addition to online
sources, the search space might be enriched with reference lists from relevant primary
studies and review articles (Kitchenham & Charters, 2007). Specifically, the papers that
cite the study providing justification for the present research (Saltz, 2015) and the previous
SLR on the subject (Saltz & Shamshurin, 2016) are added to the study search space.

Our search strategy includes both metadata and full-text searches over the selected
online sources. The search phases that were identified after a couple of iterations, cover the
two key concepts relevant to the study:

� Data science related terms: (“data science” OR “big data” OR “machine learning”).

� Project execution related terms: (“process methodology” OR “team process” OR “team
coordination” OR “project management”).

To determine whether a paper should be included in our analysis, the following
selection criteria are defined:

� Inclusion criteria:

○ Papers that fully or partly include a description of the organization, management or
coordination of big data science projects.

○ Papers that suggest specific approaches for executing big data science projects.

○ Papers that were published after 2015.
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� Exclusion criteria:

○ Papers that are not written in English

○ Papers that did not focus on data science team process, but rather, focused on using
data analytics to improve overall project management processes were excluded.

○ Papers that had no form of peer review (e.g. blogs).

○ Papers with irrelevant document type such as posters, conference summaries, etc.

Our exclusion of papers that discussed the use of analytics for overall project management
considerations was driven by our desire to focus this research on understanding the
specific attributes of data science projects, and how different frameworks were, or were not,
applicable in the context of a data science project. This does not imply that data science has
no role in helping to improve overall project management approaches. In fact, data science
can and should add to the field of general project management, but we view this analysis as
beyond the scope of our research.

The selection procedure describes how the selection criteria will be applied while
conducting the study (Kitchenham & Charters, 2007; Saltz & Dewar, 2019). In our case, we
planned two selection steps:

� Step1: Title and abstract screen—Initially, after the relevant papers from the search
space are identified according to the study search strategy, the selection criteria will be
applied considering only the title and the abstracts of the papers. This step is to be
executed by the two authors over different sets of identified papers.

� Step2: Full text screen—The full text of the candidate papers will then be reviewed by the
two authors independently to identify the final set of primary studies to be included for
further data analysis.

The approach for data extraction and synthesis followed in our study is based on the
content analysis suggested in Elo & Kyngäs (2008), Hsieh & Shannon (2005). After
exploring the key concepts used within each of the primary studies, general research
themes are to be identified and further analysis of the data with respect to the study
research questions is to be performed in both qualitative and quantitative manner.

Conducting the review
The SLR procedure was performed at the beginning of May, 2021. Because of the
differences in running the searches over the online sources included in our search space,
the identification of research and the first step of the selection procedure for Google
Scholar were executed independently from the other digital libraries.

Three searches for the identification of relevant studies were executed over Google
Scholar database with the following search strings:

� Search 1, the “data science” search: “data science” AND (“process methodology” OR
“team process” OR “team coordination” OR “project management”).
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� Search 2, the “machine learning” search: “machine learning” AND (“process
methodology” OR “team process” OR “team coordination” OR “project management”).

� Search 3, the “big data” search: “big data” AND (“process methodology” OR “team
process” OR “team coordination” OR “project management”).

Since the number of papers returned after executing the searches were very large, via a
snowball sampling approach, only the first 220 papers in each result sets were included for
further analysis. The first step of the selection procedure was executed for the unique
papers in each of the sets and 48 papers were selected as candidates for primary studies.
Table 1 shows the exact number of papers returned after running the searches and the first
step of the selection procedure for Google Scholar.

Executing the initial search strings over the digital libraries resulted a vast number of
papers (e.g., over 1,500 papers for IEEE Xplore full text). Motivated by the results of
the executed searches in Google Scholar, an optimization of the search terms was
introduced. Since the ratio of candidate to retrieved papers for the “machine learning”
Google Scholar search string was very low and only one paper was selected after the first
step of the selection procedure, we removed the term “machine learning” from the initial
“Data science related terms” search phrase. The final search string that was used for
identification of studies from the digital libraries the was: (“data science”OR “big data”OR
“machine learning”) AND (“process methodology” OR “team process” OR “team
coordination” OR “project management”).

Both metadata and full text searches were performed over the four digital libraries:

� ACM Digital Library—full text search.

� IEEEXplore—metadata-based and full text searches.

� Scopus—metadata-based search.

� ScienceDirect—metadata-based search.

When executing the searches, appropriate filters helping to meet inclusion and
exclusion criteria for each of the sources were applied where available. We used Mendeley
as a reference management tool to help us organize the retrieved papers and to automate
the removal of duplicates. A total of 1,944 was returned by the searches, from which
1,697 were unique papers. After executing the title and abstract screen, 98 papers were
selected for candidates for primary studies. The exact numbers of retrieved and candidate
papers are presented in Table 2. The numbers shown in the table include papers duplicated
across the digital libraries.

The relevant studies search space comprised the papers that cite the two studies which
provide the proper justification and relevant background for our research, namely
(Saltz, 2015) and (Saltz & Shamshurin, 2016). A total of 159 papers were found to cite the
two papers. After filtering the papers by screening the titles and abstracts, 64 of those
papers were selected for candidate primary studies.

A consolidated list of all the candidate papers which were selected in the previous step of
the selection procedure was created. The list included 120 unique papers. After performing
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the next step of the selection procedure (full text review), 68 papers were selected.
These papers comprised the list of primary studies that were further analyzed to provide
the answers to our research questions. The steps of the SLR procedure that led to the
identification of the primary studies for our study are presented in Fig. 1.

Following the guidelines by Cruzes & Dybå (2011), thematic analysis and synthesis was
applied during data extraction and synthesis. We used the integrated approach (Cruzes &
Dybå, 2011), which employs both inductive and deductive code development, for
retrieving the research themes related to the execution of data science projects as well as for
defining the categories of workflow approaches and the themes for agile adoption
presented in the following section.

RESULTS
This section presents the findings of the SLR with regard to the three research questions
defined in the planning phase.

Research activity in this domain (RQ1)
As shown in Fig. 2, there has been an increase in the number of articles published over
time. Note that the review was in done in May 2021, so the 2021 year was on pace to have
more papers than any other year (i.e., over the full year, 2021 was on pace to have 18+
papers). Furthermore, it is likely that 2020 had a reduction due to COVID.

We also explored publishing outlets. Specifically, Fig. 3 shows the number of papers
for each publisher. IEEE was the most frequent publisher, with 31 (46%) papers, due in
part to a yearly IEEE workshop on this domain, that started in 2015. The next highest
publisher was ACM, with nine papers (13%).

Table 1 Retrieved and candidate papers from Google Scholar.

Search strings Retrieved papers Candidate papers

“data science” search string 9,200 (first 220 used) 37

“machine learning” search string 17,800 (first 220 used) 1

“big data” search string 17,600 (first 220 used) 10

Table 2 Retrieved and candidate papers from digital libraries.

Digital library search Retrieved papers Candidate papers

Scopus: Metadata 327 52

ACM: Full text 330 18

IEEE: All metadata 197 24

IEEE: Full Text 1,066 36

Science Direct: Metadata 24 5
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Approaches for executing data science projects (RQ2)
Table 3 provides an overview of the six themes identified, with respect to the approaches
for defining and using a data science process framework. The table also shows the relevant
primary studies. While the six themes that we identified in our SLR are all relevant to
project execution, there was a wide range in the number of papers published for the
different themes. The ratio of publications across the different themes provides a high-level
view of current research efforts regarding the execution of data science projects.

Below we provide a description for each of the themes, with an expanded focus on the
two most popular themes (workflows and agility).

Workflows papers explored how data science projects were organized with respect to
the phases, steps, activities and tasks of the execution process (e.g., CRISP-DM’s project
phases). There were 27 papers in this theme, which is about 40% of the total number
of primary studies. Workflow approaches are discussed in our second research question
and a detailed overview of the relevant studies will be provided in the following section.

Figure 1 Steps of the SLR procedure for identification of primary studies.
Full-size DOI: 10.7717/peerj-cs.862/fig-1
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Agility papers described the adoption of agile approaches and considered specific
aspects of project execution such as the need for iterations or how teams should
coordination and collaborate. The high number of papers categorized in the Agility
theme (26 out of 68) might be due to the successful adoption of agile methodologies in

Figure 2 Number of papers per year. Full-size DOI: 10.7717/peerj-cs.862/fig-2

Figure 3 Number of papers for each publisher. Full-size DOI: 10.7717/peerj-cs.862/fig-3
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various software development projects. The theme will be covered in the next section since
agile adoption is also relevant to our second research question. Seven papers explored both
the workflows and agility themes.

Process adoption papers discussed the key factors as well as the challenges for a data
science team to adopt a new process. Specifically, the papers that discussed process
adoption considered questions such as acceptance factors (Saltz, 2017, 2018; Saltz & Hotz,
2021), project success factors (Soukaina et al., 2019), exploring the application of software
engineering practices in the data science context (Saltz & Shamshurin, 2017), and
would deep learning impact a data science teams process adoption (Shamshurin & Saltz,
2019a).

General PM papers discussed general project management challenges. These papers did
not focus on addressing any data science unique characteristics, but rather, general
management challenges such as the team’s process maturity (Saltz & Shamshurin, 2015),
the need for collaboration (Mao et al., 2019), the organizational needs and challenges when
executing projects (Ramesh & Ramakrishna, 2018) and training of human resources
(Mullarkey et al., 2019).

Tools focused papers described new tools that could improve the data science team’s
productivity. Five papers explored how different tools, both custom and commercial,
could be used to support various aspects of the execution of the data science projects. The
tools explored focused on communication and collaboration (Marin, 2019; Wang et al.,
2019), Continuous Integration/Continuous Development (Chen et al., 2020), the
maintainability of a data science project (Saltz et al., 2020) and a tool to improve the
coordination of the data science team (Crowston et al., 2021).

Reviews were papers that reported on a SLR for a specific topic related to data science
project execution or papers that report on an industry survey. An SLR aiming to find
out benefits and challenges on applying CRISP-DM in research studies is presented in
Schröer, Kruse & Gómez (2021). How different data mining methodologies are adapted in
practice is investigated in Plotnikova, Dumas & Milani (2020). That literature review
covered 207 peer-reviewed and ‘grey’ publications and identified four adaptation patters
and two recurrent purposes for adaptation. Another SLR focused on experience reports
and explored the adoption of agile software development methods in data science

Table 3 Themes relevant to execution of data science projects.

Theme Primary studies Total
number

Workflows See Table 4 27

Agility See Table 5 26

Process
adoption

(Saltz, 2017, 2018; Saltz & Hotz, 2021; Soukaina et al., 2019; Saltz & Shamshurin, 2017; Shamshurin & Saltz, 2019a) 6

General PM (Saltz & Shamshurin, 2015; Mao et al., 2019; Ramesh & Ramakrishna, 2018; Mullarkey et al., 2019) 4

Tools (Marin, 2019; Wang et al., 2019; Chen et al., 2020; Saltz et al., 2020; Crowston et al., 2021) 5

Reviews (Saltz, 2015; Saltz & Shamshurin, 2016; Schröer, Kruse & Gómez, 2021; Plotnikova, Dumas & Milani, 2020; Krasteva &
Ilieva, 2020; Martinez, Viles & Olaizola, 2021; Saltz et al., 2018)

7
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projects (Krasteva & Ilieva, 2020). An extensive critical review over 19 data science
methodologies is presented inMartinez, Viles & Olaizola (2021). The paper also proposed
principles of an integral methodology for data science which should include the three
foundation stones: project, team and data & information management. Professionals with
different roles across multiple organizations were surveyed in Saltz et al. (2018) about the
methodology they used in their data science projects and whether an improved project
management process would benefit their results. The two papers that formed the core of
our search space of related papers (Saltz, 2015) and (Saltz & Shamshurin, 2016), were also
included in the Reviews thematic category.

Workflow approaches
The thematic analysis of the workflows for data science projects revealed that the
workflows might be broadly categorized in three groups: (1) standard, (2) new, and
(3) adapted workflows. Furthermore, three sub-categories of adapted workflows were
synthesized based on the aim of the adoption:

� Specialization—adjustments to standard workflows, which are made to better suit
particular big data technology or specific domain.

� Extension—addition of new steps, tasks or activities to extend standard workflow
phases.

� Enrichment—extension of the scope of a standard workflow to provide more
comprehensive coverage of the project execution activities.

An overview of workflow categories and respective primary studies is presented in
Table 4. Multiple studies of the same workflow are shown in brackets. Most of the
workflows use a standard framework as a reference point for specification of both new and

Table 4 Workflow categories.

Category Reference
workflows

Primary studies

New N\A (Dutta & Bose, 2015; Shah, Gochtovtt & Baldini, 2019)

CRISP-DM (Grady, 2016; Grady, Payne & Parker, 2017; Ahmed, Dannhauser & Philip, 2019)

KDD, CRISP-DM (Amershi et al., 2019)

Standard CRISP-DM (Saltz, Shamshurin & Crowston, 2017; Saltz, Heckman & Shamshurin, 2017; Saltz & Heckman, 2018)

Specialization CRISP-DM (Kalgotra & Sharda, 2016; Schwenzfeier & Gruhn, 2018)

KDD (Vernickel et al., 2019)

Extension CRISP-DM (Ponsard, Touzani & Majchrowski, 2017; Ponsard et al., 2017; Asamoah & Sharda, 2019; Qadadeh & Abdallah,
2020)

KDD (Silva, Saraee & Saraee, 2019)

other (Lin & Huang, 2017; Angée et al., 2018; Baijens & Helms, 2019)

Enrichment CRISP-DM (Yamada & Peran, 2017; Martinez-Plumed et al., 2019; Kolyshkina & Simoff, 2019; Costa & Aparicio, 2020;
Kordon, 2020; Fahse, Huber & van Giffen, 2021)

other (Zhang, Muller & Wang, 2020)
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adapted workflows. As seen in Table 4, CRISP-DM provides the basis for the majority of
the workflow papers. Below we explore each of these categories in more depth.

New workflows
While the workflow proposed in Grady (2016) make use of CRISP-DM activities, a new
workflow with four phases, five stages and more than 15 activities was designed to
accommodate big data technologies and data science activities. Providing a more focused
technology perspective (Amershi et al., 2019) proposes a nine-stage workflow for
integrating machine learning into application and platform development. Uniting the
advantages of experimentation and iterative working along with a greater understanding of
the user requirements, a novel approach for data projects is proposed in Ahmed,
Dannhauser & Philip (2019). The suggested workflow consists of three stages and seven
steps and integrates the principles of the Lean Start-up method and design thinking with
CRISP-DM activities. The workflows in Dutta & Bose (2015) and Shah, Gochtovtt &
Baldini (2019) are designed and used in companies, and integrate strategic perspective with
planning, management and implementation.

Standard workflows
Three of the primary studies reported on using CRISP-DM in student projects and
compared and contracted the adoption of different methodologies (e.g. CRISP-DM, Scrum
and Kanban) for executing data science projects.

Workflow specializations
Specialization category is the smallest of the three adaption sub-categories. Two of the
workflows in this category were based on CRISP-DM and were specialized for sequence
analysis (Kalgotra & Sharda, 2016) or anomaly detection (Schwenzfeier & Gruhn, 2018).
In addition, a revised KDD procedure model for time-series data was proposed in
Vernickel et al. (2019).

Workflow extensions
An extension to CRISP-DM for knowledge discovery on social networks was specified as a
seven-stage workflow that can be applied in different domains intersecting with social
network platforms (Asamoah & Sharda, 2019). While this workflow extended CRISP-DM
for big data, the workflows in Ponsard, Touzani & Majchrowski (2017) and Qadadeh &
Abdallah (2020) added additional workflow steps focused on identification of data value
and business objectives. An extension to KDD for public healthcare was proposed in
Silva, Saraee & Saraee (2019). The suggested workflow implies user-friendly techniques
and tools to help healthcare professionals use data science in their daily work. By
performing a SLR of recent developments in KD process models (Baijens & Helms, 2019)
proposes relevant adjustments of the steps and tasks of the Refined Data Mining
Process (Mariscal, Marbán & Fernández, 2010). The IBM’s Analytics Solutions Unified
Method for Data Mining/predictive analytics (ASUM-DM) is extended in Angée et al.
(2018) for a specific use case in the banking sector with focus on big data analytics,
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prototyping and evaluation. A software engineering lifecycle process for big data projects is
proposed in Lin & Huang (2017) as an extension to the ISO/IEC standard 15288:2008.

Workflow enrichments
There were several papers that extend CRISP-DM in different dimensions. The studies in
Kolyshkina & Simoff (2019) and Fahse, Huber & van Giffen (2021) addressed two
important aspects of ML solutions—interpretability and bias, respectively. They suggested
new activities and methods integrated in CRISP-DM steps for satisfying desired
interpretability level and for bias prevention and mitigation. A novel approach for custom
workflow creation from a flexible and comprehensive Data Science Trajectory map of
activities was suggested in Martinez-Plumed et al. (2019). The approach is designed to
address the diversity of data science projects and their exploratory nature. The workflow
presented in Kordon (2020) proposes improvements to CRISP-DM in several areas—
maintenance and support, knowledge acquisition and project management. Scheduling,
roles and tools are integrated with CRISP-DM in a methodology, presented in Costa &
Aparicio (2020). Checkpoints and synchronization are used in the proposed in Yamada &
Peran (2017) Analytics Governance Framework to facilitate communication and
coordination between the client and the data science team. Collaboration is the primary
focus in Zhang, Muller & Wang (2020), in which a basic workflow is extended with
collaborative practices, roles and tools.

Agile approaches
As shown in Table 5, there were 26 papers that focused on the need for agility within data
science projects. Only 31% of the papers actually reported on teams using an agile
approach. The rest of the papers, 69% (18 of the 26 papers), were conceptual in nature.
These conceptual papers explained why it makes sense that a framework should be helpful

Table 5 Agility themes.

Theme Primary studies Type Total
number

Conceptual Benefits
of Agility

(Franková, Drahošová & Balco, 2016; Dharmapal & Sikamani, 2016; Grady, Payne & Parker, 2017; Al-
Jaroodi, Hollein & Mohamed, 2017; Ponsard, Touzani & Majchrowski, 2017; Becker, 2017; Ponsard
et al., 2017; Hassani, El Idrissi & Abouabdellah, 2018; Demigha, 2019; Shah, Gochtovtt & Baldini,
2019; Saltz & Suthrland, 2019; Reggio & Astesiano, 2020; Baijens, Helms & Kusters, 2020; Aho et al.,
2020; Rotondo & Quilligan, 2020)

Conceptual 15 (58%)

Challenges in
Scrum

(Saltz, Shamshurin & Crowston, 2017; Saltz, Heckman & Shamshurin, 2017; Singla, Bose & Naik, 2018;
Saltz & Shamshurin, 2019; Baijens, Helms & Iren, 2020)

Case Study 5 (19%)

Scrum is used (Maria et al., 2015; Saltz & Hotz, 2020) Case Study 2 (7%)

Conceptual Benefits
of Scrum

(Larson & Chang, 2016; Dabrowski, 2021) Conceptual 2 (7%)

Conceptual Benefits
of Lean

(Ahmed, Dannhauser & Philip, 2019) Conceptual 1 (4%)

Challenges in
Kanban

(Shamshurin & Saltz, 2019b) Case Study 1 (4%)
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for a data science project but provided no examples that the framework actually helps a
data science team.

Specifically, the vast majority of the papers (15 papers), explored the potential benefits
of agility for data science projects. These papers were labeled general agility papers
since they did not explicitly support any specific agile approach, but rather, noted the
benefits teams should get by adopting an agile framework. The expected benefits of agility
typically focused on the need for multiple iterations to support the exploratory nature of
data science projects, especially since the outcomes are uncertain. This would allow teams
to adjust their future plans based on the results of their current iteration.

Two papers discussed the potential benefits of Scrum. However, five papers reported
on the difficulty teams encountered when they actually tried to use Scrum. Often times,
issues arose due to the challenge in accurately estimating how long a task would take to
complete. This issue of task estimation impacted the team’s ability to determine what
work items could fit into a sprint. Two other papers reported on the use of Scrum within
data science team, but both of those papers did not describe in depth how the team used
Scrum, nor if there were any benefits or issues due to their use of Scrum.

Finally, one paper discussed the conceptual benefits of using a lean approach and a
different paper reported on the challenge in using Kanban (which can be thought as
supporting both agility and lean principles). That paper explored the need for the process
master role, similar to the Scrum Master role in Scrum.

Combined approaches
The seven papers that covered both the workflow and agility themes presented a more
comprehensive methodology for project execution. Several proposed new frameworks
(Grady, Payne & Parker, 2017; Ponsard, Touzani & Majchrowski, 2017; Ponsard et al.,
2017; Ahmed, Dannhauser & Philip, 2019). All of the newly proposed frameworks defined
a new workflow (typically based on CRISP-DM), and also suggested that the project do
iterations and focus on creating a minimal viable product (MVP). However, there was
no consensus on if the iterations should be time-boxed or capability based. Furthermore,
there no consensus on how to integrate the data science life cycle into each iteration. In
fact, two papers didn’t explicitly address this question (Ponsard, Touzani & Majchrowski,
2017; Ponsard et al., 2017) and another article implied that something should be done
for each phase in each sprint (Grady, Payne & Parker, 2017). Yet another article suggested
that maybe some iterations focus on a specific phase and other iterations might focus on
more than one phase (Ahmed, Dannhauser & Philip, 2019).

Three articles analyzed existing frameworks, including both workflow and agile
frameworks (Saltz, Shamshurin & Crowston, 2017; Saltz, Heckman & Shamshurin, 2017;
Shah, Gochtovtt & Baldini, 2019). For both of these articles, there was not explicit
discussion on how to integrate workflow frameworks with agile frameworks.

Data science project life cycle activities (RQ3)
Table 6 shows a synthesized overview of the life cycle phases mentioned in the workflow
papers, presented above. This table also shows the number (and percentage) of papers that
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mention a specific data science life cycle phase. One can note that the most common
phases are the CRISP-DM phases.

DISCUSSION
The section presents further analysis on the findings of the study, highlighting the insights
and implications for future research as well as exploring several validity threats.

Insights and implications for future research
The analysis of the information extracted for each primary study provided interesting
insights on how data science projects are currently organized, managed and executed. The
findings regarding categories of workflows confirm the trend observed in Plotnikova,
Dumas & Milani (2020) of the large number of adaptations of workflow frameworks
(vs proposing new methodologies). While CRISP-DM is reported to be the most widely
used framework for data science projects (e.g. Saltz & Hotz, 2020), the adaptions of
CRISP-DM in data science projects are much more commonly reported in the research
literature, which raises the question if teams are adapting CRISP-DM, when they are using
it within their project.

Most of the agility papers were conceptual in nature, and many of the other papers
reported on issues when using Scrum. Hence, more research is needed to explore how to
achieve the theorized benefits of agility, perhaps by adapting Scrum or using a different
framework.

Combining workflow approaches with agile frameworks within a data science context is
a way to achieve an integral framework for project execution. However, more research

Table 6 Data science life cycle activities.

Theme Total number CRISP-DM phase

Readiness assessment 1 (4%)

Project organization 5 (18%)

Business understanding 19 (68%) ✓

Problem identification 8 (29%)

Data acquisition 10 (36%)

Data understanding 15 (54%) ✓

Data preparation 21 (75%) ✓

Feature engineering 4 (14%)

Data analysis/Exploration 9 (32%)

Modeling 25 (89%) ✓

Model refinement 2 (7%)

Evaluation 23 (82%) ✓

Interpret/Explain 2 (7%)

Deployment 20 (71%) ✓

Business value 5 (18%)

Monitoring 2 (7%)

Maintenance 3 (11%)
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is needed on how to combine these two approaches. For example, the research presented in
Martinez, Viles & Olaizola (2021) over the 19 methodologies for data science projects
determined that only four of them could be classified as integral according to the criteria
defined in the study. Specifying new data science methodologies that cover different
aspects of project execution (e.g. team coordination, data and system engineering,
stakeholder collaboration) is a promising direction for future research.

To explore if the life cycle activities mentioned in the workflow papers have changed
over time, we conducted a comparative analysis with a similar SLR in which 23 data
mining process models are compared based on process steps (Rotondo & Quilligan, 2020).
As all of the papers from the previous SLR were prior to 2018, comparing the two
SLR’s provides a way to see if the usage of different phases has changed over time. It
was observed that the use of an exploratory phase (Data Analysis/Exploration) was
increasing, while the model interpretation and explanation phase (Interpret/Explain) was
decreasing. The last is perhaps due to these tasks being integrated into the evaluation
phase.

Validity threats
Several limitations of the study present potential threats to its validity. One limitation is
that the SLR was based on a specific set of search strings. It is possible a different search
string could have identified other interesting articles. Adding an additional search
space based on citations of relevant studies tried to mitigate the impact of this potential
threat.

Another limitation is that while authors explored ACM Digital Library, IEEEXplore,
Scopus, ScienceDirect and Google Scholar databases, which index high impact journals
and conference papers from IEEE, ACM, SpringerLink, and Elsevier, it is possible that
some relevant articles from other publication outlets could have been missed. In addition,
the grey literature was not analyzed. This literature could have provided additional insights
on the adoption of data science approaches in industrial settings. Yet another limitation is
that the analysis and synthesis were based on qualitative content analysis and thematic
synthesis of the selected articles by the research team. The authors tried to minimize the
subjectivity of researchers’ interpretation by cross-checking papers to reduce bias.

CONCLUSIONS
This study presents a systematic review of research focused on the adoption of big data
science process frameworks. The study shows that research on how data science projects
are organized, managed and executed has increased significantly during the last 6 years.
Furthermore, the review identified 68 primary studies and thematically classified these
studies in six key themes, with respect to current research on how teams execute data
science projects (workflows, agility, process adoption, general PM, tools, and reviews).
CRISP-DMwas the most common workflow discussed, and the different adaption patterns
of CRISP-DM—specializations, extensions and enrichments, were the most common
approaches for specifying and using adjusted workflows for data science projects.

Saltz and Krasteva (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.862 17/24

http://dx.doi.org/10.7717/peerj-cs.862
https://peerj.com/computer-science/


However, standardized approaches explicitly designed for the data science context
were not identified, and hence, is a gap in current research and practice. Similarly, with
respect to agile approaches, more research is needed to explore how and if the conceptual
benefits of agility noted in many of the identified papers can actually be achieved in
practice. In addition, another direction for future research is to explore combining
workflow and agile approaches into a more comprehensive framework that covers
different aspects of project execution.

The current study can be enhanced and extended in three directions. First, the search
space could be expanded by using the snowballing technique (Wohlin, 2014) for
identification of relevant articles. Some of the primary studies identified in the current
study can be used as seed papers in a future execution of the procedure. Second,
conducting a multivocal literature review (Garousi, Felderer & Mäntylä, 2016) including
grey literature can complement the results of the study by collecting more experience
reports and real-world adoptions from industry. Finally, future research could explore if
the process used should vary based on different industries, or if, the appropriate data
science process is independent of the specific industry project context.
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