
GRNsight: a web application and service
for visualizing models of small- to
medium-scale gene regulatory networks

Kam D. Dahlquist1, John David N. Dionisio2, Ben G. Fitzpatrick3,
Nicole A. Anguiano2, Anindita Varshneya1, Britain J. Southwick2 and
Mihir Samdarshi1

1 Department of Biology, Loyola Marymount University, Los Angeles, California, United States
2 Department of Electrical Engineering and Computer Science, Loyola Marymount University,

Los Angeles, California, United States
3 Department of Mathematics, Loyola Marymount University, Los Angeles, California,

United States

ABSTRACT
GRNsight is a web application and service for visualizing models of gene regulatory

networks (GRNs). A gene regulatory network (GRN) consists of genes, transcription

factors, and the regulatory connections between them which govern the level of

expression of mRNA and protein from genes. The original motivation came

from our efforts to perform parameter estimation and forward simulation of

the dynamics of a differential equations model of a small GRN with 21 nodes

and 31 edges. We wanted a quick and easy way to visualize the weight parameters

from the model which represent the direction and magnitude of the influence

of a transcription factor on its target gene, so we created GRNsight. GRNsight

automatically lays out either an unweighted or weighted network graph based on an

Excel spreadsheet containing an adjacency matrix where regulators are named in

the columns and target genes in the rows, a Simple Interaction Format (SIF) text

file, or a GraphML XML file. When a user uploads an input file specifying an

unweighted network, GRNsight automatically lays out the graph using black lines

and pointed arrowheads. For a weighted network, GRNsight uses pointed and blunt

arrowheads, and colors the edges and adjusts their thicknesses based on the sign

(positive for activation or negative for repression) and magnitude of the weight

parameter. GRNsight is written in JavaScript, with diagrams facilitated by D3.js,

a data visualization library. Node.js and the Express framework handle server-side

functions. GRNsight’s diagrams are based on D3.js’s force graph layout algorithm,

which was then extensively customized to support the specific needs of GRNs.

Nodes are rectangular and support gene labels of up to 12 characters. The edges are

arcs, which become straight lines when the nodes are close together. Self-regulatory

edges are indicated by a loop. When a user mouses over an edge, the numerical value

of the weight parameter is displayed. Visualizations can be modified by sliders

that adjust the force graph layout parameters and through manual node dragging.

GRNsight is best-suited for visualizing networks of fewer than 35 nodes and

70 edges, although it accepts networks of up to 75 nodes or 150 edges. GRNsight has

general applicability for displaying any small, unweighted or weighted network with

directed edges for systems biology or other application domains. GRNsight serves as

an example of following and teaching best practices for scientific computing and

complying with FAIR principles, using an open and test-driven development model

How to cite this article Dahlquist et al. (2016), GRNsight: a web application and service for visualizing models of small- to medium-scale

gene regulatory networks. PeerJ Comput. Sci. 2:e85; DOI 10.7717/peerj-cs.85

Submitted 21 May 2016
Accepted 20 August 2016
Published 12 September 2016

Corresponding author
Kam D. Dahlquist,

kdahlquist@lmu.edu

Academic editor
Shawn Gomez

Additional Information and
Declarations can be found on
page 20

DOI 10.7717/peerj-cs.85

Copyright
2016 Dahlquist et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.85
mailto:kdahlquist@�lmu.�edu
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.85
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/


with rigorous documentation of requirements and issues on GitHub. An exhaustive

unit testing framework using Mocha and the Chai assertion library consists of

around 160 automated unit tests that examine nearly 530 test files to ensure that the

program is running as expected. The GRNsight application (http://dondi.github.io/

GRNsight/) and code (https://github.com/dondi/GRNsight) are available under

the open source BSD license.

Subjects Bioinformatics, Graphics, Software Engineering

Keywords Gene regulatory networks, Visualization, Web application, Web service, Automatic

graph layout, Best practices for scientific computing, FAIR principles, Open source,

Open development

INTRODUCTION
GRNsight is a web application and service for visualizing models of small- to medium-

scale gene regulatory networks (GRNs). A gene regulatory network (GRN) consists of

genes, transcription factors, and the regulatory connections between them which govern

the level of expression of mRNA and protein from genes. Our group has developed a

MATLAB program to perform parameter estimation and forward simulation of the

dynamics of an ordinary differential equations model of a medium-scale GRN with

21 nodes and 31 edges (Dahlquist et al., 2015; http://kdahlquist.github.io/GRNmap/).

GRNmap accepts a Microsoft Excel workbook as input, with multiple worksheets

specifying the different types of data needed to run the model. For compactness, the GRN

itself is specified by a worksheet that contains an adjacency matrix where regulators

are named in the columns and target genes in the rows. Each cell in the matrix contains a

“0” if there is no regulatory relationship between the regulator and target, or a “1” if there

is a regulatory relationship between them. The GRNmap program then outputs the

estimated weight parameters in a new worksheet containing an adjacency matrix where

the “1’s” are replaced with a real number that is the weight parameter, representing

the direction (positive for activation or negative for repression) and magnitude of the

influence of the transcription factor on its target gene (Dahlquist et al., 2015). Although

MATLAB has graph layout capabilities, we wanted a way for novice and experienced

biologists alike to quickly and easily view the unweighted and weighted network graphs

corresponding to the matrix without having to create or modify MATLAB code. Given

that our user base included students in courses using university computer labs where

the installation and maintenance of software is subject to logistical considerations

sometimes beyond our control, we enumerated the following requirements for a potential

visualization tool. The tool should:

1. Exist as a web application without the need to download and install specialized software;

2. Be simple and intuitive to use;

3. Accept an input file in Microsoft Excel format (.xlsx);

4. Read a weighted or unweighted adjacency matrix where the regulatory transcription

factors are in columns and the target genes are in rows;

Dahlquist et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.85 2/24

http://dondi.github.io/GRNsight/
http://dondi.github.io/GRNsight/
https://github.com/dondi/GRNsight
http://kdahlquist.github.io/GRNmap/
http://dx.doi.org/10.7717/peerj-cs.85
https://peerj.com/computer-science/


5. Automatically lay out and display small- to medium-scale, unweighted and weighted,

directed network graphs in a way that is familiar to biologists and adds value to the

interpretation of the modeling results.

Having established the broad technical requirements to which we were seeking a

solution, the first task was to determine if software already existed that could fulfill our

needs. A review by Pavlopoulos et al. (2015), describes the types, trends, and usage of

visualization tools available for genomics and systems biology. Their list of 47 tools for

network analysis is representative of what was available to us at our project inception in

January 2014 (given the caveat that the list itself is a moving target with some tools

dropping out, new ones being added, and others evolving in their functions). With

such a large number of tools available, it would be reasonable to expect that one already

existed that could fulfill our needs. However, our use case was narrow, and the tools

we investigated out of this diverse set each had properties that limited their use for

us. With regard to our first requirement, out of the 47 tools, 29 are stand-alone

applications, requiring installation, versus 18 web applications. With respect to our

second requirement, the more complex software packages out of the set have a steep

learning curve. Our third and fourth requirements specify data types. Some packages were

hardcoded for a different type of network than a GRN (e.g., metabolic or signaling

pathways, protein-protein interaction networks) or retrieved data exclusively from a

backend database, not allowing user-supplied data. None at the time would readily

accept an adjacency matrix with the GRNmap specifications as input without some

manipulation of the data format. Finally, with respect to the last requirement, the core

functionality, some packages were designed for visualization and analysis of much larger

networks than the ones in which we were interested or did not have the ability to display

directed, weighted graphs.

As an illustration of this, Pavlopoulos et al. (2015) showed that the open source

software, Cytoscape (Shannon et al., 2003; Smoot et al., 2011) had the highest citation

count in the Scopus database, as it is widely recognized as the “best-in-class” tool for

viewing and analyzing large networks for systems biology research. However, while

Cytoscape is flexible in terms of what types of network representations it accepts as

input (SIF, NNF, GML, XGMML, SBML, BioPAX, PSI-MI, GraphML, cf. http://

manual.cytoscape.org/en/latest/Supported_Network_File_Formats.html#supported-

network-file-formats), its basic “unformatted table files” format expects the network

to be represented in a list of pairwise interactions between two nodes instead of as

an adjacency matrix, requiring a GRNmap user to convert the file external to the

program. Furthermore, Cytoscape must be installed on a user’s computer. Finally,

because it is powerful and has a lot of features, there is a somewhat steep learning

curve before a novice user can begin to visualize networks. Multiple settings must

be learned and selected to generate a display that properly fits a use case; it is not

possible to just “load into Cytoscape and go.” Another open source application, Gephi

(Bastian, Heymann & Jacomy, 2009), is a general graph visualization tool that does

accept an adjacency matrix in .csv format (among a wide range of supported formats,

Dahlquist et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.85 3/24

http://manual.cytoscape.org/en/latest/Supported_Network_File_Formats.html#supported-network-file-formats
http://manual.cytoscape.org/en/latest/Supported_Network_File_Formats.html#supported-network-file-formats
http://manual.cytoscape.org/en/latest/Supported_Network_File_Formats.html#supported-network-file-formats
http://dx.doi.org/10.7717/peerj-cs.85
https://peerj.com/computer-science/


cf. https://gephi.org/users/supported-graph-formats/csv-format/), but again requires

download and installation of the software and has a complex feature set. Because

GRNmap itself is complex software targeted both at experienced biology investigators

and novice undergraduate users in a Biomathematical Modeling course, we wanted

to limit the need to install and learn additional visualization software. Reducing

the cognitive load required for using the software would allow users to focus

their attention on understanding the biological results of the model.

After this exploration, we decided to create our own software solution that we could

exactly tailor to our specifications. Following the philosophy of “do one thing well”

(http://onethingwell.org/post/457050307/about-one-thing-well), we wanted to prioritize

rendering small- to medium-scale GRNs both easily and well. It was more important

for us to create a tool that is specifically tailored to the visualization of these sized GRNs,

and not every possible graph from every possible application domain. Similarly, we

wanted to pass data seamlessly from GRNmap to GRNsight, while bearing in mind

that we should adopt practices that would also make our tool useful to users outside our

own group. Finally, we wanted to minimize any startup, onboarding, or overhead time,

which necessitated also enumerating a set of process requirements that would lead us

to our goal. Our project should:

� Follow best practices for open software development in bioinformatics, including:

reusing code, releasing early and often to a public repository, tracking requirements,

issues, and bugs, performing unit-tests, and providing both code and user

documentation (Schultheiss, 2011; Prli�c & Procter, 2012; Wilson et al., 2014);

� Leverage the expertise of the faculty and undergraduate student development team

members and be responsive to our GRNmap customers (i.e., eat our own dog food);

� Balance the needs of fulfilling our own use case with developing a tool of wider

applicability to the scientific community during a development cycle that ebbs and

flows with the pressures of the academic calendar.

GRNsight both fulfills our stated product requirements and serves as a model for best

practices for software development in bioinformatics as discussed in the sections below.

MATERIALS AND METHODS
Input data
GRNsight automatically lays out the network graph specified by an adjacency matrix

contained within a worksheet named “network” or “network_optimized_weights” in a

Microsoft Excel workbook (.xlsx). It was designed to accept workbooks seamlessly from

the MATLAB GRN modeling program, GRNmap; however, the expected input format is

general and is not dependent on GRNmap. Detailed documentation for the expected

input file format is found on the GRNsight Documentation page: http://dondi.github.io/

GRNsight/documentation.html.

GRNsight can automatically lay out either an unweighted or weighted network graph

specified by an adjacency matrix where regulators are named in the columns and target

Dahlquist et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.85 4/24

https://gephi.org/users/supported-graph-formats/csv-format/
http://onethingwell.org/post/457050307/about-one-thing-well
http://dondi.github.io/GRNsight/documentation.html
http://dondi.github.io/GRNsight/documentation.html
http://dx.doi.org/10.7717/peerj-cs.85
https://peerj.com/computer-science/


genes in the rows. Note that regulators (regulatory transcription factors) are themselves

encoded by genes and will be referred to as such. The adjacency matrix can be either

symmetric (with the exact same genes named in both the columns and rows) or

asymmetric (additional genes in either the columns or rows or both). For an unweighted

network, each cell in the matrix should contain a “0” if there is no regulatory relationship

between the regulator and target, or a “1” if there is a regulatory relationship between

them (Fig. 1). In a weighted network, the “1’s” are replaced with a real number that

is the weight parameter (Fig. 2). Positive weights indicate activation of the target gene

by the regulator, and negative weights indicate repression of the target gene by

the regulator.

After having implemented the core functionality of seamlessly reading GRNmap-

generated Excel workbooks, we recently extended the ability of GRNsight to read other

commonly used network data formats to increase the interoperability of GRNsight

with other network analysis and visualization software. GRNsight can import and

display Simple Interaction Format (SIF, .sif, http://manual.cytoscape.org/en/latest/

Supported_Network_File_Formats.html#sif-format) and GraphML (.graphml; Brandes

et al., 2001; http://graphml.graphdrawing.org/) files and export network data in those

two formats (see the GRNsight Documentation page for details of the implementation

at http://dondi.github.io/GRNsight/documentation.html).

GRNsight is designed to visualize small- to medium-scale GRNs, not the entire GRN

for an organism. The bounding box for display of the graph has a fixed size. Currently, it is

recommended that the user upload networks with no more than 35 unique genes (nodes)

or 70 edges. A warning is given upon upload of a network with 50–74 nodes or 71–99

edges, although the network graph will still display. If the user attempts to upload a

network of 75 or more nodes or 100 or more edges, the graph does not display, and an

error message will be returned.

Architecture
GRNsight has a service-oriented architecture, consisting of separate server and web

client components (Fig. 3). The server provides a web application programming interface

(API) that accepts a Microsoft Excel workbook (.xlsx) file via a POSTrequest and converts

it into a corresponding JavaScript Object Notation (JSON) representation. Conversion

is accomplished by first parsing the .xlsx file using the node-xlsx library (https://github.

com/mgcrea/node-xlsx) then mapping the translated worksheet cells into JSON. It

also provides demonstration graphs already in this JSON format, without requiring a

spreadsheet upload. The web client provides a graphical user interface for visualizing

the JSON graphs returned by the server, whether the graphs are parsed from uploaded

Excel workbooks or returned directly by the server’s demos. As an additional layer of

customization, the graphical interface provided by the web client can be embedded in

any web page using the standard iframe element. This is the mechanism used in deploying

the production and beta versions of the software on http://dondi.github.io/GRNsight.

Figure 3 illustrates this architecture and the interactions of the components.

Dahlquist et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.85 5/24

http://manual.cytoscape.org/en/latest/Supported_Network_File_Formats.html#sif-format
http://manual.cytoscape.org/en/latest/Supported_Network_File_Formats.html#sif-format
http://graphml.graphdrawing.org/
http://dondi.github.io/GRNsight/documentation.html
https://github.com/mgcrea/node-xlsx
https://github.com/mgcrea/node-xlsx
http://dondi.github.io/GRNsight
http://dx.doi.org/10.7717/peerj-cs.85
https://peerj.com/computer-science/


Documentation for how GRNsight is specifically deployed, including autonomous

production and beta versions, can be found on the GRNsight wiki (https://github.com/

dondi/GRNsight/wiki/Server-Setup).

Figure 1 Screenshot of the expected format for an adjacency matrix for an unweighted network. Regulators are named in the columns and

target genes in the rows. A gene name at the top of the matrix will be considered the same as a gene name on the side if it contains the same text

string, regardless of capitalization. The cells in the matrix contain a “0” if there is no regulatory relationship between the regulator and target, or a

“1” if there is a regulatory relationship between them. This screenshot was generated from one of the demonstration files provided in the GRNsight

user interface, Demo #3: Unweighted GRN (21 genes, 31 edges), first discussed in Dahlquist et al. (2015).

Figure 2 Screenshot of the expected format for an adjacency matrix for a weighted network. Regulators are named in the columns and target

genes in the rows. A gene name at the top of the matrix will be considered the same as a gene name on the side if it contains the same text string,

regardless of capitalization. The cells in the matrix contain a “0” if there is no regulatory relationship between the regulator and target. If there is a

relationship, the weight parameter is provided as a real number. Positive weights indicate activation of the target gene by the regulator, and negative

weights indicate repression of the target gene by the regulator. This screenshot was generated from one of the demonstration files provided in

the GRNsight user interface, Demo #4: Weighted GRN (21 genes, 31 edges; Schade et al., 2004 data), and displays weight parameters output by

the GRNmap modeling software, first discussed in Dahlquist et al. (2015).

Dahlquist et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.85 6/24

https://github.com/dondi/GRNsight/wiki/Server-Setup
https://github.com/dondi/GRNsight/wiki/Server-Setup
http://dx.doi.org/10.7717/peerj-cs.85
https://peerj.com/computer-science/


GRNsight is an open source project and is itself built using other open source software.

Server-side components are implemented with Node.js and the Express framework

(Brown, 2014). Graph visualization is facilitated by the Data-Driven Documents

JavaScript library (D3.js; Bostock, Ogievetsky & Heer, 2011). D3.js provides data mapping

and layout routines which GRNsight heavily customizes in order to achieve the desired

graph visualization. The resulting graph is a Scalable Vector Graphics (SVG) drawing

in which D3.js maps gene objects from the JSON representation provided by the web

API server onto labeled rectangles. Edge weights are mapped into Bezier curves. The

resulting graph is interactive, initially using D3.js’s force graph layout algorithm to

automatically determine the positions of the gene rectangles. The user can then drag

the rectangles to improve the graph’s layout. Customizations to the graph display are

described further in the next section.

As noted in the Introduction, we decided to create our own GRNsight software instead

of utilizing prior existing network visualization packages, like Cytoscape (Shannon

et al., 2003; Smoot et al., 2011). However, in keeping with open source development

practices, we did leverage other pre-existing code as described above. Besides D3.js,

Cytoscape.js (Franz et al., 2016) has been developed as an open source network

visualization engine. The BioJS registry (Yachdav et al., 2015) also lists a dozen

components tagged with the keyword “network.” The choice of D3.js as the visualization

engine was made simply to leverage the expertise of one of the co-authors who was

already familiar with the D3.js library in order to minimize the startup, onboarding, and

overhead time for the project, which initially served as a semester-long capstone

experience for one of the undergraduate co-authors.

Graph customizations
GRNsight’s diagrams are based on D3.js’s force graph layout algorithm (Bostock, Ogievetsky &

Heer, 2011), which was then extensively customized to support the specific needs of biologists

GRNsight web API server

GRNsight web application 
server

embedded graphical 
user interface

web browser

host web page

GUI resources

graph in JSON format

Excel, SIF, GraphML

open/import cycle

export cycle

SIF, GraphML

graph in JSON format

Figure 3 GRNsight architecture and component interactions. The server provides a web API that

accepts files in Microsoft Excel workbook (.xlsx), SIF (.sif), and GraphML (.graphml) formats and

converts them into a unified JSON representation. A converse import function accepts this JSON

representation and converts it into either SIF (.sif) or GraphML (.graphml) formats. The web appli-

cation server provides code and resources for the graphical user interface that displays this JSON

representation of the graph.

Dahlquist et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.85 7/24

http://dx.doi.org/10.7717/peerj-cs.85
https://peerj.com/computer-science/


for GRN visualization. D3.js’s baseline force graph implementation had round, unlabeled

nodes and undirected, straight-line edges. The following customizations were made for

the nodes: (a) the nodes were made rectangular; (b) a label of up to 12 characters was

added; (c) node size was varied, depending on the size of the label.

Customizations were also made for the edges. Instead of undirected, straight line

segments, the edges display as directed edges. They are implemented as Bezier curves that

straighten when nodes are close together and curve when nodes are far apart. A special case

was added to form a looping edge if a node regulated itself. When an unweighted adjacency

matrix is uploaded, all edges are displayed as black with pointed arrowheads. When a

weighted adjacency matrix is uploaded, edges are further customized based on the sign and

magnitude of the weight parameter. As is common practice in biological pathway diagrams

(Gostner et al., 2014), activation (for positive weights) is represented by pointed

arrowheads, and repression (for negative weights) is represented by a blunt end marker,

i.e., a line segment perpendicular to the edge. The thickness of the edge also varies based on

the magnitude of the absolute value of the weight. Larger magnitudes have thicker edges

and smaller magnitudes have thinner edges. The way that GRNsight determines the edge

thickness is as follows: GRNsight divides all weight values by the absolute value of the

maximum weight in the adjacency matrix to normalize all the values to between zero

and one. GRNsight then adjusts the thickness of the lines to vary continuously from

the minimum thickness (for normalized weights near zero) to maximum thickness

(normalized weight of one). The color of the edge also imparts information about the

regulatory relationship. Edges with positive normalized weight values from 0.05 to 1 are

colored magenta; edges with negative normalized weight values from -0.05 to -1 are

colored cyan. Edges with normalized weight values between -0.05 and 0.05 are colored

grey to emphasize that their normalized magnitude is near zero and that they have a weak

influence on the target gene. When a user mouses over an edge, the numerical value of

the weight parameter is displayed. When the user drags nodes to customize his or her view

of the network, edges adapt their anchor points to the movements of the nodes.

User interface
The GRNsight user interface includes a menu/status bar and sliders that adjust D3.js’s

force graph layout parameters. Figure 4 provides an annotated screenshot of the user

interface, highlighting its primary features. Users can move force graph parameter sliders

to refine the automated visualization. Nodes have a charge, which repels or attracts other

nodes. The charge distance determines at what range a node’s charge will affect other

nodes. The link distance determines the minimum distance maintained between nodes.

Gravity determines the strength of the force drawing the nodes to the center of the

graph. Sliders can be locked to prevent changes and also reset to default values. Graph

visualizations can also be modified through manual node dragging. Design decisions

for the user interface were driven by applicable interaction design guidelines and

principles (Nielsen, 1993; Shneiderman et al., 2016; Norman, 2013) in alignment with

the mental model and expectations of the target user base, consisting primarily of

biologists, both novice and experienced.

Dahlquist et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.85 8/24

http://dx.doi.org/10.7717/peerj-cs.85
https://peerj.com/computer-science/


Test-driven development
GRNsight follows an open development model with rigorous documentation of

requirements and issues on GitHub. We have implemented an exhaustive unit testing

framework using Mocha (https://mochajs.org) and the Chai assertion library (http://

chaijs.com) to perform test-driven development where unit tests are written before new

functionality is coded (Martin, 2008). This framework consists of around 160 automated

unit tests that examine nearly 530 test files to ensure that the program is running as

expected. Table 1 shows the test suite’s coverage report, as generated by Istanbul (https://

gotwarlost.github.io/istanbul/).

Error and warning messages have a three-part framework that informs the user what

happened, the source of the problem, and possible solutions. This structure follows the

alert elements recommended by user interface guideline documents such as the OS X

human interface guidelines (https://developer.apple.com/library/mac/documentation/

UserExperience/Conceptual/OSXHIGuidelines/WindowAlerts.html). For example,

GRNsight returns an error when the spreadsheet is formatted incorrectly or the maximum

number of nodes or edges is exceeded.

The File menu includes 
commands for uploading an 
adjacency matrix in Microsoft 
Excel (.xlsx) and other formats.

The Demo menu lists four 
GRNs that have been 
preloaded into the server.

The status display shows the 

and edge counts.

Force graph parameters can 
be adjusted, locked, or reset 
using this panel. Some 
commands are also available 
in the Format menu.

Figure 4 Annotated screenshot of the GRNsight user interface.

Dahlquist et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.85 9/24

https://mochajs.org
http://chaijs.com
http://chaijs.com
https://gotwarlost.github.io/istanbul/
https://gotwarlost.github.io/istanbul/
https://developer.apple.com/library/mac/documentation/UserExperience/Conceptual/OSXHIGuidelines/WindowAlerts.html
https://developer.apple.com/library/mac/documentation/UserExperience/Conceptual/OSXHIGuidelines/WindowAlerts.html
http://dx.doi.org/10.7717/peerj-cs.85
https://peerj.com/computer-science/


Availability
GRNsight (currently version 1.18.1) is available at http://dondi.github.io/GRNsight/

and is compatible with Google Chrome version 43.0.2357.65 or higher and Mozilla

Firefox version 38.0.1 or higher on the Windows 7 and Mac OS X operating systems.

The website is free and open to all users, and there is no login requirement. Website

content is available under the Creative Commons Attribution Non-Commercial Share

Alike 3.0 Unported License. GRNsight code is available under the open source BSD

license from our GitHub repository https://github.com/dondi/GRNsight. Every user’s

submitted data are private and not viewable by anyone other than the user. Uploaded data

reside as temporary files and are deleted from the GRNsight server during standard

operating system file cleanup procedures. A Google Analytics page view counter was

implemented on 18 September 2014, and a file upload counter was added on 13 April

2015. From these start dates and as of 12 August 2016, the GRNsight home page has

been accessed 2,349 times, and 1,652 files have been uploaded and viewed with GRNsight.

Of these 1,652 files, an estimated 148 were uploaded by users outside of our group.

RESULTS AND DISCUSSION
We have successfully implemented GRNsight, a web application and service for visualizing

small- to medium-scale GRNs, fulfilling our five requirements:

1. It exists as a web application without the need to download and install specialized

software;

2. It is simple and intuitive to use;

3. It accepts an input file in Microsoft Excel format (.xlsx), as well as SIF (.sif) and

GraphML (.graphml);

4. It reads a weighted or unweighted adjacency matrix where the regulatory transcription

factors are in columns and the target genes are in rows (Excel format only);

5. It automatically lays out and displays small- to medium-scale, unweighted and

weighted, directed network graphs in a way that is familiar to biologists, adding value to

the interpretation of the modeling results.

GRNsight facilitates interpretation of GRN model results
GRNsight facilitates the biological interpretation of unweighted and weighted

GRN graphs. Our discussion focuses on two of the demonstration files provided in the

Table 1 GRNsight test suite code coverage summary. Denominators represent the number of aspects

of each type detected by Istanbul in the GRNsight codebase; numerators represent the subset of these

which were executed by unit test code.

Aspect of the code Test coverage (percent)

Statements 272/371 (73.3%)

Branches 158/185 (85.4%)

Functions 49/72 (68.1%)

Lines 272/371 (73.3%)

Dahlquist et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.85 10/24

http://dondi.github.io/GRNsight/
https://github.com/dondi/GRNsight
http://dx.doi.org/10.7717/peerj-cs.85
https://peerj.com/computer-science/


user interface, Demo #3: Unweighted GRN (21 genes, 31 edges) and Demo #4: Weighted

GRN (21 genes, 31 edges; Schade et al., 2004 data). These two files describe GRNs from

budding yeast, Saccharomyces cerevisiae, correspond to supplementary data published

byDahlquist et al. (2015), and when displayed by GRNsight, represent interactive versions

of Figs. 1 and 8 of that paper, respectively.

Figure 5 gives a side-by-side view of the same adjacency matrices laid out by GRNsight

and by hand. Figures 5A–5C are derived from Demo #3: Unweighted GRN (21 genes,

31 edges), and Figs. 5D–5F are derived from Demo #4: Weighted GRN (21 genes, 31 edges;

Schade et al., 2004 data). Figures 5A and 5D show examples of the automatic layout

performed by GRNsight. Figures 5C and 5F show the same adjacency matrices laid out by

hand in Adobe Illustrator, corresponding to Figs. 1 and 8 of Dahlquist et al. (2015),

respectively. Figures 5B and 5E started with the automatic layout from GRNsight and

then were manually manipulated from within GRNsight to lay them out similarly to

MSN1

ROX1

FHL1

GTS1 RPH1

ABF1

MAC1

CUP9

PHD1

MSN4

RAP1

AFT1

REB1 HSF1

HAL9

NRG1

YAP6

CIN5SKN7

YAP1

ACE2

w1

w31

w19

w20

w21

w8

w27w29

w30
w28

w17

w16

w10

w4

w18w6

w15

w13

w23w7

w11

w3

w12

w2

w5

w9

w25

w24

w14

w22
w26

MSN1

GTS1

-0.05

-0.30

-0.93

-0.43

-0.51

0.94

-0.53

-0.13-0.75

0.01 0.62

-0.90

-0.40

1.01

0.61

-0.010.08

-0.89

1.23

1.50-1.23

1.43

-0.65

0.54

-0.19

0.16

-2.97

-0.41

-1.36

-0.19

0.57

CUP9

PHD1

REB1

HAL9

NRG1

YAP6

CIN5SKN7

YAP1

ACE2

ABF1

MAC1

MSN4

RAP1

ROX1

AFT1

FHL1

HSF1 RPH1

CIN5

CUP9

FHL1
GTS1

HSF1

MSN1
MSN4

NRG1

RAP1

AFT1

REB1

ROX1

RPH1

YAP1

YAP6

ABF1

ACE2

HAL9

MAC1

PHD1

SKN7

CIN5

CUP9

FHL1

GTS1 HSF1

MSN1

MSN4

NRG1

RAP1

AFT1

REB1

ROX1

RPH1

YAP1
YAP6

ABF1

ACE2

HAL9

MAC1

PHD1

SKN7

CIN5

CUP9

FHL1

GTS1

HSF1

MSN1

MSN4

NRG1

RAP1

AFT1

REB1

ROX1

RPH1

YAP1

YAP6

ABF1

ACE2

HAL9

MAC1PHD1

SKN7

CIN5

CUP9

FHL1

GTS1 HSF1

MSN1

MSN4

NRG1

RAP1

AFT1

REB1

ROX1

RPH1

YAP1

YAP6

ABF1

ACE2

HAL9

MAC1

PHD1

SKN7

A B C

D E F

Figure 5 Side-by-side comparison of the same adjacency matrices laid out by GRNsight and by hand. (A) GRNsight automatic layout of

the demonstration file, Demo #3: Unweighted GRN (21 genes, 31 edges); (B) graph from (A) manually manipulated fromwithin GRNsight; (C) the

same adjacency matrix from (A) and (B) laid out entirely by hand in Adobe Illustrator, corresponding to Fig. 1 of Dahlquist et al. (2015);

(D) GRNsight automatic layout of the demonstration file, Demo #4: Weighted GRN (21 genes, 31 edges; Schade et al., 2004 data); (E) graph from

(D) manually manipulated from within GRNsight; (F) the same adjacency matrix from (D) and (E) laid out entirely by hand in Adobe Illustrator,

corresponding to Fig. 8 of Dahlquist et al. (2015). The nodes in (F) are colored in the style of GenMAPP 2 (Salomonis et al., 2007), based on the time

course of expression of that gene in the Schade et al. (2004) microarray data (stripes from left to right, 10, 30, and 120 minutes of cold shock, with

magenta representing a significant increase in expression relative to the control at time 0, cyan representing a significant decrease in expression

relative to the control, and grey representing no significant change in expression relative to the control).

Dahlquist et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.85 11/24

http://dx.doi.org/10.7717/peerj-cs.85
https://peerj.com/computer-science/


Figs. 5C and 5F, respectively. The use of GRNsight represents a substantial time savings

compared to creating the same figures entirely by hand and allows the user to try

multiple arrangements of the nodes quickly and easily. Note that this type of “by hand”

manipulation of graphs is most useful for small- to medium-scale networks, the kind

that GRNsight is designed to display, and would not be appropriate for large networks.

Viewing the unweighted network (Figs. 5A–5C) allows one to make observations about

the network structure (Dahlquist et al., 2015). For example, YAP6 has the highest

in-degree, being regulated by six other transcription factors. RAP1 has the highest out-

degree of five, regulating four other transcription factors and itself. Four genes, AFT1,

NRG1, RAP1, and YAP6, regulate themselves. Many of the transcription factors are

involved in regulatory chains, with the longest including five nodes originating at SKN7 or

ACE2. There are several other four-node chains that originate at CIN5, MAC1, PHD1,

SKN7, and YAP1. Finally, there are two rather complex feedforward motifs involving

CIN5, ROX1, and YAP6 and SKN7, YAP1, and ROX1 (Dahlquist et al., 2015).

The networks with colored edges (Figs. 5D–5F) display the results of a mathematical

model, where the expression levels of the individual transcription factors were modeled

using mass balance ordinary differential equations with a sigmoidal production function

and linear degradation (Dahlquist et al., 2015). Each equation in the model included a

production rate, a degradation rate, weights that denote the magnitude and type of

influence of the connected transcription factors (activation or repression), and a threshold

of expression. The differential equation model was fit to published yeast cold shock

microarray data from Schade et al. (2004) using a penalized nonlinear least squares

approach. The visualization produced by GRNsight is displaying the results of the

optimized weight parameters. Positive weights > 0 represent an activation relationship

and are shown by pointed arrowheads. One example is that CIN5 activates the expression

of MSN1. Negative weights < 0 represent a repression relationship and are shown by a

blunt arrowhead. One example is that ABF1 represses the expression of MSN1. The

thicknesses of the edges also vary based on the magnitude of the absolute value of the

weight, with larger magnitudes having thicker edges and smaller magnitudes having

thinner edges. In Figs. 5D–5F, the edge corresponding to the repression of the expression

of MSN1 by ABF1 stands out as the thickest because the absolute value of its weight

parameter (-2.97) has the largest magnitude out of all the weights (Dahlquist et al., 2015).

It is noticeable that none of the edges that represent activation are as thick as the ABF1-to-

MSN1 edge; only RAP1-to-RPH1 and HAL9-to-MSN4 are close with weights of 1.50 and

1.43, respectively.

The color of the edge also imparts information about the regulatory relationship.

Edges with positive normalized weight values from 0.05 to 1 are colored magenta

(10 edges in this example); edges with negative normalized weight values from -0.05 to -1
are colored cyan (16 edges in this example). Edges with normalized weight values between

-0.05 and 0.05 are colored grey to indicate that their normalized magnitude is near zero

and that they have a weak influence on the target gene (five edges in this example).

The grey color de-emphasizes the weak relationships to the eye, thus emphasizing the

stronger colored relationships.

Dahlquist et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.85 12/24

http://dx.doi.org/10.7717/peerj-cs.85
https://peerj.com/computer-science/


Because of this visualization of the weight parameters, one can make some interesting

observations about the behavior of the network (Dahlquist et al., 2015). Taking the

arrowhead type, thickness, and color into consideration, one can, by visual inspection,

group edges by type and relative influence into four activation and four repression

bins. RAP1-to-RPH1, HAL9-to-MSN4, and NRG1 to itself have the strongest

activation relationships, followed by RAP1-to-MSN4 and CIN5-to-MSN1, followed

by NRG1-to-YAP6, MSN4-to-FHL1, SKN7-to-ROX1 and PHD1-to-MSN4,

followed by ABF1-to-FHL1 as the weakest of the activation relationships. The

aforementioned ABF1-to-MSN1 edge has the strongest repression relationship, followed

by ACE2-to-YAP1, RAP1-to-HSF1, CIN5-to-ROX1, AFT1 to itself, and RAP1 to itself,

followed by ROX1-to-YAP6, PHD1-to-CUP9, CIN5-to-YAP6, YAP6-to-ROX1,

YAP1-to-ROX1, SKN7-to-YAP1, RAP1-to-AFT1, and YAP6 to itself, followed by

MAC1-to-CUP9 and SKN7-to-NRG1 as the weakest of the repression relationships.

These rankings could have been obtained, of course, by sorting the numerical values of

the edges in a table, but it is notable that these groupings can also be picked out by eye

and then put into the context of the other network connections.

Because the five weakest connections, CUP9-to-YAP6, REB1-to-GTS1, YAP6-to-CIN5,

YAP1-to-YAP6, and HSF1-to-REB1, colored grey, are de-emphasized in the visual display,

a different interpretation of the network structure can be made as compared to the

unweighted network (Figs. 5E and 5F vs. Figs. 5B and 5C). In most cases, nodes in a

regulatory chain “drop out” visually “breaking” the chain. For example, in the four-node

chain beginning with RAP1-to-HSF1, the last two nodes, REB1 and GTS1, are only weakly

connected. In the five-node chains beginning with SKN7-to-YAP1 or ACE2-to-YAP1, and

the four-node chains beginning with MAC1-to-CUP9 or PHD1-to-CUP9, the nodes

connected to YAP6 drop out (YAP1-to-YAP6, YAP6-to-CIN5, and CUP9-to-YAP6). This

suggests that regulatory chains may only be effective to a depth of two levels, and that

while longer chains are theoretically possible, given the network connections, they have a

negligible effect on the dynamics of expression of downstream genes.

Another interpretation of the network structure that is highlighted by the weighted

display is that the 21-gene network can be divided into two smaller subnetworks by

removing the two edges CUP9-to-YAP6 (grey) and ABF1-to-FHL1 (thin magenta,

weakly activating). While this could also be observed in the unweighted network, the

application of the weight information, showing only thin connections between the two

subnetworks, suggests that they could function relatively independently. Finally, the

unweighted display showed two complex feedforward motifs involving CIN5, ROX1, and

YAP6 and SKN7, YAP1, and ROX1. The weighted display reveals that the complexity of

the connections is reduced because the weak YAP1-to-YAP6 and YAP6-to-CIN5 edges

drop out. Furthermore, the display shows that the modeling predicts that the three-

node CIN5-ROX1-YAP6 motif is an incoherent type 2 feedforward loop, while the SKN7-

YAP1-ROX1 motif is a coherent type 4 feedforward loop, neither of which is found

very commonly in Escherichia coli nor S. cerevisiae GRNs (Alon, 2007). The modeling

combined with the display suggests that further investigation is warranted: either these

two rare types of feedforward loops are important to the dynamics of this particular GRN,

Dahlquist et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.85 13/24

http://dx.doi.org/10.7717/peerj-cs.85
https://peerj.com/computer-science/


or the network structure is incorrect. In either case, future lines of experimental

investigation are suggested to the user.

When examining individual genes in the network, one can see that the expression

of several genes is controlled by a balance of activation and repression by different

regulators. For example, the expression of MSN1 is strongly activated by CIN5, but even

more strongly repressed by ABF1. The expression of ROX1 is weakly activated by SKN7

and weakly repressed by YAP1, CIN5, and YAP6. The expression of YAP6 is weakly

activated by NRG1, but weakly repressed by itself, CIN5, and ROX1. Furthermore, some

transcription factors act both as activators of some targets and repressors of other targets.

For example, RAP1 activates the expression of MSN4 and RPH1, but represses the

expression of AFT1, HSF1, and itself. PHD1, ABF1, CIN5, and SKN7 also both activate

and repress their different target genes in the network. For each of these regulators,

there is experimental evidence to support their opposite effects on gene expression,

although not necessarily for these particular target genes (RAP1: Shore & Nasmyth, 1987;

PHD1: Borneman et al., 2006, ABF1: Buchman & Kornberg, 1990 and Miyake et al., 2004;

CIN5 and SKN7: Ni et al., 2009). Except for CIN5, what these genes have in common is

that they themselves have no inputs in the network. The remaining no-input genes

(ACE2, MAC1, and HAL9) have only one outgoing edge in this network. Because

these genes have no inputs and, in some sense, have been artificially disconnected from

the larger GRN of the cell, one must not overinterpret the results of the modeling for

these genes.

Thus, GRNsight enables one to interpret the weight parameters more easily than one

could from the adjacency matrix alone. Visual inspection has long been recognized by

experts such as Tufte (2001) and Card, Mackinlay & Shneiderman (1999) as distinct from

other forms of purely numeric, computational, or algorithmic data analysis, and as the

preceding discussion highlights, it is this potential that can be derived specifically by visual

inspection that is enabled by GRNsight. Card, Mackinlay & Shneiderman (1999) have

identified six major ways, documented in earlier literature and empirical studies, by which

information visualization amplifies cognition. Tufte’s (2001) seminal book perhaps states

it best: “Graphics reveal data. Indeed graphics can be more precise and revealing than

conventional statistical computations.”

Note that the nodes in Fig. 5F are also colored in the style of GenMAPP 2 (Salomonis

et al., 2007), based on the time course of expression of that gene in the Schade et al. (2004)

microarray data (stripes from left to right, 10, 30, and 120min of cold shock, with magenta

representing a significant increase in expression relative to the control at time zero, cyan

representing a significant decrease in expression relative to the control, and grey

representing no significant change in expression relative to the control). This feature has not

yet been implemented in GRNsight, but is currently under development for Version 2.

These observations made by direct inspection of the GRNsight graph are for a relatively

small GRN of 21 genes and 31 edges and become more difficult as nodes and edges

are added. For much larger networks, a more powerful graph analysis tool such as

Cytoscape (Shannon et al., 2003; Smoot et al., 2011) or Gephi (Bastian, Heymann & Jacomy,

2009) is warranted. However, for small networks in the range of 15–35 nodes, GRNsight

Dahlquist et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.85 14/24

http://dx.doi.org/10.7717/peerj-cs.85
https://peerj.com/computer-science/


fulfills a need to quickly and easily view and manipulate them. The GRN modeled in

Dahlquist et al. (2015) and displayed in Fig. 5 was derived from the Lee et al. (2002) and

Harbison et al. (2004) datasets generated by chromatin immunoprecipitation followed by

microarray analysis. We have also used GRNsight to display GRNs derived from the

YEASTRACT database (Teixeira et al., 2014), whose own display tool is static, displaying

regulators and targets in two rows. Instructions for viewing YEASTRACT-derived GRNs

can be found on the GRNsight Documentation page.

While GRNsight was designed originally for viewing GRNs, it is not specific for

any particular species, nor for that kind of data. As long as the text strings used as

identifiers for the “regulators” and “targets” match, it can be used to visualize any small,

unweighted or weighted network with directed edges for systems biology or other

application domains.

GRNsight development follows best practices for scientific
computing and FAIR data principles
Veretnik, Fink & Bourne (2008) lament and Schultheiss et al. (2011) document that some

computational biology resources, especially web servers, lack persistence and usability,

leading to an inability to reproduce results. With that in mind, we have consciously

followed best practices for open development (Prli�c & Procter, 2012), scientific computing

(Wilson et al., 2014), providing a web resource (Schultheiss, 2011), and FAIR data

(Wilkinson et al., 2016), simultaneously following and teaching these practices to the

primary developers who were all undergraduates. Each of these practices relates to each

other, supporting reproducible research.

Open development and long-term persistence
As noted in our process requirements in the Introduction, we have followed an open

development model since the project’s inception in January 2014, with our code available

under the open source BSD license at the public GitHub repository, where we “release

early, release often” (Torvalds in Raymond (1999)) and also track requirements, issues,

and bugs. Indeed, our project stands on the shoulders of other open source tools. Our

unit-testing framework provides confidence that the code works as expected. Detailed

documentation for users (web page) and developers (wiki) are provided. Demo data are

also provided so users have both an example of how to format input files and can see how

the software should perform. As noted by Prli�c & Procter (2012), open development

practices have a positive impact on the long-term sustainability of a project. Furthermore,

Schultheiss et al. (2011) describe twelve qualities for evaluating web services that sum to

a Long-Term-Score, which correlates with persistence of the web service. GRNsight

complies with all 12 requirements, providing: a stable web address (using the github.io

domain to host the website and Amazon Cloud Services to host the server help to ensure

long-term availability), version information, hosting country and institution, last updated

date, contact information, high usability, no registration requirement, no download

required, example data, fair testing possibility (both with demonstration Excel workbooks

and standard SIF and GraphML file types), and a functional service.

Dahlquist et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.85 15/24

http://dx.doi.org/10.7717/peerj-cs.85
https://peerj.com/computer-science/


We are committed to continue development of the GRNsight resource, fixing bugs

and improving the software by adding features. The lead authors (Dahlquist, Dionisio,

and Fitzpatrick) are all tenured faculty, overseeing the design, code, testing, and

documentation of GRNsight and providing continuity to the project. Together we have

mentored the undergraduates (Anguiano, Varshneya, Southwick, and Samdarshi) who

had primary responsibility for coding, testing, and documentation, while also being

full partners in the design of the software. A pipeline has been established for onboarding

new members to the project, also providing continuity. Lawlor & Walsh (2015) detail

some of the same issues of reliability and reproducibility in bioinformatics software

referred to by Wilson et al. (2014). Lawlor & Walsh (2015) conclude that the ideal way to

bring software engineering values into bioinformatics research projects is to establish

separate specialists in bioinformatics engineering. We disagree. Through GRNsight, we

have shown how best practices can be taught to undergraduates concomitant with

training in bioinformatics, as we have shown previously with Master’s level students

(Dionisio & Dahlquist, 2008).

FAIR data principles
The FAIR Guiding Principles for scientific data and stewardship state that data should

be Findable, Accessible, Interoperable, and Reusable by both humans and machines

(Wilkinson et al., 2016), with “data” loosely construed as any scholarly digital research

object, including software. As scientific software that interacts with data, the FAIR

principles can apply to both the GRNsight application and the network data it is used to

visualize. Thus, we evaluate the GRNsight project in terms of its “FAIRness” below.

Findable

The Findable principle states that metadata and data should have a globally unique and

persistent identifier, and that metadata and data should be registered or indexed in a

searchable resource (Wilkinson et al., 2016). In terms of software, the identifier is the name

and version. Because we utilize the GitHub release mechanism, GRNsight code is tagged

with a version (currently v1.18.1) and each version is available from the release page

(https://github.com/dondi/GRNsight/releases). We have registered GRNsight with well-

known bioinformatics tools registries: the BioJS Repository (Yachdav et al., 2015; http://

biojs.io/), the Elixir Tools and Data Services Registry (Ison et al., 2016; https://bio.tools/),

Bioinformatics.org (http://www.bioinformatics.org/wiki/), and the Links Directory at

Bioinformatics.ca (Brazas, Yamada & Ouellette, 2010; https://bioinformatics.ca/links_

directory/), as well as Node Package Manager (NPM, https://www.npmjs.com/).

GRNsight has also been presented at scientific conferences, with slides and posters

available via SlideShare (http://www.slideshare.net/GRNsight) and with a recent talk and

poster at the 2016 Bioinformatics Open Source Conference available via F1000 Research

(Dahlquist et al., 2016a; Dahlquist et al., 2016b). We have paid special attention to the

metadata associated with our website to increase its Findability via Google search. And, of

course, with the publication of this article, GRNsight is Findable in literature databases. In

the everyday sense of the word “findable,” one could argue that by being “yet another”

Dahlquist et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.85 16/24

https://github.com/dondi/GRNsight/releases
http://biojs.io/
http://biojs.io/
https://bio.tools/
http://www.bioinformatics.org/wiki/
https://bioinformatics.ca/links_directory/
https://bioinformatics.ca/links_directory/
https://www.npmjs.com/
http://www.slideshare.net/GRNsight
http://dx.doi.org/10.7717/peerj-cs.85
https://peerj.com/computer-science/


network visualization tool in a crowded domain (recall 47 other tools recorded by

Pavlopoulos et al. (2015)), GRNsight is contributing to a Findability problem for users in

the sense that it contributes more “hay” to the “needle in a haystack” problem of finding

the right tool for the job. However, we hope that by the actions we have taken and the

specificity of our requirements for GRNsight’s functionality, publicly describing both

what we mean it to be and what we do notmean it to be, the benefits of adding GRNsight

to the diverse pool of network visualization software outweighs the detriments.

In addition, the Findable principle states that data should be described with rich

metadata and that metadata should include the identifier of the data it describes

(Wilkinson et al., 2016). Because GRNsight does not interact directly with a data

repository, it is up to individual users to make sure that their data is FAIR compliant

with the Findable principle. This is discussed further below with regard to Interoperability

and Reusability.

Accessible

The Accessible principle states that metadata and data should be retrievable by their

identifier using a standardized communication protocol, that the protocol is open,

free, and universally implementable, that the protocol allows for authentication and

authorization procedures, where necessary, and that metadata are accessible, even when

the data are no longer available (Wilkinson et al., 2016). As noted before, GRNsight

meets the first two criteria, because it is free and open to all users, and there is no

login requirement. The source code is available under the open source BSD license and

can be NPM installed (given the caveat that the user must be able to support the GRNsight

client-server setup). The longevity of GRNsight is partially tied to the longevity of the

GitHub repository itself, although the authors maintain local backups. Again, because

GRNsight does not interact directly with a data repository, it is up to individual users to

make sure that their data is FAIR compliant with the Accessible principle. Since GRNsight

does not have any security procedures nor authentication requirements (e.g., password

protection; user registration), it is not recommended that sensitive data be uploaded

to our GRNsight server. However, users who wish to visualize sensitive data could run a

local instance of the GRNsight client-server setup.

Interoperable

As software, GRNsight does not interact directly with other databases or software, as, for

example, Cytoscape does with many pathway and molecular interaction databases or

individual Cytoscape apps (formerly plugins; Saito et al., 2012), so it is not Interoperable

in that sense. The GRNsight web application is designed to interact directly with a human

user and is not set up to import or export data programmatically, as would be necessary

to incorporate it into popular workflow environments like Galaxy (Afgan et al., 2016)

or be hosted by a tool aggregator such as QUBES Hub (Quantitative Undergraduate

Biology Education and Synthesis Hub, https://qubeshub.org/). However, GRNsight is

Interoperable in the sense that via the user, it can receive and pass data from and to other

programs. In this latter sense, this section could just as easily have been entitled, “95% of

Dahlquist et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.85 17/24

https://qubeshub.org/
http://dx.doi.org/10.7717/peerj-cs.85
https://peerj.com/computer-science/


bioinformatics is getting your data into the right file format.” Indeed, one of the original

motivations and requirements for GRNsight was to seamlessly read and display weighted

GRNs that were output as Excel workbooks from the GRNmap MATLAB modeling

package (Dahlquist et al., 2015; http://kdahlquist.github.io/GRNmap/). This specialized

use case is augmented by GRNsights’s ability to import and export data in the commonly

used SIF (http://manual.cytoscape.org/en/latest/Supported_Network_File_Formats.

html#sif-format) and GraphML (Brandes et al., 2001; http://graphml.graphdrawing.org/)

formats, facilitating movement of data between GRNsight and other network

visualization and analysis programs. For instance, one can interact with the GRNsight

server component directly, in order to upload Excel workbooks and supported import

formats for conversion into JSON then back into a supported export format. Thus, we are

in a position to comment on SIF and GraphML with respect to the finer points of data

Interoperability, including: metadata and data using a formal, accessible, shared, and

broadly applicable language for knowledge representation, metadata and data using

vocabularies that follow the FAIR principles, and metadata and data including qualified

references to other metadata and data (Wilkinson et al., 2016).

When we implemented import and export for the SIF and GraphML formats, we

encountered issues due to the variations accepted by these formats which required design

decisions that may, in turn, restrict compatibility with other software that we did not test.

For example, the SIF format as described in the documentation for Cytoscape v3.4.0 offers

quite a few divergent options, including choice of delimiter (space vs. tab), denoting a

pairwise list of interactions versus concatenating all the interactions to the same node on

the same line, and the choice of relationship type (any string). It only requires node

identifiers to be internally consistent to the file, without enforcing the use of IDs from

a recognized biological database. While GRNsight strives to read any SIF file, we restricted

our export format to tab-delimited, pairwise interactions, and a single relationship

type (“pd” for “protein / DNA”) for unweighted networks. For weighted networks,

GRNsight exports the weight value as the relationship type. The advantage of SIF is

that it is a simple text format; the main disadvantage is that all it is really intended to

encode is the interaction between two nodes, which makes including the weight data

as GRNsight does a kludge, and including metadata impossible. Moreover, there is no

controlled vocabulary for the relationship type, only a list of suggestions in the Cytoscape

documentation, from which we selected “pd.” In practice, Cytoscape v3.4.0 defaults to

“interacts with” as the relationship type when exporting SIF files. As a simple text format,

it does not satisfy the three sub-principles of Interoperability (Wilkinson et al., 2016).

In contrast, GraphML, as a richer XML format, has the potential to satisfy the

Interoperability criteria. However, as with SIF, we encountered issues because a feature

of the format that is intended to facilitate flexibility has, in practice, turned out to degrade

Interoperability rather than enhance it. GraphML standardizes only the representation

of nodes and edges and their directions; all other characteristics, such as names,

weights, and other values, are left for others to specify through a key element, which is not

subject to a controlled vocabulary. Although this flexibility is appreciated, it also serves

as an enabler for divergence. In particular, two issues arose with interpreting the node

Dahlquist et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.85 18/24

http://kdahlquist.github.io/GRNmap/
http://manual.cytoscape.org/en/latest/Supported_Network_File_Formats.html#sif-format
http://manual.cytoscape.org/en/latest/Supported_Network_File_Formats.html#sif-format
http://graphml.graphdrawing.org/
http://dx.doi.org/10.7717/peerj-cs.85
https://peerj.com/computer-science/


identifier and display label. First, because of the lack of a controlled vocabulary, these are

defined differently by different programs. Second, in the GRNsight-native Excel format,

transcription factors must be unique in the header columns and rows and serve both as a

unique ID for that node and the node label. In two implementations of GraphML import/

export that we tested with Cytoscape v3.4.0 and a commercial graph editor called

yED (v3.16, https://www.yworks.com/products/yed), an internal node ID is assigned

independently of the node label and is not editable by the user. This leads to a situation

where the user could assign identical labels to two or more nodes with different IDs,

raising an issue for correct display of the network in GRNsight where node ID and

node label are synonymous. GRNsight accommodates display of node labels from

Cytoscape- and yED-exported GraphML by using a priority system to select among

the XML elements it may encounter. Finally, as with SIF, there is no enforcement of the use

of IDs from a recognized biological database, even though the potential exists to specify

the ID source (at least as a comment) in the XML.

The format of a GraphML export by GRNsight is described on the Documentation

page (http://dondi.github.io/GRNsight/documentation.html). In our testing, we have

ensured that GRNsight can read Cytoscape- and yED-exported GraphML and that

GRNsight-exported GraphML was accurately read by these two programs, but we cannot

guarantee Interoperability with other software. Any issues that arise will need to be

addressed on a case-by-case basis through bug reports at our GitHub repository.

Compliance with FAIR principles is facilitated by the BioSharing registry of standards

(McQuilton et al., 2016; https://biosharing.org). As of this writing, GraphML is present in

the registry, but as an unclaimed, automatically-generated entry. Other formats for

sharing network data are potentially more fully FAIR compliant. However, the addition of

each new format, while increasing the flexibility and power of the GRNsight software,

would incur the cost of additional complexity (http://boxesandarrows.com/complexity-

and-user-experience/). This is a corollary of “one thing well” and is, for example, one

reason why the complex Cytoscape stand-alone application did not fit our initial

product requirements. As demonstrated by our tests with Cytoscape- and yED-exported

GraphML, the aphorism that “95% of bioinformatics is getting your data into the right

file format” cannot entirely be avoided by developers or users.

Reusable

The FAIR principles state that metadata and data should be richly described with a

plurality of accurate and relevant attributes, released with a clear and accessible usage

license, associated with a detailed provenance, and meet domain-relevant community

standards. As software, GRNsight is Reusable because the code is available on GitHub

under the open source BSD license. The advantage of having followed test-driven

development is that a developer who wishes to reuse the code has a test suite ready to

guide development of new features. In terms of data, the criteria for Reusability are closely

linked to Interoperability. While the GraphML format is capable of storing metadata,

the limitations described above in terms of a lack of controlled vocabulary cause it to

fail the Reusability test as well. In terms of provenance, GRNsight injects a comment into

Dahlquist et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.85 19/24

https://www.yworks.com/products/yed
http://dondi.github.io/GRNsight/documentation.html
https://biosharing.org
http://boxesandarrows.com/complexity-and-user-experience/
http://boxesandarrows.com/complexity-and-user-experience/
http://dx.doi.org/10.7717/peerj-cs.85
https://peerj.com/computer-science/


the GraphML recording what version of GRNsight exported the data (as does yED v3.16,

but not Cytoscape v3.4.0). We also note that the GRNmap Excel workbook format

with multiple worksheets has the potential to record both metadata and provenance,

although this feature is not implemented at this time.

In the end, even the examples given byWilkinson et al. (2016) have varying levels

of adherence to the FAIR principles or “FAIRness,” which, they argue, should be used as a

guide to the incremental improvement of resources. AlthoughGRNsight has the limitations

discussed above, we have done as much as we can to achieve FAIRness at this time.

CONCLUSIONS
We have successfully implemented GRNsight, a web application and service for visualizing

small- to medium-scale GRNs that is simple and intuitive to use. GRNsight accepts an

input file in Microsoft Excel format (.xlsx), reading a weighted or unweighted adjacency

matrix where the regulators are in columns and the target genes are in rows, and

automatically lays out and displays unweighted and weighted network graphs in a way

that is familiar to biologists. GRNsight also has the capability of importing and exporting

files in SIF and GraphML formats. Although GRNsight was originally developed for

use with the GRNmap modeling software, and has provided useful insight into the

interpretation of the GRN model described in Dahlquist et al. (2015), it has general

applicability for displaying any small, unweighted or weighted network with directed

edges for systems biology or other application domains. Thus, GRNsight inhabits a niche

not satisfied by other software, doing “one thing well.” GRNsight also serves as a model for

how best practices for software engineering support reproducible research and can be

learned simultaneously with the development of useful bioinformatics software.

ACKNOWLEDGEMENTS
We would like to thank Katrina Sherbina and B.J. Johnson for their input during the

early stages of GRNsight development. We would also like to thank Masao Kitamura

for assistance with setting up and administering the GRNsight server. We thank the

2015–2016 GRNmap research team, Chukwuemeka E. Azinge, Juan S. Carrillo, Kristen M.

Horstmann, Kayla C. Jackson, K. Grace Johnson, Brandon J. Klein, Tessa A. Morris,

Margaret J. O’Neil, Trixie Anne M. Roque, and Natalie E. Williams, and the students

enrolled in the Loyola Marymount University Spring 2015 course Biology 398-04:

Biomathematical Modeling/Mathematics 388-01: Survey of Biomathematics for testing

the software. Finally, we thank Manuel Corpas and an anonymous reviewer for

suggestions that have improved both the GRNsight code and this manuscript.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was partially supported by NSF award 0921038 (K.D.D., B.G.F.), a Kadner-Pitts

Research Grant (K.D.D.), the Loyola Marymount University Summer Undergraduate

Research Program (A.V.) and the Loyola Marymount University Rains Research Assistant

Dahlquist et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.85 20/24

http://dx.doi.org/10.7717/peerj-cs.85
https://peerj.com/computer-science/


Program (N.A.A.). The funders had no role in study design, data collection and analysis,

decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:

NSF (K.D.D., B.G.F.): 0921038.

Kadner-Pitts Research Grant (K.D.D.).

Loyola Marymount University Summer Undergraduate Research Program (A.V.).

Loyola Marymount University Rains Research Assistant Program (N.A.A.).

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Kam D. Dahlquist conceived and designed the project, performed the computation

work, analyzed the data, wrote the paper, prepared figures and/or tables, reviewed drafts

of the paper.

� John David N. Dionisio conceived and designed the project, performed the

computation work, analyzed the data, wrote the paper, prepared figures and/or tables,

reviewed drafts of the paper.

� Ben G. Fitzpatrick conceived and designed the project, performed the computation

work, analyzed the data, reviewed and edited drafts of the paper.

� Nicole A. Anguiano conceived and designed the project, performed the computation

work, analyzed the data, reviewed drafts of the paper.

� Anindita Varshneya conceived and designed the project, performed the computation

work, analyzed the data, reviewed drafts of the paper.

� Britain J. Southwick conceived and designed the project, performed the computation

work, analyzed the data, reviewed drafts of the paper.

� Mihir Samdarshi conceived and designed the project, performed the computation work,

analyzed the data, reviewed drafts of the paper.

Data Deposition
The following information was supplied regarding data availability:

GitHub code repository: https://github.com/dondi/GRNsight.

Web application: http://dondi.github.io/GRNsight/.

REFERENCES
Afgan E, Baker D, van den Beek M, Blankenberg D, Bouvier D, Čech M, Chilton J, Clements D,

Coraor N, Eberhard C, Grüning B, Guerler A, Hillman-Jackson J, Von Kuster G, Rasche E,

Soranzo N, Turaga N, Taylor J, Nekrutenko A, Goecks J. 2016. The Galaxy platform for

accessible, reproducible and collaborative biomedical analyses: 2016 update. Nucleic Acids

Research 44(W1):W3–W10 DOI 10.1093/nar/gkw343.

Alon U. 2007. An Introduction to Systems Biology: Design Principles of Biological Circuits. Boca

Raton: Chapman & Hall/CRC.

Dahlquist et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.85 21/24

https://github.com/dondi/GRNsight
http://dondi.github.io/GRNsight/
http://dx.doi.org/10.1093/nar/gkw343
http://dx.doi.org/10.7717/peerj-cs.85
https://peerj.com/computer-science/


Bastian M, Heymann S, Jacomy M. 2009. Gephi: an open source software for exploring and

manipulating networks. In: Third International AAAI Conference on Weblogs and Social Media.

Vol. 8. Palo Alto: AAAI Publications, 361–362.

Borneman AR, Leigh-Bell JA, Yu H, Bertone P, Gerstein M, Snyder M. 2006. Target hub proteins

serve as master regulators of development in yeast. Genes & Development 20(4):435–448

DOI 10.1101/gad.1389306.

Bostock M, Ogievetsky V, Heer J. 2011. D3: data-driven documents. IEEE Transactions on

Visualization and Computer Graphics 17(12):2301–2309 DOI 10.1109/TVCG.2011.185.

Brandes U, Eiglsperger M, Herman I, Himsolt M, Marshall MS. 2001. GraphML progress report

structural layer proposal. In: Graph Drawing: 9th International Symposium, GD, 2001 Vienna,

Austria, September 23–26, 2001 Revised Papers. Berlin Heidelberg: Springer, 501–512.

Brazas MD, Yamada JT, Ouellette BFF. 2010. Providing web servers and training in

bioinformatics: 2010 update on the bioinformatics links directory. Nucleic Acids Research

38(Suppl 2):W3–W6 DOI 10.1093/nar/gkq553.

Brown E. 2014. Web Development with Node and Express. Beijing: O’Reilly.

Buchman AR, Kornberg RD. 1990. A yeast ARS-binding protein activates transcription

synergistically in combination with other weak activating factors.Molecular and Cellular Biology

10(3):887–897 DOI 10.1128/MCB.10.3.887.

Card SK, Mackinlay JD, Shneiderman B. 1999. Chapter 1: information visualization.

Readings in Information Visualization: Using Vision to Think. San Diego: Academic Press.

Dahlquist KD, Fitzpatrick BG, Camacho ET, Entzminger SD, Wanner NC. 2015. Parameter

estimation for gene regulatory networks from microarray data: cold shock response in

Saccharomyces cerevisiae. Bulletin of Mathematical Biology 77(8):1457–1492

DOI 10.1007/s11538-015-0092-6.

Dahlquist KD, Fitzpatrick BG, Dionisio JDN, Anguiano NA, Carrillo JS, Morris TA,

Varshneya A, Williams NE, Johnson KG, Roque TAM, Horstmann KM, Samdarshi M,

Azinge CE, Klein BJ, O’Neil MJ. 2016a. GRNmap and GRNsight: open source software

for dynamical systems modeling and visualization of medium-scale gene regulatory

networks [v1; not peer reviewed]. F1000Research 5(ISCB Comm J):1618

DOI 10.7490/f1000research.1112518.1.

Dahlquist KD, Fitzpatrick BG, Dionisio JDN, Anguiano NA, Carrillo JS, Roque TAM,

Varshneya A, Samdarshi M, Azinge CE. 2016b. GRNmap and GRNsight: open source

software for dynamical systems modeling and visualization of medium-scale gene regulatory

networks [v1; not peer reviewed]. F1000Research 5(ISCB Comm J):1637

DOI 10.7490/f1000research.1112534.1.

Dionisio JDN, Dahlquist KD. 2008. Improving the computer science in bioinformatics through

open source pedagogy. ACM SIGCSE Bulletin 40(2):115–119 DOI 10.1145/1383602.1383648.

Franz M, Lopes CT, Huck G, Dong Y, Sumer O, Bader GD. 2016. Cytoscape.js: a graph theory

library for visualisation and analysis. Bioinformatics 32(2):309–311

DOI 10.1093/bioinformatics/btv557.

Gostner R, Baldacci B, Morine MJ, Priami C. 2014. Graphical modeling tools for systems biology.

ACM Computing Surveys 47(2):16 DOI 10.1145/2633461.

Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD, Danford TW, Hannett NM,

Tagne J-B, Reynolds DB, Yoo J, Jennings EG, Zeitlinger J, Pokholok DK, Kellis M, Rolfe PA,

Takusagawa KT, Lander ES, Gifford DK, Fraenkel E, Young RA. 2004. Transcriptional

regulatory code of a eukaryotic genome. Nature 431(7004):99–104 DOI 10.1038/nature02800.

Dahlquist et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.85 22/24

http://dx.doi.org/10.1101/gad.1389306
http://dx.doi.org/10.1109/TVCG.2011.185
http://dx.doi.org/10.1093/nar/gkq553
http://dx.doi.org/10.1128/MCB.10.3.887
http://dx.doi.org/10.1007/s11538-015-0092-6
http://dx.doi.org/10.7490/f1000research.1112518.1
http://dx.doi.org/10.7490/f1000research.1112534.1
http://dx.doi.org/10.1145/1383602.1383648
http://dx.doi.org/10.1093/bioinformatics/btv557
http://dx.doi.org/10.1145/2633461
http://dx.doi.org/10.1038/nature02800
http://dx.doi.org/10.7717/peerj-cs.85
https://peerj.com/computer-science/


Ison J, Rapacki K, Ménager H, Kalaš M, Rydza E, Chmura P, Anthon C, Beard N,

Berka K, Bolser D, Booth T, Bretaudeau A, Brezovsky J, Casadio R, Cesareni G,

Coppens F, Cornell M, Cuccuru G, Davidsen K, Vedova GD, Dogan T, Doppelt-Azeroual O,

Emery L, Gasteiger E, Gatter T, Goldberg T, Grosjean M, Grüning B, Helmer-Citterich M,

Ienasescu H, Ioannidis V, Jespersen MC, Jimenez R, Juty N, Juvan P, Koch M,

Laibe C, Li J-W, Licata L, Mareuil F, Mičeti�c I, Friborg RM, Moretti S, Morris C,

Möller S, Nenadic A, Peterson H, Profiti G, Rice P, Romano P, Roncaglia P, Saidi R,

Schafferhans A, Schwämmle V, Smith C, Sperotto MM, Stockinger H, Va�reková RS,

Tosatto SCE, de la Torre V, Uva P, Via A, Yachdav G, Zambelli F, Vriend G, Rost B,

Parkinson H, Løngreen P, Brunak S. 2016. Tools and data services registry: a community effort

to document bioinformatics resources. Nucleic Acids Research 44(D1):D38–D47

DOI 10.1093/nar/gkv1116.

Lawlor B, Walsh P. 2015. Engineering bioinformatics: building reliability, performance and

productivity into bioinformatics software. Bioengineered 6(4):193–203

DOI 10.1080/21655979.2015.1050162.

Lee TI, Rinaldi NJ, Robert F, Odom DT, Bar-Joseph Z, Gerber GK, Hannett NM, Harbison CT,

Thompson CM, Simon I, Zeitlinger J, Jennings EG, Murray HL, Gordon DB, Ren B,

Wyrick JJ, Tagne J-B, Volkert TL, Fraenkel E, Gifford DK, Young RA. 2002. Transcriptional

regulatory networks in Saccharomyces cerevisiae. Science 298(5594):799–804

DOI 10.1126/science.1075090.

Martin RC. 2008. Clean Code: A Handbook of Agile Software Craftsmanship. Upper Saddle River:

Prentice Hall.

McQuilton P, Gonzalez-Beltran A, Rocca-Serra P, ThurstonM, Lister A, Maguire E, Sansone S-A.

2016. BioSharing: curated and crowd-sourced metadata standards, databases and data policies

in the life sciences. Database: Journal of Biological Databases and Curation 2016:baw075

DOI 10.1093/database/baw075.

Miyake T, Reese J, Loch CM, Auble DT, Li R. 2004. Genome-wide analysis of ARS (autonomously

replicating sequence) binding factor 1 (Abf1p)-mediated transcriptional regulation in

Saccharomyces cerevisiae. Journal of Biological Chemistry 279(33):34865–34872

DOI 10.1074/jbc.M405156200.

Ni L, Bruce C, Hart C, Leigh-Bell J, Gelperin D, Umansky L, Gerstein MB, Snyder M. 2009.

Dynamic and complex transcription factor binding during an inducible response in yeast.

Genes & Development 23(11):1351–1363 DOI 10.1101/gad.1781909.

Nielsen J. 1993. Usability Engineering. Boston: Academic Press.

Norman DA. 2013. The Design of Everyday Things. New York: Basic Books.

Pavlopoulos GA, Malliarakis D, Papanikolaou N, Theodosiou T, Enright AJ, Iliopoulos I.

2015. Visualizing genome and systems biology: technologies, tools, implementation

techniques and trends, past, present and future. GigaScience 4(1):38

DOI 10.1186/s13742-015-0077-2.

Prli�c A, Procter JB. 2012. Ten simple rules for the open development of scientific software.

PLoS Computational Biology 8(12):e1002802 DOI 10.1371/journal.pcbi.1002802.

Raymond ES. 1999. The Cathedral & the Bazaar: Musings on Linux and Open Source by an

Accidental Revolutionary. Beijing: O’Reilly.

Saito R, Smoot ME, Ono K, Ruscheinski J, Wang P-L, Lotia S, Pico AR, Bader GD, Ideker T.

2012. A travel guide to Cytoscape plugins. Nature Methods 9(11):1069–1076

DOI 10.1038/nmeth.2212.

Dahlquist et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.85 23/24

http://dx.doi.org/10.1093/nar/gkv1116
http://dx.doi.org/10.1080/21655979.2015.1050162
http://dx.doi.org/10.1126/science.1075090
http://dx.doi.org/10.1093/database/baw075
http://dx.doi.org/10.1074/jbc.M405156200
http://dx.doi.org/10.1101/gad.1781909
http://dx.doi.org/10.1186/s13742-015-0077-2
http://dx.doi.org/10.1371/journal.pcbi.1002802
http://dx.doi.org/10.1038/nmeth.2212
http://dx.doi.org/10.7717/peerj-cs.85
https://peerj.com/computer-science/


Salomonis N, Hanspers K, Zambon AC, Vranizan K, Lawlor SC, Dahlquist KD, Doniger SW,

Stuart J, Conklin BR, Pico AR. 2007. GenMAPP 2: new features and resources for pathway

analysis. BMC Bioinformatics 8(1):217 DOI 10.1186/1471-2105-8-217.

Schade B, Jansen G, Whiteway M, Entian KD, Thomas DY. 2004. Cold adaptation in budding

yeast. Molecular Biology of the Cell 15(12):5492–5502 DOI 10.1091/mbc.E04-03-0167.

Schultheiss SJ. 2011. Ten simple rules for providing a scientific Web resource. PLoS Computational

Biology 7(5):e1001126 DOI 10.1371/journal.pcbi.1001126.

Schultheiss SJ, Münch M-C, Andreeva GD, Rätsch G. 2011. Persistence and

availability of web services in computational biology. PLoS ONE 6(9):e24914

DOI 10.1371/journal.pone.0024914.

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B,

Ideker T. 2003. Cytoscape: a software environment for integrated models of biomolecular

interaction networks. Genome Research 13(11):2498–2504 DOI 10.1101/gr.1239303.

Shneiderman B, Plaisant C, Cohen M, Jacobs SM, Elmqvist N, Diakopoulos N. 2016. Designing

the User Interface: Strategies for Effective Human-Computer Interaction. Hoboken: Pearson.

Shore D, Nasmyth K. 1987. Purification and cloning of a DNA binding protein from yeast

that binds to both silencer and activator elements. Cell 51(5):721–732

DOI 10.1016/0092-8674(87)90095-X.

Smoot ME, Ono K, Ruscheinski J, Wang P-L, Ideker T. 2011. Cytoscape 2.8: new features

for data integration and network visualization. Bioinformatics 27(3):431–432

DOI 10.1093/bioinformatics/btq675.

Teixeira MC, Monteiro PT, Guerreiro JF, Gonçalves JP, Mira NP, dos Santos SC, Cabrito TR,

Palma M, Costa C, Francisco AP, Madeira SC, Oliveira AL, Freitas AT, Sá-Correia I. 2014.

The YEASTRACT database: an upgraded information system for the analysis of gene and

genomic transcription regulation in Saccharomyces cerevisiae. Nucleic Acids Research 42(D1):

D161–D166 DOI 10.1093/nar/gkt1015.

Tufte ER. 2001. The Visual Display of Quantitative Information. Cheshire: Graphics Press.

Veretnik S, Fink JL, Bourne PE. 2008. Computational biology resources lack persistence and

usability. PLoS Computational Biology 4(7):e1000136 DOI 10.1371/journal.pcbi.1000136.

Wilkinson MD, Dumontier M, Aalbersberg IJJ, Appleton G, Axton M, Baak A, Blomberg N,

Boiten J-W, da Silva Santos LB, Bourne PE, Bouwman J, Brookes AJ, Clark T, Crosas M,

Dillo I, Dumon O, Edmunds S, Evelo CT, Finkers R, Gonzalez-Beltran A, Gray AJG, Groth P,

Goble C, Grethe JS, Heringa J, ’t Hoen PAC, Hooft R, Kuhn T, Kok R, Kok J, Lusher SJ,

Martone ME, Mons A, Packer AL, Persson B, Rocca-Serra P, Roos M, van Schaik R,

Sansone S-A, Schultes E, Sengstag T, Slater T, Strawn G, Swertz MA, Thompson M,

van der Lei J, van Mulligen E, Velterop J, Waagmeester A, Wittenburg P, Wolstencroft K,

Zhao J, Mons B. 2016. The FAIR Guiding Principles for scientific data management and

stewardship. Scientific Data 3:160018 DOI 10.1038/sdata.2016.18.

Wilson G, Aruliah DA, Brown CT, Chue Hong NP, Davis M, Guy RT, Haddock SHD, Huff KD,

Mitchell IM, Plumbley MD, Waugh B, White EP, Wilson P. 2014. Best practices for scientific

computing. PLoS Biology 12(1):e1001745 DOI 10.1371/journal.pbio.1001745.

Yachdav G, Goldberg T, Wilzbach S, Dao D, Shih I, Choudhary S, Crouch S, Franz M, Garcı́a A,

Garcı́a LJ, Grüning BA, Inupakutika D, Sillitoe I, Thanki AS, Vieira B, Villaveces JM,

Schneider MV, Lewis S, Pettifer S, Rost B, Corpas M. 2015. Anatomy of BioJS, an open source

community for the life sciences. eLife 4:e07009 DOI 10.7554/eLife.07009.

Dahlquist et al. (2016), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.85 24/24

http://dx.doi.org/10.1186/1471-2105-8-217
http://dx.doi.org/10.1091/mbc.E04-03-0167
http://dx.doi.org/10.1371/journal.pcbi.1001126
http://dx.doi.org/10.1371/journal.pone.0024914
http://dx.doi.org/10.1101/gr.1239303
http://dx.doi.org/10.1016/0092-8674(87)90095-X
http://dx.doi.org/10.1093/bioinformatics/btq675
http://dx.doi.org/10.1093/nar/gkt1015
http://dx.doi.org/10.1371/journal.pcbi.1000136
http://dx.doi.org/10.1038/sdata.2016.18
http://dx.doi.org/10.1371/journal.pbio.1001745
http://dx.doi.org/10.7554/eLife.07009
http://dx.doi.org/10.7717/peerj-cs.85
https://peerj.com/computer-science/

	GRNsight: a web application and service for visualizing models of small- to medium-scale gene regulatory networks
	Introduction
	Materials and Methods
	Results and Discussion
	Conclusions
	flink5
	References


