
Submitted 11 October 2021
Accepted 3 January 2022
Published 25 January 2022

Corresponding author
Abdelmalek Zidouri,
malek@kfupm.edu.sa

Academic editor
Yilun Shang

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj-cs.861

Copyright
2022 Eltay et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Generative adversarial network based
adaptive data augmentation for
handwritten Arabic text recognition
Mohamed Eltay1,2, Abdelmalek Zidouri1,2, Irfan Ahmad2,3 and Yousef Elarian4

1 Electrical Engineering Department, King Fahd University of Petroleum &Minerals, Dhahran, Saudi Arabia
2 IRC for Intelligent Secure Systems, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
3 Information and Computer Science Department, King Fahd University of Petroleum &Minerals, Dhahran,
Saudi Arabia

4Cambrian College, Sudbury, Ontario, Canada

ABSTRACT
Training deep learning based handwritten text recognition systems needs a lot of data
in terms of text images and their corresponding annotations. One way to deal with
this issue is to use data augmentation techniques to increase the amount of training
data. Generative Adversarial Networks (GANs) based data augmentation techniques are
popular in literature especially in tasks related to images. However, specific challenges
need to be addressed in order to effectively use GANs for data augmentation in the
domain of text recognition. Text data is inherently imbalanced in terms of frequency of
different characters appearing in training samples and the training data as a whole.
GANs trained on the imbalanced dataset leads to augmented data that does not
represent the minority characters well. In this paper, we present an adaptive data
augmentation technique using GANs that deals with the issue of class imbalance arising
in text recognition problems.We show, using experimental evaluations on two publicly
available datasets for handwritten Arabic text recognition, that the GANs trained
using the presented technique is effective in dealing with class imbalanced problem
by generating augmented data that is balanced in terms of character frequencies. The
resulting text recognition systems trained on the balanced augmented data improves the
text recognition accuracy as compared to the systems trained using standard techniques.

Subjects Artificial Intelligence, Computer Vision, Data Mining and Machine Learning
Keywords Adaptive data augmentation, Deep learning neural Networks, Arabic handwriting
recognition, Handwritten text generation, Generative adversarial networks, Convolutional neural
networks

INTRODUCTION
Handwritten text recognition is a classical problem in the field of computer vision and
pattern recognition (Altwaijry & Al-Turaiki, 2021). Major fields of automation such as
vehicle plate recognition and digital postal services rely on the development of text
recognition. Comprehensive handwriting datasets are required to train and test text
recognition systems. As a result, researchers are now working to improve the effectiveness
and quality of text recognition (Elarian et al., 2015) by using synthesized data to expand
the training sets.

How to cite this article Eltay M, Zidouri A, Ahmad I, Elarian Y. 2022. Generative adversarial network based adaptive data augmentation
for handwritten Arabic text recognition. PeerJ Comput. Sci. 8:e861 http://doi.org/10.7717/peerj-cs.861

https://peerj.com/computer-science
mailto:malek@kfupm.edu.sa
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.861
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.861


One of the important researched problems in this field is the synthesis of personal
handwriting. Handwriting synthesis is the process by which a computer generates data
that resembles human handwriting. It aims to create handwritten image samples in the
same style as the target writer. This is especially useful for training handwriting recognition
systems. It can be seen as a reverse process of handwriting recognition because it converts
input text into image samples, whereas recognition maps handwritten image samples into
digital text. Handwriting synthesis has grown rapidly as a result of its applications, such as
improving text recognition systems (in terms of overall performance, stability, and speed),
font customization, CAPTCHAS for distinguishing a human from a computer, and forgery
detection (Elarian et al., 2014).

In recent years, Generative Adversarial Networks (GANs) have proven to be extremely
successful in a wide range of image processing applications (Antoniou, Storkey & Edwards,
2017; Antipov, Baccouche & Dugelay, 2017). GANs can now be used to generate photo-
realistic images of objects such as human faces, animals, and indoor or outdoor scenes.
In addition, GANs can be used to translate images from one domain to another, generate
high-definition images from low-definition images, and so on (Creswell et al., 2018).

To the best of our knowledge, only a few works have been published on Arabic text image
synthesis using generative adversarial networks.Wepresent anArabic handwriting synthesis
system where we generate the necessary text to balance the dataset using an adaptive data
augmentation method. Then, we train a generative adversarial network based words-
synthesizer to produce images of Arabic words that appear to be handwritten by humans.
We tested our work using a state-of-the-art deep learning based handwriting recognition
system, and the results show that the presented method improves the recognition accuracy.

The following contributions are made in this work: we review adversarial architectures
that generate realistic handwritten texts. Then, we present a modified adversarial
architecture that can improve handwritten Arabic text synthesis by generating augmented
training dataset which is balanced in terms of the distribution of the characters of the
Arabic script. Finally, we evaluate handwriting text recognition systems using the training
sets augmented with GAN generated text images and report the results on two publicly
available datasets.

The rest of the paper is organized as follows: In ‘Literature Review’, we present a
summary of the related works. In ‘Introduction to Arabic handwriting’, we present a brief
introduction to Arabic script and their peculiarities. Approaches to generate handwritten
Arabic text images is presented in ‘Approaches to generate handwritten arabic words’
with particular emphasis on GANs for text image synthesis. Our methodology for data
augmentation using GANs is presented in ‘A two-stage generative adversarial network
based adaptive data augmentation technique’. In ‘Experimentation and results’, we present
the experiments and discuss the results. Finally, conclusions are presented in ‘Conclusion’.

LITERATURE REVIEW
Neural networks and deep learning have aided research in handwriting synthesis.
Traditional machine learning algorithms were used by the researchers to build

Eltay et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.861 2/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.861


strokes and model characters, but none of these methods produced good human-like
handwriting (Alonso, Moysset & Messina, 2019; Jha & Cecotti, 2020). Most of these findings
were made prior to the advancement of neural networks. Graves (2013) demonstrated
that by predicting one data point at a time, Recurrent Neural Networks (RNN) with Long
Short-Term Memory (LSTM) can generate complex sequences with long-range structure.
The method was tested using text which contained discrete data and online handwriting
where the data are time-stamped. It was then extended to handwriting synthesis by allowing
the network to make predictions based on the sequence of characters in a text. This resulted
in a system capable of producing highly realistic cursive handwriting in a variety of styles.

Saabni & El-Sana (2013) presented an efficient system that used multiple appearances of
each Arabic character to generate prototypes for each word in a lexicon. For each character
in each position, large sets of different shapes were created. The valid shapes for each
word-part are then generated using these sets. A large number of valid permutations for
each word makes practical training and searching for tasks like script recognition and word
spotting impossible. Authors used dimensionality reduction and clustering techniques to
keep these datasets tractable while maintaining their ability to represent a wide range of
handwriting styles. A dataset for offline script recognition was also created from the online
strokes using a standard dilation technique, with special attention paid to mimicking the
pen’s path. Authors also looked at and tried out a few different layout techniques for
making words out of the generated word parts.

Elarian et al. (2015) presented an Arabic handwriting synthesis system that concatenates
Arabic glyphs into words. To synthesize Arabic words, they used two concatenation
models: the Extended-Glyph connection and the Synthetic-Extension connection. The
system then injected the synthesized handwriting into a larger dataset to significantly
improve recognition performance.

Ahmad & Fink (2015b) have investigated various handwritten Arabic text recognition
approaches that did not rely on handwritten training sets by taking advantage of computer-
generated text in different typefaces, unsupervised adaptation and recognition hypothesis
on test sets to be used as training data.

Wigington et al. (2017) created two data augmentation and normalization techniques
for Latin and French that, when combined with a CNN-LSTM, significantly improved
recognition rates. They started by applying a novel method for normalizing profile images
to both word and line images. In order to augment existing text images, they used random
perturbations on a regular grid.

Alonso, Moysset & Messina (2019) presented a system for producing synthetic images of
handwritten Arabic and French words based on Generative Adversarial Networks (GANs).
They generated an embedding of the rendered word using bidirectional LSTM recurrent
layers which was then fed into the generator network. They alsomodified the standard GAN
by adding a text recognition auxiliary network. The systemwas then trained with a balanced
adversarial and Connectionist Temporal Classification (CTC) loss. By combining these
GAN extensions, users gained control over the generated word images’ textual content,
resulting in images that appear to be realistic in both French and Arabic.

Eltay et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.861 3/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.861


Table 1 Arabic letters in their stand-alone shapes.

Alonso et al. (2019) presented a system for producing synthetic images of handwritten Arabic and100

French words based on Generative Adversarial Networks (GANs). They generated an embedding of101

the rendered word using bidirectional LSTM recurrent layers which was then fed into the generator102

network. They also modified the standard GAN by adding a text recognition auxiliary network. The103

system was then trained with a balanced adversarial and Connectionist Temporal Classification (CTC)104

loss. By combining these GAN extensions, users gained control over the generated word images’ textual105

content, resulting in images that appear to be realistic in both French and Arabic.106

Jha and Cecotti (2020) presented a data augmentation approach for handwritten digit recognition using107

generative adversarial networks. The approach was tested on handwritten Latin, Bangla, Devanagari, and108

Oriya digits.109

Fogel et al. (2020) have presented ScrabbleGAN, a semi-supervised method for producing handwritten110

Latin and French text images in a variety of styles and lexicons. ScrabbleGAN was developed using111

a novel generative model capable of producing word images of any length. Using their approach in112

semi-supervised mode, they demonstrated a performance boost over current supervised handwritten text113

recognition. Furthermore, their generator has complete control over the resulting text style. This allows114

them to change things like the cursive style of the text and the thickness of the pen stroke.115

To improve class diversity, Eltay et al. (2020) implemented an adaptive data augmentation approach.116

Each word in the dataset lexicon is given a weight by the algorithm. The weight is determined by the117

probability of each character occurring in a word such that words consisting of less frequent characters118

get higher probabilities.119

3 INTRODUCTION TO ARABIC HANDWRITING120

Arabic is a Semitic language that has been used for thousands of years. It is the lingua franca for more121

than 20 countries. Arabic is considered one of the world’s top six major languages (Pereltsvaig, 2020).122

Arabic is written from right to left. Depending on its position in the word, each character can have up123

to four distinct shapes, in both handwriting and printed form. Table 1 shows the Arabic letters in their124

stand-alone shapes.125

p h h. �H �H H.

@

� �� � 	P P 	X X
�� 	¬ 	̈ ¨ 	    	�
ø
 ð �ë 	à Ð È ¼

Table 1. Arabic letters in their stand-alone shapes.

Handwritten Arabic text recognition presents unique challenges when compared to Latin script. These126

difficulties stem in part from the cursive nature of the script, the possibility of diacritics and diagonal127

strokes, the fact that characters change shapes depending on their location within the word, and the128

possibility of inter-word spaces. Arabic script is predominantly cursive, which means that the majority of129

the characters in a word are connected through a hypothetical horizontal line referred as a baseline. The130

Arabic language also has a large number of sub-words and characters which may be written with a variety131

of different characters or diacritics for each word. A few characters cannot link to their successors within132

words, and hence, their occurrence before the end of the word divides it into sub-words.133

There is a lot of emphasis on dots in Arabic script. Although the character main bodies are similar,134

some are distinct due to the inclusion or exclusion of dots. For instance, the three characters, (Khaa135

p), (Haa h), and (Jeem h. ) have similar main bodies and only differ by presence and location of a136

dot. Furthermore, diacritical imprints are used in Arabic to govern the articulation of words. These137

are extremely uncommon to encounter in handwritten texts. They are used frequently in educational138

documents and in contexts where ambiguity needs to be resolved. It is also possible to create ligatures139

by vertically consolidating different characters. In addition, each writer has a distinct handwriting style.140

Figure 1 shows the most common challenges and difficulties faced when dealing with handwritten Arabic141

text.142

3/16PeerJ Comput. Sci. reviewing PDF | (CS-2021:09:65939:1:0:NEW 14 Dec 2021)

Manuscript to be reviewedComputer Science

Jha & Cecotti (2020) presented a data augmentation approach for handwritten digit
recognition using generative adversarial networks. The approach was tested on handwritten
Latin, Bangla, Devanagari, and Oriya digits.

Fogel et al. (2020) have presented ScrabbleGAN, a semi-supervised method for
producing handwritten Latin and French text images in a variety of styles and lexicons.
ScrabbleGAN was developed using a novel generative model capable of producing word
images of any length. Using their approach in semi-supervised mode, they demonstrated
a performance boost over current supervised handwritten text recognition. Furthermore,
their generator has complete control over the resulting text style. This allows them to
change things like the cursive style of the text and the thickness of the pen stroke.

To improve class diversity, Eltay, Zidouri & Ahmad (2020) implemented an adaptive
data augmentation approach. Each word in the dataset lexicon is given a weight by the
algorithm. The weight is determined by the probability of each character occurring in a
word such that words consisting of less frequent characters get higher probabilities.

INTRODUCTION TO ARABIC HANDWRITING
Arabic is a Semitic language that has been used for thousands of years. It is the lingua
franca for more than 20 countries. Arabic is considered one of the world’s top six major
languages (Pereltsvaig, 2020). Arabic is written from right to left. Depending on its position
in the word, each character can have up to four distinct shapes, in both handwriting and
printed form. Table 1 shows the Arabic letters in their stand-alone shapes.

Handwritten Arabic text recognition presents unique challenges when compared to Latin
script. These difficulties stem in part from the cursive nature of the script, the possibility
of diacritics and diagonal strokes, the fact that characters change shapes depending on
their location within the word, and the possibility of inter-word spaces. Arabic script
is predominantly cursive, which means that the majority of the characters in a word
are connected through a hypothetical horizontal line referred as a baseline. The Arabic
language also has a large number of sub-words and characters which may be written with
a variety of different characters or diacritics for each word. A few characters cannot link
to their successors within words, and hence, their occurrence before the end of the word
divides it into sub-words.

There is a lot of emphasis on dots in Arabic script. Although the character main bodies
are similar, some are distinct due to the inclusion or exclusion of dots. For instance,
the three characters, (Khaa ), (Haa ), and (Jeem ) have similar main bodies and only

Eltay et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.861 4/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.861


Figure 1 The most common difficulties encountered in handwriting Arabic recognition (A–D).
Full-size DOI: 10.7717/peerjcs.861/fig-1

differ by presence and location of a dot. Furthermore, diacritical imprints are used in
Arabic to govern the articulation of words. These are extremely uncommon to encounter
in handwritten texts. They are used frequently in educational documents and in contexts
where ambiguity needs to be resolved. It is also possible to create ligatures by vertically
consolidating different characters. In addition, each writer has a distinct handwriting style.
Figure 1 shows the most common challenges and difficulties faced when dealing with
handwritten Arabic text.

APPROACHES TO GENERATE HANDWRITTEN ARABIC
WORDS
Thousands of parameters need to be trained in even the smallest deep learning networks.
There is a significant risk of over-fitting when using deep networks or when working
with a small number of training images. Data augmentation, which enlarges the dataset
artificially, is a common solution for reducing overfitting. On gray-scale images, affine
transformations are the most common augmentation technique (Shorten & Khoshgoftaar,
2019). One way to augment training images is to use an image synthesis technique based
on the GANs in order to enrich the training data. The method we propose here consists of
two steps: In the first step, we use an adaptive data augmentation method, which we had
previously described in Eltay, Zidouri & Ahmad (2020), to create a balanced dataset. Then,

Eltay et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.861 5/22

https://peerj.com
https://doi.org/10.7717/peerjcs.861/fig-1
http://dx.doi.org/10.7717/peerj-cs.861


Table 2 Adaptive data augmentation algorithm.

Line: dataset dbwith size Sw as the number of words and Su as
the total number of the characters in db

1.0: Compute lexicon (size) L as the total number of distinct
words in the input dataset db

2.0: Let N be the total number of unique modeling units for db
3.0: Let F be a fraction of Sw representing the total number of

words that we need to augment to db
4.0: For each Unit n
4.1: Compute probability pn as: (count of n)/Su
5.0: For each wordWi in (L) the lexicon
5.1: Compute the length of the word l as the number of units it

contains
5.2: Compute a weight as

∑l
n=11/pn

5.3: let,Wi=Wi/l
6.0: For each WeightWi

6.1: Compute normalized weight as:W normalized
i =Wi/

∑l
i=1(Wi)

6.2: Compute NSAi= F×Sw×W normalized
i

NSAi is the number of word images to be augmented for
each unique words in the lexicon.

the expanded dataset will be used to train a GAN-based words-synthesizer to generate
unique handwritten image words, thereby increasing class diversity.

Adaptive data augmentation algorithm
Poor predictive performance can result from imbalanced data, especially for minority
classes. Data augmentation is frequently used in a variety of deep learning approaches
when only a small number of training samples are available. The original dataset’s class
distribution is unaffected by rotation, position shifting, zooming, shearing, and other
augmentation techniques. That is, if we have skewed data, it will remain skewed even
after data augmentation. Any language or dataset can be affected by the problem of class
imbalance based on differences in character frequencies. Observations like this are common
when it comes to natural language texts (Wikipedia, 2021; Intellaren, 2021).

The adaptive data augmentation algorithm (Eltay, Zidouri & Ahmad, 2020) promotes
more class-balance. This algorithm assigns a numerical weight to each word in the lexicon.
The weight is calculated by taking the average probability of each class into account.
Words containing less frequent characters will be augmented more than words containing
characters appearing more frequently in texts. Table 2 shows the pseudo-code for our
data-augmentation technique.

Generative adversarial networks (GANs)
Using successful generative modeling, a more domain-specific alternative to data
augmentation can be found. Even though this is not well understood, data augmentation is
a simpler version of generative modeling. Generative modeling offers a way to increase the
number of training samples in challenging domains or domains with limited data. Deep

Eltay et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.861 6/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.861


Table 3 Input and output of the generator and discriminator.

Generator (G)

Input A vector of random numbers
Output False examples that attempt to be as persuasive as possible
Goal Create fictitious data that is indistinguishable from the

training dataset’s members
Discriminator (D)

Input 1- Actual examples from the training set
2- False examples derived from the Generator

Output Probability that the input example is genuine
Goal Distinguish genuine examples from those generated by the

Generator.
and the real examples coming from the training dataset

reinforcement learning, for example, has seen a lot of success with GANs for Latin script
(Arjovsky & Bottou, 2017).

When we generate new examples from an existing data set, we’re using generative
modeling, which is an unsupervised machine learning task in which regularities or
patterns in the input data are automatically discovered. When it comes to developing
generational models, GANs shows promising results. They recognize the problem as one
requiring supervised learning using two models: the generator and the discriminator. The
generatormodel learns to generate new examples, while the discriminatormodel determines
whether or not the new examples are real or fake (generated). GANs are an exciting and
rapidly evolving field that fulfills the promise of generative models to provide proper
examples in a wide range of problem areas, particularly image-to-image translation tasks
(Goodfellow et al., 2020).

The GAN architecture was first described by Goodfellow et al. (2014). A basic GAN
consists of two networks: a generator (G) and a discriminator(D). TheG network generates
data with a structure identical to training data while the D network attempts to classify the
observations as ‘‘real’’ or ‘‘generated’’. Each time a new sample is generated, the generator
sends a new batch to the discriminator, together with actual examples from the domain.
The discriminator is updated in the subsequent round to improve its ability to distinguish
between real and fake samples, and the generator is updated according to the degree to
which the generated samples deceived the discriminator. Figure 2 illustrates an example of
a model architecture for a Generative Adversarial Network (GAN). The generator makes
an attempt to convince the classifier that the samples it generates are authentic. Once
the generator reaches convergence, the samples generated by it become indistinguishable
from real data. Table 3 summarizes the most significant findings from the two GAN
sub-networks.

Recently, Jha & Cecotti (2020) have presented a GAN architecture based on
Convolutional Neural Network (CNN). This network is very similar to the one presented
by Goodfellow et al. (2014) with a modification to the Generator G and Discriminator D
networks to generate images of handwritten words particularly. The architecture of the

Eltay et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.861 7/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.861


Figure 2 The architecture of a generative adversarial network (GAN). The illustration is adapted from
Goodfellow, Bengio & Courville (2016).

Full-size DOI: 10.7717/peerjcs.861/fig-2

generator and discriminator was rearranged to provide a significant increase in accuracy. It
takes as an input image of size Nx×Ny×Nz , where Nx×Ny represents the dimensions of
the image, and Nz represents the number of channels, i.e., the color space. In our case here
Nz = 1 since we are dealing with grayscale images. At the output layer of the generator the
sigmoid function was used and the loss function was chosen to be binary cross-entropy.
The discriminator layers in Jha & Cecotti (2020) was arranged as follow:

• Layer.01: Input Layer (image).
• Layer.02: Hidden layer 1: Convolution Layer.
• Layer.03: Hidden layer 2: Convolution Layer.
• Layer.04: Hidden layer 3: Fully Connected Layer.
• Layer.05: Hidden layer 4: Convolution Layer.
• Layer.06: Output Layer: Fully Connected Layer.

The generator layers are based on a deconvolutional neural network with three
deconvolutional layers along with interpolation and it is arranged as follow:

Eltay et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.861 8/22

https://peerj.com
https://doi.org/10.7717/peerjcs.861/fig-2
http://dx.doi.org/10.7717/peerj-cs.861


• Layer.01: Input Layer (Noise Vector Input).
• Layer.02: Hidden layer 1: Deconvolution Layer.
• Layer.03: Hidden layer 2: Deconvolution Layer.
• Layer.04: Hidden layer 3: Deconvolution Layer.

On the other hand, Alonso, Moysset & Messina (2019) proposed an adversarial
architecture similar to Goodfellow et al. (2014), with the addition of bidirectional LSTM
recurrent layers to encode the character sequence to be produced. In order to control the
textual content of the generated images, they have also introduced an auxiliary network for
text recognition. They obtained an embedding of the rendered word using bidirectional
LSTM recurrent layers and then passed it to the generator network. The main idea was to
embed each word into a 128-dimensional feature, which is then fed into a BigGAN (Brock,
Donahue & Simonyan, 2018) network architecture. The textual content of the generated
images was controlled using an auxiliary classifier (Odena, Olah & Shlens, 2017). The
gradients stemming from R and D are balanced (to account for their different magnitude)
and finally back-propagated to G. The full Architecture of the adopted GAN network in
this paper can be described in Fig. 3. D, R, G, and ϕ are specifically trained to minimize the
following objectives (Alonso, Moysset & Messina, 2019):

LD= −E(x,s)∼pdat [min(0,−1+D(x))]

−Ez∼pz s∼pw[min(0,−1−D(G(z,ϕ(s))))]

LR= +E(x,s)∼pdat [CTC(s,R(x))] (1)

L(G,ϕ)= −Ez∼pz s∼pw[D(G(z,ϕ(s)))]

+Ez∼pn,s∼pu[CTC(s,R(G(z,ϕ(s))))]

where, pdat the joint distribution of real [image, word] pairs, pz a prior distribution on
input noise and pw a prior distribution of words which may differ from the actual word
distribution in the dataset.

The approach follows the GAN paradigm (Goodfellow et al., 2014), where
the resulting image is evaluated by a text recognition network R in addition
to the discriminator D. While D encourages the creation of realistic-looking
handwriting, R encourages the creation of readable text that is true to the
input text.

Rather than generating the image from an entire word representation, as in Goodfellow
et al. (2014), Alonso, Moysset & Messina (2019), Jha & Cecotti (2020), each character
is generated independently, utilizing CNN’s overlapping receptive field property to
account for the influence of neighboring letters in ScrabbleGan which presented by
Fogel et al. (2020). ScrabbleGAN builds on the architecture of the previous networks, but
with enhancements to produce more realistic word images. This is because handwriting is
a highly localized process in which each letter is influenced solely by the letters preceding
and following it. This network follows the previous GAN paradigms, but with a change
to the generator network, which is the method’s key technical novelty. As a result, G is a
concatenation of identical class conditional generators (true/false classifiers). While the

Eltay et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.861 9/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.861


Figure 3 The GANmodel’s architecture, as presented by Alonso, Moysset & Messina (2019). The illus-
tration is adapted from Alonso, Moysset & Messina (2019).

Full-size DOI: 10.7717/peerjcs.861/fig-3

discriminator D encourages the use of realistic images, the recognizer R encourages the use
of readable text by effectively distinguishing gibberish from real text. This architecture seeks
to minimize the sum of the two networks’ loss terms l . Figure 4 shows the architecture
overview for the case of generating the word . For each character, a filter f∗ is selected
from a filter-bank ς that is as large as the alphabet, for example ς = fAlif ,fBaa,...,fYaa.
Four-character filters are concatenated f1,f2,f3,f4 multiplied by the noise vector z and fed
into the generator G. Both the discriminator (D) and the recognizer (R) use the resulting
image, ensuring that the style and data fidelity are both upheld.

l = lD+λ.lR (2)

where, lD and lR are the loss term of D and R respectively. Also, it has been found by
the authors Fogel et al. (2020) that better R does not lead to better general performance
(generation). This is due to the LSTM layers in the RNN network learning an implicit
language model and thus being able to identify the correct character even when it is not
clearly written. As a result, the recurrent head is removed to force R to make decisions
solely on visual features.

Eltay et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.861 10/22

https://peerj.com
https://doi.org/10.7717/peerjcs.861/fig-3
http://dx.doi.org/10.7717/peerj-cs.861


Figure 4 The ScrabbleGANmodel’s architecture, as presented by Fogel et al. (2020).
Full-size DOI: 10.7717/peerjcs.861/fig-4

A TWO-STAGE GENERATIVE ADVERSARIAL NETWORK
BASED ADAPTIVE DATA AUGMENTATION TECHNIQUE
In this section, we present our two-stage GAN-based adaptaive data augmentation
technique. The discriminator network makes an attempt to differentiate between the
samples taken from the training data and the samples taken from the generator. The
discriminator’s initial training data is on a known dataset. It is trained by feeding it samples
from the training dataset until it achieves a satisfactory level of accuracy. The issue arises
when the training data is skewed, causing the discriminator network to take examples from
an imbalanced domain as input. As a result, during training, the discriminator will use
some instances as positive examples more than others. Since this issue was not addressed
in Alonso, Moysset & Messina (2019), Fogel et al. (2020), we present a two-stage technique
to train the network which is based on ScrabbleGan as proposed by Fogel et al. (2020).

When the generated samples from the minority are fed into the discriminator, the
training samples are typically classified as fake samples. It’s because the discriminator can’t
find the corresponding class with fewer samples. Second, if the generator tries to fool the
discriminator by generating realistic samples, it usually focuses on the majority class to
optimize its loss function, causing the model to fail on the minority classes. A final issue is
that the network tends to skew the distribution of themajority class space, leading to a slight
over-fitting of the results. There must be enough data from both the class components
for GANs to be useful, and they must also define an optimal distribution to address these
problems.

Our proposed method addresses these issues by employing both majority and minority
samples in adversarial training. To accomplish this, we must first balance the training

Eltay et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.861 11/22

https://peerj.com
https://doi.org/10.7717/peerjcs.861/fig-4
http://dx.doi.org/10.7717/peerj-cs.861


Figure 5 The two-stage Arabic handwriting synthesizer proposed.
Full-size DOI: 10.7717/peerjcs.861/fig-5

data using our adaptive data augmentation algorithm, which we introduced previously in
‘‘Adaptive Data Augmentation Algorithm’’ subsection.

Following that, we will use this balanced data to train the adversarial network which
is proposed by Fogel et al. (2020). This network follows the GAN paradigms presented
by Goodfellow et al. (2014); Alonso, Moysset & Messina (2019); Jha & Cecotti (2020). The
generator network G is the main technical innovation of this method. The detailed process
of this network were presented in ’’Generative Adversarial Networks (GANs)’’ subsection.
Unlike Fogel et al. (2020), which allows for varying word and image lengths, the generator
network inGoodfellow et al. (2014);Alonso, Moysset & Messina (2019); Jha & Cecotti (2020)
can only generate images with a fixed width across all word lengths.

Our idea is schematically presented in Fig. 5. Even though our model learns information
from both the majority and the minority classes, the goal is to generate more samples for
the minority classes to enhance the accuracy rate of the handwriting recognition system.

EXPERIMENTATION AND RESULTS
The following subsections present the IFN/ENIT and AHDB datasets, the process of
developing a synthesizer for an Arabic handwritten text, the evaluation results, and a
comparison to state-of-the-art systems.

Eltay et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.861 12/22

https://peerj.com
https://doi.org/10.7717/peerjcs.861/fig-5
http://dx.doi.org/10.7717/peerj-cs.861


Figure 6 Samples from the IFN/ENIT dataset.
Full-size DOI: 10.7717/peerjcs.861/fig-6

Figure 7 Samples from the AHDB dataset.
Full-size DOI: 10.7717/peerjcs.861/fig-7

IFN/ENIT dataset
For handwritten Arabic text recognition research, the IFN/ENIT dataset is the most widely
used and popular dataset published by Pechwitz et al. (2002). It contains over 27,000
handwritten Arabic names for Tunisian cities. The lexicon includes 937 place names. A
Ground Truth (GT) file has been compiled for each word in the dataset. This file contains
information about the word, such as its baseline position and the specific characters used.
Figure 6 depicts image samples from the IFN/ENIT dataset.

AHDB dataset
The Arabic Handwritten dataset (AHDB), created by Al-Ma’adeed, Elliman & Higgins
(2002), consists of approximately 10,081 handwritten Arabic words representing cheque
numbers and quantities, as well as the most commonly used words in Arabic script The
lexicon contains 96 words, 67 of which are handwritten words that directly relate to
handwritten cheque numbers. The remaining 29 words were commonly used Arabic
words. Figure 7 depicts several images from the AHDB dataset as an example.

Applying adaptive data augmentation algorithm
Using our adaptive data augmentation algorithm, Fig. 8 shows the frequency distribution of
the IFN/ENIT characters compared to the standard algorithm. As we have seen, increasing
the number ofminorities helps us achieve class balance.We can see that there is a significant

Eltay et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.861 13/22

https://peerj.com
https://doi.org/10.7717/peerjcs.861/fig-6
https://doi.org/10.7717/peerjcs.861/fig-7
http://dx.doi.org/10.7717/peerj-cs.861


Figure 8 Frequency distribution of characters before and after applying adaptive data augmentation
on the IFN/ENIT dataset.

Full-size DOI: 10.7717/peerjcs.861/fig-8

Figure 9 Frequency distribution of characters before and after applying adaptive data augmentation
on the AHDB dataset.

Full-size DOI: 10.7717/peerjcs.861/fig-9

difference in the appearance of certain characters in the dataset prior to using our method.
For example, the letter Alif is the most occurring class, compared to the other letters
which are significantly few in numbers in the dataset.

The AHDB dataset, on the other hand, has about 10,000 handwritten Arabic words
and 31,200 characters that can be utilized for the most frequent Arabic and handwritten
cheques. Unlike the IFN/ENIT dataset, this one does not contain a significant number of
Arabic characters because it was designed to identify the most often used Arabic words
and terminology in cheque writing. In comparison to the original distribution of the
characters, Fig. 9 shows the frequency distribution of the characters after our adaptive data
augmentation approach is performed.

Eltay et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.861 14/22

https://peerj.com
https://doi.org/10.7717/peerjcs.861/fig-8
https://doi.org/10.7717/peerjcs.861/fig-9
http://dx.doi.org/10.7717/peerj-cs.861


Handwritten arabic words synthesizer
We have used the GAN architecture for the adversarial generation of handwritten Arabic
text images, which is forked from Fogel et al. (2020). The full implementation of this
network is publicly available at GitHub (Krber, 2020). Each image was resized to a fixed
height of 32 pixels while retaining the original image’s aspect ratio.

We have used the standard metrics for GAN performance evaluation, namely Fréchet
Inception Distance (FID) (Heusel et al., 2017) and Geometry Score(GS) (Khrulkov &
Oseledets, 2018). The FID calculates the distance between feature vectors calculated for
real and generated images. The FID score is used to assess the quality of images generated
by generative adversarial networks, and it has been demonstrated that lower scores are
associated with higher-quality images. GS, on the other hand, is assessing the quality of the
generated samples and detecting various levels of mode collapse.

We have trained the model shown in Fig. 5 twice on the IFN/ENIT and AHDB datasets,
respectively. First, it was trained directly on the original datasets without using our adaptive
augmentation algorithm. The datasets were then balanced in the second time using our
adaptive data augmentation described previously, and the balance datasets were used to
train the our word-synthesizer network.

The training loop starts with the generator receiving a set of random seeds and
transcriptions from a random word list. For this part, we’ve chosen random words
from the dataset and their transcriptions as input to produce a set of fake images. We
changed the noise vector z that was fed into the network to generate different handwriting
styles. Figure 10 shows some examples of synthesized words from the IFN/ENIT dataset
generated in different handwriting styles. Every 10,000 iterations, we computed the FID
(with 10,000 real and 10,000 synthesized images) and the GS (with 5,000 real and 5,000
synthesized images, 100 repetitions, and default settings for the other parameters). Then
we have selected the best FID and best GS among the various runs independently. We have
to depend on visual inspection to review the textual content. We obtain the best FID of
38.79 and GS of 18.87×10−3 , while the synthesized image is both readable and realistic.
Next, we have retrained the same network but this time on the AHDB dataset after it was
balanced using our adaptive data augmentation algorithm. Figure 11 shows some examples
of synthesized words from the AHDB dataset generated in different handwriting styles.

As before, we computed the FID (using 5,000 real and 5,000 synthesized images) and
GS (using 2,000 real and 2,000 synthesized images, 100 repetitions, and default settings
for the other parameters) every 2,500 iterations. Then, independently of one another, we
determined the best FID and GS for each run. We have to depend on visual inspection to
review the textual content. The best FID and GS are 27.70 and 11.40×10−3, respectively,
with a readable and realistic image generated. Compared to the IFN/ENIT, the visual quality
of the synthesized images is much better which are expected since the AHDB dataset is
much simpler in term of the word content than the IFN/ENIT dataset.

Handwritten arabic word recognition
In this section, the value of the data generated for handwritten text recognition will be
evaluated. The Recurrent Neural Network Library (RNNLIB) (Graves, 2016) was utilized

Eltay et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.861 15/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.861


Figure 10 IFN/ENIT handwritten Arabic text synthesized by ScrabbleGAN. For each column, a single
noise vector was used, while for each row, a different noise vector was used.

Full-size DOI: 10.7717/peerjcs.861/fig-10

Figure 11 AHDB handwritten Arabic text synthesized by ScrabbleGAN. Each column was generated
using the same noise vector while each row was generated by a different noise vector.

Full-size DOI: 10.7717/peerjcs.861/fig-11

in the development of the experimental models. There are many different deep learning
architectures included in this library, including: (LSTM, BiLSTM, andRNN). Connectionist
Temporal Classification (CTC) (Graves et al., 2006) is also included, allowing the system
to transcribing sequence data that has not been segmented.

In each of the forward and backward layers, our network contains 200 extended LSTM
memory blocks. There is one memory cell in each memory block, as well as an input gate,
an output gate, a forget gate, and three peepholes. tanh is used for the cell input and output
activation functions, while logistic sigmoid is used for the activation of the gate. There has
been a decaying learning rate used in all CTC systems. Initially, the rate of learning was set
at 0.001 and gradually decreased to 0.0001.

Training the classifier using GAN generated text only
In this part, we investigate the use of synthesized text as training data for the classifier. We
wanted to know if a classifier trained on generated text would be capable of recognizing

Eltay et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.861 16/22

https://peerj.com
https://doi.org/10.7717/peerjcs.861/fig-10
https://doi.org/10.7717/peerjcs.861/fig-11
http://dx.doi.org/10.7717/peerj-cs.861


Table 4 Word accuracy rate for IFN/ENIT and AHDB datasets using only the generated texts as train-
ing data.

Dataset No. of styles/sample Test set No of generated images WAR%

d 78.16%
IFN/ENIT 3 e 60,000 61.09%

f 50.38%
AHDB 3 – 15,000 85.16%

handwritten text. For the experimentation, we use the Arabic character’s shapes asmodeling
units (Ahmad & Fink, 2016). We ended up with a total of 157 models in our recognition
system. To train our recognizer, we use generated text with three different writing styles in
the first set of experiments.

We use the IFN/ENIT lexicon in all of its variations to generate text. We generated 20K
random images for each style, which corresponded to 937 words in the lexicon, i.e., each
word in the lexicon has about 21 samples. As a result, the total number of samples produced
is 60K which is used to train our deep learning recognition network. After training the
recognizer, we tested it by recognizing word images from set d,e and f of the IFN/ENIT
dataset.

Our next experiment involved training another recognizer on generated text from
the AHDB dataset. We generated 5000 random images for each style in this experiment,
which corresponded to 96 words in the lexicon. That is, each word in the lexicon has
approximately 52 samples. As a result, we generated 15K samples, which we used to
train our deep learning recognition network. We tested the recognizer after training it by
recognizing word images from the original AHDB dataset. The evaluation results of these
two experiments are presented in Table 4.

As shown in the table, the recognition rate is acceptable when the recognizer is trained
exclusively on generated text and not on the original data. In the next section, we will see
the performance of the recognizer when we train it with generated text and original data
together.

Training the classifier using the original and the generated texts combined
In this section, we will consider inserting the generated text into the original dataset. We
intend to assess the benefits of data augmentation using GAN to improve the recognition
rate even further. So, in this experiment, we trained two more recognizers from scratch
that were identical to the recognizer presented in the previous experiment. The evaluation
results of these two experiments are presented in Table 5. As shown in the table, significant
improvements are obtained when training the recognizer with generated text and original
data. On set d it leads to improvement in recognition rate by 5.96%. On set e we can
see that the recognition rate has improved by 5.73% while on set f the improvement of
accuracy rate was increased from 87.94% to 93.77%.

Comparative analysis with other State-of-the-Art Systems
To demonstrate the proposed method’s performance, we compare our system to state-
of-the-art systems evaluated on the IFN/ENIT and AHDB datasets. Table 6 compares

Eltay et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.861 17/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.861


Table 5 Word accuracy rate for IFN/ENIT and AHDB dataset using the original datasets and the ex-
panded datasets with the generated texts as training data.

Dataset Train-test configuration Original dataset Expanded dataset

abc−d 93.19% 97.15%
IFN/ENIT abcd−e 90.14% 95.87%

abcde− f 87.94% 93.77%
AHDB 70% training, 30% testing 96.0% 99.30%

Table 6 Comparative evaluation of other state-of-the-art systems using the IFN/ENIT and AHDB
datasets.

Train–test configuration AHDB dataset

Reference system abc−d abcd−e abcde− f –

Abandah, Jamour & Qaralleh (2014) 98.96% 93.46% 92.46% –
Ahmad, Fink & Mahmoud (2014) 98.08% 94.93% 92.30% –
Ahmad & Fink (2015a) 97.22% 94.76% 93.32% –
Elleuch, Tagougui & Kherallah (2015) 83.70% – – –
Ahmad and Fink (2019) 97.71% 94.76% 93.32% –
Ghanim, Khalil & Abbas (2020) 99.00% 95.60% – –
Hassan, Mahdi & Mohammed (2019) – – – 99.08%
Eltay, Zidouri & Ahmad (2020) 98.99% 95.05% 93.07% 98.10%
Zafar & Iqbal (2020) – – – 97.80%
Present work 97.15% 95.87% 93.77% 99.30%

the recognition accuracy of the most up-to-date systems using the IFN/ENIT and AHDB
datasets. Numerous researches on the recognition of handwritten Arabic text using the
IFN/ENIT and AHDB datasets have been conducted. Although we did not set out to achieve
the lowest error rate in this paper, we did want to measure the improvement in accuracy
rate when adding synthetic images to the original data sets, and our system still achieves
among the highest accuracy rates.

CONCLUSION
Handwritten text recognition is an exciting and challenging research area. Having sufficient
labeled data to train a recognizer is one of the requirements for good performance. In this
paper, we have evaluated a generative-adversarial model for producing handwritten images
of synthetic words. We have also described our adaptive data augmentation algorithm and
how we can combine it with this GAN model to improve the recognition performance of
deep networks on handwritten text recognition tasks. We observe from the results that
this model can generate realistic word images in Arabic. In one of the approaches, we
investigated how well a recognizer performs when it is trained only with synthesized text
generated using different styles. The results were promising considering the recognizer
learns from the generated text only without looking at the original data. Using a recognizer
trained on the generated text and original dataset performed significantly better than the
recognizer trained on generated text only. As a future work, we can consider the problem of

Eltay et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.861 18/22

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.861


generating full-text lines instead of words. Also, modifying the architecture of the generator
to further enhance the Fréchet Inception Distance (FID) and Geometry Score (GS) is an
interesting future work.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work is supported by King Fahd University of Petroleum &Minerals. The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
King Fahd University of Petroleum & Minerals.

Competing Interests
Irfan Ahmad is an Academic Editor for PeerJ Computer Science.

Author Contributions
• Mohamed Eltay conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.
• Abdelmalek Zidouri and Irfan Ahmad conceived and designed the experiments, analyzed
the data, authored or reviewed drafts of the paper, and approved the final draft.
• Yousef Elarian analyzed the data, authored or reviewed drafts of the paper, and approved
the final draft.

Data Availability
The following information was supplied regarding data availability:

The data is available at GitHub and Sourceforge:
- https://github.com/Nikolai10/scrabble-gan
- https://sourceforge.net/projects/rnnl/.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.861#supplemental-information.

REFERENCES
Abandah GA, Jamour FT, Qaralleh EA. 2014. Recognizing handwritten Arabic

words using grapheme segmentation and recurrent neural networks. Interna-
tional Journal on Document Analysis and Recognition (IJDAR) 17(3):275–291
DOI 10.1007/s10032-014-0218-7.

Eltay et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.861 19/22

https://peerj.com
https://github.com/Nikolai10/scrabble-gan
https://sourceforge.net/projects/rnnl/
http://dx.doi.org/10.7717/peerj-cs.861#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.861#supplemental-information
http://dx.doi.org/10.1007/s10032-014-0218-7
http://dx.doi.org/10.7717/peerj-cs.861


Ahmad I, Fink GA. 2015a.Multi-stage HMM based Arabic text recognition with
rescoring. In: 2015 13th international conference on document analysis and recognition
(ICDAR). Piscataway: IEEE, 751–755.

Ahmad I, Fink GA. 2015b. Training an Arabic handwriting recognizer without a
handwritten training data set. In: 2015 13th international conference on document
analysis and recognition (ICDAR). Piscataway: IEEE, 476–480.

Ahmad I, Fink GA. 2016. Class-based contextual modeling for handwritten arabic
text recognition. In: 2016 15th international conference on frontiers in handwriting
recognition (ICFHR). 554–559 DOI 10.1109/ICFHR.2016.0107.

Ahmad I, Fink GA. 2019.Handwritten Arabic text recognition using multi-stage sub-
core-shape HMMs. International Journal on Document Analysis and Recognition
(IJDAR) 22(3):329–349 DOI 10.1007/s10032-019-00339-8.

Ahmad I, Fink GA, Mahmoud SA. 2014. Improvements in sub-character HMMmodel
based Arabic text recognition. In: 2014 14th international conference on frontiers in
handwriting recognition. Piscataway: IEEE, 537–542.

Al-Ma’adeed S, Elliman D, Higgins CA. 2002. A data base for Arabic handwritten text
recognition research. In: Proceedings eighth international workshop on frontiers in
handwriting recognition. 485–489.

Alonso E, Moysset B, Messina R. 2019. Adversarial generation of handwritten text
images conditioned on sequences. In: 2019 international conference on document
analysis and recognition (ICDAR). Piscataway: IEEE, 481–486.

Altwaijry N, Al-Turaiki I. 2021. Arabic handwriting recognition system using con-
volutional neural network. Neural Computing and Applications 33(7):2249–2261
DOI 10.1007/s00521-020-05070-8.

Antipov G, BaccoucheM, Dugelay J-L. 2017. Face aging with conditional generative
adversarial networks. In: 2017 IEEE international conference on image processing
(ICIP). Piscataway: IEEE, 2089–2093.

Antoniou A, Storkey A, Edwards H. 2017. Data augmentation generative adversarial
networks. ArXiv preprint. arXiv:1711.04340.

ArjovskyM, Bottou L. 2017. Towards principled methods for training generative
adversarial networks. ArXiv preprint. arXiv:1701.04862.

Brock A, Donahue J, Simonyan K. 2018. Large scale GAN training for high fidelity
natural image synthesis. ArXiv preprint. arXiv:1809.11096.

Creswell A, White T, Dumoulin V, Arulkumaran K, Sengupta B, Bharath AA. 2018.
Generative adversarial networks: an overview. IEEE Signal Processing Magazine
35(1):53–65 DOI 10.1109/MSP.2017.2765202.

Elarian Y, Abdel-Aal R, Ahmad I, Parvez MT, Zidouri A. 2014.Handwriting synthesis:
classifications and techniques. International Journal on Document Analysis and
Recognition (IJDAR) 17(4):455–469 DOI 10.1007/s10032-014-0231-x.

Elarian Y, Ahmad I, Awaida S, Al-KhatibWG, Zidouri A. 2015. An Arabic handwriting
synthesis system. Pattern Recognition 48(3):849–861
DOI 10.1016/j.patcog.2014.09.013.

Eltay et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.861 20/22

https://peerj.com
http://dx.doi.org/10.1109/ICFHR.2016.0107
http://dx.doi.org/10.1007/s10032-019-00339-8
http://dx.doi.org/10.1007/s00521-020-05070-8
http://arXiv.org/abs/1711.04340
http://arXiv.org/abs/1701.04862
http://arXiv.org/abs/1809.11096
http://dx.doi.org/10.1109/MSP.2017.2765202
http://dx.doi.org/10.1007/s10032-014-0231-x
http://dx.doi.org/10.1016/j.patcog.2014.09.013
http://dx.doi.org/10.7717/peerj-cs.861


ElleuchM, Tagougui N, KherallahM. 2015. Deep learning for feature extraction of
Arabic handwritten script. In: International conference on computer analysis of images
and patterns. Springer, 371–382.

Eltay M, Zidouri A, Ahmad I. 2020. Exploring deep learning approaches to recognize
handwritten Arabic texts. IEEE Access 8:89882–89898
DOI 10.1109/ACCESS.2020.2994248.

Fogel S, Averbuch-Elor H, Cohen S, Mazor S, Litman R. 2020. ScrabbleGAN: Semi-
supervised varying length handwritten text generation. In: Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition. 4324–4333.

Ghanim TM, Khalil MI, Abbas HM. 2020. Comparative study on deep convolution
neural networks DCNN-based offline Arabic handwriting recognition. IEEE Access
8:95465–95482 DOI 10.1109/ACCESS.2020.2994290.

Goodfellow I, Bengio Y, Courville A. 2016. Deep learning. Cambridge: MIT press.
Goodfellow I, Pouget-Abadie J, Mirza M, Xu B,Warde-Farley D, Ozair S, Courville

A, Bengio Y. 2014. Generative adversarial nets. Advances in neural information
processing systems 27:2672–2680.

Goodfellow I, Pouget-Abadie J, Mirza M, Xu B,Warde-Farley D, Ozair S, Courville
A, Bengio Y. 2020. Generative adversarial networks. Communications of the ACM
63(11):139–144 DOI 10.1145/3422622.

Graves A. 2013. Generating sequences with recurrent neural networks. ArXiv preprint.
arXiv:1308.0850.

Graves A. 2016. RNNLIB: a recurrent neural network library for sequence learning
problems. 2016. Available at http://sourceforge.net/projects/rnnl (accessed on 11 June
2021).

Graves A, Fernández S, Gomez F, Schmidhuber J. 2006. Connectionist temporal
classification: labelling unsegmented sequence data with recurrent neural networks.
In: Proceedings of the 23rd international conference on Machine learning. 369–376.

Hassan AKA, Mahdi BS, Mohammed AA. 2019. Arabic handwriting word recognition
based on scale invariant feature transform and support vector machine. Iraqi Journal
of Science 60(2):381–387.

Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S. 2017. Gans trained by
a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems 30:6626–6637.

Intellaren. 2021. A study of Arabic letter frequency analysis. Available at http://www.
intellaren.com/articles/en/a-study-of-arabic-letter-frequency-analysis (accessed on 6
June 2021).

Jha G, Cecotti H. 2020. Data augmentation for handwritten digit recognition using gen-
erative adversarial networks.Multimedia Tools and Applications 79(47):35055–35068
DOI 10.1007/s11042-020-08883-w.

Khrulkov V, Oseledets I. 2018. Geometry score: a method for comparing generative
adversarial networks. In: International conference on machine learning. PMLR,
2621–2629.

Eltay et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.861 21/22

https://peerj.com
http://dx.doi.org/10.1109/ACCESS.2020.2994248
http://dx.doi.org/10.1109/ACCESS.2020.2994290
http://dx.doi.org/10.1145/3422622
http://arXiv.org/abs/1308.0850
http://sourceforge.net/projects/rnnl
http://www.intellaren.com/articles/en/a-study-of-arabic-letter-frequency-analysis
http://www.intellaren.com/articles/en/a-study-of-arabic-letter-frequency-analysis
http://dx.doi.org/10.1007/s11042-020-08883-w
http://dx.doi.org/10.7717/peerj-cs.861


Krber N. 2020. Implementation of ScrabbleGAN for adversarial generation of handwrit-
ten text images in TensorFlow 2.1. GitHub. Available at https://github.com/Nikolai10/
scrabble-gan (accessed on 11 June 2021).

Odena A, Olah C, Shlens J. 2017. Conditional image synthesis with auxiliary classifier
gans. In: International conference on machine learning. 2642–2651.

Pechwitz M, Maddouri SS, Märgner V, Ellouze N, Amiri H , et al. 2002. IFN/ENIT-
database of handwritten Arabic words. In: Proc. of CIFED. Citeseer, 127–136.

Pereltsvaig A. 2020. Languages of the world. Cambridge: Cambridge University Press.
Saabni RM, El-Sana JA. 2013. Comprehensive synthetic Arabic database for on/off-

line script recognition research. International Journal on Document Analysis and
Recognition (IJDAR) 16(3):285–294 DOI 10.1007/s10032-012-0189-5.

Shorten C, Khoshgoftaar TM. 2019. A survey on image data augmentation for deep
learning. Journal of Big Data 6(1):1–48 DOI 10.1186/s40537-018-0162-3.

Wigington C, Stewart S, Davis B, Barrett B, Price B, Cohen S. 2017. Data augmentation
for recognition of handwritten words and lines using a CNN-LSTM network.
In: 2017 14th IAPR international conference on document analysis and recognition
(ICDAR). Piscataway: IEEE, 639–645.

Wikipedia. 2021. Letter frequency. Available at https://en.wikipedia.org/wiki/Letter_
frequency (accessed on 6 June 2021).

Zafar A, Iqbal A. 2020.Machine reading of arabic manuscripts using KNN and SVM
classifiers. In: 7th international conference on computing for sustainable global
development (INDIACom). Piscataway: IEEE, 83–87.

Eltay et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.861 22/22

https://peerj.com
https://github.com/Nikolai10/scrabble-gan
https://github.com/Nikolai10/scrabble-gan
http://dx.doi.org/10.1007/s10032-012-0189-5
http://dx.doi.org/10.1186/s40537-018-0162-3
https://en.wikipedia.org/wiki/Letter_frequency
https://en.wikipedia.org/wiki/Letter_frequency
http://dx.doi.org/10.7717/peerj-cs.861

