
Submitted 11 October 2021
Accepted 20 December 2021
Published 18 January 2022

Corresponding author
Bo Wang, wangb@zzuli.edu.cn

Academic editor
Junaid Shuja

Additional Information and
Declarations can be found on
page 19

DOI 10.7717/peerj-cs.851

Copyright
2022 Sang et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

A three-stage heuristic task scheduling
for optimizing the service level agreement
satisfaction in device-edge-cloud
cooperative computing
Yongxuan Sang1, Junqiang Cheng2, Bo Wang1 and Ming Chen1

1Zhengzhou University of Light Industry, Zhengzhou, China
2 Europe-Aisa Hi-tech and Digital Technology Company Limited, Zhengzhou, China

ABSTRACT
Device-edge-cloud cooperative computing is increasingly popular as it can effectively
address the problem of the resource scarcity of user devices. It is one of the most
challenging issues to improve the resource efficiency by task scheduling in such
computing environments. Existing works used limited resources of devices and edge
servers in preference, which can lead to not full use of the abundance of cloud resources.
This article studies the task scheduling problem to optimize the service level agreement
satisfaction in terms of the number of tasks whose hard-deadlines are met for device-
edge-cloud cooperative computing. This article first formulates the problem into a
binary nonlinear programming, and then proposes a heuristic scheduling method
with three stages to solve the problem in polynomial time. The first stage is trying
to fully exploit the abundant cloud resources, by pre-scheduling user tasks in the
resource priority order of clouds, edge servers, and local devices. In the second stage,
the proposed heuristic method reschedules some tasks from edges to devices, to provide
more available shared edge resources for other tasks cannot be completed locally, and
schedules these tasks to edge servers. At the last stage, our method reschedules as
many tasks as possible from clouds to edges or devices, to improve the resource cost.
Experiment results show that our method has up to 59% better performance in service
level agreement satisfaction without decreasing the resource efficiency, compared with
eight of classical methods and state-of-the-art methods.

Subjects Computer Architecture, Computer Networks and Communications, Distributed and
Parallel Computing, Embedded Computing, Mobile and Ubiquitous Computing
Keywords Edge cloud, Task offloading, Cloud computing, Task scheduling

INTRODUCTION
With the development of computer and communications technology as well as the growing
need for the quality of human life, smart devices, e.g., smartphones and Internet of Thing
(IoT) devices, have becomemore andmore popular. As shown in the Cisco Annual Internet
Report (CAIR) (Cisco, 2020) released in March 2020, networked devices will be increased
from 18.4 billion in 2018 to 29.3 billion in 2023, and IoT devices will account for 50
percent by 2023. Juniper Research has reported similar results in 2018, IoT devices will
grow at 140% over the next 4 years (Sorrel, 2018). Because of limited resources, plenty of

How to cite this article Sang Y, Cheng J, Wang B, Chen M. 2022. A three-stage heuristic task scheduling for optimizing the service level
agreement satisfaction in device-edge-cloud cooperative computing. PeerJ Comput. Sci. 8:e851 http://doi.org/10.7717/peerj-cs.851

https://peerj.com/computer-science
mailto:wangb@zzuli.edu.cn
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.851
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.851

user devices cannot satisfy their respective requirements at most time (Ghasempour, 2019;
Liu et al., 2019b), as Internet applications has undergone rapid growth in both variety and
complexity with the development of artificial intelligence algorithms (e.g., deep neural
networks) and communication technologies (e.g., 5G and Wifi 6) (Wang et al., 2020b).

To address the resource scarcity problem of user devices, several researchers exploited
the low latency edge resources (Balasubramanian et al., 2020) and the abundant cloud
resources (Strumberger et al., 2019). Only one of them cannot address the problem
effectively due to either the limited resource of edges or the poor network performance of
clouds (Wang et al., 2019b). Thus, with the integration of respective benefits of edge and
cloud computing, device-edge-cloud cooperative computing (DE3C) (Hong et al., 2019) is
an effective way, where edges and clouds are employed jointly for expanding the resource
capacity of user devices.

Task scheduling or offloading is an effective way for optimizing the task performance
and the resource efficiency for DE3C, which decides the location (the corresponding
device, an edge or a cloud) where each task to be processed (offloading decision) and the
computing resources which each task performs on in a specified order (task assignment and
ordering) (Wang et al., 2020b; Islam et al., 2021). Therefore, several works have proposed
various task scheduling methods trying to optimize the response time (Han et al., 2019;
Meng et al., 2019; Meng et al., 2020; Apat et al., 2019; Ren et al., 2019; Liu et al., 2019a;
Wang et al., 2021), the resource cost (Mahmud et al., 2020; Gao et al., 2019; Chen et al.,
2019) or the profit (Chen et al., 2020; Yuan & Zhou, in press) for providing services in
DE3C. These works were concerned on addressing only one or two sub-problems of task
scheduling, e.g., offloading decision or/and task assignment, and thus cannot provide
global optimal solutions. In addition, a lot of existed works did not employ local device
resources without network latency, even though a lot of smart devices have been equipped
with computing resources almost equivalent to personal computers (Wu et al., 2019),
nowadays.

Motivation
This paper focuses on the joint problem of offloading decision, task assignment and task
ordering, to optimize the profit for service providers in DE3C, by improving the Service
Level Agreement (SLA) satisfaction. An SLA is enforced when a user uses a provider’s
service. If the SLA is fail to be satisfied, the provider must pay a penalty, which reduces
the provider’s profit. In addition, an SLA violation reduces the provider’s reputation,
and thus may lead to a loss of some potential users (Papadakis-Vlachopapadopoulos et al.,
2019), while plenty of related works only concerned on improving the response time or
the resource cost, which is in contradiction to the SLA satisfaction optimization, as better
response times or less resources generally result in a less number of completed tasks. In
addition, to our best knowledge, all existed work prioritised local resources (devices) for
processing tasks and rented resources from clouds only when local and edge resources
are not enough, as local resources are cheap and have no network latency. They did not
consider that some tasks processed locally or in edges can be assigned to clouds to save some
local or edge resources for completing tasks that cannot be finished by cloud resources.

Sang et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.851 2/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.851

1This paper considers the number of
finished tasks with hard-deadlines as the
SLA satisfaction metric. The proposed
approach is compatible to any other
metric.

2In this paper, finishing/completing a
task means finishing the task within its
deadline, i.e., satisfying the task’s SLA
requirement.

Table 1 The information of DE3C system for the case motivating our work.

a. task requirements
Task Computing resource amount Transferred data amount Deadline

t1 100 GHz 100 Mbit 50 s
t2 100 GHz 100 Mbit 50 s
t3 10 GHz 100 Mbit 10 s
t4 10 GHz 100 Mbit 10 s

b. resource configurations
Resource Computing capacity Transmission bandwidth

Device 2 GHz ∞

Edge 2 GHz 100 Mbps
Cloud 4 GHz 10 Mbps

For example, there are four tasks, t1, t2, t3, and t4, to be scheduled in a DE3C with one
device, one edge server, and a cloud. The information of tasks and resources are shown in
Table 1. The times consumed by t1 and t2 are 50 s, 51 s, and 35 s, respectively, when they
are scheduled to the device, the edge server, and the cloud, and the consumed times are
5 s, 6 s, and 12.5 s, respectively, for t3 and t4. With the scheduling order of t1, t2, t3, and
t4, and the idea of using device resources first, t1, t3, and t2 are respectively scheduled to
the device, the edge server, and the cloud, but the requirements of t4 cannot be satisfied.
But if scheduling tasks with the priority order of the cloud, the edge server, and the device,
requirements of all tasks can be satisfied, where t1 and t2 are scheduled to the cloud and t3
and t4 are scheduled to the device.

Contribution
This paper focuses on maximizing the SLA satisfaction, i.e., optimizing the number of tasks
whose hard-deadlines are met, in DE3C by task scheduling, by exploiting both the low
network latency of edges and the rich computing resources of clouds. To address the task
scheduling problem in DE3C, the paper formulates it into a binary nonlinear programming
(BNLP) for the SLA satisfaction optimization. In order to solve the problem in polynomial
time, a heuristic method is designed based on the idea of least accumulated slack time first
(LASTF) (Wang et al., 2020a) and earliest deadline first (EDF) (Benoit, Elghazi & Robert,
2021). In brief, the contributions of this paper can be summarized as followings.

• The task scheduling problem of DE3C is formulated as a BNLP with two objectives,
where themajor one ismaximizing the number of tasks whose requirements are satisfied1

and the second one is maximizing the resource utilization.
• A three-stage heuristic task scheduling method (TSSLA) is designed for DE3C. The first
stage is to exploit the abundant computing resource of clouds, to finish as many tasks
as possible,2 by pre-scheduling tasks in the resource priority order of clouds, edges, and
devices. In the second stage, TSSLA reschedules tasks from edges to respective devices
to make some edge resources free for completing more tasks, and schedules remaining
unscheduled tasks to edges. At the last stage, our method reschedules tasks from clouds

Sang et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.851 3/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.851

to respective devices or edges, to reduce the resource cost. For task scheduling in each
location, the proposed method respectively employs LASTF and EDF to assign the
computing core for each task and decide the task execution order.
• Simulated experiments are conducted referring to recent related works and the reality,
to evaluate our proposed heuristic method. Experiment results verify our method
having a much better performance than eight of classical and state-of-the-art methods
in optimizing SLA satisfaction.

The rest of this paper is organized as follows. The second section illustrates the related
works. Third section present the formulation of the task scheduling problem this paper
concerned. Fourth section presents the three-stage heuristic method designed, and
analyses its time complexity. The subsequent section evaluates the performance of our
task scheduling method by simulated experiments. And finally, the last section concludes
this paper.

RELATED WORK
As DE3C is one of the most effective ways to solve the problem of insufficient resources
of smart devices and task scheduling is a promising technology to improve the resource
efficiency, several researchers have focused on the design of efficient task scheduling
methods in various DE3C environments (Wang et al., 2020b).

To improve the response time of tasks, the method proposed by Apat et al. (2019)
iteratively assigned the task with the least slack time to the edge server closest to the user.
Tasks are assigned to the cloud when they cannot be finished by edges. Their work did
not consider the task scheduling on each server. OnDisc, proposed by Han et al. (2019),
heuristically dispatched a task to the server providing the shortest additional total weighted
response time (WRT), and sees the cloud as a server, to improve overall WRT. Stavrinides
& Karatza (2019) proposed a heuristic method for improving the deadline miss Ratio.
Their proposed method respectively employed EDF and earliest finish time first for task
selection and resource allocation, and tried to fill a task before the input data is ready for
the next task to execute.

The above research focused on the performance optimization for task execution, but
did not concern the cost of used resources. In general, a task requires more resources
for a better performance, and thus there is a trade-off between the task performance and
the resource cost. Therefore, several works concerned the optimization of the resource
cost or the profit for service providers. For example, Chen et al. (2020) presented a task
scheduling method to optimize the profit, where the value of a task was proportional to
the resource amounts and the time it took, and resources were provided in the form of
VM. Their proposed method first classified tasks based on the amount of its required
resources by K-means. Then, their method used Kuhn–Munkres method to solve the
optimal matching of tasks and VMs with profit maximization for the VM class and the
task class closest to the VM class, where all VMs were seen as one VM class. This work
ignored the heterogeneity between edge and cloud resources, which may lead to resource
inefficiency (Kumar et al., 2019). Li, Wang & Luo (2020) tried to optimize the finish time

Sang et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.851 4/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.851

and the cloud resource usage cost. Their proposed method first made the offloading
decision for each task, adopting the artificial fish swarm algorithm improved by simulated
annealing method for calculating the probability of updating bulletin, to avoid falling
into local optimal solution. Then their method greedily assigned a task to the computing
node with the minimum utilization in edges or the cloud. This work focused on media
delivery applications, and thus considered that each task can be divided into multiple
same-sized subtasks for parallel process, which limited its application scope. The method
proposed by Mahmud et al. (2020) iteratively assigned the offloaded application to the
first computational instance such that all requirements are satisfied and the profit merit is
minimum, where cloud-based instances were sorted behind edge-based instances and the
profit merit was defined as the ratio of the profit and the slack time.

All of the aforementioned methods employed only edge and cloud resources for task
processing, even though most of user devices have been equipped with various computing
resources (Wu et al., 2019) which have zero transmission latency for users’ data. To exploit
all the advantages of the local, edge and cloud resources, someworks are proposed to address
the task scheduling problem for DE3C. The method presented in Lakhan & Li (2019) first
tried several existed task order method, e.g., EDF, EFTF, and LSTF, and selected the result
with the best performance for task order. Then, the method used existed pair-wise decision
methods, TOPSIS (Liang & Xu, 2017) and AHP (Saaty, 2008), to decide the position for
each task’s execution, and applied a local search method exploiting random searching
for the edge/cloud. For improving the delay, the approach presented in Miao et al. (2020)
first decided the amounts of data that is to be processed by the device and an edge/cloud
computing node, assuming each task can be divided into two subtasks with any data size.
Then they considered to migrate some subtasks between computing nodes to further
improve the delay, for each task. The method proposed in Zhang et al. (2019) iteratively
assigned the task required minimal resources to the nearest edge server that can satisfy all
of its requirements. Ma et al. (2022) proposed a load balance method for improving the
revenue for edge computing. The proposed method allocated the computing resources
of the edge node with the most available cores and the smallest move-up energy to the
new arrived task. To improve the total energy consumption for executing deep neural
networks in DE3C with deadline constraints, Chen et al. (2022) proposed a particle swarm
optimization algorithm using mutation and crossover operators for population update.
Wang et al. (2021) leveraged reinforcement learning with sequence-to sequence neural
network for improving the latency and the device energy in DE3C. Machine learning-based
or metaheuristic-based approaches may achieve a better performance than heuristics, but
in general, they consume hundreds to tens of thousands more time, which makes them not
applicable to make online scheduling decisions.

All of these existed research concerned only one or two problems of offloading decision,
task assignment, and task ordering, which leads to suboptimal solutions. In addition, they
were not fully explored the advantage of abundant cloud resources, as they considered
assigning tasks to the cloud only when local and edge resources are exhausted. To address
these issues, this paper designs a heuristic method for optimizing SLA satisfaction in DE3C.

Sang et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.851 5/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.851

3Multiple clouds can be seen as one big
public cloud including the resources
provisioned by these clouds.

4The cloud resources can be provided in the
form of virtual machine (VM), physical
machine (PM), or both. The form of
resource provisioning does not affect the
application of our method.

接入点

边缘服务器

接入点

宏基站 互联网

边缘服务器边缘服务器

…
…

…
…

边缘服务器

云服务器

云端

……

接入点

接入点

边缘端

设备端

AP

ES
AP

MaBS Internet

ESES

…
…

…
…

ES

CS

Cloud

……

AP

AP

Edges

Devices

ES: Edge Server(s) CS: Cloud Servers AP: Access Point MaBS: Macro Base Station

Figure 1 The DE3C environment considered in this paper.
Full-size DOI: 10.7717/peerjcs.851/fig-1

To our best knowledge, this is the first attempt to jointly address the problems of offloading
decision, task assignment, and task ordering.

PROBLEM FORMULATION
The DE3C environment considered in this paper is composed of various user devices,
multiple edges (short for edge computing centers), and one cloud,3 as shown in Fig. 1.
Each device launches one or more tasks for processing data it collected from user behaviors
or surroundings. Each task can be processed locally, or offloaded to an edge covering the
device or the cloud. When a task is offloaded, its processed data must be transmitted from
the device to the edge or the cloud before its processing, by various communication links,
e.g., wireless networks, telecommunications, etc. There have been some research on data
transmission in advance to improve the network latency by predicting task offloading
decisions (Zhang et al., 2017), which is complementary to our work. In this paper, the data
is assumed to be transmitted only after the offloading decision is made for each task, which
can avoid the waste of network resources due to the failure of predicting.
The considered DE3C system is consisted of M user devices (M = {m1,m2,..,mM }), E
edges (E = {e1,e2,...,eE}), and one public cloud. For device mj , there are nj cores (CMj

= {cmj,1,cmj,2,...,cmj,nj }), and each core has gj computing capacity. In edge ek , sk servers
are deployed, which are represented as Sk = {sk,1,sk,2,...,sk,sk }. Each edge server (say
sk,l) has nk,l cores, each with gk,l computing capacity. For satisfying users’ requirements
when local and edge resources are not enough, assuming there are V cloud servers4 (V =
{v1,v2,...,vV }) rented from the cloud. Cloud server vr has nvr cores, and the capacity of
each core is gvr . The price of vr is pr per unit time. The bandwidth of transmitting data
from device mj to sk,l and vr are represented as bj,k,l and bj,r , respectively, which can be

Sang et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.851 6/24

https://peerj.com
https://doi.org/10.7717/peerjcs.851/fig-1
http://dx.doi.org/10.7717/peerj-cs.851

5This paper considers hard deadline, where
the service provider has no gains for a task
if the task is finished after its deadline.
The scheduling of soft deadline tasks is
considered as a future work.

6In this paper, the redundant execution for
a task is not employed to improve the task
performance (Liu et al., 2019a) as it cost
more resources. Each task is assumed to
be processed by only one core, as done in
many published articles. A task executed
on more than one cores usually can be
decomposed into several subtasks. One is
suggested to refer to our previous work
(Wang et al., 2019a) which studied on the
task scheduling with parallelism awareness,
which complements this work.

easily calculated by transmission channel state data (Chen et al., 2016; You et al., 2017; Du
et al., 2019). If a device is not in the coverage of an edge, corresponding bandwidths are set
to infinity.

Assuming there are T tasks, T = {t1,t2,...,tT }, requested by users for processing in
the DE3C, and each task can be processed in the device launching it (locally), an edge
server communicated with the device, or a cloud server. For each task, say ti, it has ini data
must be processed, and has fi processing length. To make our method wider application,
assuming the data size to be processed and the processing length are independent for each
task in any computing node. Task ti must be finished before its deadline di defined by
corresponding SLA.5 Assuming d1≤ d2≤ ...≤ dT without loss of generality. The following
binary variables are defined for the following formulations.

xi,j =

{
1, if ti is launched by mj

0, otherwise
,∀i∈ [1,T],∀j ∈ [1,M]. (1)

xi,j,h=

{
1, if ti is processed by hth core in mj

0, otherwise
,∀h∈ [1,nj],∀i∈ [1,T],∀j ∈ [1,M]. (2)

yi,k,l,h=

{
1, if ti is processed by hth core in sk,l
0, otherwise

,∀h∈ [1,nk,l],∀i∈ [1,T],∀j ∈ [1,M],

∀l ∈ [1,sk]. (3)

zi,r,h=

{
1, if ti is processed by hth core in vr
0, otherwise

,∀h∈ [1,nvr],∀i∈ [1,T],∀r ∈ [1,V]. (4)

This paper does not consider the cooperative computing between devices (Hong et al.,
2019), and thus each task cannot be processed by other users’ devices, i.e.,

xi,j,h= 0,∀h∈ [1,nj],∀xi,j = 0,∀i∈ [1,T],∀j ∈ [1,M]. (5)

Each task can be only assigned to one core in the DE3C,6 and thus

M∑
j=1

nj∑
h=1

xi,j,h+
E∑

k=1

sk∑
l=1

nk,l∑
h=1

yi,k,l,h+
V∑
r=1

nvr∑
h=1

zi,r,h≤ 1,∀i∈ [1,T]. (6)

Then the number of completed tasks is

N =
T∑
i=1

(
M∑
j=1

nj∑
h=1

xi,j,h+
E∑

k=1

sk∑
l=1

nk,l∑
h=1

yi,k,l,h+
V∑
r=1

nvr∑
h=1

zi,r,h). (7)

when ti is processed locally, its execution time is its computing time as there is no data
transmission, i.e.,

τi= fi/gj,∀xi,j = 1,∀i∈ [1,T],∀j ∈ [1,M]. (8)

Sang et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.851 7/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.851

7Usually the amount of result data is
very small, and its transmission time is
negligible compared with that of input data
or the computing time. Thus, in this paper,
the transmission time of the result data is
ignored, as done by many previous works
(Zhao & Zhou, 2019; Chen & Hao, 2018;
Hong et al., 2019).

As all tasks assigned to a core can be finished before their respective deadlines if and only
if each task can be finished within its deadline when they are processed in ascending order
of the deadline (Pinedo, 2016), the finish time of each task processed by a core can be
calculated by assuming tasks are processed in the EDF scheme in the core. Then, if ti is
processed in the hth core of device mj , i.e., xi,j,h = 1, its start time is the accumulated
execution time of tasks that have earlier deadlines than it and are processed in the same
core, i.e.,

∑i−1
ii=1(xi,j,h ·τii). Thus, the finish time of ti can be formulated as

fti,j,h= xi,j,h ·
i∑

ii=1

(xii,j,h ·τii),∀h∈ [1,nj],∀i∈ [1,T],∀j ∈ [1,M]. (9)

where fti,j,h = 0 when ti is not assigned to hth core of device mj . In this situation, the
deadline constraints can be formulated into

fti,j,h≤ di,∀h∈ [1,nj],∀i∈ [1,T],∀j ∈ [1,M]. (10)

when a task is offloaded to an edge or the cloud, its execution time is formed from the
data transfer time and computing time. If a task is scheduled to a core of an edge server or
a cloud server, its computing can be started only when its data transmission is complete
and the core has finished all tasks that have earlier deadlines and are assigned to the core
(recall that EDF scheduling provides the best solution for a core in SLA optimization). The
earliest completion time of data transmission for a task offloaded to an edge server or the
cloud is

dti,k,l,h= yi,k,l,h ·
i∑

ii=1

(yii,k,l,h ·
inii
bj,k,l

),∀h∈ [1,nk,l],∀i∈ [1,T],∀j ∈ [1,M],∀l ∈ [1,sk], (11)

or

dti,vr ,h= zi,r,h ·
i∑

ii=1

(zii,r,h ·
inii
br

),∀h∈ [1,nvr],∀i∈ [1,T],∀r ∈ [1,V]. (12)

And the ready time of a core for computing an offloaded task in an edge or the cloud is
the latest finish time of tasks that are offloaded to the same core and have earlier deadlines,
which can be formulated into

rti,k,l,h= yi,k,l,h ·maxi−1ii=1(yii,k,l,h · ftii,k,l,h),∀h∈ [1,nk,l],∀i∈ [1,T],∀j ∈ [1,M],

∀l ∈ [1,sk], (13)

or

rti,vr ,h= zi,r,h ·
i−1∑
ii=1

(zii,r,h · ftii,vr ,h),∀h∈ [1,nvr],∀i∈ [1,T],∀r ∈ [1,V], (14)

where fti,k,l,h and fti,vr ,h represent the finish time of task ti when it is assigned to hth core in
the edge server sk,l and the cloud server vr respectively. For a core processing an offloaded
task, its start time is a later of its ready time and the completion time of the input data.7

Thus, the finish time of offloaded tasks can be calculated as followings

fti,k,l,h= yi,k,l,h · (max{dti,k,l,h,rti,k,l,h}+
fi
gk,l

),∀h∈ [1,nk,l],i∈ [1,T],

Sang et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.851 8/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.851

∀l ∈ [1,sk],∀k ∈ [1,E]. (15)

fti,vr ,h= zi,r,h · (max{dti,vr ,h,rti,vr ,h}+
fi
gvr

),∀h∈ [1,nvr],∀i∈ [1,T],∀r ∈ [1,V]. (16)

And the deadline constraints of task processing in edges and the cloud can be formulated
into

fti,k,l,h≤ di,∀h∈ [1,nk,l],i∈ [1,T],∀j ∈ [1,M],∀l ∈ [1,sk]. (17)

fti,vr ,h≤ di,∀h∈ [1,nvr],∀i∈ [1,T],∀r ∈ [1,V]. (18)

For a computing node (a device, an edge server or a cloud server), the time occupied for
processing tasks is the latest finish time of all tasks assigned to the node, i.e.,

utmj =maxTi=1max
nj
h=1 fti,j,h,∀j ∈ [1,M], (19)

utsk,l =maxTi=1maxnk,lh=1 fti,k,l,h,∀l ∈ [1,sk],∀k ∈ [1,E], (20)

utvr =maxTi=1maxnvrh=1 fti,vr ,h,∀r ∈ [1,V], (21)

where utN is the use time of the computing node N for finishing tasks assigned to it.
Then, the occupied resource amount (orN) of a computing node for task processing are
respectively

ormj = utmj ·gj ·nj,∀j ∈ [1,M], (22)

orsk,l = utsk,l ·gk,l ·nk,l,∀l ∈ [1,sk],∀k ∈ [1,E], (23)

orvr = utvr ·gvr ·nvr ,∀r ∈ [1,V], (24)

And the consumed computing resource amount crN can be quantified by the accumulated
processing length of its finished tasks for each computing node, i.e.,

crmj =

T∑
i=1

nj∑
h=1

xi,j,h · fi,∀j ∈ [1,M], (25)

crsk,l =
T∑
i=1

nk,l∑
h=1

yi,k,l,h · fi,∀l ∈ [1,sk],∀k ∈ [1,E], (26)

Sang et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.851 9/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.851

crvr =
T∑
i=1

nvr∑
h=1

zi,r,h · fi,∀r ∈ [1,V], (27)

Thus, the computing resource utilization of devices, edge servers, and cloud servers are
respectively

Udevice =

∑M
j=1crmj∑M
j=1ormj

, (28)

Uedge =

∑E
k=1

∑sk
l=1crsk,l∑E

k=1
∑sk

l=1orsk,l
, (29)

Ucloud =

∑V
r=1crvr∑V
r=1orvr

, (30)

and the overall resource utilization of the DE3C system is

U =

∑M
j=1crmj +

∑E
k=1

∑sk
l=1crsk,l +

∑V
r=1crvr∑M

j=1ormj +
∑E

k=1
∑sk

l=1orsk,l +
∑V

r=1orvr
. (31)

Based on the above formulation, the task scheduling problem optimizing the SLA
satisfaction can be modelled as

Maximizing N +U (32)

subject to

(1)− (31) (33)

where the objective Eq. (32) is to maximize the number of finished tasks, and to maximize
the overall computing resource utilization when the finished task number cannot be
improved. The decision variables include xi,j,h (h ∈ [1,nj], j ∈ [1,M], i ∈ [1,T]), yi,k,l,h
(h∈ [1,nk,l], l ∈ [1,sk], k ∈ [1,E], i∈ [1,T]), and zi,r,h (h∈ [1,nvr], r ∈ [1,V], i∈ [1,T]).
This problem is binary nonlinear programming (BNLP), which can be solved by existed
tools, e.g., lp_solve (Berkelaar et al., 2020). These tools are implemented based on branch
and bound, which is not applicable to large-scale problems. Therefore, a heuristic method
is proposed to solve the problem in polynomial time in the next section.

THREE-STAGE HEURISTIC TASK SCHEDULING
This section presents the proposed hybrid heuristic method, called TSSLA (Three-Stage
scheduling optimizing SLA), to address the task scheduling problem stated in the previous
section, which coordinates the richness of cloud computing resources and the low
transmission delay of local and edge resources, to optimize the SLA satisfaction.

Sang et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.851 10/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.851

8This paper assumes that cloud resources
are provided on demand, and leave the
concern of other provisioning scheme, e.g.,
spot, as a future work.

Algorithm 1 The three-stage hybrid heuristic task scheduling
Input: the information of tasks and DE3C resources
Output: the mapping between tasks and computing resources

//The first stage
1: iteratively pre-assigning a task to a new cloud server core, until no task can be finished in the cloud;
2: iteratively pre-assigning a task to an edge server core using Algorithm 2, until no task can be finished in

edges;
3: iteratively assigning a task to a device core using Algorithm 2, until no task can be finished locally;

//The second stage
4: for all tasks assigned to edges, iteratively re-assigning a task to a device core using Algorithm 2, until no

task can be finished locally;
5: for remaining unassigned tasks, iteratively assigning a task to an edge server core using Algorithm 2, until

no task can be finished in edges;
//The third stage

6: for all tasks assigned to the cloud, iteratively re-assigning a task to a device core using Algorithm 2, until
no task can be finished locally;

7: for all tasks assigned to the cloud, iteratively re-assigning a task to an edge server core using Algorithm 2,
until no task can be finished locally;

8: for tasks assigned to the cloud, iteratively re-assigning the task in the next cloud VM to one of previous
VMs using Algorithm 2, and de-renting idle cloud VMs;

The proposed hybrid heuristic method includes three stages, where the first stage tries
to satisfy deadlines of as many tasks as possible, by prioritising the usage of abundant cloud
computing resources and assigning tasks that cannot be finished in the cloud to edges or
corresponding devices. In the second stage, TSSLA tries to make full use of local resources
and release some edge resources by rescheduling several tasks from edges to corresponding
devices, and to exploit edge resources shared by multiple users for finishing more tasks. At
the last stage, our method aims at optimizing the cost of cloud resources, by rescheduling
as many tasks as possible from the cloud to corresponding devices and edges. Algorithm 1
outlines the proposed three-stage hybrid heuristic task scheduling.

As shown in Algorithm 1, in the first stage, TSSLA first pre-assigns all tasks that can
be finished by cloud resources to the cloud (line 1 in Algorithm 1). For each task, TSSLA
pre-rents a one-core VM instance with the best cost performance. In real world, a public
cloud, e.g., Amazon EC2 (Amazon, 2020), provides various VM types configured with
different core numbers, and for each type8, e.g., c6g.* in Amazon EC2, VM instances have
a same price per core. Thus, TSSLA pre-rents one-core VM instances in this stage. After
this step, there is no task can be finished in the cloud, and TSSLA pre-assigns remain tasks
to edge servers employing LASTF and EDF for computing core selection and task ordering
in each core, respectively (see Algorithm 2). Then, TSSLA schedules tasks to each device
adopting Algorithm 2.

At the second stage, TSSLA examines each task assigned to edges. If the task can be
finished in its device, TSSLA reassigns the task to the device, and the edge has more
available resources for processing unassigned tasks. Thus, after that, TSSLA repeats step 2
in the first stage, which assigns remain tasks to edge servers by Algorithm 2. Now, no more
tasks can be finished by DE3C resources, thus TSSLA only improves the resource usage in
the last stage.

TSSLA employs two approaches to improve the resource efficiency in the third stage.
One approach is trying to reassign as many tasks as possible from the cloud to local devices
and edge servers because local resources and edge server resources are cheaper and have
much less network latency, compared with cloud resources. And another is to consolidate

Sang et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.851 11/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.851

Algorithm 2 Scheduling a task in a device, edges or the cloud
Input: the information of the task (t), computing cores and tasks assigned to each core
Output: the computing core the task is assigned to, and False if the task cannot be finished by any core
1: LAST←+∞;//recording the least accumulated slack time
2: for each core do
3: assuming t is assigned to the core, calculating the finish time of each task

assigned to the core, using (8) and (9) for device cores, (11), (13) and (15)
for edge server cores, and (12), (14) and (16) for cloud VMs;

4: if the finish time of one task is later than its deadline then
5: continue;
6: end if
7: calculating the slack time of each task, which is the difference between its finish

time and its deadline;
8: accumulating each slack time of all tasks;
9: if the accumulated slack time< LAST then
10: LAST← the accumulated slack time;
11: recording the core;
12: end if
13: end for
14: if LAST <+∞ then
15: return the last recorded core;
16: else
17: return False;
18: end if

tasks assigned to the cloud for improving the cost efficiency by reducing the idle time of
VM instances, as cloud resources are charged by time unit, e.g., hour.

Therefore, in the third stage, TSSLA examines each task assigned to the cloud, and if
the task can be finished by corresponding device, TSSLA reassigns the task to the device
(see line 6 in Algorithm 1). Otherwise, TSSLA checks whether the task’s requirements can
be satisfied by an edge server, and if so reassigns the task to the edge server (see line 7 in
Algorithm 1). After these reassignments, TSSLA reassigns the task that has assigned to the
next VM to one of its previous VMs by using Algorithm 2, and re-rents idle VMs. This
step reduces the idle time of VMs, which improves the cost efficiency, as the rent time of
each VM is round up to times of the charge unit for its cost. For example, if one user rents
a VM for 1.8 h, and the cloud provider charges $0.1 per hours, the user must pay $0.2
($0.1/hours ×d1.8ehours) for the VM.

TSSLA employs Algorithm 2 to implement all of these above task assignments in each
device, edges, and the cloud, which decides which core to process the task. The detail is
shown in the following.

As shown in Algorithm 2, to select an available computing core for a task, TSSLA
traverses each available core (line 2 in Algorithm 2), and calculates the accumulated slack
time with the assumptions that the task is assigned to the core and all tasks are executed in
the ascending order of their deadlines (lines 3–8 in Algorithm 2). Then, TSSLA allocates
the core providing LAST to the task (lines 9–15 in Algorithm 2). For each available core, if
the assignment of the task results in at least one deadline violation (line 4 in Algorithm 2),
Algorithm 2 returns false which means the requirements of the task cannot be satisfied by
any of these available computing cores (line 17 in Algorithm 2).

RESULTS
This section conducts simulated experiments designed by referring to related works and
real worlds, to evaluate the performance of the proposed method.

Sang et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.851 12/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.851

Table 2 The parameters of simulated DE3C system.

Tasks Device Edge server Cloud VM

Number 100 Number 10 [1, 4] –
Computing length [1, 2000] GHz Core number [1, 4] [4, 8] –
Processed data size [20, 500] MB Capacity per core [1, 2] GHz [2, 3] GHz [2, 3] GHz
Deadline [500, 1500] s Bandwidth – [10, 100] Mbps [1, 10] Mbps

Price – – $0.01/hour

Experiment design
A DE3C system is established, which is composed of one public cloud, an edge, and 10 user
devices. The set of various system parameters are referring to that of Du et al. (2019), Chen
et al. (2016), Alkhalaileh et al. (2020), the Gaia Cluster (University of Luxembourg, 2020),
as well as Amazon EC2 (Amazon, 2020), which are detailed as followings and shown in
Table 2. One hundred tasks are generated randomly. Each task is randomly associated to
one device that is regarded as the device launching the task. The length and the size of each
task are randomly set in ranges of [1, 2000] GHz and [20, 500] MB, respectively, to cover
small to large tasks. The computing capacities of each core in a device, an edge server, a
cloud VM are randomly in the ranges [1, 2] GHz, [2, 3] GHz, and [2, 3] GHz, respectively.
The number of computing core is randomly set in the ranges [1, 4] and [4, 8], respectively
for each device and each edge server. The number of servers is set in [1, 4] for the edge.
The price of each core is $0.01 per hour for cloud VMs. The bandwidths for transmitting
data from a device to the edge and the cloud are in [10, 100] Mbps and [1, 10] Mbps
respectively.

The performance of TSSLA is compared with the following classical or state-of-the-art
scheduling methods designed for DE3C system. As done in all of the existed works (the
best of our knowledge), the following methods employ local resources first, and the cloud
resource at last, for processing tasks.

• FF (First Fit) (Bays, 1977) iteratively assigns the first task to the first core satisfying its
requirements.
• FFD (First Fit Decreasing) (B.V. & Guddeti, 2018) iteratively assigns the largest task to
the first core satisfying its requirements.
• EDF (Earliest Deadline First) (Benoit, Elghazi & Robert, 2021) iteratively assigns the task
with the earliest deadline to the first core satisfying its requirements.
• BF (Best Fit) (Zhao & Kim, 2020) iteratively assigns the first task to the core that satisfies
its requirements and provides the latest finish time for the task.
• EFTF (Earliest Finish Time First) which is the basic idea of the method proposed by
Liu et al. (2019a), iteratively assigns the first task to the core providing the earliest finish
time.
• EDF_EFTF, the idea of Stavrinides’s and Karatza’s proposed method (Stavrinides &
Karatza, 2019), respectively employs EDF and EFTF for task selection and resource
selection.

Sang et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.851 13/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.851

• LSTF (Least Slack Time First) (Michel et al., 2021) iteratively assigns the first task to the
core providing the least slack time.
• LSSRF (Least Size-Slack time ratio First), the idea employed by Mahmud et al. (2020),
iteratively assigns the first task to the core providing the maximal ratio between the
profit and the slack time. The length is regarded as the profit for each task.

The performance metrics used to quantify the performance of each task scheduling
method include the followings.

• SLA satisfaction can be quantified by the amount of finished tasks in number, length,
and processed data size, which are respectively calculated by Eqs. (7), (34), and (35).
The larger value is better for the metric. For the length and the processed data size of
finished tasks, the followings report the percentages of that of all launched tasks.

len=
T∑
i=1

((
M∑
j=1

nj∑
h=1

xi,j,h+
E∑

k=1

sk∑
l=1

nk,l∑
h=1

yi,k,l,h+
V∑
r=1

nvr∑
h=1

zi,r,h) · fi). (34)

size=
T∑
i=1

((
M∑
j=1

nj∑
h=1

xi,j,h+
E∑

k=1

sk∑
l=1

nk,l∑
h=1

yi,k,l,h+
V∑
r=1

nvr∑
h=1

zi,r,h) · ini). (35)

• Resource utilization is one of the most popular metrics to quantify the resource
efficiency, which is the ratio between amounts of consumed resources and occupied
resources, i.e., U calculated by Eq. (31). It is better for a higher value.
• Makespan is the latest finish time of tasks, which can be achieved by Eq. (36). Earlier
makespan means faster processing rate, and thus is better.

makespan=maxTi=1{max{maxMj=1max
nj
h=1 fti,j,h,maxEk=1maxskl=1

maxnk,lh=1 fti,k,l,h,maxVr=1maxnvrh=1 fti,vr ,h}}. (36)

• Cost efficiency is the length of tasks processed by per-dollar resource in the cloud, as
calculated by Eq. (37). It is a metric for quantifying the resource efficiency in clouds. A
greater value is better.

Ceff =
len∑V

r=1dcrvr ·pre
(37)

Experiment results
SLA satisfaction
Figure 2 shows the performance of various task scheduling methods in SLA satisfaction. As
shown in the figure, TSSLA has 22.2%–27.6%, 47.3%–59.1%, and 25.4%–32.6% better SLA
satisfaction performance compared with other methods in task number, task computing
length, and processed data size, respectively. The superiority of our method is allocating
computing resources according to the scarcity degree of resources. TSSLA prefers using
the abundant computing resources of the cloud, and employs scarce computing resources
of edges and devices for processing tasks cannot be finished by the cloud due to the poor
network performance between users and their cloud, in its first stage. In contrary, other

Sang et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.851 14/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.851

0

20

40

60

80

100

Th
e

nu
m

be
r o

f c
om

pl
et

ed
 ta

sk
s Local Edge Cloud

(a) SLA in number

0
10
20
30
40
50
60
70
80

Th
e

pe
rc

en
ta

ge
 o

f c
om

pl
et

ed

ta
sk

s i
n

co
m

pu
tin

g
le

ng
th

 (%
) Local Edge Cloud

(b) SLA in computing length

0

20

40

60

80

100

Th
e

pe
rc

en
ta

ge
 o

f p
ro

ce
ss

ed
 d

at
a

(%
)

Local Edge Cloud

(c) SLA in data size

Figure 2. The SLA satisfaction performance in task number, task computing length, and processed data size

respectively, achieved by various scheduling methods.

reassigning some tasks from local devices or edges to the cloud, to make some resources idle for finishing358

remaining unassigned tasks.359

Fig. 2 also shows that, except TSSLA, EDF has the best performance in optimizing SLA satisfaction360

in devices, and LSTF achieves the most number of completed tasks in the edge. Even so, all methods361

except TSSLA have comparable performance in SLA optimization overall. The reason why EDF is better362

than FF, FFD, BF and EFTF in SLA optimization in the devices is that EDF prioritizes the demands363

of tasks with tight deadlines, and thus postpones tasks with more slack time, which can finish more364

tasks with tight deadlines compared with other methods. Besides, EDF yields an optimal schedule for365

maximizing the number of finished tasks in each core (Pinedo, 2016). While, after completing more tasks366

locally, there are fewer tasks can be finished in edges or the cloud, as shown in Fig. 2, when applying367

EDF. This phenomenon doesn’t occur when employing TSSLA. TSSLA satisfies more tasks not only in368

local devices but also in the edge, compared with other methods (except EDF in devices and LSFT in369

the edge). This is mainly because TSSLA assigns tasks that can be finished by both the cloud and local370

devices or the edge to the cloud at the first, which results in more available local and edge resources for371

processing tasks whose demands can be satisfied only by local devices or the edge. This further verifies372

the high efficiency of our method. The main reason why LSTF provides the most number of completed373

tasks at the edge is that it completes much fewer tasks by local resources, compared with other methods,374

and thus leaves more tasks with loose deadlines to the edge for processing.375

Resource Utilization376

As shown in Fig. 3, TSSLA achieves almost same overall resource utilization to BF, and 4.1%–54.6%377

higher than other methods, which verifies that our method provides high resource efficiency for task378

processing in DE3C environments. The reason that TSSLA achieves a higher overall resource utilization,379

compared with other methods, is because it provides a much better utilization than others in the edge,380

as shown in Fig. 3-c. In addition, TSSLA completes more than half of tasks’ computing length at the381

edge, as shown in Fig. 2-b. In general, more tasks processed by the edge or the cloud means higher382

resource utilization in the edge or the cloud (shown in Fig. 2, Fig. 3-c, and Fig. 3-d). This is because more383

tasks can result in less ratio between the amounts of idle computing resources and occupied computing384

12/17PeerJ Comput. Sci. reviewing PDF | (CS-2021:10:66493:1:0:NEW 3 Dec 2021)

Manuscript to be reviewedComputer Science

Figure 2 The SLA satisfaction performance in task number, task computing length, and processed
data size respectively, achieved by various scheduling methods.

Full-size DOI: 10.7717/peerjcs.851/fig-2

methods prefer local resources or nearby edge resources, aiming at providing the best
performance for each task with minimal resource costs. But these methods result in several
local and nearby edge resources that are used by some tasks which can be finished by
the cloud, and these resources can be reserved for processing other tasks whose demands
cannot be satisfied by the cloud. Thus, our method has a better performance than other
methods in SLA satisfaction. Based on the idea of ourmethod, these works can be improved
by reassigning some tasks from local devices or edges to the cloud, to make some resources
idle for finishing remaining unassigned tasks.

Figure 2 also shows that, except TSSLA, EDF has the best performance in optimizing SLA
satisfaction in devices, and LSTF achieves the most number of completed tasks in the edge.
Even so, all methods except TSSLA have comparable performance in SLA optimization
overall. The reason why EDF is better than FF, FFD, BF and EFTF in SLA optimization
in the devices is that EDF prioritizes the demands of tasks with tight deadlines, and thus
postpones tasks with more slack time, which can finish more tasks with tight deadlines
compared with other methods. Besides, EDF yields an optimal schedule for maximizing the
number of finished tasks in each core (Pinedo, 2016). After completing more tasks locally,
there are fewer tasks can be finished in edges or the cloud, as shown in Fig. 2, when applying
EDF. This phenomenon does not occur when employing TSSLA. TSSLA satisfies more
tasks not only in local devices but also in the edge, compared with other methods (except
EDF in devices and LSFT in the edge). This is mainly because TSSLA assigns tasks that can
be finished by both the cloud and local devices or the edge to the cloud at the first, which

Sang et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.851 15/24

https://peerj.com
https://doi.org/10.7717/peerjcs.851/fig-2
http://dx.doi.org/10.7717/peerj-cs.851

resources, as the data transmission and the data computing can be parallel for different tasks, in each385

core. While, compared with LSTF, TSSLA achieves 41.7% higher utilization, as shown in Fig. 3-c,386

although it completes 22.5%, 13.3%, and 21.1% less tasks in number, computing length, and processed387

data size, respectively, as shown in Fig. 2, in the edge. The main reason is that TSSLA has a greater ratio388

between the computing length and the processed data size of tasks completed by the edge than LSTF,389

which leads to less idle computing resources, and thus results in a higher computing resource utilization.390

This phenomena can be exploited to design heuristic scheduling methods for optimizing the efficiency of391

computing resources in edges and clouds.392

0
5

10
15
20
25
30
35
40

O
ve

ra
ll

re
so

ur
ce

 u
til

iz
at

io
n

(%
)

(a) Overall

0
10
20
30
40
50
60
70
80

Lo
ca

l r
es

ou
rc

e
ut

ili
za

tio
n

(%
)

(b) Local

0
10
20
30
40
50
60
70
80

Ed
ge

 re
so

ur
ce

 u
til

iz
at

io
n

(%
)

(c) Edge

0
2
4
6
8

10
12
14
16

C
lo

ud
 re

so
ur

ce
 u

til
iz

at
io

n
(%

)

(d) Cloud

Figure 3. The overall computing resources of the DE3C, devices, edge servers, and cloud servers, when applying
various scheduling methods.

The reason why BF achieves the highest overall resource utilization, as shown in Fig. 3-a, is that393

the tasks processed by the cloud is the least in each SLA metric, as shown in Fig. 2, and thus the low394

utilization of cloud computing resources has the lowest impact on the overall resource utilization.395

The utilization of cloud computing resources is much less than that of edge computing resources396

for each method, as shown in Fig. 3-d, which is because the network performance of the cloud is much397

worse, leading more idle computing resources due to the longer time of data transmission, compared398

with that of the edge. Thus, it would be good to assign tasks with small data sizes to the cloud. While399

tasks processing less data usually have larger computing length, and thus there is a trade-off between the400

limited computing resources of devices or edges and the poor network performance of the cloud, which is401

one of our considerations for designing highly efficient scheduling methods in future.402

Makespan403

Fig. 4 shows the makespan when applying various scheduling methods. As shown in the figure, TSSLA404

has a larger makespan than other methods except LSTF, as the DE3C completes the most computing405

length and processes the most data of tasks when applying TSSLA, and the makespan is usually increased406

with the completed computing length and the processed data size. In fact, TSSLA has only about 20%407

larger makespan, but it completes more than 47.3% more computing length and processes more than408

25.4% more data than other methods except LSTF. In addition, LSTF has larger makespan to TSSLA,409

even though it completes much less computing length and processes much fewer data than TSSLA. These410

results validate the efficiency of our methods further.411

13/17PeerJ Comput. Sci. reviewing PDF | (CS-2021:10:66493:1:0:NEW 3 Dec 2021)

Manuscript to be reviewedComputer Science

Figure 3 (A–D) The overall computing resources of the DE3C, devices, edge servers, and cloud servers,
when applying various scheduling methods.

Full-size DOI: 10.7717/peerjcs.851/fig-3

results in more available local and edge resources for processing tasks whose demands can
be satisfied only by local devices or the edge. This further verifies the high efficiency of
our method. The main reason why LSTF provides the most number of completed tasks
at the edge is that it completes much fewer tasks by local resources, compared with other
methods, and thus leaves more tasks with loose deadlines to the edge for processing.

Resource utilization
As shown in Fig. 3, TSSLA achieves almost same overall resource utilization to BF, and
4.1%–54.6% higher than other methods, which verifies that our method provides high
resource efficiency for task processing in DE3C environments. The reason that TSSLA
achieves a higher overall resource utilization, compared with other methods, is because
it provides a much better utilization than others in the edge, as shown in Fig. 3C. In
addition, TSSLA completes more than half of tasks’ computing length at the edge, as
shown in Fig. 2B. In general, more tasks processed by the edge or the cloud means higher
resource utilization in the edge or the cloud (shown in Figs. 2, 3C, and 3D). This is because
more tasks can result in less ratio between the amounts of idle computing resources and
occupied computing resources, as the data transmission and the data computing can be
parallel for different tasks, in each core. Compared with LSTF, TSSLA achieves 41.7%
higher utilization, as shown in Fig. 3C, although it completes 22.5%, 13.3%, and 21.1% less
tasks in number, computing length, and processed data size, respectively, as shown in Fig.
2, in the edge. The main reason is that TSSLA has a greater ratio between the computing

Sang et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.851 16/24

https://peerj.com
https://doi.org/10.7717/peerjcs.851/fig-3
http://dx.doi.org/10.7717/peerj-cs.851

0
0.2
0.4
0.6
0.8

1
1.2
1.4

M
ak

es
pa

n
(×

10
3

se
co

nd
s)

Figure 4. The latest finish time of tasks in the DE3C, when applying various scheduling methods.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Co
st

 e
ff

ic
ie

nc
y

(×
10

5 G
H

z/
$)

Figure 5. The cost efficiency of cloud computing resources, when applying various scheduling methods.

The major reason of LSTF having the largest makespan is that it completes the most number of tasks412

in both the edge and the cloud, and the local device provides much less processing time than an edge and413

especially the cloud for a task due to the data transmission time from the device to the edge and the cloud.414

Cost Efficiency415

Fig. 5 shows the cost efficiency for task processing in the cloud. TSSLA has a comparable cost efficiency416

to LSTF and is better than others. Comparing Fig. 3-d and Fig. 5, we can see that the relative performance417

of the cost efficiency is almost same as that of the computing resource utilization. This is mainly because418

the cloud computing resources are charged by the use time. Thus, in most time, the resource utilization419

and the cost efficiency are equivalent for quantifying the usage efficiency of cloud computing resources.420

The reason why LSTF has a good cost efficiency is that it completes the most number of tasks in the421

cloud, as illustrated in section .422

CONCLUSIONS423

This paper studies on the SLA satisfaction optimization in a device-edge-cloud cooperative computing424

(DE3C) environment. This paper first formulates the problem into a BNLP, and then proposes a heuristic425

scheduling method, named TSSLA, to solve the problem in polynomial-time complexity. TSSLA consists426

of three heuristic stages which respectively exploit the abundant computing resources of the cloud, the427

shared resources of edges, and the low/zero network latency of edge and device resources, for optimizing428

the number of tasks whose requirements are satisfied and the resource efficiency. Experiment results429

confirm the superior performance of TSSLA in optimizing SLA satisfaction and resource efficiency.430

In fact, our method improves the SLA satisfaction and the resource efficiency by improving the431

collaboration ability among devices, edges, and clouds to exploit all of their benefits. This idea can be432

also applied to other hybrid computing systems, e.g., multi-clouds, hybrid clouds, which is one of our433

future work.434

This paper focuses on the task scheduling for DE3C environments, assuming the data is transmitted to435

the computing node only when the offloading decision is made for each task. Caching data in edge servers436

14/17PeerJ Comput. Sci. reviewing PDF | (CS-2021:10:66493:1:0:NEW 3 Dec 2021)

Manuscript to be reviewedComputer Science

Figure 4 The latest finish time of tasks in the DE3C, when applying various scheduling methods.
Full-size DOI: 10.7717/peerjcs.851/fig-4

length and the processed data size of tasks completed by the edge than LSTF, which leads to
less idle computing resources, and thus results in a higher computing resource utilization.
This phenomena can be exploited to design heuristic scheduling methods for optimizing
the efficiency of computing resources in edges and clouds.

The reason why BF achieves the highest overall resource utilization, as shown in
Fig. 3A, is that the tasks processed by the cloud is the least in each SLA metric, as shown in
Fig. 2, and thus the low utilization of cloud computing resources has the lowest impact on
the overall resource utilization.

The utilization of cloud computing resources is much less than that of edge computing
resources for each method, as shown in Fig. 3D, which is because the network performance
of the cloud is much worse, leading more idle computing resources due to the longer time
of data transmission, compared with that of the edge. Thus, it would be good to assign tasks
with small data sizes to the cloud. Tasks processing less data usually have larger computing
length, and thus there is a trade-off between the limited computing resources of devices or
edges and the poor network performance of the cloud, which is one of our considerations
for designing highly efficient scheduling methods in future.

Makespan
Figure 4 shows the makespan when applying various scheduling methods. As shown in
the figure, TSSLA has a larger makespan than other methods except LSTF, as the DE3C
completes the most computing length and processes the most data of tasks when applying
TSSLA, and the makespan is usually increased with the completed computing length
and the processed data size. In fact, TSSLA has only about 20% larger makespan, but it
completes more than 47.3% more computing length and processes more than 25.4% more
data than other methods except LSTF. In addition, LSTF has larger makespan to TSSLA,
even though it completes much less computing length and processes much fewer data than
TSSLA. These results validate the efficiency of our methods further.

Sang et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.851 17/24

https://peerj.com
https://doi.org/10.7717/peerjcs.851/fig-4
http://dx.doi.org/10.7717/peerj-cs.851

0
0.2
0.4
0.6
0.8

1
1.2
1.4

M
ak

es
pa

n
(×

10
3

se
co

nd
s)

Figure 4. The latest finish time of tasks in the DE3C, when applying various scheduling methods.

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6

Co
st

 e
ff

ic
ie

nc
y

(×
10

5 G
H

z/
$)

Figure 5. The cost efficiency of cloud computing resources, when applying various scheduling methods.

The major reason of LSTF having the largest makespan is that it completes the most number of tasks412

in both the edge and the cloud, and the local device provides much less processing time than an edge and413

especially the cloud for a task due to the data transmission time from the device to the edge and the cloud.414

Cost Efficiency415

Fig. 5 shows the cost efficiency for task processing in the cloud. TSSLA has a comparable cost efficiency416

to LSTF and is better than others. Comparing Fig. 3-d and Fig. 5, we can see that the relative performance417

of the cost efficiency is almost same as that of the computing resource utilization. This is mainly because418

the cloud computing resources are charged by the use time. Thus, in most time, the resource utilization419

and the cost efficiency are equivalent for quantifying the usage efficiency of cloud computing resources.420

The reason why LSTF has a good cost efficiency is that it completes the most number of tasks in the421

cloud, as illustrated in section .422

CONCLUSIONS423

This paper studies on the SLA satisfaction optimization in a device-edge-cloud cooperative computing424

(DE3C) environment. This paper first formulates the problem into a BNLP, and then proposes a heuristic425

scheduling method, named TSSLA, to solve the problem in polynomial-time complexity. TSSLA consists426

of three heuristic stages which respectively exploit the abundant computing resources of the cloud, the427

shared resources of edges, and the low/zero network latency of edge and device resources, for optimizing428

the number of tasks whose requirements are satisfied and the resource efficiency. Experiment results429

confirm the superior performance of TSSLA in optimizing SLA satisfaction and resource efficiency.430

In fact, our method improves the SLA satisfaction and the resource efficiency by improving the431

collaboration ability among devices, edges, and clouds to exploit all of their benefits. This idea can be432

also applied to other hybrid computing systems, e.g., multi-clouds, hybrid clouds, which is one of our433

future work.434

This paper focuses on the task scheduling for DE3C environments, assuming the data is transmitted to435

the computing node only when the offloading decision is made for each task. Caching data in edge servers436

14/17PeerJ Comput. Sci. reviewing PDF | (CS-2021:10:66493:1:0:NEW 3 Dec 2021)

Manuscript to be reviewedComputer Science

Figure 5 The cost efficiency of cloud computing resources, when applying various scheduling meth-
ods.

Full-size DOI: 10.7717/peerjcs.851/fig-5

The major reason of LSTF having the largest makespan is that it completes the most
number of tasks in both the edge and the cloud, and the local device provides much less
processing time than an edge and especially the cloud for a task due to the data transmission
time from the device to the edge and the cloud.

Cost efficiency
Figure 5 shows the cost efficiency for task processing in the cloud. TSSLA has a comparable
cost efficiency to LSTF and is better than others. Comparing Figs. 3D and 5, we can see
that the relative performance of the cost efficiency is almost same as that of the computing
resource utilization. This is mainly because the cloud computing resources are charged
by the use time. Thus, in most time, the resource utilization and the cost efficiency are
equivalent for quantifying the usage efficiency of cloud computing resources. The reason
why LSTF has a good cost efficiency is that it completes the most number of tasks in the
cloud, as illustrated in ‘Resource Utilization’.

CONCLUSIONS
This paper studies on the SLA satisfaction optimization in a device-edge-cloud cooperative
computing (DE3C) environment. This paper first formulates the problem into a BNLP,
and then proposes a heuristic scheduling method, named TSSLA, to solve the problem in
polynomial-time complexity. TSSLA consists of three heuristic stages which respectively
exploit the abundant computing resources of the cloud, the shared resources of edges, and
the low/zero network latency of edge and device resources, for optimizing the number
of tasks whose requirements are satisfied and the resource efficiency. Experiment results
confirm the superior performance of TSSLA in optimizing SLA satisfaction and resource
efficiency.

In fact, our method improves the SLA satisfaction and the resource efficiency by
improving the collaboration ability among devices, edges, and clouds to exploit all of their

Sang et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.851 18/24

https://peerj.com
https://doi.org/10.7717/peerjcs.851/fig-5
http://dx.doi.org/10.7717/peerj-cs.851

benefits. This idea can be also applied to other hybrid computing systems, e.g., multi-clouds,
hybrid clouds, which is one of our future work.

This paper focuses on the task scheduling for DE3C environments, assuming the data
is transmitted to the computing node only when the offloading decision is made for each
task. Caching data in edge servers and especially the cloud in advance can improve the
performance of task executions. Thus, the prediction of offloading decisions and the caching
strategy in DE3C will be studied in the future. In addition, the design of cache-aware task
scheduling methods will be concerned to improve the benefits of caching strategies.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The research was supported by the Key Scientific and Technological Projects of Henan
Province (Grant No. 202102210174, 212102210096, 202102210383, 212102210410,
202102210149, 212102210382, 212102210104, 212102210424, 212102210418), the Key
Scientific Research Projects of Henan Higher School (Grant No. 20B520039, 21A520050),
the National Natural Science Foundation of China (Grant No. 61872043, 61975187,
62072414), Qin Xin Talents Cultivation Program, Beijing Information Science and
Technology University (No. QXTCP B201904), and the fund of the Beijing Key Laboratory
of Internet Culture and Digital Dissemination Research (Grant No. ICDDXN004). The
funders had no role in study design, data collection and analysis, decision to publish, or
preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The Key Scientific and Technological Projects of Henan Province: 202102210174,
212102210096, 202102210383, 212102210410, 202102210149, 212102210382,
212102210104, 212102210424, 212102210418.
The Key Scientific Research Projects of Henan Higher School: 20B520039, 21A520050.
The National Natural Science Foundation of China: 61872043, 61975187, 62072414.
Qin Xin Talents Cultivation Program.
Beijing Information Science and Technology University: QXTCP B201904.
The Beijing Key Laboratory of Internet Culture and Digital Dissemination Research:
ICDDXN004.

Competing Interests
Junqiang Cheng is employed by Europe-Aisa Hi-tech and Digital Technology Company
Limited.

Author Contributions
• Yongxuan Sang conceived and designed the experiments, performed the experiments,
prepared figures and/or tables, and approved the final draft.
• Junqiang Cheng conceived and designed the experiments, analyzed the data, authored
or reviewed drafts of the paper, and approved the final draft.

Sang et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.851 19/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.851

• Bo wang conceived and designed the experiments, performed the computation work,
authored or reviewed drafts of the paper, and approved the final draft.
• Ming Chen analyzed the data, prepared figures and/or tables, and approved the final
draft.

Data Availability
The following information was supplied regarding data availability:

The implementation of task scheduling methods in C is available in the Supplementary
File.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.851#supplemental-information.

REFERENCES
AlkhalailehM, Calheiros RN, Nguyen QV, Javadi B. 2020. Data-intensive application

scheduling on Mobile Edge Cloud Computing. Journal of Network and Computer
Applications 167:102735 DOI 10.1016/j.jnca.2020.102735.

Amazon. 2020. Amazon web services –cloud computing services. Available at https:
//aws.amazon.com.

Apat HK, s. Compt B, Bhaisare K, Maiti P. 2019. An optimal task scheduling towards
minimized cost and response time in fog computing infrastructure. In: 2019
international conference on information technology (ICIT). 160–165.

Balasubramanian V, Otoum S, Aloqaily M, Al Ridhawi I, Jararweh Y. 2020. Low-
latency vehicular edge: a vehicular infrastructure model for 5G. Simulation Modelling
Practice and Theory 98:101968 DOI 10.1016/j.simpat.2019.101968.

Bays C. 1977. A comparison of next-fit, first-fit, and best-fit. Communications of the ACM
20(3):191192 DOI 10.1145/359436.359453.

Benoit A, Elghazi R, Robert Y. 2021.Max-stretch minimization on an edge-cloud
platform. In: 2021 IEEE international parallel and distributed processing symposium
(IPDPS). Piscataway: IEEE, 766–775 DOI 10.1109/IPDPS49936.2021.00086.

Berkelaar M, Dirks J, Eikland K, Notebaert P, Ebert J, Gourvest H. 2020. lpsolve: a
mixed integer linear programming (MILP) solver. Available at http://sourceforge.net/
projects/lpsolve .

B.V. N, Guddeti RMR. 2018.Heuristic-based IoT application modules placement in the
fog-cloud computing environment. In: 2018 IEEE/ACM international conference on
utility and cloud computing companion (UCC Companion). Piscataway: IEEE, 24–25
DOI 10.1109/UCC-Companion.2018.00027.

Chen L, Guo K, Fan G,Wang C, Song S. 2020. Resource constrained profit optimiza-
tion method for task scheduling in edge cloud. IEEE Access 8:118638–118652
DOI 10.1109/ACCESS.2020.3000985.

Sang et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.851 20/24

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.851#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.851#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.851#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.851#supplemental-information
http://dx.doi.org/10.1016/j.jnca.2020.102735
https://aws.amazon.com
https://aws.amazon.com
http://dx.doi.org/10.1016/j.simpat.2019.101968
http://dx.doi.org/10.1145/359436.359453
http://dx.doi.org/10.1109/IPDPS49936.2021.00086
http://sourceforge.net/projects/lpsolve
http://sourceforge.net/projects/lpsolve
http://dx.doi.org/10.1109/UCC-Companion.2018.00027
http://dx.doi.org/10.1109/ACCESS.2020.3000985
http://dx.doi.org/10.7717/peerj-cs.851

ChenM, Hao Y. 2018. Task offloading for mobile edge computing in software de-
fined ultra-dense network. IEEE Journal on Selected Areas in Communications
36(3):587–597 DOI 10.1109/JSAC.2018.2815360.

Chen X, Jiao L, Li W, Fu X. 2016. Efficient multi-user computation offloading
for mobile-edge cloud computing. IEEE/ACM Transactions on Networking
24(5):2795–2808 DOI 10.1109/TNET.2015.2487344.

Chen X, Zhang J, Lin B, Chen Z., Wolter K, Min G. 2022. Energy-efficient offloading for
DNN-Based smart IoT systems in cloud-edge environments. IEEE Transactions on
Parallel and Distributed Systems 33(3):683–697 DOI 10.1109/TPDS.2021.3100298.

Chen Y, Zhang N, Zhang Y, Chen X. 2019. Dynamic computation offloading in edge
computing for Internet of Things. IEEE Internet of Things Journal 6(3):4242–4251
DOI 10.1109/JIOT.2018.2875715.

Cisco. 2020. Cisco annual internet report (2018–2023). Available at https://www.cisco.
com/c/en/us/solutions/executive-perspectives/annual-internet-report/index.html .

Du J, Zhao L, Chu X, Yu FR, Feng J, I CL. 2019. Enabling low-latency applications in
LTE-A based mixed fog/cloud computing systems. IEEE Transactions on Vehicular
Technology 68(2):1757–1771 DOI 10.1109/TVT.2018.2882991.

Gao G, XiaoM,Wu J, Huang H,Wang S, Chen G. 2019. Auction-based VM allocation
for deadline-sensitive tasks in distributed edge cloud. IEEE Transactions on Services
Computing 14(6):1702–1716 DOI 10.1109/TSC.2019.2902549.

Ghasempour A. 2019. Internet of things in smart grid: architecture, applications,
services, key technologies, and challenges. Inventions 4(1):1–22.

Han Z, Tan H, Li X, Jiang SH, Li Y, Lau FCM. 2019. OnDisc: online latency-sensitive job
dispatching and scheduling in heterogeneous edge-clouds. IEEE/ACM Transactions
on Networking 27(6):2472–2485 DOI 10.1109/TNET.2019.2953806.

Hong Z, ChenW, Huang H, Guo S, Zheng Z. 2019.Multi-hop cooperative com-
putation offloading for industrial IoT-Edge-Cloud computing environments.
IEEE Transactions on Parallel and Distributed Systems 30(12):2759–2774
DOI 10.1109/TPDS.2019.2926979.

Islam A, Debnath A, Ghose M, Chakraborty S. 2021. A survey on task offloading
in multi-access edge computing. Journal of Systems Architecture 118:102225
DOI 10.1016/j.sysarc.2021.102225.

KumarM, Sharma S, Goel A, Singh S. 2019. A comprehensive survey for scheduling
techniques in cloud computing. Journal of Network and Computer Applications
143:1–33 DOI 10.1016/j.jnca.2019.06.006.

Lakhan A, Li X. 2019. Content aware task scheduling framework for mobile workflow
applications in heterogeneous mobile-edge-cloud paradigms: cATSA framework. In:
2019 ISPA/BDCloud/SocialCom/SustainCom. 242–249.

Li C,Wang C, Luo Y. 2020. An efficient scheduling optimization strategy for improving
consistency maintenance in edge cloud environment. The Journal of Supercomputing
76:6941–6968 DOI 10.1007/s11227-019-03133-9.

Sang et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.851 21/24

https://peerj.com
http://dx.doi.org/10.1109/JSAC.2018.2815360
http://dx.doi.org/10.1109/TNET.2015.2487344
http://dx.doi.org/10.1109/TPDS.2021.3100298
http://dx.doi.org/10.1109/JIOT.2018.2875715
https://www.cisco.com/c/en/us/solutions/executive-perspectives/annual-internet-report/index.html
https://www.cisco.com/c/en/us/solutions/executive-perspectives/annual-internet-report/index.html
http://dx.doi.org/10.1109/TVT.2018.2882991
http://dx.doi.org/10.1109/TSC.2019.2902549
http://dx.doi.org/10.1109/TNET.2019.2953806
http://dx.doi.org/10.1109/TPDS.2019.2926979
http://dx.doi.org/10.1016/j.sysarc.2021.102225
http://dx.doi.org/10.1016/j.jnca.2019.06.006
http://dx.doi.org/10.1007/s11227-019-03133-9
http://dx.doi.org/10.7717/peerj-cs.851

Liang D, Xu Z. 2017. The new extension of TOPSIS method for multiple criteria decision
making with hesitant Pythagorean fuzzy sets. Applied Soft Computing 60:167–179
DOI 10.1016/j.asoc.2017.06.034.

Liu L, Tan H, Jiang SH-C, Han Z, Li X-Y, Huang H. 2019a. Dependent task placement
and scheduling with function configuration in edge computing. In: Proceedings of
the international symposium on quality of service, IWQoS’19. New York, NY, USA:
Association for Computing Machinery, 1–10.

Liu Y, Yang C, Jiang L, Xie S., Zhang Y. 2019b. Intelligent edge computing for IoT-based
energy management in smart cities. IEEE Network 33(2):111–117.

Ma Z, Zhang S, Chen Z, Han T, Qian Z, XiaoM, Chen N,Wu J, Lu S. 2022. To-
wards revenue-driven multi-user online task offloading in edge comput-
ing. IEEE Transactions on Parallel and Distributed Systems 33(5):1185–1198
DOI 10.1109/TPDS.2021.3105325.

Mahmud R, Srirama SN, Ramamohanarao K, Buyya R. 2020. Profit-aware application
placement for integrated FogCloud computing environments. Journal of Parallel and
Distributed Computing 135:177–190 DOI 10.1016/j.jpdc.2019.10.001.

Meng J, Tan H, Li X, Han Z, Li B. 2020. Online deadline-aware task dispatching and
scheduling in edge computing. IEEE Transactions on Parallel and Distributed Systems
31(6):1270–1286 DOI 10.1109/TPDS.2019.2961905.

Meng J, Tan H, Xu C, CaoW, Liu L, Li B. 2019. Dedas: online task dispatching and
scheduling with bandwidth constraint in edge computing. In: IEEE INFOCOM 2019
- IEEE conference on computer communications. Piscataway: IEEE, 2287–2295.

Miao Y,Wu G, Li M, Ghoneim A, Al-RakhamiM, HossainMS. 2020. Intelligent task
prediction and computation offloading based on mobile-edge cloud computing.
Future Generation Computer Systems 102:925–931 DOI 10.1016/j.future.2019.09.035.

Michel O, Bifulco R, Rétvári G, Schmid S. 2021. The programmable data plane:
abstractions, architectures, algorithms, and applications. ACM Computing Surveys
54(4):82 DOI 10.1145/3447868.

Papadakis-Vlachopapadopoulos K, González RS, Dimolitsas I, Dechouniotis D,
Ferrer AJ, Papavassiliou S. 2019. Collaborative SLA and reputation-based trust
management in cloud federations. Future Generation Computer Systems 100:498–512
DOI 10.1016/j.future.2019.05.030.

PinedoML. 2016. Scheduling: theory, algorithms, and systems. 5th edition. Cham,
Switzerland: Springer, 13–32.

Ren J, Yu G, He Y, Li GY. 2019. Collaborative cloud and edge computing for latency
minimization. IEEE Transactions on Vehicular Technology 68(5):5031–5044
DOI 10.1109/TVT.2019.2904244.

Saaty TL. 2008. Decision making with the analytic hierarchy process. International
Journal of Services Sciences 1(1):83–98 DOI 10.1504/IJSSCI.2008.017590.

Sang et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.851 22/24

https://peerj.com
http://dx.doi.org/10.1016/j.asoc.2017.06.034
http://dx.doi.org/10.1109/TPDS.2021.3105325
http://dx.doi.org/10.1016/j.jpdc.2019.10.001
http://dx.doi.org/10.1109/TPDS.2019.2961905
http://dx.doi.org/10.1016/j.future.2019.09.035
http://dx.doi.org/10.1145/3447868
http://dx.doi.org/10.1016/j.future.2019.05.030
http://dx.doi.org/10.1109/TVT.2019.2904244
http://dx.doi.org/10.1504/IJSSCI.2008.017590
http://dx.doi.org/10.7717/peerj-cs.851

Sorrel S. 2018. The Internet of Things: consumer industrial & public services 2018–
2023. Sunnyvale, CA, USA Available at https://www.juniperresearch.com/press/press-
releases/iot-connections-to-grow-140-to-hit-50-billion.

Stavrinides GL, Karatza HD. 2019. A hybrid approach to scheduling real-time IoT
workflows in fog and cloud environments.Multimedia Tools and Applications
78(17):24639–24655 DOI 10.1007/s11042-018-7051-9.

Strumberger I, Bacanin N, TubaM, Tuba E. 2019. Resource scheduling in cloud
computing based on a hybridized whale optimization algorithm. Applied Sciences
9(22) DOI 10.3390/app9224893.

University of Luxembourg. 2020. The Gaia Cluster - HPC @ Uni.lu. Available at https:
//hpc.uni.lu/systems/gaia/.

Wang J, Hu J, Min G, ZhanW, Zomaya A, Georgalas N. 2021. Dependent task offload-
ing for edge computing based on deep reinforcement learning. IEEE Transactions on
Computers Epub ahead of print Nov 26 2021 DOI 10.1109/TC.2021.3131040.

Wang J, Pan J, Esposito F, Calyam P, Yang Z, Mohapatra P. 2019b. Edge cloud offload-
ing algorithms: issues, methods, and perspectives. ACM Computing Surveys 52(1).

Wang B, Song Y, Cao J, Cui X, Zhang L. 2019a. Improving task scheduling with paral-
lelism awareness in heterogeneous computational environments. Future Generation
Computer Systems 94:419–429 DOI 10.1016/j.future.2018.11.012.

Wang B, Song Y,Wang C, HuangW, Qin X. 2020a. A study on heuristic task scheduling
optimizing task deadline violations in heterogeneous computational environments.
IEEE Access 8:205635–205645 DOI 10.1109/ACCESS.2020.3037965.

Wang B,Wang C, HuangW, Song Y, Qin X. 2020b. A survey and taxonomy on
task offloading for edge-cloud computing. IEEE Access 8:186080–186101
DOI 10.1109/ACCESS.2020.3029649.

WuC-J, Brooks D, Chen K, Chen D, Choudhury S, DukhanM, Hazelwood K, Isaac E,
Jia Y, Jia B, Leyvand T, Lu H, Lu Y, Qiao L, Reagen B, Spisak J, Sun F, Tulloch A,
Vajda P,Wang X,Wang Y,Wasti B, Wu Y, Xian R, Yoo S, Zhang P. 2019.Machine
learning at facebook: understanding inference at the edge. In: 2019 IEEE international
symposium on high performance computer architecture (HPCA). Piscataway: IEEE,
331–344.

You C, Huang K, Chae H, Kim B. 2017. Energy-efficient resource allocation for mobile-
edge computation offloading. IEEE Transactions on Wireless Communications
16(3):1397–1411 DOI 10.1109/TWC.2016.2633522.

Yuan H, ZhouM. 2020. Profit-maximized collaborative computation offloading
and resource allocation in distributed cloud and edge computing systems.
IEEE Transactions on Automation Science and Engineering 18(3):1277–1287
DOI 10.1109/TASE.2020.3000946.

Zhang C, DuH, Ye Q, Liu C, Yuan H. 2019. DMRA: a decentralized resource allocation
scheme for multi-SP mobile edge computing. In: 2019 IEEE 39th international
conference on distributed computing systems (ICDCS). Piscataway: IEEE, 390–398.

Sang et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.851 23/24

https://peerj.com
https://www.juniperresearch.com/press/press-releases/iot-connections-to-grow-140-to-hit-50-billion
https://www.juniperresearch.com/press/press-releases/iot-connections-to-grow-140-to-hit-50-billion
http://dx.doi.org/10.1007/s11042-018-7051-9
http://dx.doi.org/10.3390/app9224893
https://hpc.uni.lu/systems/gaia/
https://hpc.uni.lu/systems/gaia/
http://dx.doi.org/10.1109/TC.2021.3131040
http://dx.doi.org/10.1016/j.future.2018.11.012
http://dx.doi.org/10.1109/ACCESS.2020.3037965
http://dx.doi.org/10.1109/ACCESS.2020.3029649
http://dx.doi.org/10.1109/TWC.2016.2633522
http://dx.doi.org/10.1109/TASE.2020.3000946
http://dx.doi.org/10.7717/peerj-cs.851

Zhang K, Mao Y, Leng S, He Y, ZHANG Y. 2017.Mobile-edge computing for vehicular
networks: a promising network paradigm with predictive off-loading. IEEE Vehicular
Technology Magazine 12(2):36–44 DOI 10.1109/MVT.2017.2668838.

Zhao Y, Kim B. 2020. Optimizing allocation and scheduling of connected vehi-
cle service requests in cloud/edge computing. In: 2020 IEEE 13th interna-
tional conference on cloud computing (CLOUD). Piscataway: IEEE, 361–369
DOI 10.1109/CLOUD49709.2020.00057.

ZhaoM, Zhou K. 2019. Selective offloading by exploiting ARIMA-BP for en-
ergy optimization in mobile edge computing networks. Algorithms 12(2):48
DOI 10.3390/a12020048.

Sang et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.851 24/24

https://peerj.com
http://dx.doi.org/10.1109/MVT.2017.2668838
http://dx.doi.org/10.1109/CLOUD49709.2020.00057
http://dx.doi.org/10.3390/a12020048
http://dx.doi.org/10.7717/peerj-cs.851

