
Dependency management bots in open-source systems -
prevalence and adoption
Linda Erlenhov Corresp., 1 , Francisco Gomes de Oliveira Neto 2 , Philipp Leitner 1

1 Department of Computer Science and Engineering, Chalmers University of Technology, Gothenburg, Sweden
2 Department of Computer Science and Engineering, University of Gothenburg, Gothenburg, Sweden

Corresponding Author: Linda Erlenhov
Email address: linda.erlenhov@chalmers.se

Bots have become active contributors in maintaining open-source repositories. However,
the definitions of bot activity in open-source software vary from a more lenient stance
encompassing every non-human contributions versus frameworks that cover contributions
from tools that have autonomy or human- like traits (i.e., Devbots). Understanding which
of those definitions are being used is essential to enable (i) reliable sampling of bots and
(ii) fair comparison of their practical impact in, e.g., developers’ productivity. This paper
reports on an empirical study composed of both quantitative and qualitative analysis of bot
activity. By analysing those two bot definitions in an existing dataset of bot commits , we
see that only 10 out of 54 listed tools (mainly dependency management) comply with the
characteristics of Devbots. Moreover, five of those Devbots have similar patterns of
contributions over 93 projects, such as similar proportions of merged pull-requests and
days until issues are closed. Our analysis also reveals that most projects (77%) experiment
with more than one bot before deciding to adopt or switch between bots. In fact, a
thematic analysis of developers’ comments in those projects reveal factors driving the
discussions about Devbot adoption or removal, such as the impact of the generated noise
and the needed adaptation in development practices within the project.

PeerJ Comput. Sci. reviewing PDF | (CS-2021:06:62623:1:1:NEW 15 Nov 2021)

Manuscript to be reviewedComputer Science



Dependency Management Bots in1

Open-Source Systems - Prevalence and2

Adoption3

Linda Erlenhov, Francisco Gomes de Oliveira Neto, and Philipp Leitner4

Software Engineering Division, Chalmers | University of Gothenburg, Gothenburg,5

Sweden6

Corresponding author:7

Linda Erlenhov8

Email address: linda.erlenhov@chalmers.se9

ABSTRACT10

Bots have become active contributors in maintaining open-source repositories. However, the definitions

of bot activity in open-source software vary from a more lenient stance encompassing every non-human

contributions versus frameworks that cover contributions from tools that have autonomy or human-like

traits (i.e., Devbots). Understanding which of those definitions are being used is essential to enable (i)

reliable sampling of bots and (ii) fair comparison of their practical impact in, e.g., developers’ productivity.

This paper reports on an empirical study composed of both quantitative and qualitative analysis of bot

activity. By analysing those two bot definitions in an existing dataset of bot commits, we see that only

10 out of 54 listed tools (mainly dependency management) comply with the characteristics of Devbots.

Moreover, five of those Devbots have similar patterns of contributions over 93 projects, such as similar

proportions of merged pull-requests and days until issues are closed. Our analysis also reveals that most

projects (77%) experiment with more than one bot before deciding to adopt or switch between bots. In

fact, a thematic analysis of developers’ comments in those projects reveal factors driving the discussions

about Devbot adoption or removal, such as the impact of the generated noise and the needed adaptation

in development practices within the project.

11

12

13

14

15

16

17

18

19

20

21

22

23

24

1 INTRODUCTION25

Bots are becoming prevalent tools in software development environments (Lebeuf et al., 2018; Erlenhov26

et al., 2020), particularly when bots are supportive of costly software maintenance tasks involving, e.g.,27

creating pull requests (PRs) (Wessel et al., 2020a), code refactoring (Wyrich and Bogner, 2019) or code28

contributions over time (Wessel et al., 2018). Consequently, various studies investigate the impact of29

adopting a bot in a software development process. Recent work showed that the adoption of bots can have30

a significant impact on overall project metrics, such as number of PRs created and closed before and after31

a bot was introduced (Wessel et al., 2020a).32

The underlying challenge such studies face is the difficulty of determining what exactly constitutes a33

“bot”, and to distinguish bots from automation in general (a topic that has been studied in the software34

engineering community at least since the early 2000’s1). Two different mindsets appear to be prevalent in35

existing studies: whereas researchers working on taxonomies or definitions often stress the difference to36

automation tools, e.g., by requiring bots to have, for example, human-like traits, such as a name (Erlenhov37

et al., 2020), language (Lebeuf et al., 2019), or purpose (Erlenhov et al., 2019), more quantitative studies38

often take a relatively all-encompassing stance where every contribution that is not made directly by a39

human developer is considered a bot contribution (Dey et al., 2020b).40

Depending on the study goal, such a wide definition may be exactly what is required. For example,41

Dey et al. (2020b) have proposed an approach to identify bot commits so as to exclude them from studies42

that target human behaviour. For such a study, whether the author of an excluded contribution is a bot or43

“just” an automation tool is largely irrelevant. However, for work that specifically targets the study of bot44

1For example, the first edition of the Automated Software Engineering conference was held in 1997.

PeerJ Comput. Sci. reviewing PDF | (CS-2021:06:62623:1:1:NEW 15 Nov 2021)

Manuscript to be reviewedComputer Science



contributions and their effect on human developers, it seems central to more clearly delineate between45

tools that actually exhibit bot-like characteristics (according to existing taxonomies and classification46

frameworks) and other automation tools that do not.47

Therefore, our goal is to (i) investigate some of the approaches above that classify bots and then48

(ii) verify whether a clearer distinction between bots and automation tools provides insights about the49

impact of bot activity in a project. Particularly, we leverage widely used impact measures such as PRs50

and comments to investigate the activity generated by one or more bots in the same project and also51

the interaction between humans and those bots (Wessel et al., 2020a; Wessel et al., 2018). Our general52

hypothesis is that a more refined approach to define and sample bots enables consistent comparison of53

one or more bots in maintaining the same project and reveals insights about bot activity (e.g., discussion54

threads between humans and bots) that are tangential to the expected benefits that any automation tool55

brings (e.g., creating more PRs and commits).56

We investigate that hypothesis in an exploratory empirical study with open-source projects following57

a multi-method methodology composed of both quantitative and qualitative analysis of bot activity. In58

order to sample bots we rely on two existing studies that characterise bots: the BIMAN dataset which59

includes bot commits produced automatically by the BIMAN approach proposed by Dey et al. (2020b,a),60

and the bot users’ personas introduced in our own earlier work (Erlenhov et al., 2020), which focuses61

explicitly on how practitioners distinguish bots from automation tools. Below, we summarise our research62

questions and findings:63

• RQ1 - How much of the dataset includes automation tools that are, according to a more strict64

definition, not bots? As a first step, we qualitatively assess a sample of tools from the BIMAN65

dataset (Dey et al., 2020a) through the lense of bot users’ personas (Erlenhov et al., 2020). We66

observe that only 10 of 54 (18.5%) analysed tools would qualify as bots according to our less lenient67

categorisation (they would be considered automation tools without human-like characteristics).68

Further, with one exception, these bots were all dependency management bots.69

• RQ2 - Do similar dependency management bots generate contrasting patterns of activity?70

Are their pull requests often merged by developers? How often do projects use multiple71

dependency management bots? Based on RQ1 results, we further analyse five dependency72

management bots from the dataset, and mine their activity (created pull requests and corresponding73

discussion threads) in 93 projects to perform a temporal analysis comparing patterns of bot activity74

in those projects. We observe that all five analysed bots exhibit similar behavioural patterns.75

Further, we observe that many projects experiment with multiple dependency management bots and76

frequently switch between them.77

• RQ3 - What factors guide the discussions about adopting, switching, discarding or using78

dependency management bots in open-source software? Based on the temporal analysis from79

RQ2, we qualitatively investigated a subset of issues and PRs with discussions about the different80

features and behaviour of the bot, such as usability aspects that conflict with the project’s devel-81

opment praxis, or the increase/decrease in noise or trust introduced by the bot. Particularly, we82

map comments about adopting, discarding or replacing a bot to bot traits (e.g., convenience in83

handling multiple updates) and behaviour (e.g., intrusiveness/autonomy to source code changes).84

Our analysis reveals that open-soure software maintainers are hoping for improved software quality85

when adopting dependency management bots. Common problems discussed when adopting, using,86

discarding and switching between these bots are usability issues, such as difficulties to understand87

or explain how the bot works, or challenges related to noise that overloads the maintainers.88

The key contribution of this paper to the state of research is two-fold:89

• Firstly, our work shows that there currently is a dissonance between definitions of bots used by90

different authors and in different study contexts. Our results related to RQ1 indicate that even91

datasets such as BIMAN, which have explicitly been created to contain ”bot contributions”, may92

contain many tools that would not satisfy more strict delineations of what a bot is. This implies93

that future bot researchers should be explicit about what definition of ”bot” they are assuming, and94

ensure that the dataset they use (or their own data generation method) follows the same definition.95

2/21PeerJ Comput. Sci. reviewing PDF | (CS-2021:06:62623:1:1:NEW 15 Nov 2021)

Manuscript to be reviewedComputer Science



• Secondly, we conduct an empirical investigation (using a combination of quantitative and qualitative96

methods) on the subset of tools contained in the BIMAN dataset that are indeed classified as bots97

even following a more strict delineation. We show that these are mostly very similar (dependency98

management) tools, and provide insights on how and why developers adopt, discard, or switch99

between such bots.100

The remainder of the paper is structured as follows. In Section 2, we introduce related research on101

bots in software engineering. In Section 3, we provide a high-level view of our overall methodology,102

which is followed by a discussion of our main results relating to the three research questions in sections 4103

to 6. Based on these results, we summarise and provide a broader discussion of our findings (and their104

implications for software engineering research) in Section 7, in which we also discuss the threats to105

validity. Finally, we conclude the paper in Section 8.106

2 RELATED WORK107

Bots are the latest software engineering trend for how to best utilise the scarce resource “developer time”108

in software projects. However, the term itself is an umbrella term for several different types of tools used109

in software engineering. In order to classify these tools, several taxonomies have been presented. Lebeuf110

et al. (2019) presented an extensive, faceted taxonomy of software bots. Erlenhov et al. (2019) created a111

more compact taxonomy specifically focusing on bots in software development. A third taxonomy was112

proposed by Paikari and van der Hoek (2018), with a particular focus on chat bots in software engineering.113

The different taxonomies offer complementary views to classify and understand bots. For instance,114

Paikari and van der Hoek (2018) targets chatbots, thusm including many facets to classify different types115

of interaction and direction between the bot and a human. In contrast, Lebeuf et al. (2019) defines 27116

subfacets covering intrisic, environmental and interaction dimensions to classify bots. Moreover, all117

those taxonomies are faceted, which allows them to be expanded to accomodate new levels as the field118

of software bots evolve (Usman et al., 2017). Nonetheless, a limitation common to all three taxonomies119

is that they lack clear, minimal requirements that a tool would need to fulfil to be considered a bot. In120

a subsequent study, Erlenhov et al. (2020) turned the question around and investigated the developers’121

perception of bots as a concept, and asked what facets needed to be present in order for the developers122

to look at a tool as a bot. The authors categorised the tools by introducing three personas based on123

developers’ impressions, since there was not one definition that all developers could agree on. These124

personas each have a set of minimal requirements that needs to be fulfilled in order for them to recognise125

the tool as a bot - autonomy, chat and smartness. Each persona’s bots come with different problems and126

benefits, and affects the projects and its developers in different ways.127

Research in the last years has explored various different dimensions of software engineering where128

bots may assist developers, including the automated fixing of functional bugs (Urli et al., 2018), bug129

triaging (Wessel et al., 2019), creating performance tests (Okanović et al., 2020), or source code refactor-130

ing (Wyrich and Bogner, 2019). This proliferation of bots is slowly creating demand for coordination131

between bots in a project, which has recently started to receive attention by Wessel and Steinmacher132

(2020) through the design of a ”meta-bot”.133

134

2.1 Impact of Bot Adoption135

When it comes to adopting tools in the open-source software ecosystem Lamba et al. (2020) looked at136

how the usage of a number of tools spread by tracking badges from the projects main page. They found137

that social exposure, competition, and observability affect the adoption. In a recent paper by Wessel et al.138

(2021), the initial interview study revealed several adoption challenges such as discoverability issues139

and configuration issues. The study then continues to discuss noise and introduces a theory about how140

certain behaviours of a bot can be perceived as noise. Even though previous work often speculates that141

the adoption of bots can be transformative of software projects (Erlenhov et al., 2020), it is still an open142

research question how exactly bot adoption impacts projects. Previous work from Wessel et al. (2018)143

studied 44 open source projects on GitHub and their bot usage. They clustered bots based on what tasks144

the bot performed and looked at metrics such as number of commits and comments before and after the145

introduction of the bots. However, no significant change could be discerned. One reason for this may have146

been that this study did not sufficiently distinguish between different types of bots, which may be used147

3/21PeerJ Comput. Sci. reviewing PDF | (CS-2021:06:62623:1:1:NEW 15 Nov 2021)

Manuscript to be reviewedComputer Science



for very different purposes. Hence, follow-up research (Wessel et al., 2020a) focussed foremost on one148

specific type of bot, namely code coverage bots (1190 projects out of 1194), and found significant changes149

related to the communication amongst developers as well as a in the number of merged and non-merged150

PRs. This was subsequently investigated further in an interview study (Wessel et al., 2020b). These151

results, that less discussion is taking place, also is what was found by Cassee et al. (2020) when looking152

at how continuous integration impacted code reviews. Peng et al. (2018) studied how developers worked153

with Facebook mention bot. The study found that mention bots impact on the project was both positive in154

saved contributors’ effort in identifying proper reviewers but also negative as it created problems with155

unbalanced workload for some already more active contributors.156

157

2.2 Bot Identification158

Another area where bot categorisations are directly useful is in the (automated) study of developer159

activity. Software repository mining studies, such as the work published every year at the MSR confer-160

ence2, frequently struggle to distinguish between contributions of humans and bots (where the study goal161

often requires to only include human contributions). Different approaches have recently been proposed to162

automatically identify bot contributions (Golzadeh et al., 2021b; Dey et al., 2020b), also leading to the163

BIMAN dataset, i.e., a large dataset of bot contributions (Dey et al., 2020a) which we build upon in our164

work. One challenge with identifying bot contributions is the presence of ”mixed accounts” (Golzadeh165

et al., 2021a), i.e., accounts that are used by humans and bots in parallel. Mixed accounts require an166

identification of bot contributions on a the individual contribution level (rather than classifying entire167

accounts). Cassee et al. (2021) have shown that existing classification models are not suitable to reliably168

detect mixed accounts. In general, existing approaches are sufficient if the goal is to identify human169

contributions. However, as a foundation to study the bot contributions themselves (e.g., to assess bot170

impact), existing work lacks fidelity, in the sense that they do not distinguish between different types of171

automation tools and bots, nor between different types of bots.172

Our study directly connects to these earlier works. We use the categorisation model proposed in173

our earlier work (Erlenhov et al., 2020) to further investigate the BIMAN dataset (Dey et al., 2020a),174

particularly with regards to the question of how many of these automated contributions are actually175

“bots” in a stricter sense of the word. We further quantitatively as well as qualitatively investigate the176

(dependency management) bots we identified in the BIMAN dataset, further contributing to the discussion177

related to the impact of bot adoption on open-source projects.178

3 STUDY METHODOLOGY179

To address our study goal, we perform a multi-method study combining different elements. First we180

perform a qualitative assessment of the BIMAN dataset (Dey et al., 2020a) based on criteria for bot181

classification defined by practitioners (RQ1), followed by a quantitative analysis based on temporal data182

of the activity of five dependency management bots (RQ2). Lastly, we look closer at specific bot activity183

within projects by doing a qualitative, thematic analysis of the discussion threads related to bot adoption,184

discarding and switching. A high-level overview of our methodology can be found in figure 1.185

We first extract a complete list of unique tools from the BIMAN dataset, which we then rank by usage.186

The first author of this study then manually categorised the first 70 tools according to our own classification187

from earlier research (Erlenhov et al., 2020). Only 10 tools are classified as bots. Subsequently, we188

select five of those bots and sample 50 projects each that used the bot. For these, we use the GitHub API189

to extract all PRs and issues where the bot was involved (either as issue creator, commenter, or simply190

being mentioned). This leads to a large database of bot issues and PRs, which we then analyse both191

quantitatively and qualitatively. Finally, we select a subset of issues that include discussion threads about192

multiple bots in order to perform a qualitative analysis on the discussion between human contributors of193

the project.194

Since the data of each RQ feeds into the next, more detailed method information is provided directly in195

sections 4 to 6, such as the choice of dependency management bots and filtering of issues in our datasets.196

The data collected, and scripts used for analysis can be found in our replication package (Erlenhov et al.,197

2021).3198

2https://conf.researchr.org/home/msr-2021
3https://doi.org/10.5281/zenodo.5567370

4/21PeerJ Comput. Sci. reviewing PDF | (CS-2021:06:62623:1:1:NEW 15 Nov 2021)

Manuscript to be reviewedComputer Science



Scripted filtering 

for projects

BIMAN dataset 

RQ1

Distinct tools

Scripted filtering 

for tools

Manual
categorisation

Se
lec

tio
n 

of
 

fiv
e 

bo
ts

Mining GitHub for 
activity

Projects using any of 
the five bots

RQ2 RQ3

Database of
issues and PR’s

Quantitative 
analysis

Qualitative
analysis

Figure 1. Overview of our methodology, including the different sources for data collection and their

connection to each research question.

4 DISTINGUISHING BOTS AND AUTOMATION TOOLS199

We now discuss our first research question, an analysis of whether the existing BIMAN dataset of bots200

aligns with the bot characteristics listed by practitioners in our previous work. Specifically, we are201

interested how much of the dataset includes pure automation tools.202

4.1 Data Collection203

We started from the BIMAN dataset which includes over 13 million commits from 461 authors. We then204

extracted the authors and sorted them by the number of GitHub organisations adopting each tool as a205

proxy of popularity or importance. However, initial analysis showed that the dataset contained duplicate206

tools (the same tool acting under multiple identities). We resorted to manually merging identities of the207

first 70 tools in the ordered list, which after merging, produced a final table consisting of 54 unique tools208

associated with 89 different authors.209

4.2 Analysis and Interpretation Approach210

We analysed these 54 tools manually using the flow-chart to characterise bots proposed in our previous211

work where we conducted an interview study and a survey with practitioners (Erlenhov et al., 2020). The212

flow-chart contains five decision blocks with the goal of deciding if the tool would be considered a bot by213

any of the three personas modelled in the study: Charlie (a bot communicates via voice or chat), Sam214

(a bot does something ”smart”), and Alex (a bot works autonomously). Furthermore, the classification215

implicitly assumed that bots would need to be used for a software engineering task.216

For our categorisation, we adapted this decision model slightly (see Figure 2). We added a decision to217

first check if the tool was actually used for a software engineering task. Further, since the goal of our218

study is to decide if a tool is a bot or an automation tool, we were less interested in the specific persona219

and classified all types of bots simply as ”DevBots” with no further distinction.220

As the BIMAN dataset only contains commit data, we resorted to manually query additional informa-221

tion (GitHub user profiles, documentation, the tool’s external website, developer comments, etc.) to arrive222

5/21PeerJ Comput. Sci. reviewing PDF | (CS-2021:06:62623:1:1:NEW 15 Nov 2021)

Manuscript to be reviewedComputer Science



Not a bot

Text output in 

team communication 

channels?

Produces non-

trivial code snippets 

or analyses?

Integrated into 

existing systems?

Action is initiated by 

a human?
Chat or voice?

yes

yes

yes

yesno

no

no

no

yes

no

Used in dev

activities?

Not interesting

Is the automated 

tool considered a 

DevBot?
DevBot

no

yes1

2 3

4 5 6

Figure 2. Decision flow-chart. Adapted from (Erlenhov et al., 2020).

Figure 3. Example of a GitHub source used to classify the docker-library-bot tool.4The screen shows an

issue explaining what the tool does.

at a classification decision for each tool. Examples of additional information used in the classification can223

be found in figures 3 (GitHub) and 4 (tool’s external website).224

4.3 Results225

Following the flow-chart we began by investigating whether the tool was actually used in a software226

development related task ((1) in Figure 2). Not all tools passed this check – an example of a tool from the227

dataset that failed this criterion is fs-lms-test-bot. The tool updates repositories with a .learn-file 5 that228

contains metadata about the project and is added so that participants at a bootcamp style coding school229

4https://github.com/docker-library/docs/issues/1248
5https://learn.co/lessons/standard-files-in-all-curriculum-lessons

6/21PeerJ Comput. Sci. reviewing PDF | (CS-2021:06:62623:1:1:NEW 15 Nov 2021)

Manuscript to be reviewedComputer Science



Figure 4. Example of an external source used to classify the tools.6The screen shown is the investigated

tool’s webpage with a video that implicitly describes how the commits to GitHub are created.

can easily identify what type of repository they are looking at.230

Step (2) asks if a tool uses chat or voice. For most tools, this proved difficult to determine, and even231

for promising candidates (e.g., the JHipster bot7) we found that the part of the tool that produced the git232

commits that we were observing was unrelated to the chat bot. We concluded that, given our analysis data233

(git commits), this check is not of high value.234

Step (3) asks if the automated tool initiated by humans. One tool that was considered as automation235

tool rather than bot because of this check was the Bors bot8, which (despite its name), only becomes236

active when explicitly triggered by a human developer.237

In step (4), we investigated if the tool produces nontrivial code snippets or analysis? While clearly a238

judgement call, we did not consider the output of any tool in our sample to be sufficiently complex or239

”smart” in the spirit of the original classification model.240

Step (5) asks if the tool is integrated into existing systems. Examples of tools that failed this check241

is one of the numerous build helpers, whose only task is to update the code with release versions when242

someone explicitly initiates this9.243

Finally, the last check in step (6) asks if the tool creates text output in team communication channels.244

Similar to step 2, this proved difficult to determine, as we did not have access to relevant team communi-245

cation channels. One tool that did emerge as a bot after this check is the Whitesource bot10, which creates246

one initial commit and after that communicates via issues.247

On the final list of 54 tools, only 10 tools were (clearly) judged as bots according to the persona-248

oriented classification model. Table 1 lists these bots and a sample of tools that were judged as automation249

tools. We conclude the following from this classification exercise:250

• Only a small fraction (10 of 54, or 18.5%) of analysed tools clearly qualify as “bots” according to a251

stricter definition. A large majority are, often fairly conservative, automation tools that have been252

6https://www.siteleaf.com/blog/connecting-github/
7https://github.com/jhipster/jhipster-bot
8https://bors.tech/
9https://github.com/docker-library/docs/issues/1248

10https://github.com/apps/whitesource-bolt-for-github

7/21PeerJ Comput. Sci. reviewing PDF | (CS-2021:06:62623:1:1:NEW 15 Nov 2021)

Manuscript to be reviewedComputer Science



Table 1. Identified bots and a sample of tools evaluated as automation tools. Numbers refer to

checkpoints in the flow-chart in figure 2. Question marks represent checkpoints that we could not answer

due to limited information about the corresponding tool.

Name (1) (2) (3) (4) (5) (6) Evaluation

Whitesource-bot-for-Github Yes No No No No Yes Bot

Greenkeeper Yes No No No Yes — Bot

Dependabot Yes No No No Yes — Bot

Renovate bot Yes No No No Yes — Bot

Pyup bot Yes No No No Yes — Bot

imgbot Yes No No No Yes — Bot

DPE bot Yes No No No Yes — Bot

Snyk bot Yes No No No Yes — Bot

Depfu Yes No No No Yes — Bot

Scala Steward Yes No No No Yes – Bot

fs-lms-test-bot No — — — — — Not related

Bors Yes ? Yes — — — Automation

docker-library-bot Yes No No No Yes — Automation

Siteleaf Yes No No No No No Automation

JHipster bot Yes ? — — — — Undetermined

. . . . . . . . . . . . . . . . . . . . . . . .

re-branded as bots, and exhibit little qualitative difference to the kinds of scripts that developers253

have used for a long time as part of their development, build, and deployment processes.254

• Interestingly, this includes many tools that are explicitly called “bots” as part of their names, e.g.,255

the Bors bot or docker-library-bot. Hence, researchers that are interested in investigating bots in a256

stricter sense should not rely on tool names as primary way to identify bots.257

• It is evident that the tools that we actually classified as Devbots (e.g., dependabot, renovate,258

or greenkeeper) are very similar. More specifically, nine out of these ten bots are dependency259

management bots on some form. In one case - Snyk and Greenkeeper - one bot was acquired by the260

other in 2020.11
261

5 ACTIVITY ANALYSIS OF DEPENDENCY MANAGEMENT BOTS262

Based on these findings, we now turn towards a more qualitative investigation of the (dependency263

management) bots we have identified (RQ2).264

5.1 Data collection265

We collected data on a subset of the bots identified in Section 1. Specifically, we selected Dependabot,266

Greenkeeper, Renovate, Depfu, and Pyup for deeper quantitative analysis. For each bot, we first compiled267

a list of all projects in the BIMAN dataset (Dey et al., 2020a) that had at least one commit by the268

selected bot. We sorted these project lists by GitHub watchers, and the first author manually sampled269

the highest ranked 50 projects for each bot that matched four inclusion criteria. First, the project needed270

to be a project with actual source code and not a data repository. An example of an excluded project is271

the remoteintech/remote-jobs project which is a list of companies that support remote work.272

Second, each project had to have more than one issue or PR related to the bot when searching in the273

issues/PR tab on GitHub. Third, the project had to not already been included under another name.274

Examples of those projects are kadirahq/paper-ui, storybooks/react-storybook and275

storybookjs/storybook, which took up three positions in the ranked list, but they all point to the276

same project. Lastly, the project’s main language had to be English since the comments from selected277

projects are used for our qualitative analysis in RQ3.278

We observed that the resulting lists of bot-using projects were overlapping, leading to 232 unique279

projects (from a theoretical maximum of 5∗50 projects). We consequently downloaded all issue and PR280

data since the launch of the project until 2021-03-31 for all issues where at least one of our bots was281

mentioned in the issue text or comments, or where at least one of the bots was the author of at least one282

issue or comment. We downloaded (i) all issue information, (ii) all comments on these issues, and (iii)283

all merge events related to these issues via the GitHub REST API, and stored the resulting JSON data284

11https://snyk.io/blog/snyk-partners-with-greenkeeper-to-help-developers-proactively-

maintain-dependency-health/

8/21PeerJ Comput. Sci. reviewing PDF | (CS-2021:06:62623:1:1:NEW 15 Nov 2021)

Manuscript to be reviewedComputer Science



in a MongoDB database for latter processing and analysis. In a last round of filtering we removed all285

projects that had fewer than 100 issues or PRs, resulting in 93 unique projects. It should be noted that,286

even though we specifically selected 50 projects for each bot, concrete projects often used a multitude of287

the study subject bots at different points in the project lifetime.288

Table 2. Number of issues, comments and projects for each bot. There are 93 unique projects in our

dataset, but many projects have used multiple bots at some point.

Issue Author Projects Issues Comments Period Years

Dependabot 76 21345 13763 2017 – 2021 4

Depfu 16 1346 1032 2017 – 2021 4

Greenkeeper 34 3015 2273 2015 – 2020 5

Human 76 1168 30481 2013 – 2021 8

Pyup 22 3075 1690 2016 – 2021 5

Renovatebot 39 12209 2825 2017 – 2021 4

Total 93 42158 52064 — —

Table 2 summarises our sample of bot activity in terms of the number of issues/PRs and comments289

created by bots or human contributors, as well as the time period comprising the data. In other words, we290

refer to bot activity as any issue, PR or comment where one of the selected bot was either the author or291

was mentioned.292

5.2 Analysis and Interpretation Approach293

In order to compare the activity of different bots, we analyse the issues or PRs authored by those bots294

in the selected projects over the years. This allows us to see increasing/decreasing trends of bots usage.295

Additionally, we analyse how human contributors react to this activity by verifying the proportion of296

merged PRs that were created by bots and a survival analysis of the issues created by bots. A survival297

analysis is often used in Biology to investigate the expected duration of time until an event occurs (Kaplan298

and Meier, 1958) and, has been used in similar types of analysis in Software Engineering (Lin et al., 2017;299

Samoladas et al., 2010). Our survival analysis measures the number of days until an issue is closed. We300

compare the expected duration of PRs created by bots and those created by humans.301

Lastly, we analyse overlapping bot activity by comparing (i) projects using multiple bots, as well as302

(ii) how the bot activity overlap over time. Particularly, we filter projects in which one or more issues303

were created by two or more bots over the period of, at least, one month.304

5.3 Results305

Figure 5 shows the number of issues and PRs created by each bot over the years. Depfu, greenkeeper and306

pyup have a similar trend beginning with an increase in usage and following a slow decrease in its usage.307

In parallel, both dependabot and renovatebot have an increasing trend in activity. Most of the issues in our308

dataset were created by dependabot or renovatebot, indicating a prevalence of such bots among the 93309

projects in our dataset.310

Figure 6 shows the proportion of merged PRs created by each author. Note that roughly half of the PRs311

created by humans were merged into the projects. This is surprising as literature reports that PRs created312

by bots are less likely to be merged than those created humans, whereas here they are the same (Wyrich313

et al., 2021). However, recall that our data collection strategy entailed downloading only issues where314

bots were involved in some way. Hence, even the human-created issues are not necessarily representative315

of all issues, as they have still been sampled as issues that somehow involve bot activity (even if not as316

issue creator). Renovatebot was the only author in which most of the PRs were actually merged (76%),317

whereas depfu had the lowest percentage of merged PRs (17%).318

We also compare the status of the issues created by different bots or humans to check whether there319

are differences in how long it takes to close those issues. Figure 7 shows a survival curve of the created320

issues. A survival curve reveals the probability p(S) that an event S occurs (i.e., closing an issue) over a321

period of time. For consistency, we only consider issues that: (i) lasted at least one day, hence avoiding322

issues closed shortly after creation (e.g., auto-merge dependency updates), (ii) issues created before the323

date 2021-03-31, or (iii) closed under 120 days in our dataset.324

9/21PeerJ Comput. Sci. reviewing PDF | (CS-2021:06:62623:1:1:NEW 15 Nov 2021)

Manuscript to be reviewedComputer Science



Renovate

Pyup

Greenkeeper

Depfu

Dependabot

2
0

1
5

-0
9

2
0

1
5

-1
2

2
0

1
6

-0
3

2
0

1
6

-0
6

2
0

1
6

-0
9

2
0

1
6

-1
2

2
0

1
7

-0
3

2
0

1
7

-0
6

2
0

1
7

-0
9

2
0

1
7

-1
2

2
0

1
8

-0
3

2
0

1
8

-0
6

2
0

1
8

-0
9

2
0

1
8

-1
2

2
0

1
9

-0
3

2
0

1
9

-0
6

2
0

1
9

-0
9

2
0

1
9

-1
2

2
0

2
0

-0
3

2
0

2
0

-0
6

2
0

2
0

-0
9

2
0

2
0

-1
2

2
0

2
1

-0
3

2
0

2
1

-0
6

0

250

500

750

1000

0

20

40

60

0

50

100

0

50

100

150

0

200

400

600

Year-Month

N
u
m

. 
o
f 
Is

s
u
e
s

Author Dependabot Greenkeeper Depfu Pyup Renovate

Issues created by each bot over time

Figure 5. Number of issues or PR created by each bot throughout the years in our dataset. Note that the

y-axis have different scales to make it easier to compare trends per bot.

We use a Kaplan-Meier (KM) curve which is a non-parametric statistics to estimate the survival325

function based on the time period until an event occurs (Kaplan and Meier, 1958). One of the advantages326

of the KM is to adjust the estimations for censored events, which occur when information about the327

analysed subject is unknown, due to, e.g., missing information about the subject in the dataset. In our case,328

censored events are issues that remain open after our limit date (i.e., right-censored)12. For instance, we329

consider censored events those issues that were not closed but were created before within 120 days before330

our limit date (i.e., our dataset does not include information on whether the issue was indeed closed).331

For all issue authors, we see the same pattern in which the issues are most likely to be closed within332

5–6 days from the date in which they are created. Dependabot and renovatebot have more censored events333

in our dataset because they are also the bots with more recent activity, such that a large number of issues334

were opened around our limit date. Particularly, there is not a clear difference in the number of days in335

which bot or human created issues are closed.336

Another interesting question our data can answer is to what extent projects use multiple dependency337

management bots in an overlapping manner (i.e., at the same time). Intuitively, since the basic functionality338

of the bots is very similar, this should not be a common occurrence. However, when projects switch339

between bots, a certain overlap may occur.340

Table 3 shows the number of projects that use one or more bots, along with the number of months with341

overlapping bot activity. It is interesting to observe that most of the projects used two of our investigated342

bots (58%) even though the number of months in which the bots actually work in parallel, for those343

projects, is expectedly small (13%—242/1783). In other words, the projects used 2 bots at the same for344

13% of their months. In contrast, the few projects that use four bots are using two or more bots in parallel345

a majority of the time (56%—120/213). We did not see any project that used all of the 5 investigated346

bots.347

The descriptive statistics in Table 3 reveal high variance per project, such that there is great disparity348

between mean and median. In other words, the overlapping activity varies per project and follow349

12Left-censored events are those in which data about the first instance of the event, e.g., creation of an issue, is missing. We have

no left-censored events in our dataset.

10/21PeerJ Comput. Sci. reviewing PDF | (CS-2021:06:62623:1:1:NEW 15 Nov 2021)

Manuscript to be reviewedComputer Science



10944 

( 51.3 %)

10401 

( 48.7 %)

1112 

( 82.6 %)

234 

( 17.4 %)

1696 

( 56.3 %)

1319 

( 43.7 %)

550 

( 47.1 %)

618 

( 52.9 %)

1932 

( 62.8 %)

1143 

( 37.2 %)

2950 

( 24.2 %)

9259 

( 75.8 %)

0.00

0.25

0.50

0.75

1.00

Renovate Human Dependabot Greenkeeper Pyup Depfu

PR Author

P
ro

p
o
rt

io
n
 o

f 
P

R
s

PR Status: Merged Non-merged

Percentage of merged PRs per Author

Figure 6. Proportion of merged PRs created by each author in our dataset.

+
++
++++++++++++++++++++++++++++++ +++ +++ + ++

+ ++ + + +

+

+
+++ +++ + + + +

Human Pyup Renovate

Dependabot Depfu Greenkeeper

0 10 20 30 40 50 60 70 80 90 100 110 120 0 10 20 30 40 50 60 70 80 90 100 110 120 0 10 20 30 40 50 60 70 80 90 100 110 120

0 10 20 30 40 50 60 70 80 90 100 110 120 0 10 20 30 40 50 60 70 80 90 100 110 120 0 10 20 30 40 50 60 70 80 90 100 110 120

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Time (days)

S
u
rv

iv
a
l 
p
ro

b
a
b
ili

ty
 -

 p
(S

)

Strata
+

+

+

+

+

+

Dependabot

Depfu

Greenkeeper

Human

Pyup

Renovate

Figure 7. A survival curve for issues created by different authors in our dataset. The curve indicates the

probability (y-axis) of an issue being closed after a number of days (x-axis). The ticks in the curve

represent censored events, which are issues that were not closed until our limit date (March 31st, 2021).

The dashed line shows the median (p = 0.5) number of days until an issue is closed.

contrasting patterns. We selected a few projects with varied patterns of overlapping bot activity and350

present them in Figure 8.351

Three of the selected projects indicate that the overlap is specific to transition months. This352

pattern suggests that developers try out different bots months prior to switching between them (see353

apollographql/apollo-client, isomorphic-git/isomorphic-git and syncforynab/-354

fintech-to-ynab). Another pattern is a multitude of parallel bot activity, as shown by YetiForce-355

Company/YetiForceCRM in which 2 or 3 bots are constantly being used in parallel throughout years356

of development.357

Since we do not have access to interview the projects’ developers, we cannot analyse the factors358

behind those different patterns. Nonetheless, the patterns reveal a risk when choosing specific dates and359

counting month intervals before and after bot contributions. The risk is that static timeframes can hide360

11/21PeerJ Comput. Sci. reviewing PDF | (CS-2021:06:62623:1:1:NEW 15 Nov 2021)

Manuscript to be reviewedComputer Science



Table 3. Number of projects that use one or more bots. For each row, we add the number of months in

which more than one bot authored an issue or PR in the project. We also present mean, median and

standard deviation (SD) for overlapping months per project.

Num. of Months Summary on Overlapping Months

Bots Used Projects No Overlap Overlap Mean Median SD

1 21 610 — 0.0 0.0 0.0

2 54 1541 242 4.5 2.0 8.6

3 14 421 81 5.8 2.5 6.3

4 4 93 120 30.0 16.5 33.7

syncforynab/fintech-to-ynab YetiForceCompany/YetiForceCRM

apollographql/apollo-client isomorphic-git/isomorphic-git

2019 2020 2021 2019 2020 2021

2017 2018 2019 2020 2021 2018 2019 2020 2021

0

20

40

0

20

40

60

0

20

40

60

0.0

2.5

5.0

7.5

10.0

12.5

Year

N
u

m
b

e
r 

o
f 
is

s
u

e
s
 c

re
a

te
d

Author Dependabot Greenkeeper Depfu Pyup Renovate

Overlapping bot activity

Figure 8. Sample of projects with a variety of overlapping bot activity. Different projects have used bots

in parallel (e.g., YetiForceCompany), or switched among different bots over the years.

team learning effects from trying out similar bots before the chose timeframe, or miss on confounding361

effects of multiple bots being used in parallel within a static time frame.362

Our analysis of RQ2 verifies the proportion of activity from different dependency management bots,363

as well as how this activity is consumed by humans by, e.g., merging PRs or closing issues created by364

the bots. Overall, we did not detect major contrasting patterns or preferences between the investigated365

bots. That is, we have observed that the usage and contribution patterns of the investigated dependency366

management bots were largely similar. The main differences were that: (i) Dependabot and Renovate are367

more popular than the other bots and are increasingly being used by many projects, and (ii) Renovate has368

more merged issues (75% of merged PRs), whereas Depfu has the least number of merged PRS (17%).369

Moreover, our survival analysis reveals that most issues are closed before 5 days for all the analysed370

issues, including those authored by humans in which bots were involved or mentioned in the discussion371

thread.372

Lastly, most projects use 2 or more bots with overlapping activity. However, this overlap varies373

across projects and indicates different patterns of usage. Based on the findings above, we subset those374

overlapping months in order to analyse discussion threads and identify which factors drive the developers’375

decision to adopt, remove or switch between bots.376

12/21PeerJ Comput. Sci. reviewing PDF | (CS-2021:06:62623:1:1:NEW 15 Nov 2021)

Manuscript to be reviewedComputer Science



6 WHAT ARE THE DISCUSSED CHALLENGES AND PREFERENCES WHEN377

ADOPTING, SWITCHING OR DISCARDING BOTS?378

Here we investigate the third research question: What factors guide the discussions about adopting,379

switching, discarding or using dependency management bots in open-source software? Throughout the380

section we refer to issue identifiers and corresponding URLs specified in Table A1 in the Appendix.381

6.1 Data Collection382

From the dataset used for RQ2, we used the following method to select issues and PRs for our qualitative383

analysis. First, we identified all issues and PRs that: (i) had two or more bots being mentioned in the384

comments, or (ii) were created by humans and mention more than one bot in the issue body. In order to385

include discussion threads about usage of single bots, we manually selected circa 30 issues (six issues per386

investigated bot). A manual inspection of the issues allowed us to include the discussion threads about the387

usage of the bot, and remove those about project-specific dependency updates. An example of an PR that388

was not included is a Dynamoid PR were the discussion is on enabling others to use the bot to update389

the Dynamoid package dependency in their projects by changing something in the Dynamoid project390

[Dyn-215].391

We further performed snowballing to include issues outside our project sample (e.g., comments such392

as “see discussion here” that were linked to other issues). Ultimately, the dataset for RQ3 included 109393

issues and PRs (included in the replication package (Erlenhov et al., 2021)).13 The issues had a mean of 9394

(median 7) comments. In total, our analysis is composed of 181 codes extracted from those issues and395

PRs.396

6.2 Analysis and Interpretation Approach397

For our theme analysis, we started by capturing the type of conversation that took place in the each issue.398

We used four conversation labels: adopt, use, switch or discard. The most common case was that one399

issue contained one conversation, but in some cases we found that a single issue contained multiple400

logical conversations. For example, an issue in HypothesisWork/hypothesis [Hyp-747] started401

as a conversation about the usage of a bot, but later became a conversation about switching bots after the402

developer of another bot decided to join the conversation.403

In parallel to identifying conversation labels, we performed open and axial coding where we divided404

the conversations up into excerpts of relevant information (codes) and assigned a second category of code405

labels named content labels to build our thematic map. Open coding allowed us to generate and vary406

the categories to classify the codes, whereas axial coding enables sorting of the coded data in new ways407

by identifying relationships between those categories (e.g., themes and sub-themes) (Stol et al., 2016).408

Consequently, our list of code labels was not fixed in the beginning and changed as we reviewed more409

discussion threads in our dataset.410

We based our initial content labels on the bot-related benefits and challenges identified in our earlier411

work (Erlenhov et al., 2020). Then, we iteratively switched between axial and open coding as new412

sub-themes were identified. In order to agree on a set of code labels, the first and second authors discussed413

and coded together roughly 10% of the comments in the dataset. Then, the first author coded the remainder414

of the dataset. However, due to the open and axial coding, new content themes would surface, hence,415

triggering another round of discussions between the first and second authors to reach a new agreement416

on the new set of code labels. This process continued until we reached theory saturation, i.e., no new417

code labels were created as we sorted codes into the categories. The final table of content code labels and418

corresponding themes is presented in Table 4.419

In summary, we extracted a number of excerpts each assigned with two code labels - one for the420

conversation to keep the context of the discussion thread and a second label to capture the content of the421

excerpt. These excerpts were then sorted into themes by content. Each codes and their corresponding422

conversation and content labels are shared in our replication package.423

6.3 Results424

A summary of our themes (content labels) and their relation to the conversation labels is shown in Table 5.425

Our results showed that from the benefits described by Erlenhov et al. (2020), improved quality was the426

main driver for (dependency) bot adoption (primarily related to security and bugfixes). We also expected427

13https://doi.org/10.5281/zenodo.5567370

13/21PeerJ Comput. Sci. reviewing PDF | (CS-2021:06:62623:1:1:NEW 15 Nov 2021)

Manuscript to be reviewedComputer Science



Table 4. Description of each code label used in our qualitative study. For each content sub-theme, we

also include the number of codes observed in our dataset.

Theme Sub-theme Codes Description of Comments or Issues

Promote bot Creator input 13 Bot creator joins the discussion thread to

clarify information about their bots.

Company / Project credibility 9 Comments regarding whether the bot was

developed or sponsored by a reputable

company or project.

Usability Setup and configuration 10 Technical discussions about introducing

and maintaining the bot in the project.

Unistall 7 Technical discussions about removing the

bot and its artefacts from the project.

Understanding features 14 Comments regarding the comprehensibil-

ity of features offered by the bot.

Clashes in ways of working 21 Discussions about changes in the develop-

ment process caused by the bot.

Bugs 4 Comments regarding faults and failures

caused by the usage of the bot.

Noise Annoyance 5 Discussions that mention whether the noti-

fications created by the bots are disruptive.

Countermeasures 10 Comments suggesting fixes to reduce the

notifications created by the bot.

Additional work (for resources) 5 Discussion about increased workload on

project resources caused by the bot (e.g.,

build time, tests).

Additional work (for people) 12 Discussions about increased workload on

humans maintaining the project caused by

the bot.

Benefits Improve quality 10 Comments about the functional and non-

functional improvements caused by the

bot.

Handling tasks at scale 2 Discussion about enabling development

tasks to be performed at higher scales

Automation of tedious tasks 1 Comments regarding the bots automating

manual and laborious tasks done by devel-

opers.

Information retrieval 2 Discussion about improved accessibility

and availability of project information.

Trust Trustworthy 7 Conveys confidence on the bot’s agency.

Non-trustworthy 9 Conveys unease or suspicion about the

bot’s agency.

Features Supported features 19 Describes features offered by the bot.

Missing features 21 Describes features not offered by the bot.

14/21PeerJ Comput. Sci. reviewing PDF | (CS-2021:06:62623:1:1:NEW 15 Nov 2021)

Manuscript to be reviewedComputer Science



Table 5. List of themes and the corresponding number of codes (comments excerpt) associated to each

theme and conversation labels.

Themes Adopt Use Switch Discard Total

Promote bot 12 3 7 0 22

Usability 17 22 14 3 56

Noise 12 9 5 6 32

Feature 15 6 18 1 40

Benefits 15 0 0 0 15

Trust 8 5 2 1 16

Total 79 45 46 11 181

to find cases related to support handling tasks at scale, since adopting a dependency management bot428

should in principle also allow projects to handle dependency upgrades more easily. Instead, we found that429

in many cases projects experienced an increase in the load put on maintainers and resources, especially430

since our studied bots also introduce significant noise in the form of additional work due to numerous431

PRs.432

”The main driver for this change is to reduce maintenance burden on maintainers, and I really appreciate the effort. However,

[redacted]’s comment made me realise that it might have the opposite effect.” -[Dja-2872]

The noise theme was the single theme associated with most coded excerpts related to stop using a bot433

(i.e., discard). Following our results, the number of PRs generated by the bot is in itself unproblematic,434

but the bot is perceived to add noise when too many PRs are perceived as irrelevant. However, in some435

cases the project just accepted that this is just “how bots work”. In one case, the developer considered436

the dependency management bot more as a source of information on existing outdated dependencies437

than actually trusting it to actually update them [Rea-2673-1]. However, in several cases, the initial load438

produced by the bot was so large that the projects kept postponing the initial PR for several months – at439

which point the PR was considered outdated, and the project decided to just discard the bot and start over440

with a new one [Str-2433].441

Our study also reveals multiple countermeasures to overcome bot noise, such as (i) limiting the442

number of simultaneously open PRs from the same bot, (ii) batching the PRs in a smart way, or (iii) letting443

the bot auto-merge PRs when certain criteria are fulfilled. Evidently, the first and the second approach444

require developers to decide which PRs the bot was supposed to open (or how to batch PRs). The third445

countermeasure is strongly related to trust, both trust in the bot as well as trust in the project’s own quality446

assurance processes. We observed that bot developers are themselves often careful with automerging. For447

instance, when Dependabot was acquired by GitHub in May 2019 they removed the auto-merge feature in448

the bot 14, instead urging the users to manually verify dependency updates before merging.449

”Auto-merge will not be supported in GitHub-native Dependabot for the foreseeable future. We know some of you have

built great workflows that rely on auto-merge, but right now, we’re concerned about auto-merge being used to quickly

propagate a malicious package across the ecosystem. We recommend always verifying your dependencies before merging

them.” -[Dep-1973]

Another common theme in discussions around bot adoption or discarding was usability. Setting up450

and configuring a bot is not always seen as an quick and easy task, often requiring substantial trial and451

error. Instead of trying to make sense of the bots manual [Rea-2673-2], many projects instead opted to set452

up and experiments with different settings until a satisfactory result is achieved.453

”Just tried turning on pyup.io and requires.io so we can see what they do :-)” -[Pyt-687]

This also applied to when the bot was adopted and the contributors tried to understand what, how,454

and when the bot functioned. Core features that developers are particularly interested in are support for455

14https://github.com/dependabot/dependabot-core/issues/1973

15/21PeerJ Comput. Sci. reviewing PDF | (CS-2021:06:62623:1:1:NEW 15 Nov 2021)

Manuscript to be reviewedComputer Science



collecting everything regarding dependency updates in to one bot [Ang-19580] over having different bots456

for e.g., different languages. Further, many feature discussions are again related to noise reduction.457

”Hmm, I hadn’t heard of renovate before, but it claims to have python support and a lot of tools for reducing noise.” -[Pyt-652]

Another common usability-related challenge was that bots may not necessarily fit the workflow of the458

project well. We have observed both, cases where the team managed to adapt the bot as well as cases459

where the team changed their workflow to accommodate the bot requirements [Rea-2673-3], [Cal-16961].460

We have also identified one case where a bot was outright discarded because it was judged a bad fit for461

the team’s way of working [Gre-247].462

Finally, the last usability-associated theme we identified was related to bot promotion. In several463

cases, the bot creator actively markets the bot by ”popping into” relevant issue discussions in open-source464

software projects, nudging the project to give their bot a try. Similarly, once a project decides to adopt a465

bot, creators sometimes offers direct usability support by explaining or proposing ways to use the bot or466

helping with onboarding [Ang-20860].467

Our theme analysis reveals that the key factors guiding the discussions about adoption of dependency468

management bots are usability, benefits and features. In turn, most of the discussion around discarding469

those types of bots revolved around the noise that the bot generates. Some of those factors, such as470

noise (Wessel et al., 2021) or the benefits in handling tasks at scale (Erlenhov et al., 2020), have also been471

seen in other studies as relevant factors to, respectively, hinder or improve the development workflow.472

7 DISCUSSION473

Central to our study is a distinction between automation tools and genuine software development bots474

(Devbot), as defined in Erlenhov et al. (2020). We now summarise and contextualise our findings from475

exploring this difference based on the BIMAN dataset (Dey et al., 2020a). We argue that our results have476

multiple key implications for future research studying Devbots.477

478

Most automation in open-source software projects is not through (human-like) bots, but through479

automation scripts. Our manual analysis of a sample of 54 widely used tools from the BIMAN dataset480

showed that only 10 (18.5%) comply with the Devbot definition. However, this should not be seen as481

criticism of the dataset, as the remaining 44 tools are certainly not false positives according to their482

definition (which classified all non-human contributors as “bots”). However, researchers need to be aware483

that a majority of tools contained in a dataset such as this are relatively simple automation scripts that484

do not exhibit any specific human-like traits, and are not qualitatively different to the kind of scripting485

developers have been doing for a long time. To support the study of Devbots, new datasets (which may486

have to be compiled manually, or at least in a semi-automated manner) will be required.487

Dependency management is a task where Devbots are indeed common, and there are multiple488

widely used implementations of dependency management bots. From the remaining 10 tools which489

we categorised as Devbots, 9 were dependency management bots. Hence, we conclude that dependency490

management is the one domain where Devbots are indeed widespread and commonly used in open-source491

software projects. Further, multiple widely-used bots are available serving a very similar purpose. An492

implication for researchers of this finding is that a study of Devbots from datasets such as BIMAN is493

really a study of dependency management bots, as these dominate the dataset.494

However, we cannot necessarily conclude from our results that dependency management bots are the495

only Devbots that open-source software projects use – since our study was based on a dataset of code496

contributions, Devbots that interact with a project in a different manner, e.g., by welcoming newcomers in497

the issue management system (Dominic et al., 2020), would not emerge in our work by design. Future498

research will be required to assess the prevalence and impact of such other types of Devbots.499

All analysed dependency management bots exhibit similar contribution patterns. When study-500

ing the contribution behaviour of five of these dependency management bots (Greenkeeper, Dependabot,501

Renovate, Pyup, and Depfu) in more detail, we observed that all five bots exhibit comparable behaviour.502

This indicates that these tools are indeed comparable, not only in terms of functionality but also in how503

16/21PeerJ Comput. Sci. reviewing PDF | (CS-2021:06:62623:1:1:NEW 15 Nov 2021)

Manuscript to be reviewedComputer Science



they interact with developers. Consequently, the five bots identified in our research can serve as a valid504

starting point for future comparative studies.505

We have not observed clear differences between bot commits and human commits regarding the506

time until PRs are resolved. This is surprising, as our results do not confirm earlier work (Wyrich et al.,507

2021), which has observed that developers handle bot contributions with lower priority than human ones.508

More empirical research will be required to establish if this discrepancy is due to differences in the509

sampling strategy, or if there are indeed certain types of bot PRs that get handled similarly fast as human510

contributions.511

Many open-source software projects experiment with different dependency management bots.512

However, sustained ”co-usage” of multiple dependency management bots is rare. A majority of 72513

(77.4%) projects have used (or at least experimented with) two or more dependency management bots514

during their lifetime. Four projects have experimented with four of our five case study bots. This indicates515

that projects are not opposed to evaluating alternative bots or switching entirely. Additionally, we have516

observed that projects sometimes use multiple dependency bots in parallel, although this is not common517

outside of a ”switching phase”. Further research will be required to investigate reasons for the co-usage518

of multiple dependency management bots.519

Open-source software maintainers are hoping for improved software quality when adopting520

dependency management bots. Common problems when adopting these bots are usability issues,521

especially related to noise. From a thematic analysis of discussions surrounding the adoption, discarding,522

or switching of bots we have learned that developers predominantly expect higher code quality when523

using bots (e.g., related to important security updates being discovered and merged earlier). Surprisingly,524

developers do not seem to directly expect, nor achieve, higher productivity per se, as adopting a dependency525

management bot often incurs significant noise. Particularly concerning in this context is that prominent526

bots such as Dependabot have even reduced their feature set related to handling noise (i.e., auto-merging).527

This indicates that ongoing research related to the prevention of ”bot spam” and bot-induced noise is528

timely (Wessel and Steinmacher, 2020), and that more research in this direction may be required. This529

further research will become particularly crucial if bot adoption continues to increase, as developers are530

currently lacking the tools to systematically deal with a large influx of bot contributions.531

Clear bot definitions are crucial to study design. An overarching theme of our results is that, when532

empirically studying a somewhat ”fuzzy” new concept such as bots in software engineering, great care533

needs to be taken to establish clear definitions of the study subject upfront. It is easy to take an existing534

dataset such as BIMAN because it uses the same keyword (”bot”) as basis of one’s own research, without535

realising that it may have been constructed with a different definition in mind. This bears the danger of536

overgeneralisation, when certain types of bots (e.g., dependency management bots) are studied because537

they are readily available, but results are implicitly generalised to ”all bots”.538

7.1 Threats to Validity539

We now discuss the threats to the validity of our research.540

Construct validity: Deciding on a reference framework to classify and sample bots is a challenge faced541

by many bot-related studies, despite the existing taxonomies in literature to support researchers (Erlenhov542

et al., 2020, 2019; Lebeuf et al., 2019). We mitigate this limitation by (i) using a bot taxonomy based on543

input from practitioners using those bots, and (ii) choosing evaluation measures or code labels (e.g., PRs,544

issues, bot noise, trust) that have been used in previous work (Wessel and Steinmacher, 2020; Wyrich et al.,545

2021; Wessel and Steinmacher, 2020). Therefore, our findings are limited by the characteristics prevalent546

in such types of bots, i.e., human-like traits such as communication or autonomy. In turn, starting our547

sample from the BIMAN dataset introduces the risk to skip bots used in that were not initially included548

in the dataset. Consequently, the bot activity and factors discussed in RQ2 and RQ3 are limited to our549

sample of projects using those bots. Future work can use our replication package to analyse a new dataset550

of issues and PRs mined from projects using other dependency management bots.551

552

Conclusion validity: For RQ1 we quickly noticed that the GitHub projects and tool documentation often553

miss details that hindered our classification of bots in RQ1 using the flow-chart. Therefore, there is a554

17/21PeerJ Comput. Sci. reviewing PDF | (CS-2021:06:62623:1:1:NEW 15 Nov 2021)

Manuscript to be reviewedComputer Science



risk that leads to false negatives in our sample. For instance, some tools that we did not classify as bots555

in our list could be bots for, e.g., a Charlie user persona or an Alex persona whose bots use other team556

communication channels. We mitigate this threat by focusing our analysis on the distinction between true557

(actual bots) and false positives (tools misclassified as bots) such that the false negatives have smaller558

impact on our conclusions. The limited availability of tools documentation was also a challenge in the559

classification done by Dey et al. (2020b), hence motivating the identification based on activity patterns560

for the tool, instead of qualitative answers.561

Moreover, comparing bot and human activity can be misleading, particularly, when evaluating time562

to merge PRs or close issues because the expectation on human and bot source code contributions are563

different. For instance, bots create many more PRs than human contributors and those bot contributions564

are mainly dependency updates (Wyrich et al., 2021). We mitigate the risk of comparing activities by565

delimiting our entire sample around issues with similar purpose (e.g., the human created issues are566

inclusive of either a bot mention or comments made by dependency update bots) and by including results567

on bot activity per project.Moreover, one threat to our survival analysis is that KM curves are limited to568

detect confounding variables in data that has more than one strata (Kaplan and Meier, 1958). We mitigate569

this risk by using only one strata (bot authors) in our analysis.570

571

Internal validity: During our classification for RQ1, we quickly noticed that the GitHub projects and tool572

documentation often miss details that would allow us to answer some of the questions in the flow-chart573

(e.g., the first step asks whether the tool uses a chat, which is often hard to answer conclusively without574

using the tool). This is a limitation of the manual classification as it can lead to false negatives. For575

instance, some tools that we did not classify as bots in our list could be bots for, e.g., a Charlie user576

persona or an Alex persona whose bots use other team communication channels.577

In order to avoid bias during open coding for RQ3, the first and second authors had initial coding578

sessions until reaching agreement on a list of code labels. Then, both authors triangulated their coded579

labels in three different 1-hour sessions twice a week until they reached theory saturation (i.e., no new580

themes or sub-themes were found). We mitigate disagreement between coders by (i) using few and fixed581

labels for the PRs conversations and (ii) using definitions from literature to label the content of discussions.582

Examples of (ii) are the list of themes related to the benefits of using bots from Erlenhov et al. (2020) or583

the definition of noise created by bots as proposed by Wessel et al. (2021). Moreover, creating distinct584

categories of code labels to capture the context of the PR conversation versus the content of the discussion585

allowed us to relate the discussions to the factors listed in RQ3.586

587

External validity: Our findings are limited to open-source software in GitHub, since we did not collect588

data from other open-source software repositories or proprietary software. In other words, we analyse the589

projects and corresponding bot activity based on common praxis in GitHub projects, such that developers590

working in proprietary software may guide their discussion around new or contrasting factors to the ones591

listed in RQ3 such as standards defined by a company or regulatory agencies.592

8 CONCLUSIONS593

Software engineering bots are increasingly becoming a major subject of academic study. However, despite594

substantial research, the question of what exactly bots are and how they differ from previously-existing595

automation tools still looms large. In this paper, we contributed three-fold to this discussion. Firstly,596

we manually evaluated a sample of tools from an existing dataset of bot contributions, and found that597

only 10 of 54 tools are qualitatively different from routine automation tools. We further found that598

dependency management is the one domain where tools that fit our stricter definition of bots are currently599

in wide-spread use in open-source software projects. Secondly, we collected GitHub data for a large600

set of projects that use five of these dependency management bots to investigate how they are used in601

practice. We found that these tools have relatively similar contribution patterns, and that most projects602

in practice adopt different dependency management bots during their lifetime. Thirdly, we conduct a603

thematic analysis of discussions around bot adoption, discarding, and switching, and found that developers604

adopt dependency management bots to improve code quality. However, they struggle with the noise that605

is (sometimes) introduced by these tools.606

The main implications of our study for future research are the following. Firstly, our results indicate607

that datasets of automated commits predominantly do not contain genuine, practitioner-perceived bot608

18/21PeerJ Comput. Sci. reviewing PDF | (CS-2021:06:62623:1:1:NEW 15 Nov 2021)

Manuscript to be reviewedComputer Science



contributions. Bot researchers should take care to take this into account when analysing such data, and609

there may be a need for more targeted and curated datasets of bot contributions. Furthermore, researchers610

should consider that the practitioner-perceived bots that are contained are predominantly dependency611

management bots. Secondly, our results show that bot noise remains an open issue that practitioners612

struggle with, and which warrants further academic study.613

ACKNOWLEDGEMENTS614

This research has been funded by Chalmers University of Technology Foundation and the Swedish615

Research Council (VR) under grant number 2018-04127 (Developer-Targeted Performance Engineering616

for Immersed Release and Software Engineers). Icons used in figures made by Pixel perfect and Freepik617

from www.flaticon.com.618

REFERENCES619

Cassee, N., Kitsanelis, C., Constantinou, E., and Serebrenik, A. (2021). Human, bot or both? A study on620

the capabilities of classification models on mixed accounts. In Proceedings of the 37th International621

Conference on Software Maintenance and Evolution (ICSME) – New Ideas and Emerging Results.622

Cassee, N., Vasilescu, B., and Serebrenik, A. (2020). The Silent Helper: The Impact of Continuous623

Integration on Code Reviews. In SANER 2020 - Proceedings of the 2020 IEEE 27th International624

Conference on Software Analysis, Evolution, and Reengineering, pages 423–434. Institute of Electrical625

and Electronics Engineers Inc.626

Dey, T., Mousavi, S., Ponce, E., Fry, T., Vasilescu, B., Filippova, A., and Mockus, A. (2020a). A dataset627

of Bot Commits. https://doi.org/10.5281/zenodo.3610205.628

Dey, T., Mousavi, S., Ponce, E., Fry, T., Vasilescu, B., Filippova, A., and Mockus, A. (2020b). Detecting629

and characterizing bots that commit code. In Proceedings of the 17th International Conference630

on Mining Software Repositories, MSR ’20, page 209–219, New York, NY, USA. Association for631

Computing Machinery.632

Dominic, J., Houser, J., Steinmacher, I., Ritter, C., and Rodeghero, P. (2020). Conversational bot for633

newcomers onboarding to open source projects. In Proceedings of the IEEE/ACM 42nd International634

Conference on Software Engineering Workshops, ICSEW’20, page 46–50, New York, NY, USA.635

Association for Computing Machinery.636

Erlenhov, L., de Oliveira Neto, F. G., and Leitner, P. (2020). An empirical study of bots in software637

development: Characteristics and challenges from a practitioner’s perspective. In Proceedings of638

the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on639

the Foundations of Software Engineering, ESEC/FSE 2020, page 445–455, New York, NY, USA.640

Association for Computing Machinery.641

Erlenhov, L., de Oliveira Neto, F. G., and Leitner, P. (2021). Replication Pack-642

age - Dependency Management Bots in Open-Source Systems - Prevalence and Adoption.643

https://doi.org/10.5281/zenodo.5567370.644

Erlenhov, L., de Oliveira Neto, F. G., Scandariato, R., and Leitner, P. (2019). Current and Future Bots in645

Software Development. In First Workshop on Bots in Software Engineering, (BotSE ICSE).646

Golzadeh, M., Decan, A., Constantinou, E., and Mens, T. (2021a). Identifying bot activity in GitHub pull647

request and issue comments. In Third Workshop on Bots in Software Engineering, (BotSE ICSE).648

Golzadeh, M., Decan, A., Legay, D., and Mens, T. (2021b). A ground-truth dataset and classification model649

for detecting bots in github issue and pr comments. Journal of Systems and Software, 175:110911.650

Kaplan, E. L. and Meier, P. (1958). Nonparametric estimation from incomplete observations. Journal of651

the American Statistical Association, 53(282):457–481.652

Lamba, H., Trockman, A., Armanios, D., Kästner, C., Miller, H., and Vasilescu, B. (2020). Heard it653

through the Gitvine: an empirical study of tool diffusion across the npm ecosystem. In Proceedings of654

the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the655

Foundations of Software Engineering, pages 505–517, New York, NY, USA. ACM.656

Lebeuf, C., Storey, M.-A., and Zagalsky, A. (2018). Software Bots. IEEE Software, 35(1):18–23.657

Lebeuf, C., Zagalsky, A., Foucault, M., and Storey, M. (2019). Defining and classifying software bots: A658

faceted taxonomy. In 2019 IEEE/ACM 1st International Workshop on Bots in Software Engineering659

(BotSE), pages 1–6.660

19/21PeerJ Comput. Sci. reviewing PDF | (CS-2021:06:62623:1:1:NEW 15 Nov 2021)

Manuscript to be reviewedComputer Science



Lin, B., Robles, G., and Serebrenik, A. (2017). Developer turnover in global, industrial open source661

projects: Insights from applying survival analysis. In 2017 IEEE 12th International Conference on662

Global Software Engineering (ICGSE), pages 66–75.663

Okanović, D., Beck, S., Merz, L., Zorn, C., Merino, L., van Hoorn, A., and Beck, F. (2020). Can a664

chatbot support software engineers with load testing? approach and experiences. In Proceedings of the665

ACM/SPEC International Conference on Performance Engineering, ICPE ’20, page 120–129, New666

York, NY, USA. Association for Computing Machinery.667

Paikari, E. and van der Hoek, A. (2018). A Framework for Understanding Chatbots and Their Future.668

In Proceedings of the 11th International Workshop on Cooperative and Human Aspects of Software669

Engineering, CHASE’18, pages 13–16, New York, NY, USA. Association for Computing Machinery.670

Peng, Z., Yoo, J., Xia, M., Kim, S., and Ma, X. (2018). Exploring how software developers work671

with mention bot in GitHub. In ACM International Conference Proceeding Series, volume 18, pages672

152–155, New York, NY, USA. Association for Computing Machinery.673

Samoladas, I., Angelis, L., and Stamelos, I. (2010). Survival analysis on the duration of open source674

projects. Inf. Softw. Technol., 52(9):902–922.675

Stol, K.-J., Ralph, P., and Fitzgerald, B. (2016). Grounded theory in software engineering research:676

a critical review and guidelines. In Proceedings of the 38th International Conference on Software677

Engineering, pages 120–131.678

Urli, S., Yu, Z., Seinturier, L., and Monperrus, M. (2018). How to design a program repair bot?679

insights from the repairnator project. In 2018 IEEE/ACM 40th International Conference on Software680

Engineering: Software Engineering in Practice Track (ICSE-SEIP), pages 95–104.681

Usman, M., Britto, R., Börstler, J., and Mendes, E. (2017). Taxonomies in software engineering: A682

systematic mapping study and a revised taxonomy development method. Information and Software683

Technology, 85:43–59.684

Wessel, M., de Souza, B. M., Steinmacher, I., Wiese, I. S., Polato, I., Chaves, A. P., and Gerosa, M. A.685

(2018). The power of bots: Characterizing and understanding bots in oss projects. Proc. ACM686

Hum.-Comput. Interact., 2(CSCW).687

Wessel, M., Serebrenik, A., Wiese, I., Steinmacher, I., and Gerosa, M. A. (2020a). Effects of adopting688

code review bots on pull requests to oss projects. In 2020 IEEE International Conference on Software689

Maintenance and Evolution (ICSME), pages 1–11.690

Wessel, M., Serebrenik, A., Wiese, I., Steinmacher, I., and Gerosa, M. A. (2020b). What to Expect from691

Code Review Bots on GitHub?: A Survey with OSS Maintainers. In Proceedings of the 34th Brazilian692

Symposium on Software Engineering, pages 457–462.693

Wessel, M. and Steinmacher, I. (2020). The inconvenient side of software bots on pull requests. In694

Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering Workshops,695

ICSEW’20, page 51–55, New York, NY, USA. Association for Computing Machinery.696

Wessel, M., Steinmacher, I., Wiese, I., and Gerosa, M. A. (2019). Should i stale or should i close? an697

analysis of a bot that closes abandoned issues and pull requests. In 2019 IEEE/ACM 1st International698

Workshop on Bots in Software Engineering (BotSE), pages 38–42.699

Wessel, M., Wiese, I., Steinmacher, I., and Gerosa, M. A. (2021). Don’t disturb me: Challenges of700

interacting with softwarebots on open source software projects. CoRR, abs/2103.13950.701

Wyrich, M. and Bogner, J. (2019). Towards an autonomous bot for automatic source code refactoring.702

In Proceedings of the 1st International Workshop on Bots in Software Engineering, BotSE ’19, page703

24–28. IEEE Press.704

Wyrich, M., Ghit, R., Haller, T., and Müller, C. (2021). Bots don’t mind waiting, do they? comparing the705

interaction with automatically and manually created pull requests. arXiv preprint arXiv:2103.03591.706

20/21PeerJ Comput. Sci. reviewing PDF | (CS-2021:06:62623:1:1:NEW 15 Nov 2021)

Manuscript to be reviewedComputer Science



APPENDIX707

Table A1. IDs and corresponding URLs to the issues and comments referred in the text.

ID Conversation Theme Issue or Comment URL

Ang-19580 Switch Feature https://github.com/angular/angular-

cli/pull/19580#issuecomment-743275784

Ang-20860 Adoption Usability https://github.com/angular/angular/

issues/20860#issuecomment-364627889

Cal-16961 Adoption Usability https://github.com/Automattic/wp-

calypso/issues/16961#issuecomment-

390778832

Dja-2872 Adoption Noise https://github.com/pydanny/

cookiecutter-django/pull/2872#

issuecomment-702824915

Dep-1973 Usage Feature https://github.com/dependabot/

dependabot-core/issues/1973#

issuecomment-640918321

Dyn-215 Usage Usability https://github.com/Dynamoid/dynamoid/

pull/215

Gre-247 Removal Usability https://github.com/greenkeeperio/

greenkeeper/issues/247

Hyp-747 Switching Promoting bot https://github.com/HypothesisWorks/

hypothesis/issues/747

Pyt-687 Switching Usability https://github.com/python-trio/trio/

pull/687#issuecomment-425268701

Pyt-652 Adoption Feature https://github.com/python-trio/trio/

issues/652#issuecomment-419605103

Rea-2673-1 Adoption Benefits https://github.com/react-boilerplate/

react-boilerplate/issues/2673#

issuecomment-501018290

Rea-2673-2 Adoption Usability https://github.com/react-boilerplate/

react-boilerplate/issues/2673#

issuecomment-501021447

Rea-2673-3 Adoption Usability https://github.com/react-boilerplate/

react-boilerplate/issues/2673#

issuecomment-500975888

Str-2433 Adoption Usability https://github.com/strapi/strapi/pull/

2433#issuecomment-507554250

21/21PeerJ Comput. Sci. reviewing PDF | (CS-2021:06:62623:1:1:NEW 15 Nov 2021)

Manuscript to be reviewedComputer Science


