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ABSTRACT
Prediction of building energy consumption is key to achieving energy efficiency and
sustainability. Nowadays, the analysis or prediction of building energy consumption
using building energy simulation tools facilitates the design and operation of energy-
efficient buildings. The collection and generation of building data are essential
components of machine learning models; however, there is still a lack of such data
covering certain weather conditions. Such as those related to arid climate areas.
This paper fills this identified gap with the creation of a new dataset for energy
consumption of 3,840 records of typical residential buildings of the Saudi Arabia
region of Qassim, and investigates the impact of residential buildings’ eight input
variables (Building Size, Floor Height, Glazing Area, Wall Area, window to wall ratio
(WWR), Win Glazing U-value, Roof U-value, and External Wall U-value) on the
heating load (HL) and cooling load (CL) output variables. A number of classical and
non-parametric statistical tools are used to uncover the most strongly associated
input variables with each one of the output variables. Then, the machine learning
Multiple linear regression (MLR) and Multilayer perceptron (MLP) methods are
used to estimate HL and CL, and their results compared using the Mean Absolute
Error (MAE), the Root Mean Square Error (RMSE), and coefficient of determination
(R2) performance measures. The use of the IES simulation software on the new
dataset concludes that MLP accurately estimates both HL and CL with low MAE,
RMSE, and R2, which evidences the feasibility and accuracy of applying machine
learning methods to estimate building energy consumption.
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INTRODUCTION
Research on building energy consumption is motivated by the recently growing concerns
on energy waste and its negative impact on the environment. When designing efficient
buildings, it is essential to calculate their cooling load (CL) and heating load (HL) in order
to specify the required cooling and heating equipment to achieve comfortable indoor air
conditions. Architects and building designers require information about building
characteristics, conditioned spaces (occupancy and activity level), climate, and intended
usage (residential, industrial) to estimate the CL and HL of the building. Buildings have
five distinct characteristics: environment, utilities, community, occupants, and building
system (Wang et al., 2017). The environmental characteristics of a building are among the
main aspects or conditions that can affect its energy consumption, i.e. contribute to
sustainability and energy efficiency. Therefore, this study focuses on buildings
characteristics such as wall envelope, window, and orientation.

In the literature, buildings’ characteristics have been described as “variables” (Tsanas &
Xifara, 2012), “forms” (Li et al., 2019), “components” (Geyer & Singaravel, 2018),
“shapes and characteristics” (Ciulla et al., 2019), and “features” (Seyedzadeh et al., 2019).
Physical and non-physical factors can be used to categorize the characteristics of buildings.
A window to wall ratio, for example, is a physical element of a building that is related
to size, while glazing properties (e.g. U-value) are an example of physical elements
of a building that are related to materials. The orientation of a building, which is
determined by the cardinal and intercardinal building directions, is an example of
non-physical factors.

The building characteristics in related studies can be categorized into five groups: wall
variables, glazing variables, roof variables, form variables, and orientation. Glazing
variables are a major architectural elements that identify the building’s features and they
have a significant impact on energy performance (Tien Bui et al., 2019; Yeom et al.,
2020). Five different building envelope parameters have been used to address glazing: area,
area distribution, window to wall ratio (WWR), window to ground ratio (WGR), and
U-value. Furthermore, when looking at each variable separately, orientation is the variable
most investigated in AI research studies. Most buildings’ energy prediction studies, such
as Yeom et al. (2020), Moayedi et al. (2019), Navarro-Gonzalez & Villacampa (2019),
Seyedzadeh et al. (2019) and Sadeghi et al. (2020), conducted their experiments on a
dataset, created by Tsanas & Xifara (2012) of 768 records and eight characteristics (relative
compactness, surface area, wall area, roof area, overall height, orientation, glazing area, and
distribution) used as predictors to estimate the energy consumption of the buildings.

In addition, a small number of other studies have used larger datasets. To name some
of them (Himeur et al., 2020a), reviewed and examined thirty-one existing datasets based
on various features such as geographical locations and rate sampling. The authors
proposed a novel dataset, namely, Qatar University dataset which can be useful for any
future training or testing anomaly detection algorithms. Another future direction of
applying the datasets in several utilizations such as machine learning was also proposed.
In addition, Li et al. (2020) used 539, 42, and 153 datasets of residential buildings,
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residential blocks and public buildings respectively. The authors highlighted the buildings
key determinants that affect the urban building energy usage, e.g. orientation, height to
canyon width perimeter-to-area ratio. (Xu & Chen, 2020), collected datasets of energy
consumption from various houses in British Columbia, Canada, for 2 years. The aim
was to detect anomaly energy performance in buildings. (Pham et al., 2020), used five
datasets from five buildings of 1 year with an hourly resolution of energy consumption for
evaluating ML-based energy prediction model. By utilizing the historical datasets, Random
Forests showed good accuracy in energy prediction. (Himeur et al., 2020c), validated a
recognition system based on a non-intrusive appliance model using resampled data
recording in power consumption with 30,000 patterns length. The proposed model showed
high accuracy in appliance recognition performance.

However, all the above mentioned studies were not constructed based on the building
characteristics which emerges the gab in the existing buildings envelope based datasets.
(Himeur et al., 2020b) has stated that the lack of real or well-validated datasets is one
of the main obstacles that stand before anomaly prediction and detection of energy
consumption in buildings. Highlighting energy output has gone through various
investigations, and yet, there are still difficulties in identifying the energy performance
pattern, abnormalities. Thus, this study creates a new dataset of 3,840 typical family houses
in the Qassim region of Saudi Arabia, and corresponding eight characteristics to predict
energy consumption, which is to be available online for public use.

Based on the created dataset, a number of classical and non-parametric statistical
tools are first used to uncover the most strongly characteristics (input variables) with HL
and CL (output variables). Then, two machine learning methods, the Multiple linear
regression (MLR) and the Multilayer perceptron (MLP), are used to estimate HL and CL,
and their results are compared using the Mean Absolute Error (MAE), the Root Mean
Square Error (RMSE), and coefficient of determination (R2) performance measures.
The use of the IES<VE> simulation software on the new dataset concludes that MLP
accurately estimates both HL and CL with low MAE, RMSE, and R2, which evidences the
feasibility and accuracy of applying machine learning methods to estimate building energy
consumption. Thus, the main contributions of this study are:

1. A new dataset of 3,840 arid climate residential buildings and corresponding eight
characteristics to predict energy consumption is made publicly available.

2. In silico experiments on the developed dataset evidence feasibility and accuracy of
applying machine learning methods to estimate building energy consumption.

The remaining of the paper is structured as follows. “Existing Datasets of Energy
Consumption In Residential Buildings” presents an overview of the existing dataset used in
the literature. “Methodology” details the methodology implemented to create and analyze
the new dataset. “Methods and Statistical Analysis Results” reports on the results of the
dataset analysis using both statistical methods and machine learning methods. “Results
and Discussions discusses the obtained results and finally “Concluding Remarks and
Future Research Directions” concludes the paper.
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Existing datasets of energy consumption in residential buildings
The application of machine learning on building energy prediction is extensively addressed
in the literature (Zhang et al., 2021). However, most of these studies focus on the algorithm
implemented, while the dataset used is often overlooked. In Tsanas & Xifara (2012),
Tsanas and Xifara presented a dataset on eight building characteristics (input variables
X1–X8): Surface Area, Overall Height, Roof Area, Relative Compactness, Wall Area,
Distribution of Glazing Area, Orientation, Area of Glazing; as predictors of buildings’
energy consumption target variables (Y1–Y2): Heating Load and Cooling Load.

Many researches have used the Tsanas & Xifara (2012) dataset for various energy
prediction models in various regions using 12 different building shapes simulated in
Autodesk Ecotect Analysis too (see Table 1). Kumar, Pal & Singh (2018) used the data for
residential buildings in California, Navarro-Gonzalez & Villacampa (2019) in Alicante,
Spain, and Roy et al. (2020) in Athens, Greece. Ciulla et al. (2019) employed nonresidential
building simulation data from seven countries: Germany, Spain, the United Kingdom,
Belgium, Italy, France, and Sweden. D’Amico et al. (2019) conducted research for the
ANN energy assessment model on five climate zones. These studies are based on simulated
data and use Tsanas and Xifara’s dataset for the training of their AI-based prediction
models, i.e., machine or deep learning, as well as for testing them.

METHODOLOGY
Sample building
There is currently a rapid construction development of residential buildings in the Qassim
region. Accordingly, the Ministry of housing in Saudi Arabia launched a program of
381 villas in Buraydah city and 340 in Unayzah city, all with the same design plan. Since
this is a typical new detached house in many towns in the Qassim region, it was selected
and used in this study. The house plan is used in the IES<VE> simulation software.
The architecture layout of the ground floor and first floor are shown in Fig. 1, while Table 2
provides information of the house envelope construction features.

Modeling in IES<VE>
The IES<VE> simulation software was used to model the house for data generating
(IESVE, 2008). The aim of this phase is to generate the data of the building envelope
variables to analyze their effect on the building energy performance. As the building is
located in Qassim, Saudi Arabia, the corresponding regional weather data file (epw.
format) was imported to the software and used in the simulations. The simulation of
design variables was restricted to the house’s main spaces subjected to air-conditioning,
highlighted in orange in Fig. 2. Other spaces of the house, such as WC, staircase and
kitchen, highlighted in blue color in Fig. 2, which are not fully air-conditioned were
excluded in the simulation. The specifications of the design variables are provided in
Tables 3 and 4. All thermal properties for glazing, roof and walls were carefully defined in
the IES<VE> simulation software based on their U-value (Table 4), which considered
the most effective property that affect the building elements’ thermal behavior.
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Table 1 A summary of data regarding previous studies in residential building.

References Building
characteristics

Type of energy Building
type

Location Dataset size

D’Amico et al. (2019) Wall area Energy
consumption

Residential U.S. Midwest 973

Wall U-value

Glazing area

Glazing U-value

Cerquitelli, Malnati & Apiletti, 2019 Residential Athens, Greece 768

Ciulla et al. (2019) Residential N/A

Chen & Tan (2017) Height Residential N/A

Li et al. (2019) Relative compactness Residential Alicante, Spain

Le et al. (2019a) Wall area Residential Irvine

Naji et al. (2016) Surface area Heating load Residential Greece, Athens

Ngo (2019) Roof area Residential Athens, Greece

Kumar, Pal & Singh (2018) Glazing area
distribution

Cooling load N/A N/A

Nilashi et al. (2017) Glazing area Residential Ho Chi Minh City, Viet
Nam

Sadeghi et al. (2020) Orientation Residential NM

Sharif & Hammad (2019) Residential N/A

Geyer & Singaravel (2018) Residential California

Gao et al. (2019) Relative compactness Heating load N/A N/A 837

Tien Bui et al. (2019) Surface Area Prototype
model

Vietnam

Cecconi, Moretti & Tagliabue, 2019 Wall U-value Energy
Consumption

Residential Istanbul 180

Wall thickness

(5 different walls)

Navarro-Gonzalez & Villacampa
(2019)

Relative compactness

Glazing area Residential

Glazing area
distribution

Heating load Athens, Greece 768

Roof area Office

Overall Height Cooling load ++

Orientation

Glazing area Others

Glazing area
distribution

Le et al. (2019b) Insulation K-value Two
datasets:

Insulation thickness Dataset 1:

Wall type 180

(Continued)
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Table 1 (continued)

References Building
characteristics

Type of energy Building
type

Location Dataset size

Relative compactness Energy
Consumption

Surface area +

Wall area Residential Istanbul, Turkey

Roof area 768

Overall height Dataset 2:

Orientation =

Glazing area Cooling load

Glazing distribution 948

Figure 1 The architecture layout (A) ground floor and (B) first floor of the house sample.
Full-size DOI: 10.7717/peerj-cs.856/fig-1

Table 2 House envelope construction features.

House features Description

Location Buraydah (Coordinates: 26°22′17.8″N 43°51′29.4″E)
Orientation Front elevation facing South

Shape Typical Square and Rectangular combination of spaces

Celling Height 3 m

Floor Area 118.1 m2 (Ground Floor); 66.4 m2 (First Floor)

Window Wall Ratio 10–15%

Exterior Walls 15 mm Plaster (Dense) + 10 mm Cement + 200 mm Concrete Block (Medium) + 10 mm Cement + 15 mm Plaster
(Lightweight)

Roof 10 mm Ceramic tiles + 30 mm Concrete layer + 10 mm Extruded Polystyrene + 150 mm Reinforced Concrete (Dense)

Windows 4 mm Double clear glass
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Furthermore, properties of the building elements such as doors, window frame and floors
were kept constant in the IES<VE> for the simulation.

Input and output variables
As shown in Table 4, eight different design parameters of a typical house in the Qassim
region were considered in order to generate the energy data to predict the whole building
energy consumption. Table 4 included descriptions of each design parameters group
with possible number of values. All these design parameters and values were applied in the
IES<VE> simulation software and the energy consumption values in terms of cooling and
heating consumption (output variables), respectively, were obtained as output from the
simulation experiment. Building size and floor height have two different values that
were constructed in the ModelIT application in the IES<VE> simulation software. The
WWR applied to each building size and floor height for the whole external wall that
exposed to the outdoor in all directions is also documented in Table 4. The remaining

Figure 2 House sample modeling in IESVE with Qassim weather station (Sun-path).
Full-size DOI: 10.7717/peerj-cs.856/fig-2

Table 3 Air-conditioned spaces information generated from IES<VE>.

Space ID Space name
(Real)

Max. height
(m)

Volume
(m3)

Floor area
(m2)

Floor perimeter
(m)

Ext. wall area
(m2)

Ext. window area (m2)
10%

SP00000C Bed room 5.6 (2nd f) 81.026 28.938 21.94 40.945 4.095

SP000000 Bedroom 2.8 (1st f) 65.414 23.362 19.5 27.303 2.73

SP000002 Living Room 2.8 (1st f) 51.614 18.433 17.18 12.183 1.218

SP000003 Dining room 2.8 (1st f) 64.67 23.097 19.38 31.531 3.153

SP000009 Guest room 2.8 (1st f) 81.026 28.938 21.94 40.945 4.095

SP000005 Bed room 5.6 (2nd f) 64.67 23.097 19.38 43.394 4.339

Total – 408.42 145.865 – 196.301 19.63
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Table 4 Descriptions of input and output variables in the model simulation.

Features Description Variables

Building Size Spaces in the house subjected to air-conditioning (highlighted in orange
color in Fig. 2)

145.86 m2

184.53 m2

Floor Height This is referred to the internal ceiling height of spaces 2.8 m

3.0 m

Glazing Area Net area of windows 23.25 m2

24.15 m2

69.75 m2

72.46 m2

116.24 m2

120.76 m2

162.74 m2

169.07 m2

209.24 m2

217.37 m2

Wall Area Net area of walls 217.37 m2

209.24 m2

169.07 m2

162.74 m2

120.76 m2

116.24 m2

72.46 m2

69.75 m2

24.15 m2

23.25 m2

WWR Window to wall ratio of all the external wall that exposed to outdoor in all
sides

10%

30%

50%

70%

90%

Win Glazing
U-value

Refer to thermal properties of glazing window which calculated by (W/m2K) 0.97

1.63

2.87

3.23

4.61

5.60

Roof U-value Refer to thermal properties of the covering of the specified spaces in the
model calculated by (W/m2K)

0.13

0.22

0.35

0.47

External Wall
U-value

Wall envelope for the specified spaces calculated by (W/m2K) 0.26
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design parameters based on the U-values were carefully inserted in APACHE application
in the IES<VE> simulation software.

As mentioned earlier, all the design parameters were applied to the main spaces
only (Table 3) to ensure more reliable and accurate energy data for energy prediction. A
total of 3,840 data series were introduced and simulated in the IES<VE> simulation
software. A snapshot of our proposed dataset is shown in Fig. 3. Table 5 illustrates the
descriptive statistics of the generated data: minimum, maximum, mean, standard
deviation, variance, and skewness values.

Table 4 (continued)

Features Description Variables

0.34

0.60

1.03

1.62

2.11

2.82

3.34

Cooling Load Refer to the sensible cooling load through the space’s envelope (wall,
window and roof) calculated by KWh per year

–

Heating Load Refer to the sensible heating load through the space’s envelope (wall,
window and roof) calculated by KWh per year

–

Figure 3 A snapshot of our proposed dataset. Full-size DOI: 10.7717/peerj-cs.856/fig-3
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Methods and statistical analysis results
This section analyses first the main statistical properties of the variables of the new dataset
with the help of histograms and scatterplots. Then, the relationship between the input and
output variables is analyzed using the Spearman rank correlation coefficient. Finally,
our dataset is analyzed using two machine learning approaches, the Multilayer Regression
(MLR) and Multilayer Perceptron (MLP) methods, respectively.

Data exploration
The simulated buildings were generated using the IES<VE> simulation software for
Buraydah city. The Qassim province was chosen as it has a hard-arid climate with
exceptionally hot summers and cool winters, requiring a lot of energy for cooling and
heating residential buildings. The dataset is available at Almhafdy (2021) and contains
3,840 records. The following nine constant characteristics were used: location (Buraydah),
orientation (front façade oriented to south), shape (rectangular and square spaces), ceiling
height (3 m), floor area (ground floor 118.1 m2; first floor 66.4 m2), window wall ratio
(10–15%), Exterior walls (0.015 m plaster + 0.01 mm cement + 0.020 m concrete block
(medium) + 0.01 m cement + 0.015 m plaster (lightweight), roof (0.01 m ceramic
tiles + 0.03 m concrete layer + 0.01 m extruded polystyrene + 0.015 m reinforced concrete,
and windows (0.004 m double clear glass).

Two building sizes were used 145.86 m2 and 184.53 m2. For each building size two floor
heights of 2.8 m and 3 m were used; five different WWR as percentage of all external wall
exposed to outdoor were used: 10%, 30%, 50%, 70%, and 90%; six win-value were
simulated: 0.97, 1.63, 2.87, 3.23, 4.61, and 5.60); four different roofU-value were simulated:
0.13, 0.22. 0.35, and 0.47; and eight wall U-value were applied to each roof U-value. This is
illustrated in Fig. 4.

Table 5 Statistical descriptive of the IES<VE> simulation software generated dataset.

Features Descriptive index

Count Minimum Maximum Mean Std. deviation Variance Skewness

Statistic Std. Error Statistic Std. Error

Building Area m2 3,840 145.86 184.53 165.2 0.31 19.33 373.94 0.0 0.04

Floor Height m 3,840 2.8 3.0 2.9 0.0016 0.10 0.01 0.0 0.04

Glazing Area 3,840 19.63 217.37 110.07 1.018 63.11 3,983.73 0.066 0.04

Wall Area 3,840 19.63 217.37 110.07 1.018 63.11 3,983.73 0.066 0.04

WWR % 3,840 10 90 50.00 0.456 28.288 800.20 0.0 0.04

Win U-value (W/m2K) 3,840 0.97 5.60 3.16 0.025 1.59 2.56 0.150 0.04

Roof U-value (W/m2K) 3,840 0.13 0.47 0.29 0.002 0.128 0.017 0.130 0.04

Wall U-value (W/m2K) 3,840 0.26 3.34 1.51 0.018 1.085 1.179 0.394 0.04

Cooling (KWh/m2. yr) 3,839 5.45 671.60 336.85 2.18 135.31 18,309.8 0.239 0.04

Heating (KWh/m2. yr) 3,839 0.0 7.03 0.95 0.02 1.31 1.701 1.892 0.04
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Accordingly, we obtained 2 � 2 � 5 � 6 � 4 � 8 = 3,840 building samples. The simulate
buildings are characterized by eight building features (input variables), and their output
HL and CL were recorded, as summarized in Table 6.

Statistical properties of the variables were first analyzed with visualization of the
empirical probability distributions of all the input and output variables (Tsanas & Xifara,
2012). These are provided in Fig. 5 which presents the probability density estimates
using histograms of the output variable: the cooling load and the heating load. Figure 5A
shows the frequency distribution for the cooling load output variable that resulted in
the 3,840 records in the dataset and it describes that the most values are within a range of
100 to 600. While in Fig. 5B, the frequency distributions show that most of the values of the
output variable heating load are ranged between 0.0 to 0.2. As a result, the necessity to
experiment with machine learning approaches such as multiple linear regression (MLR)
and multilayer perceptron (MLP) is intuitively justified.

Figure 4 Input design parameters groups for energy consumption of building.
Full-size DOI: 10.7717/peerj-cs.856/fig-4

Table 6 Mathematical representation of the input and output variables with the number of possible
values.

Mathematical
representation

Input or output
variable/Feature

No. of possible values Label for charts

I1 Building Size 2 BA

I2 Floor Height 2 FH

I3 Glazing Area 10 GA

I4 Wall Area 10 WA

I5 WWR 5 WWR

I6 Win Glazing U-value 6 WinU

I7 Roof U-value 4 RU

I8 External Wall U-value 8 WU

O1 Cooling Load 3,659 CL

O2 Heating Load 2,674 HL
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Statistical analysis
Due to the general non-Gaussian nature of the data, the Spearman rank correlation
coefficient was used to derive a statistical metric for the strong relationship between each
input variable with each of the two output variables (Tsanas & Xifara, 2012), which is
given in Table 7. It is evident that several of the input variables are highly associated, such
as GA (Glazing Area) and WWR (Window to Wall Ratio). As it is naturally expected, the
variables GA and WWR are almost inversely proportional to WA.

We can similarly depict the bivariate correlations between the eight input variables
using a scatter plot matrix. A scatter plot matrix is a grid (or matrix) that represents a
single view with multiple scatterplots in a matrix format (Elmqvist, Dragicevic & Fekete,
2008). Each scatter plot in the matrix depicts the relationship between two variables,
allowing for the exploration of multiple relationships in a single graph. Figure 6 shows a
scatter plot matrix of our eight input variables. The position of each dot on the horizontal

Figure 5 Probability density estimates using histograms of the output variable (A) cooling load, and
(B) heating load. Full-size DOI: 10.7717/peerj-cs.856/fig-5
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and vertical axis indicates values for an individual data point. For each pairwise
combination of variables chosen, a scatter plot is constructed.

Machine learning-based analysis
The main objective of this study is to describe a dataset generated for the energy
consumption of buildings in the arid climate. This section makes use of two machine
learning models, namely Multiple Linear Regression (MLR) and Multilayer Perceptron
(MLP). These two models were chosen to examine the viability of the developed dataset in
predicting the buildings energy consumption in terms of cooling and heating loads. In a

Table 7 Correlations matrix using Spearman rank correlation between the eight input variables.

BA FH GA WA WWR WinU RU WU

BA 1.000 0.000 0.173 0.173 0.000 0.000 0.000 0.000

FH 0.000 1.000 0.087 0.087 0.000 0.000 0.000 0.000

GA 0.173 0.087 1.000 −0.925 0.981 0.000 0.000 0.000

WA 0.173 0.087 −0.925 1.000 −0.981 0.000 0.000 0.000

WWR 0.000 0.000 0.981 −0.981 1.000 0.000 0.000 0.000

WinU 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000

RU 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000

WU 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000

Note:
BA: Building Size, FH: Floor Height, GA: Glazing Area, WA: Wall Area, WWA: Window to Wall Ratio, WinU: Win
Glazing U-value, RU: Roof U-value, WU: External Wall U-value.

Figure 6 Scatter plot matrix representation of the eight input variables.
Full-size DOI: 10.7717/peerj-cs.856/fig-6
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recent study of ours (Al-Shargabi et al., 2021), we applied deep learning and created
various models to predict the energy consumption of buildings using the dataset described
in this study.

Multiple linear regression analysis
Multiple regression extends simple linear regression to predict the value of a variable (the
outcome, target or criterion variable) based on the values of two or more other variables
(the predictor, explanatory or regressor variables) (Tian et al., 2017).

This section examines the distribution of the output variables (CL and HL) using
the normal P–P plot, and the scatter plot of the regression standardized residual. The
normal P–P plot of the standardized residual for dependent variables CL and HL is shown
in Fig. 7, which corroborates that CL is normally distributed while HL is not.

Cross validation (CV) is a common statistical re-sampling technique used in this paper.
The dataset is divided into two subsets: a training subset and a testing subset. The training
subset is used to derive model parameters, while the testing subset is used to compute
errors (out-of-sample error or testing error). In particular, 10-fold CV (Uyank & Güler,
2013) is used as the learner testing method. We investigate how accurate the actual
statistical mapping is reporting out-of-sample errors after conducting the exploratory
statistical analysis, which provides important insight into the strength of the association
between the input parameters and the output variables. The mean value of each MLR
coefficient over the 10-fold CV iterations is obtained and used for predicting CL and HL in
Eqs. (1) and (2), respectively.

MLRCL ¼11:448� 3:24I1 � 75:083I2 þ 2:468I3 þ 3:313I4 þ 5:519I5 þ 34:84I6
þ 37:093I7 þ 29:89I8

(1)

Figure 7 The normal P–P plot of the regression standardized residual for our dependent variables
CL and HL. Full-size DOI: 10.7717/peerj-cs.856/fig-7
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MLRHL ¼� 0:029� 0:035I1 � 1:209I2 þ 0:035I3 þ 0:035I4 þ 0:004I5 þ 0:401I6
þ 0:795I7 þ 0:508I8

(2)

Multilayer perceptronanalysis
In this model, using our proposed dataset, an ANN using the Multilayer perceptron
method, which is one of the most commonly used methods for building an ANN (Hastier,
Tibshirani & Friedman, 2009), is built in SPSS.

Artificial neural networks (ANN) are nonlinear models that fall into the artificial
intelligence technique category known as black-box models (Heddam, 2016). The
multilayer perceptron neural network (MLP) (Rumelhart, Hinton &Williams, 1985) is one
of the most extensively used ANN architectures in the literature, and it is extensively
employed in hydrological, water resources, and environmental applications. Three layers
make up the MLP: the input layer contains the independent variables, the output layer
contains the dependent variable, and one or more hidden layers may also be present.
The parameters of the MLP model are its weights and biases. It was used to alter the
weights and biases of the training subsets, and the MLP was then trained with random
beginning values. To choose the model with the lowest MSE between actual and predicted
CL and HL, the training process is repeated many times. Neural networks with Sigmoid
activation functions in their hidden layers and linear activation functions in their
output layers, commonly known as the identity function, are employed for this research.

To select the number of hidden layers, automatically architecture selection is chosen.
The following three different distributions for the dataset are applied: (i) 70% to train
the NN and 30% to test the NN; (ii) 80% to train the NN and 20% to test the NN; (iii) 90%
to train the NN and 10% to test the NN. Figures 8 and 9 show the obtained NNs to predict
CL and HL from the set of 8 input variables, respectively.

The importance score of each of the eight independent variables in the prediction of
each of the output variables is computed and given as Table 8. According to Table 8,
the top five important input variables when predicting both the CL and HL output
variables are WWR, WinU, GA, WA, and WU. Figures 10 and 11 shows the importance
distribution percentages of the input variables as determined by the MLP for the CL and
HL output variables, respectively. The top five important input variables are further
investigated in terms of their effect on predicting buildings energy consumption in
“Concluding Remarks and Future Research Directions”. These five input variables are the
base to create various combinations to several prediction models of the CL and HL.

Error and performance measures
This section reports on the general performance of the trained methods that were
discussed in the previous section. The models are compared using three performance
measures, namely, Mean Absolute Error (MAE), Root Mean Square Error (RMSE) and
coefficient of determination (R2).
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The average difference between expected and actual variables, such as heating and
cooling loads, is known as the Mean Absolute Error (MAE). In (Eq. 3), the following
equation demonstrates how MAE is calculated:

MAE ¼ ð1=nÞ �
Xn
i¼1

jpi � yij (3)

Prediction errors are calculated by calculating the Root Mean Square Error (RMSE).
Large variations between expected and actual results can be captured using this method.
The lower the RMSE, the more accurate the model is. In (Eq. 4), the RMSE is determined
using the following equation:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1=nÞ �

Xn
i¼1

pi � yi½ �2
s

(4)

The coefficient of determination (R2) indicates how much of the variance in the
dependent variable can be predicted using the independent variables, such as heating and

Figure 8 Multilayer perceptron model for predicting the cooling load output from the input
variables. Full-size DOI: 10.7717/peerj-cs.856/fig-8
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cooling loads. The closer value to 1, the higher performance model and the stronger
relationship, as calculated in (Eq. 5).

R2 ¼
Pn

i¼1 ðpi � �yÞ2Pn
i¼1 ðyi � �yÞ2 (5)

Figure 9 Multilayer perceptron model for predicting the heating load output from the input
variables. Full-size DOI: 10.7717/peerj-cs.856/fig-9

Table 8 Importance of the input variables as determined by the MLP for the output variables.

Measure Importance score with CL Importance score with HL

BA 0.049 ± 0.015 0.067 ± 0.025

FH 0.024 ± 0.003 0.023 ± 0.009

GA 0.209 ± 0.129 0.087 ± 0.033

WA 0.126 ± 0.028 0.111 ± 0.040

WWR 0.240 ± 0.142 0.157 ± 0.031

WinU 0.230 ± 0.041 0.296 ± 0.009

RU 0.015 ± 0.002 0.038 ± 0.002

WU 0.108 ± 0.018 0.252 ± 0.009
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where pi identifies the predicted value for sample i, yi identifies the actual value for sample
i, n is the sample size, �y indicates the mean of the predicted values.

RESULTS AND DISCUSSIONS
This study investigated various combinations of the eight building characteristics variables
as inputs to the MLP and MLR models in order to examine the effect of these variables on
the energy consumption in terms of heating and cooling loads. During this research, a
total of eight different models were created and compared (Tables 9 and 10).

According to testing data, the MAE, RMSE, and R2 statistics of several MLP and MLR
models in predicting the cooling load (CL) are shown in Table 9. Table 9 shows significant
differences across the eight MLP models based on the three performance indicators.
Between 21.78 and 23.2 (MAE, RMSE, and R2), respectively, the values of MAE, RMSE,

Figure 10 Importance distribution of the input variables as determined by the MLP for the cooling
load output variables. Full-size DOI: 10.7717/peerj-cs.856/fig-10

Figure 11 Importance distribution of the input variables as determined by the MLP for the heating
load output variables. Full-size DOI: 10.7717/peerj-cs.856/fig-11
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and R2 were found. MAE and RMSE performance metrics have the lowest values when all
eight of the building’s identifying attributes are supplied into the M8model (WinU,WWR,
WU, GA, WA, BA, FH, and RU). The highest R2 values were found with the M1 and

Table 9 Out of sample MAE, RMSE, and R2 for predicting the CL output variable for the MLR and
MLP models.

Model Input variables MAE RMSE R2

MLP M1 WinU+WWR+WU+GA+WA 23.2 42.92 0.999

M2 WinU+WWR+WU+GA+WA+BA 23.05 41.54 0.999

M3 WinU+WWR+WU+GA+WA+FH 22.71 38.69 0.997

M4 WinU+WWR+WU+GA+WA+RU 22.88 40.14 0.998

M5 WinU+WWR+WU+GA+WA+BA+FH 22.39 35.7 0.995

M6 WinU+WWR+WU+GA+WA+BA+RU 22.51 37.22 0.996

M7 WinU+WWR+WU+GA+WA+FH+RU 22.07 32.56 0.993

M8 All: WinU+WWR+WU+GA+WA+BA+FH+RU 21.78 29.123 0.992

MLR M1 WinU+WWR+WU+GA+WA 47.91 66.32 0.990

M2 WinU+WWR+WU+GA+WA+BA 46.97 61.40 0.984

M3 WinU+WWR+WU+GA+WA+FH 47.37 63.56 0.986

M4 WinU+WWR+WU+GA+WA+RU 47.62 64.87 0.988

M5 WinU+WWR+WU+GA+WA+BA+FH 46.26 57.43 0.979

M6 WinU+WWR+WU+GA+WA+BA+RU 46.66 59.70 0.982

M7 WinU+WWR+WU+GA+WA+FH+RU 46.38 58.15 0.980

M8 All: WinU+WWR+WU+GA+WA+BA+FH+RU 46.020 56.015 0.978

Table 10 Out of sample MAE, RMSE, and R2 for predicting the HL output variable for the MLR and
MLP models.

Model Input variables MAE RMSE R2

MLP M1 WinU+WWR+WU+GA+WA 0.180 0.376 1

M2 WinU+WWR+WU+GA+WA+BA 0.177 0.346 1

M3 WinU+WWR+WU+GA+WA+FH 0.179 0.368 1

M4 WinU+WWR+WU+GA+WA+RU 0.175 0.333 0.996

M5 WinU+WWR+WU+GA+WA+BA+FH 0.174 0.320 0.992

M6 WinU+WWR+WU+GA+WA+BA+RU 0.170 0.284 0.981

M7 WinU+WWR+WU+GA+WA+FH+RU 0.172 0.308 0.989

M8 All: WinU+WWR+WU+GA+WA+BA+FH+RU 0.167 0.260 0.433

MLR M1 WinU+WWR+WU+GA+WA 0.955 1.567 0.469

M2 WinU+WWR+WU+GA+WA+BA 0.942 1.455 0.521

M3 WinU+WWR+WU+GA+WA+FH 0.948 1.510 0.493

M4 WinU+WWR+WU+GA+WA+RU 0.945 1.481 0.507

M5 WinU+WWR+WU+GA+WA+BA+FH 0.935 1.399 0.552

M6 WinU+WWR+WU+GA+WA+BA+RU 0.921 1.269 0.627

M7 WinU+WWR+WU+GA+WA+FH+RU 0.928 1.337 0.587

M8 All: WinU+WWR+WU+GA+WA+BA+FH+RU 0.915 1.223 0.656
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M2 models, however, the M8 model still had the highest value. As can be seen from the
results, the MLP M8 model has excellent cooling load (CL) performance and outstanding
overall accuracy in predicting cooling load.

Table 9 also displays the results of the cooling load (CL) prediction using MLR
models based on the testing data. TheMAE and RMSEmetrics based onMLRmodels yield
poorer results than those based on MLP models. Furthermore, the eight MLR models
revealed considerable variances depending on the three performance measurements
criterion, as shown in Table 9. MAE, RMSE, and R2 values varied from 46.02 to 47.91,
56.01 to 66.32, and 0.978 to 0.99, respectively. The M8 model, which employs all eight
building characteristics variables as input, also yields the lowest values of the MAE and
RMSE performance measures (WinU, WWR, WU, GA, WA, BA, FH, and RU). The
highest values for the R2 measure were obtained with the M1 model, which was not far off
from the value obtained with the M8 model. In terms of MAE, RMSE, and R2 statistics,
Table 9 compares the effectiveness of several MLP and MLR models in forecasting cooling
load (CL).

Similarly, Table 10 reported the results obtained in predicting the heating load (HL)
based on the same three performance measures. The MAE, RMSE, and R2 values for the
MLP models ranged from (0.167 to 0.18), (0.26 to 0.37), and (0.43 to 1.00), respectively,
according to Table 10. The M8 model, which employs all eight building characteristics
variables as input, likewise produces the lowest MAE and RMSE performance scores
(WinU, WWR, WU, GA, WA, BA, FH, and RU). With the M1, M2, and M3 models,
the highest R2 values were found. The MAE and RMSE figures indicate that the MLP
model’s performance is extremely good, and the MLP M8 model generally achieves good
forecast accuracy of heating load (HL). Table 10 also displays the heating load (HL)
prediction results derived using MLR models based on the testing data. The MAE and
RMSE values based on the MLR models are lower than those based on the MLP models, as
evidenced by the cooling load projections in Table 9. Table 10 shows that the eight MLR
models differed significantly based on the three performance measurements criterion.
MAE, RMSE, and R2 values varied between (0.915 to 0.955), (1.223 to 1.567), and (0.469 to
0.656), respectively. The M8 model, which employs all eight building characteristics
variables as input, also yields the lowest MAE and RMSE values and the highest value of R2

performance metrics (WinU, WWR, WU, GA, WA, BA, FH, and RU).
In comparison, the prediction accuracy of heating load (HL) for the regression models

was higher than the prediction accuracy of cooling load (HL) in both MLP and MLR
models for all eight generated combinations, according to the data provided in Table 9.

The comparison of the models was based on graphical plots as scatter plots, box plots,
violin plots, and Taylor diagram plots. Figures 12 and 13 show the scatterplots of the actual
and the predicted values of the cooling load and the heating loads output variables
obtained by MLP and MLR when using all the inputs, as represented in model M8 in
Table 9 and 10. The best cooling load results of R2 with 0.976 was achieved by MLP,
whereas the MLRmodel provides R2 with 0.839. similarly, the R2 value for the heating load
using MLP model is 0.958 which is better than the 0.438 R2 value given by the MLR model.
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The violin plots and the box plots for the actual and the predicted values of the heating
load and cooling load output variables are illustrated in Figs. 14–17. As in the violin plots
presented in Fig. 14, the two lines with a black square and red circle color display the

Figure 13 Scatterplots showing the relation between the actual and the predicted values of the
cooling load (CL) and heating loads (HL) variables for the MLR M8 model.

Full-size DOI: 10.7717/peerj-cs.856/fig-13

Figure 12 Scatterplots showing the relation between the actual and the predicted values of the
cooling load (CL) and heating loads (HL) variables for the MLP M8 model.

Full-size DOI: 10.7717/peerj-cs.856/fig-12

Figure 14 Violin plots of the actual and the predicted values of the cooling load (CL) values obtained
by MLP and MLR. Full-size DOI: 10.7717/peerj-cs.856/fig-14
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mean and the median values of the heating and cooling loads, respectively. The high
resemblance between the actual and the predicted heating load was achieved by MLP,
especially on the median (323.18 and 323.85), while the MLR median value is 339.36.
While the values of the mean for the CL in the actual, predicted MLP and MLR are
very close (336.85, 337.08, and 338.75), as illustrated in Table 11. Similarly, for the heating
load in Fig. 15 and Table 11, the high similarity between the actual and the predicted
heating load was also accomplished by MLP with median values 0.38 and 0.43 where the
median of the MLR is 0.96.

Figure 16 illustrates the box plots of the actual and the predicted cooling load by MLP
and MLRmodels. The median is represented by the central line with values 323.17, 323.84,
and 339.35 for the actual, the predicted MLP, and the predicted MLR, respectively.

Figure 16 Box plots of the actual and the predicted values of cooling load (CL) values obtained by
MLP and MLR. Full-size DOI: 10.7717/peerj-cs.856/fig-16

Figure 15 Violin plots of the actual and the predicted values of the heating load (HL) values obtained
by MLP and MLR. Full-size DOI: 10.7717/peerj-cs.856/fig-15
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This indicates that the MLP model is better than the MLR model, as shown in Table 11.
The 25th and 75th percentiles are represented by the box’s two edges, and the x
symbol represents the mean points which have values 336.85, 337.08, and 338.75 for
the actual, the predicted MLP, and the predicted MLR, respectively. Likewise, Fig. 17
demonstrates the box plots of the actual and the predicted heating load variables obtained
by MLP and MLR models. The median is represented by the central line with values 0.383,
0.433, and 0.96 for the actual, the predicted MLP, and the predicted MLR, respectively.
It is clear from the box plots that the MLRmodel gives better values near the actual cooling
and heating loads.

Finally, the Taylor diagram plot was used to compare the MLP and the MLR
models for the cooling load and the heating load as in Figs. 18 and 19, respectively. Taylor
diagram plot is one of the most and highly recommended diagrams for performance
comparisons of machine learning (Zhu et al., 2019). It exhibits three specific statistics:
Pearson correlation (R), ratio value, and the normalized standard deviation. The ratio
value means the ratio of the normalized variances indicates the relative amplitude of the
model and observed variations. It is shown from the two figures that MLP performed

Figure 17 Box plots of the actual and the predicted values of heating load (HL) values obtained by
MLP and MLR. Full-size DOI: 10.7717/peerj-cs.856/fig-17

Table 11 The mean and median values obtained by the actual, the MLP, and the MLR predicted
models for the CL and HL variables derived from the violin and box plots.

Output variable Model Mean Median

Violin plot Box plot Violin plot Box plot

CL Calculated (simulated) 336.85 336.84 323.18 323.17

MLP 337.08 337.08 323.85 323.84

MLR 338.75 338.75 339.36 339.35

HL Calculated (simulated) 0.95 0.953 0.38 0.383

MLP 0.96 0.961 0.43 0.433

MLR 0.96 0.962 0.96 0.96
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Figure 18 Taylor diagram of the actual and the predicted cooling load (CL) values obtained by MLP
and MLR. Full-size DOI: 10.7717/peerj-cs.856/fig-18

Figure 19 Taylor diagram of the actual and the predicted heating load (HL) values obtained by MLP
and MLR. Full-size DOI: 10.7717/peerj-cs.856/fig-19
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better than MLR. In general, the MLP points, represented by the blue circle, are closer to
the reference points than the blue star symbols that signify the MLR. The ratio values
for the CL variable predicted by the MLP model is 0.989 and the MLR model is 0.899.
Whereas in the HL variables, the predicted MLP and the predicted MLR model gives ratio
values with 0.971 and 0.622, respectively, as illustrated in Table 12. The table also
represents the correlation values of the two MLP and MLR models for the CL and HL
variables where the CL the MLP gives 0.988 correlation value while the MLR gives
0.911. For the HL, the MLP and the MLR correlations values are 0.979 and 0.659,
respectively. These plots demonstrate that the MLP model predicts the cooling load and
the heating load output variables in a better way compared to the MLR model when
comparing the actual values with the predicted values.

CONCLUDING REMARKS AND FUTURE RESEARCH
DIRECTIONS
Predicting building energy consumption is critical for achieving energy efficiency and
sustainability. Nowadays, building energy simulation software is frequently used to assess
or predict building energy usage to aid in the design and operation of energy-efficient
buildings. This paper investigated the impact of eight input variables on residential
buildings heating load (HL) and cooling load (CL), respectively. A variety of classical and
non-parametric statistical analytic tools were used to find the most strongly associated
input variables with each of the output variables. Then, using the performance measures
Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and coefficient of
determination (R2), two machine learning statistical methods to estimate HL and CL
were compared: Multiple linear regression (MLR) and Multilayer perceptron (MLP).
Simulation experiments on 3,840 different residential buildings showed that HL and CL
can accurately be predicted using the IES<VE> simulation software actual data with low
MAE, RMSA, and R2 values, especially when using the MLP approach.

The findings of this study suggest that predicting building parameters using machine
learning methods is a practical and accurate method. Among the major findings of
this study is that the MLP models are more accurate in predicting both cooling and heating
loads of the buildings, as compared to the MLR models. Also, the best performed MLP
model was the one that uses the eight input variables.

Based on the eight buildings characteristics input variables, many various combinations
can be created for predicting the energy consumption, however, and due to the time

Table 12 The ratio and correlation values obtained by the MLP and MLR models for the CL and HL
variables using the Taylor diagram.

Output variable Model Ratio value Correlation value

CL MLP 0.989 0.988

MLR 0.899 0.911

HL MLP 0.971 0.979

MLR 0.622 0.659
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limitation, only eight combinations have been considered with a focus on the most
important input variables.

The obtained results in this paper suggest that future research on the application of
additional machine learning and deep learning models to analyze our proposed dataset
and comparison with other benchmark datasets is worth considering.
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