Submitted 21 June 2021
Accepted 17 December 2021
Published 3 March 2022

Corresponding author
Linda Erlenhov,
linda.erlenhov@chalmers.se

Academic editor
Slinger Jansen

Additional Information and
Declarations can be found on
page 26

DOI 10.7717/peerj-cs.849

© Copyright
2022 Erlenhov et al.

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

Dependency management bots in
open-source systems—prevalence and
adoption

Linda Erlenhov', Francisco Gomes de Oliveira Neto” and Philipp
Leitner”

! Department of Computer Science and Engineering, Chalmers University of Technology,
Gothenburg, Sweden

% Department of Computer Science and Engineering, University of Gothenburg,
Gothenburg, Sweden

ABSTRACT

Bots have become active contributors in maintaining open-source repositories.
However, the definitions of bot activity in open-source software vary from a more
lenient stance encompassing every non-human contributions vs frameworks that
cover contributions from tools that have autonomy or human-like traits (i.e.,
Devbots). Understanding which of those definitions are being used is essential to
enable (i) reliable sampling of bots and (ii) fair comparison of their practical impact
in, e.g., developers’ productivity. This paper reports on an empirical study composed
of both quantitative and qualitative analysis of bot activity. By analysing those two
bot definitions in an existing dataset of bot commits, we see that only 10 out of 54
listed tools (mainly dependency management) comply with the characteristics of
Devbots. Moreover, five of those Devbots have similar patterns of contributions over
93 projects, such as similar proportions of merged pull-requests and days until issues
are closed. Our analysis also reveals that most projects (77%) experiment with more
than one bot before deciding to adopt or switch between bots. In fact, a thematic
analysis of developers’ comments in those projects reveal factors driving the
discussions about Devbot adoption or removal, such as the impact of the generated
noise and the needed adaptation in development practices within the project.

Subjects Agents and Multi-Agent Systems, Software Engineering
Keywords Software engineering, Software bots, Mining software repositories, Dependency
management

INTRODUCTION

Bots are becoming prevalent tools in software development environments (Lebeuf, Storey
¢ Zagalsky, 2018; Erlenhov, de Oliveira Neto ¢ Leitner, 2020), particularly when bots are
supportive of costly software maintenance tasks involving, e.g., creating pull requests
(PRs) (Wessel et al., 2020a), code refactoring (Wyrich & Bogner, 2019) or code
contributions over time (Wessel et al., 2018). Consequently, various studies investigate
the impact of adopting a bot in a software development process. Recent work showed that
the adoption of bots can have a significant impact on overall project metrics, such as
number of PRs created and closed before and after a bot was introduced (Wessel et al.,
2020a).

How to cite this article Erlenhov L, de Oliveira Neto FG, Leitner P. 2022. Dependency management bots in open-source systems—
prevalence and adoption. Peer] Comput. Sci. 8:e849 DOI 10.7717/peerj-cs.849

http://dx.doi.org/10.7717/peerj-cs.849
mailto:linda.�erlenhov@�chalmers.�se
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.849
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

PeerJ Computer Science

! For example, the first edition of the
Automated Software Engineering con-
ference was held in 1997.

The underlying challenge such studies face is the difficulty of determining what exactly
constitutes a “bot”, and to distinguish bots from automation in general (a topic that has
been studied in the software engineering community at least since the early 2000s").
Two different mindsets appear to be prevalent in existing studies: whereas researchers
working on taxonomies or definitions often stress the difference to automation tools, e.g.,
by requiring bots to have, for example, human-like traits, such as a name (Erlenhov, de
Oliveira Neto ¢ Leitner, 2020), language (Lebeuf et al., 2019), or purpose (Erlenhov et al.,
2019), more quantitative studies often take a relatively all-encompassing stance where
every contribution that is not made directly by a human developer is considered a bot
contribution (Dey et al., 2020D).

Depending on the study goal, such a wide definition may be exactly what is required.
For example, Dey et al. (2020b) have proposed an approach to identify bot commits so as to
exclude them from studies that target human behaviour. For such a study, whether the
author of an excluded contribution is a bot or “just” an automation tool is largely
irrelevant. However, for work that specifically targets the study of bot contributions and
their effect on human developers, it seems central to more clearly delineate between tools
that actually exhibit bot-like characteristics (according to existing taxonomies and
classification frameworks) and other automation tools that do not.

Therefore, our goal is to (i) investigate some of the approaches above that classify bots
and then (ii) verify whether a clearer distinction between bots and automation tools
provides insights about the impact of bot activity in a project. Particularly, we leverage
widely used impact measures such as PRs and comments to investigate the activity
generated by one or more bots in the same project and also the interaction between
humans and those bots (Wessel et al., 2020a; Wessel et al., 2018). Our general hypothesis is
that a more refined approach to define and sample bots enables consistent comparison of
one or more bots in maintaining the same project and reveals insights about bot activity
(e.g., discussion threads between humans and bots) that are tangential to the expected
benefits that any automation tool brings (e.g., creating more PRs and commits).

We investigate that hypothesis in an exploratory empirical study with open-source
projects following a multi-method methodology composed of both quantitative and
qualitative analysis of bot activity. In order to sample bots we rely on two existing studies
that characterise bots: the BIMAN dataset which includes bot commits produced
automatically by the BIMAN approach proposed by Dey et al. (2020a, 2020b), and the bot
users’ personas introduced in our own earlier work (Erlenhov, de Oliveira Neto ¢ Leitner,
2020), which focuses explicitly on how practitioners distinguish bots from automation
tools. Below, we summarise our research questions and findings:

e RQI1 - How much of the dataset includes automation tools that are, according to a
more strict definition, not bots? As a first step, we qualitatively assess a sample of tools
from the BIMAN dataset (Dey et al., 2020a) through the lense of bot users’ personas
(Erlenhov, de Oliveira Neto ¢ Leitner, 2020). We observe that only 10 of 54 (18.5%)
analysed tools would qualify as bots according to our less lenient categorisation

Erlenhov et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.849 2/28

http://dx.doi.org/10.7717/peerj-cs.849
https://peerj.com/computer-science/

PeerJ Computer Science

(they would be considered automation tools without human-like characteristics).
Further, with one exception, these bots were all dependency management bots.

e RQ2 - Do similar dependency management bots generate contrasting patterns of
activity? Are their pull requests often merged by developers? How often do projects
use multiple dependency management bots? Based on RQ1 results, we further analyse
five dependency management bots from the dataset, and mine their activity (created
pull requests and corresponding discussion threads) in 93 projects to perform a
temporal analysis comparing patterns of bot activity in those projects. We observe
that all five analysed bots exhibit similar behavioural patterns. Further, we observe that
many projects experiment with multiple dependency management bots and frequently
switch between them.

e RQ3 - What factors guide the discussions about adopting, switching, discarding or
using dependency management bots in open-source software? Based on the temporal
analysis from RQ2, we qualitatively investigated a subset of issues and PRs with
discussions about the different features and behaviour of the bot, such as usability
aspects that conflict with the project’s development praxis, or the increase decrease in
noise or trust introduced by the bot. Particularly, we map comments about adopting,
discarding or replacing a bot to bot traits (e.g., convenience in handling multiple
updates) and behaviour (e.g., intrusiveness autonomy to source code changes). Our
analysis reveals that open-soure software maintainers are hoping for improved software
quality when adopting dependency management bots. Common problems discussed
when adopting, using, discarding and switching between these bots are usability issues,
such as difficulties to understand or explain how the bot works, or challenges related to
noise that overloads the maintainers.

The key contribution of this paper to the state of research is two-fold:

e Firstly, our work shows that there currently is a dissonance between definitions of bots
used by different authors and in different study contexts. Our results related to RQ1
indicate that even datasets such as BIMAN, which have explicitly been created to
contain "bot contributions”, may contain many tools that would not satisfy more strict
delineations of what a bot is. This implies that future bot researchers should be explicit
about what definition of “bot” they are assuming, and ensure that the dataset they
use (or their own data generation method) follows the same definition.

e Secondly, we conduct an empirical investigation (using a combination of quantitative
and qualitative methods) on the subset of tools contained in the BIMAN dataset that are
indeed classified as bots even following a more strict delineation. We show that these
are mostly very similar (dependency management) tools, and provide insights on how
and why developers adopt, discard, or switch between such bots.

The remainder of the paper is structured as follows. In “Related Work”, we introduce
related research on bots in software engineering. In “Study Methodology”, we provide a
high-level view of our overall methodology, which is followed by a discussion of our main

Erlenhov et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.849 3/28

http://dx.doi.org/10.7717/peerj-cs.849
https://peerj.com/computer-science/

PeerJ Computer Science

results relating to the three research questions in “Distinguishing Bots and Automation
Tools”, “Activity Analysis of Dependency Management Bots” and “What are the Discussed
Challenges and Preferenceswhen Adopting, Switching or Discarding Bots?”. Based on
these results, we summarise and provide a broader discussion of our findings (and their
implications for software engineering research) in “Discussion”, in which we also discuss
the threats to validity. Finally, we conclude the paper in “Conclusions”.

RELATED WORK

Bots are the latest software engineering trend for how to best utilise the scarce resource
“developer time” in software projects. However, the term itself is an umbrella term for
several different types of tools used in software engineering. In order to classify these tools,
several taxonomies have been presented. Lebeuf et al. (2019) presented an extensive,
faceted taxonomy of software bots. Erlenhov et al. (2019) created a more compact
taxonomy specifically focusing on bots in software development. A third taxonomy was
proposed by Paikari ¢ van der Hoek (2018), with a particular focus on chat bots in
software engineering. The different taxonomies offer complementary views to classify and
understand bots. For instance, Paikari ¢» van der Hoek (2018) targets chatbots, thusm
including many facets to classify different types of interaction and direction between the
bot and a human. In contrast, Lebeuf et al. (2019) defines 27 subfacets covering intrisic,
environmental and interaction dimensions to classify bots. Moreover, all those taxonomies
are faceted, which allows them to be expanded to accomodate new levels as the field of
software bots evolve (Usman et al., 2017). Nonetheless, a limitation common to all three
taxonomies is that they lack clear, minimal requirements that a tool would need to fulfil to
be considered a bot. In a subsequent study, Erlenhov, de Oliveira Neto ¢ Leitner (2020)
turned the question around and investigated the developers” perception of bots as a
concept, and asked what facets needed to be present in order for the developers to look at a
tool as a bot. The authors categorised the tools by introducing three personas based on
developers’ impressions, since there was not one definition that all developers could agree
on. These personas each have a set of minimal requirements that needs to be fulfilled in
order for them to recognise the tool as a bot-autonomy, chat and smartness. Each
persona’s bots come with different problems and benefits, and affects the projects and its
developers in different ways.

Research in the last years has explored various different dimensions of software
engineering where bots may assist developers, including the automated fixing of functional
bugs (Urli et al., 2018), bug triaging (Wessel et al., 2019), creating performance tests
(Okanovic et al., 2020), or source code refactoring (Wyrich ¢ Bogner, 2019). This
proliferation of bots is slowly creating demand for coordination between bots in a project,
which has recently started to receive attention by Wessel ¢ Steinmacher (2020) through the
design of a “meta-bot”.

Impact of bot adoption
When it comes to adopting tools in the open-source software ecosystem Lamba et al.
(2020) looked at how the usage of a number of tools spread by tracking badges from the

Erlenhov et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.849 4/28

http://dx.doi.org/10.7717/peerj-cs.849
https://peerj.com/computer-science/

PeerJ Computer Science

projects main page. They found that social exposure, competition, and observability affect
the adoption. In a recent paper by Wessel et al. (2021), the initial interview study revealed
several adoption challenges such as discoverability issues and configuration issues. The
study then continues to discuss noise and introduces a theory about how certain
behaviours of a bot can be perceived as noise. Even though previous work often speculates
that the adoption of bots can be transformative of software projects (Erlenhov, de Oliveira
Neto & Leitner, 2020), it is still an open research question how exactly bot adoption
impacts projects. Previous work from Wessel et al. (2018) studied 44 open source projects
on GitHub and their bot usage. They clustered bots based on what tasks the bot performed
and looked at metrics such as number of commits and comments before and after the
introduction of the bots. However, no significant change could be discerned. One reason
for this may have been that this study did not sufficiently distinguish between different
types of bots, which may be used for very different purposes. Hence, follow-up research
(Wessel et al., 2020a) focussed foremost on one specific type of bot, namely code coverage
bots (1,190 projects out of 1,194), and found significant changes related to the
communication amongst developers as well as a in the number of merged and non-merged
PRs. This was subsequently investigated further in an interview study (Wessel et al,
2020b). These results, that less discussion is taking place, also is what was found by Cassee,
Vasilescu & Serebrenik (2020) when looking at how continuous integration impacted code
reviews. Peng et al. (2018) studied how developers worked with Facebook mention bot.
The study found that mention bots impact on the project was both positive in saved
contributors’ effort in identifying proper reviewers but also negative as it created problems
with unbalanced workload for some already more active contributors.

Bot identification

Another area where bot categorisations are directly useful is in the (automated) study of
developer activity. Software repository mining studies, such as the work published every
year at the MSR conference (https://conf.researchr.org/home/msr-2021), frequently
struggle to distinguish between contributions of humans and bots (where the study goal
often requires to only include human contributions). Different approaches have recently
been proposed to automatically identify bot contributions (Golzadeh et al., 2021b; Dey
et al., 2020b), also leading to the BIMAN dataset, i.e., a large dataset of bot contributions
(Dey et al., 2020a) which we build upon in our work. One challenge with identifying
bot contributions is the presence of “mixed accounts” (Golzadeh et al., 2021a), i.e.,
accounts that are used by humans and bots in parallel. Mixed accounts require an
identification of bot contributions on a the individual contribution level (rather than
classifying entire accounts). Cassee et al. (2021) have shown that existing classification
models are not suitable to reliably detect mixed accounts. In general, existing approaches
are sufficient if the goal is to identify human contributions. However, as a foundation to
study the bot contributions themselves (e.g., to assess bot impact), existing work lacks
fidelity, in the sense that they do not distinguish between different types of automation
tools and bots, nor between different types of bots.

Erlenhov et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.849 5/28

https://conf.researchr.org/home/msr-2021
http://dx.doi.org/10.7717/peerj-cs.849
https://peerj.com/computer-science/

PeerJ Computer Science

Our study directly connects to these earlier works. We use the categorisation model
proposed in our earlier work (Erlenhov, de Oliveira Neto ¢ Leitner, 2020) to further
investigate the BIMAN dataset (Dey et al., 2020a), particularly with regards to the question
of how many of these automated contributions are actually “bots” in a stricter sense of the
word. We further quantitatively as well as qualitatively investigate the (dependency
management) bots we identified in the BIMAN dataset, further contributing to the
discussion related to the impact of bot adoption on open-source projects.

STUDY METHODOLOGY

To address our study goal, we perform a multi-method study combining different
elements. First we perform a qualitative assessment of the BIMAN dataset (Dey et al.,
2020a) based on criteria for bot classification defined by practitioners (RQ1), followed
by a quantitative analysis based on temporal data of the activity of five dependency
management bots (RQ2). Lastly, we look closer at specific bot activity within projects by
doing a qualitative, thematic analysis of the discussion threads related to bot adoption,
discarding and switching. A high-level overview of our methodology can be found in Fig. 1.

We first extract a complete list of unique tools from the BIMAN dataset, which we then
rank by usage. The first author of this study then manually categorised the first 70 tools
according to our own classification from earlier research (Erlenhov, de Oliveira Neto &
Leitner, 2020). Only 10 tools are classified as bots. Subsequently, we select five of those bots
and sample 50 projects each that used the bot. For these, we use the GitHub API to extract
all PRs and issues where the bot was involved (either as issue creator, commenter, or
simply being mentioned). This leads to a large database of bot issues and PRs, which
we then analyse both quantitatively and qualitatively. Finally, we select a subset of issues
that include discussion threads about multiple bots in order to perform a qualitative
analysis on the discussion between human contributors of the project.

Since the data of each RQ feeds into the next, more detailed method information is
provided directly in “Distinguishing Bots and Automation Tools”, “Activity Analysis
of Dependency Management Bots” and “What are the Discussed Challenges and
Preferenceswhen Adopting, Switching or Discarding Bots?”, such as the choice of
dependency management bots and filtering of issues in our datasets. The data collected,
and scripts used for analysis can be found in our replication package (Erlenhov, de Oliveira
Neto & Leitner, 2021). (https://doi.org/10.5281/zenodo.5567370).

DISTINGUISHING BOTS AND AUTOMATION TOOLS

We now discuss our first research question, an analysis of whether the existing
BIMAN dataset of bots aligns with the bot characteristics listed by practitioners in our
previous work. Specifically, we are interested how much of the dataset includes pure
automation tools.

Data collection
We started from the BIMAN dataset which includes over 13 million commits from 461
authors. We then extracted the authors and sorted them by the number of GitHub

Erlenhov et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.849 6/28

https://doi.org/10.5281/zenodo.5567370
http://dx.doi.org/10.7717/peerj-cs.849
https://peerj.com/computer-science/

PeerJ Computer Science

BIMAN dataset

Scripted filtering

Scripted filttering ~ §f £

for tools < for projects
2
=

Distinct tools Projects using any of

/ the five bots

categorisatio Mining GitHub for
activity

iR

Qualitative

RQ1 Quantitative
analysis analysis
Database of

issues and PR’s

% &

RQ2 RQ3

Figure 1 Overview of our methodology, including the different sources for data collection and their

connection to each research question. Icons made by Pixel perfect from www.flaticon.com.
Full-size K&] DOT: 10.7717/peerj-cs.849/fig-1

organisations adopting each tool as a proxy of popularity or importance. However, initial
analysis showed that the dataset contained duplicate tools (the same tool acting under
multiple identities). We resorted to manually merging identities of the first 70 tools in the
ordered list, which after merging, produced a final table consisting of 54 unique tools

associated with 89 different authors.

Analysis and interpretation approach

We analysed these 54 tools manually using the flow-chart to characterise bots proposed
in our previous work where we conducted an interview study and a survey with
practitioners (Erlenhov, de Oliveira Neto ¢ Leitner, 2020). The flow-chart contains five

7/28

Erlenhov et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.849

https://www.flaticon.com
http://dx.doi.org/10.7717/peerj-cs.849/fig-1
http://dx.doi.org/10.7717/peerj-cs.849
https://peerj.com/computer-science/

PeerJ Computer Science

®

Chat or voice?

®

Action is initiated
by a human?

Not a bot

®

Integrated into
existing systems?

Not interesting

no

O

Used in dev
activities?

Produces non-
trivial code snippets
or analyses?

Figure 2 Decision flow-chart. Adapted from Erlenhov, de Oliveira Neto & Leitner (2020).
Full-size Kal DOI: 10.7717/peerj-cs.849/fig-2

Text output in
team communication
channels?

decision blocks with the goal of deciding if the tool would be considered a bot by any of
the three personas modelled in the study: Charlie (a bot communicates via voice or
chat), Sam (a bot does something “smart”), and Alex (a bot works autonomously).
Furthermore, the classification implicitly assumed that bots would need to be used for a
software engineering task.

For our categorisation, we adapted this decision model slightly (see Fig. 2). We added a
decision to first check if the tool was actually used for a software engineering task.
Further, since the goal of our study is to decide if a tool is a bot or an automation tool, we
were less interested in the specific persona and classified all types of bots simply as
“DevBots” with no further distinction.

As the BIMAN dataset only contains commit data, we resorted to manually query
additional information (GitHub user profiles, documentation, the tool’s external website,
developer comments, efc.) to arrive at a classification decision for each tool. Examples of
additional information used in the classification can be found in Figs. 3 (GitHub) and 4
(tool’s external website).

Results
Following the flow-chart we began by investigating whether the tool was actually used in a
software development related task ((1) in Fig. 2). Not all tools passed this check—an
example of a tool from the dataset that failed this criterion is fs-Ims-test-bot. The tool
updates repositories with a learn-file (https://learn.co/lessons/standard-files-in-all-
curriculum-lessons) that contains metadata about the project and is added so that
participants at a bootcamp style coding school can easily identify what type of repository
they are looking at.

Step (2) asks if a tool uses chat or voice. For most tools, this proved difficult to
determine, and even for promising candidates (e.g., the JHipster bot (https://github.com/
jhipster/jhipster-bot) we found that the part of the tool that produced the git commits that

Erlenhov et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.849 8/28

https://learn.co/lessons/standard-files-in-all-curriculum-lessons
https://learn.co/lessons/standard-files-in-all-curriculum-lessons
https://github.com/jhipster/jhipster-bot
https://github.com/jhipster/jhipster-bot
http://dx.doi.org/10.7717/peerj-cs.849/fig-2
http://dx.doi.org/10.7717/peerj-cs.849
https://peerj.com/computer-science/

PeerJ Computer Science

@ Closed Document how to use docker-library-bot #1248

-opened this issue on Jun 7, 2018 - 5 comments

Would be great to get some info about that.

Edit: Here is an example.

Labels

None yet

Projects
ommented on Jun 8, 2018 Member < None yet

It's not really anything formal (calling it a "feature" is a bit of a stretch) -- it's a Jenkins user we set up to help

Milestone

us manage all the image repos under https://github.com/docker-library (all of which have an update.sh to

bump version numbers and a generate-stackbrew-library.sh to generate the relevant library/REPO file

contents).

No milestone

Linked pull requests

See https://doi-janky.infosiftr.net/job/update.sh/ for the Jenkins jobs (which are linked from each image repo

README.md file) and https://github.com/docker-library/oi-janky-groovy

Successfully merging a pull request may
close this issue.

[tree/238af3cbad31c9a27cc9d450c951a68c46d408ba/update.sh for the Groovy scripts. It works well enough
for us that several other repos have asked to be included (which can be seen in vars.groovy in that linked None yet

repo).

3 participants

IMO this doesn't really warrant any further documentation since it's not really a "feature" and is simply how we
maintain things -- every image maintainer is welcome to do their own thing.

%
N

Figure 3 Example of a GitHub source used to classify the docker-library-bot tool. (https://github.com/docker-library/docs/issues/1248). The
screen shows an issue explaining what the tool does. Full-size K&] DOTI: 10.7717/peerj-cs.849/fig-3

we were observing was unrelated to the chat bot. We concluded that, given our analysis
data (git commits), this check is not of high value.

Step (3) asks if the automated tool initiated by humans. One tool that was considered as
automation tool rather than bot because of this check was the Bors bot (https://bors.tech/),
which (despite its name), only becomes active when explicitly triggered by a human
developer.

In step (4), we investigated if the tool produces nontrivial code snippets or analysis?
While clearly a judgement call, we did not consider the output of any tool in our sample to
be sufficiently complex or “smart” in the spirit of the original classification model.

Step (5) asks if the tool is integrated into existing systems. Examples of tools that failed
this check is one of the numerous build helpers, whose only task is to update the code
with release versions when someone explicitly initiates this (https://github.com/docker-
library/docs/issues/1248).

Finally, the last check in step (6) asks if the tool creates text output in team
communication channels. Similar to step 2, this proved difficult to determine, as we
did not have access to relevant team communication channels. One tool that did emerge as
a bot after this check is the Whitesource bot (https://github.com/apps/whitesource-bolt-
for-github), which creates one initial commit and after that communicates via issues.

On the final list of 54 tools, only 10 tools were (clearly) judged as bots according to the
persona-oriented classification model. Table 1 lists these bots and a sample of tools that

Erlenhov et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.849 9/28

https://bors.tech/
https://github.com/docker-library/docs/issues/1248
https://github.com/docker-library/docs/issues/1248
https://github.com/apps/whitesource-bolt-for-github
https://github.com/apps/whitesource-bolt-for-github
https://github.com/docker-library/docs/issues/1248
http://dx.doi.org/10.7717/peerj-cs.849/fig-3
http://dx.doi.org/10.7717/peerj-cs.849
https://peerj.com/computer-science/

PeerJ Computer Science

© 0 5 pues] You evescme wre x| () Usduted Corfig Bt X

Sy
<« C £ GitHub, Inz. [US) Mitps//githud comsskylatimry-aa/commit/142a5650bal 094 40824 76 B0 MEEI 936803230 [}
1

o s ropomiory Pullrequests lswwes Gist ¥ o+ A

sskylar / my-site

< Coco lsswos © PUl roquosts 0 Wi Pue Graghs Satigs

Updated Config and 6 other files

Browse files
b master

M Stokat @ commized 18 30007Gs 390 1 parest 40ade8S coemit 142a5883(bafd04062aTe 80! (BEIIDeBN2e

t‘l
Sronng 7 changed s ws 37 addtions ard 24 delesons. Unted | Soin |

3 wamm _configagmt Virw

o pests

Watch Connecting GitHub and Siteleaf on Vimeo

This tutorial will show you how to connect and sync an existing Jekyll

site from GitHub to Siteleaf, so you can edit content and preview your
site in the cloud.

If you are new to Jekyll, you may want to start with our Jekyll from
Scratch first tutorial to catch up on the basics.

What is GitHub sync?

When developing your site, you'll generally want to keep your theme
and content in sync so you can see how everything looks in context.

Figure 4 Example of an external source used to classify the tools. (https://www.siteleaf.com/blog/
connecting-github/). The screen shown is the investigated tool’s webpage with a video that implicitly
describes how the commits to GitHub are created. Full-size k&l DOTL: 10.7717/peerj-cs.849/fig-4

Erlenhov et al. (2022), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.849 10/28

https://www.siteleaf.com/blog/connecting-github/
https://www.siteleaf.com/blog/connecting-github/
http://dx.doi.org/10.7717/peerj-cs.849/fig-4
http://dx.doi.org/10.7717/peerj-cs.849
https://peerj.com/computer-science/

PeerJ Computer Science

Table 1 Identified bots and a sample of tools evaluated as automation tools. Numbers refer to
checkpoints in the flow-chart in Fig. 2. Question marks represent checkpoints that we could not answer
due to limited information about the corresponding tool.

Name (1)) 3) (4) (5) (6) Evaluation
Whitesource-bot-for-Github Yes No No No No Yes Bot
Greenkeeper Yes No No No Yes - Bot
Dependabot Yes No No No Yes - Bot
Renovate bot Yes No No No Yes - Bot

Pyup bot Yes No No No Yes - Bot

imgbot Yes No No No Yes - Bot

DPE bot Yes No No No Yes - Bot

Snyk bot Yes No No No Yes - Bot

Depfu Yes No No No Yes - Bot

Scala Steward Yes No No No Yes - Bot
fs-Ims-test-bot No - - - - - Not related
Bors Yes ? Yes - - - Automation
docker-library-bot Yes No No No Yes - Automation
Siteleaf Yes No No No No No Automation
JHipster bot Yes ? - - - - Undetermined

were judged as automation tools. We conclude the following from this classification
exercise:

e Only a small fraction (10% of 54%, or 18.5%) of analysed tools clearly qualify as “bots”
according to a stricter definition. A large majority are, often fairly conservative,
automation tools that have been re-branded as bots, and exhibit little qualitative
difference to the kinds of scripts that developers have used for a long time as part of their
development, build, and deployment processes.

o Interestingly, this includes many tools that are explicitly called “bots” as part of their
names, e.g., the Bors bot or docker-library-bot. Hence, researchers that are interested in
investigating bots in a stricter sense should not rely on tool names as primary way to
identify bots.

e It is evident that the tools that we actually classified as Devbots (e.g., dependabot,
renovate, or greenkeeper) are very similar. More specifically, nine out of these ten bots
are dependency management bots on some form. In one case—Snyk and Greenkeeper—
one bot was acquired by the other in 2020 (https://snyk.io/blog/snyk-partners-with-
greenkeeper-to-help-developers-proactively-maintain-dependency-health/).

ACTIVITY ANALYSIS OF DEPENDENCY MANAGEMENT
BOTS

Based on these findings, we now turn towards a more qualitative investigation of the
(dependency management) bots we have identified (RQ2).

Erlenhov et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.849 11/28

https://snyk.io/blog/snyk-partners-with-greenkeeper-to-help-developers-proactively-maintain-dependency-health/
https://snyk.io/blog/snyk-partners-with-greenkeeper-to-help-developers-proactively-maintain-dependency-health/
http://dx.doi.org/10.7717/peerj-cs.849
https://peerj.com/computer-science/

PeerJ Computer Science

Data collection

We collected data on a subset of the bots identified in “Introduction”. Specifically, we
selected Dependabot, Greenkeeper, Renovate, Depfu, and Pyup for deeper quantitative
analysis. For each bot, we first compiled a list of all projects in the BIMAN dataset (Dey
et al., 2020a) that had at least one commit by the selected bot. We sorted these project
lists by GitHub watchers, and the first author manually sampled the highest ranked

50 projects for each bot that matched four inclusion criteria. First, the project needed to be
a project with actual source code and not a data repository. An example of an excluded
project is the remoteintech/remote-jobs project which is a list of companies that
support remote work. Second, each project had to have more than one issue or PR related
to the bot when searching in the issues PR tab on GitHub. Third, the project had to not
already been included under another name. Examples of those projects are kadirahq/
paper-ui, storybooks/react-storybook and storybookjs/storybook, which
took up three positions in the ranked list, but they all point to the same project. Lastly, the
project’s main language had to be English since the comments from selected projects are
used for our qualitative analysis in RQ3.

We observed that the resulting lists of bot-using projects were overlapping, leading to
232 unique projects (from a theoretical maximum of 5 * 50 projects). We consequently
downloaded all issue and PR data since the launch of the project until 2021-03-31 for all
issues where at least one of our bots was mentioned in the issue text or comments, or
where at least one of the bots was the author of at least one issue or comment. We
downloaded (i) all issue information, (ii) all comments on these issues, and (iii) all merge
events related to these issues via the GitHub REST API, and stored the resulting JSON
data in a MongoDB database for latter processing and analysis. In a last round of filtering
we removed all projects that had fewer than 100 issues or PRs, resulting in 93 unique
projects. It should be noted that, even though we specifically selected 50 projects for each
bot, concrete projects often used a multitude of the study subject bots at different points in
the project lifetime.

Table 2 summarises our sample of bot activity in terms of the number of issues PRs and
comments created by bots or human contributors, as well as the time period comprising
the data. In other words, we refer to bot activity as any issue, PR or comment where one of
the selected bot was either the author or was mentioned.

Analysis and interpretation approach

In order to compare the activity of different bots, we analyse the issues or PRs authored by
those bots in the selected projects over the years. This allows us to see increasing decreasing
trends of bots usage. Additionally, we analyse how human contributors react to this
activity by verifying the proportion of merged PRs that were created by bots and a survival
analysis of the issues created by bots. A survival analysis is often used in biology to
investigate the expected duration of time until an event occurs (Kaplan & Meier, 1958)
and, has been used in similar types of analysis in software engineering (Lin, Robles ¢
Serebrenik, 2017; Samoladas, Angelis ¢» Stamelos, 2010). Our survival analysis measures the

Erlenhov et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.849 12/28

http://dx.doi.org/10.7717/peerj-cs.849
https://peerj.com/computer-science/

PeerJ Computer Science

Table 2 Number of issues, comments and projects for each bot. There are 93 unique projects in our
dataset, but many projects have used multiple bots at some point.

Issue Author Projects Issues Comments Period Years
Dependabot 76 21,345 13,763 2017-2021 4
Depfu 16 1,346 1,032 2017-2021 4
Greenkeeper 34 3,015 2,273 2015-2020 5
Human 76 1,168 30,481 2013-2021 8
Pyup 22 3,075 1,690 2016-2021 5
Renovatebot 39 12,209 2,825 2017-2021 4
Total 93 42,158 52,064 - -

number of days until an issue is closed. We compare the expected duration of PRs created
by bots and those created by humans.

Lastly, we analyse overlapping bot activity by comparing (i) projects using multiple
bots, as well as (ii) how the bot activity overlap over time. Particularly, we filter projects in
which one or more issues were created by two or more bots over the period of, at least,
1 month.

Results

Figure 5 shows the number of issues and PRs created by each bot over the years. Depfu,
Greenkeeper and Pyup have a similar trend beginning with an increase in usage and
following a slow decrease in its usage. In parallel, both dependabot and renovatebot have
an increasing trend in activity. Most of the issues in our dataset were created by
dependabot or renovatebot, indicating a prevalence of such bots among the 93 projects in
our dataset.

Figure 6 shows the proportion of merged PRs created by each author. Note that roughly
half of the PRs created by humans were merged into the projects. This is surprising as
literature reports that PRs created by bots are less likely to be merged than those created
humans, whereas here they are the same (Wyrich et al., 2021). However, recall that our
data collection strategy entailed downloading only issues where bots were involved in
some way. Hence, even the human-created issues are not necessarily representative of all
issues, as they have still been sampled as issues that somehow involve bot activity (even if
not as issue creator). Renovatebot was the only author in which most of the PRs were
actually merged (76%), whereas depfu had the lowest percentage of merged PRs (17%).

We also compare the status of the issues created by different bots or humans to check
whether there are differences in how long it takes to close those issues. Figure 7 shows a
survival curve of the created issues. A survival curve reveals the probability p(S) that an
event S occurs (i.e., closing an issue) over a period of time. For consistency, we only
consider issues that: (i) lasted at least 1 day, hence avoiding issues closed shortly
after creation (e.g., auto-merge dependency updates), (ii) issues created before the date
2021-03-31, or (iii) closed under 120 days in our dataset.

We use a Kaplan—Meier (KM) curve which is a non-parametric statistics to estimate the
survival function based on the time period until an event occurs (Kaplan ¢ Meier, 1958).

Erlenhov et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.849 13/28

http://dx.doi.org/10.7717/peerj-cs.849
https://peerj.com/computer-science/

PeerJ Computer Science

1000
750
500
250

60

20

100
50

Num. of Issues

150

Issues created by each bot over time

Dependabot

Depfu

Greenkeeper

Pyup

Renovate

(o2} o (s} © (2] o 0 © (2] o (s} ©o (2] o (s} © (2] o s © (o2} o (s ©

- 2 ¢ @ - @ @ 9 = o & 9 - & 9 9 T 9 9 § - 9

wn wn ©o o © o ~ ~ ~ ~ @ 0 0 o o o o o o o o o - -

— - — - - — — — — — — - - — - - - - [[Y] [Y] s

o o

N o N o o o N Y o N N 3V o N N o o N o N N N o N
Year-Month

Renovate

Author . Dependabot . Greenkeeper . Depfu . Pyup

Figure 5 Number of issues or PR created by each bot throughout the years in our dataset. Note that
the y-axis have different scales to make it easier to compare trends per bot.

Full-size K&l DOT: 10.7717/peerj-cs.849/fig-5

1.00

0.75

0.50

Proportion of PRs

0.25

0.00

Percentage of merged PRs per Author

234
1143 (17.4 %)
1319
618 e (437%) (372%)
9259 (52.9 %) (48.7 A:) ’
(75.8 %)
| F— 1 1 1 1
1932 (82.6 %)
550 10944 1696 5
oy (563%) (628%)
2950 (47.1 %) (51.3 %)
(24.2 %)
Renovate Human Dependabot Greenkeeper Pyup Depfu
PR Author
PR Status: Merged Non-merged

Figure 6 Proportion of merged PRs created by each author in our dataset.

Full-size K&l DOTI: 10.7717/peerj-cs.849/fig-6

One of the advantages of the KM is to adjust the estimations for censored events, which

occur when information about the analysed subject is unknown, due to, e.g., missing

information about the subject in the dataset. In our case, censored events are issues that

Erlenhov et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.849

I 0 14/28

http://dx.doi.org/10.7717/peerj-cs.849/fig-5
http://dx.doi.org/10.7717/peerj-cs.849/fig-6
http://dx.doi.org/10.7717/peerj-cs.849
https://peerj.com/computer-science/

PeerJ Computer Science

Dependabot Depfu Greenkeeper

1.00 1.00 1.00

0.75 0.75 0.75

0.50 . 0.50 - 0.50 -
- 1 L
2} ! 1 1
50.25 \ 0.25 | 0.25 h
] 1 1 1
Eo_oo 1 e i+ =t 0.00 ! 0.00 !
% 0 10 20 30 40 50 60 70 80 90 100 110120 0 10 20 30 40 50 60 70 80 90 100 110120 0 10 20 30 40 50 60 70 80 90 100110 120
Q
g Human Pyup Renovate
= 1.00 1.00 1.00
2
<
5075 0.75 0.75
(]

0.50 . 0.50 - 0.50 a3

1 1 I
0259 | 025y | 0259 |
1 1 1
0.004__" y et 000! 0.004_!
0 10 20 30 40 50 60 70 80 90 100110120 0 10 20 30 40 50 60 70 80 90 100110120 0 10 20 30 40 50 60 70 80 90 100 110 120
Time (days)
== Dependabot Greenkeeper Pyup
Strata
== Depfu == Human Renovate

Figure 7 A survival curve for issues created by different authors in our dataset. The curve indicates the probability (y-axis) of an issue being
closed after a number of days (x-axis). The ticks in the curve represent censored events, which are issues that were not closed until our limit
date (March 31st, 2021). The dashed line shows the median (p = 0.5) number of days until an issue is closed.

Full-size K&l DOT: 10.7717/peerj-cs.849/fig-7

? Left-censored events are those in which remain open after our limit date (i.e., right-censored)’. For instance, we consider censored
data about the first instance of the event,
e.g., creation of an issue, is missing. We
have no left-censored events in our our limit date (i.e., our dataset does not include information on whether the issue was

dataset. indeed closed).

For all issue authors, we see the same pattern in which the issues are most likely to be

events those issues that were not closed but were created before within 120 days before

closed within 5-6 days from the date in which they are created. Dependabot and
Renovatebot have more censored events in our dataset because they are also the bots
with more recent activity, such that a large number of issues were opened around our limit
date. Particularly, there is not a clear difference in the number of days in which bot or
human created issues are closed.

Another interesting question our data can answer is to what extent projects use multiple
dependency management bots in an overlapping manner (i.e., at the same time).
Intuitively, since the basic functionality of the bots is very similar, this should not be a
common occurrence. However, when projects switch between bots, a certain overlap may
occur.

Table 3 shows the number of projects that use one or more bots, along with the number
of months with overlapping bot activity. It is interesting to observe that most of the
projects used two of our investigated bots (58%) even though the number of months
in which the bots actually work in parallel, for those projects, is expectedly small
(13%—242/1783). In other words, the projects used 2 bots at the same for 13% of their

Erlenhov et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.849 15/28

http://dx.doi.org/10.7717/peerj-cs.849/fig-7
http://dx.doi.org/10.7717/peerj-cs.849
https://peerj.com/computer-science/

PeerJ Computer Science

Table 3 Number of projects that use one or more bots. For each row, we add the number of months in
which more than one bot authored an issue or PR in the project. We also present mean, median and
standard deviation (SD) for overlapping months per project.

Number of months

Summary on overlapping months

Bots used Projects No overlap Overlap Mean Median SD
1 21 610 - 0.0 0.0 0.0
2 54 1,541 242 4.5 2.0 8.6
3 14 421 81 5.8 2.5 6.3
4 4 93 120 30.0 16.5 33.7

60

40

n
o o

h
o

Number of issues created
S
o

N
o

5.0

2.

o

0.0

Overlapping bot activity

apollographgl/apollo-client

40

20

isomorphic-git/isomorphic-git

2017 2018 2019 2020

syncforynab/fintech-to-ynab

2021

4
“ |
0

o

o

2018 2019 2020 2021

YetiForceCompany/YetiForceCRM

2019 2020

2021
Year

2019 2020 2021

Author . Dependabot . Greenkeeper . Depfu . Pyup Renovate

Figure 8 Sample of projects with a variety of overlapping bot activity. Different projects have used
bots in parallel (e.g., YetiForceCompany), or switched among different bots over the years.

Full-size 4] DOT: 10.7717/peerj-cs.849/fig-8

months. In contrast, the few projects that use four bots are using two or more bots in

parallel a majority of the time (56%—120/213). We did not see any project that used all of

the 5 investigated bots.

The descriptive statistics in Table 3 reveal high variance per project, such that there is

great disparity between mean and median. In other words, the overlapping activity

varies per project and follow contrasting patterns. We selected a few projects with varied

patterns of overlapping bot activity and present them in Fig. 8.

Erlenhov et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.849

16/28

http://dx.doi.org/10.7717/peerj-cs.849/fig-8
http://dx.doi.org/10.7717/peerj-cs.849
https://peerj.com/computer-science/

PeerJ Computer Science

Three of the selected projects indicate that the overlap is specific to transition months.
This pattern suggests that developers try out different bots months prior to switching
between them (see apollographql/apollo-client, isomorphic-git/
isomorphic-git and syncforynab/fintech-to-ynab). Another pattern is a
multitude of parallel bot activity, as shown by YetiForceCompany/YetiForceCRM in
which 2 or 3 bots are constantly being used in parallel throughout years of development.

Since we do not have access to interview the projects” developers, we cannot analyse the
factors behind those different patterns. Nonetheless, the patterns reveal a risk when
choosing specific dates and counting month intervals before and after bot contributions.
The risk is that static timeframes can hide team learning effects from trying out similar
bots before the chose timeframe, or miss on confounding effects of multiple bots being
used in parallel within a static time frame.

Our analysis of RQ2 verifies the proportion of activity from different dependency
management bots, as well as how this activity is consumed by humans by, e.g., merging PRs
or closing issues created by the bots. Overall, we did not detect major contrasting patterns
or preferences between the investigated bots. That is, we have observed that the usage
and contribution patterns of the investigated dependency management bots were
largely similar. The main differences were that: (i) Dependabot and Renovate are more
popular than the other bots and are increasingly being used by many projects, and
(ii) Renovate has more merged issues (75% of merged PRs), whereas Depfu has the least
number of merged PRS (17%). Moreover, our survival analysis reveals that most issues are
closed before 5 days for all the analysed issues, including those authored by humans in
which bots were involved or mentioned in the discussion thread.

Lastly, most projects use 2 or more bots with overlapping activity. However, this overlap
varies across projects and indicates different patterns of usage. Based on the findings above,
we subset those overlapping months in order to analyse discussion threads and identify
which factors drive the developers’ decision to adopt, remove or switch between bots.

WHAT ARE THE DISCUSSED CHALLENGES AND
PREFERENCES WHEN ADOPTING, SWITCHING OR
DISCARDING BOTS?

Here we investigate the third research question: What factors guide the discussions about
adopting, switching, discarding or using dependency management bots in open-source
software? Throughout the section we refer to issue identifiers and corresponding URLs
specified in Table A1l in the Appendix.

Data collection

From the dataset used for RQ2, we used the following method to select issues and PRs
for our qualitative analysis. First, we identified all issues and PRs that: (i) had two or
more bots being mentioned in the comments, or (ii) were created by humans and
mention more than one bot in the issue body. In order to include discussion threads about
usage of single bots, we manually selected circa 30 issues (six issues per investigated bot). A
manual inspection of the issues allowed us to include the discussion threads about the

Erlenhov et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.849 17/28

http://dx.doi.org/10.7717/peerj-cs.849
https://peerj.com/computer-science/

PeerJ Computer Science

usage of the bot, and remove those about project-specific dependency updates. An example
of an PR that was not included is a Dynamoid PR were the discussion is on enabling
others to use the bot to update the Dynamoid package dependency in their projects by
changing something in the Dynamoid project [Dyn-215].

We further performed snowballing to include issues outside our project sample
(e.g., comments such as “see discussion here” that were linked to other issues). Ultimately,
the dataset for RQ3 included 109 issues and PRs (included in the replication package
(Erlenhov, de Oliveira Neto & Leitner, 2021)). (https://doi.org/10.5281/zenodo.5567370).
The issues had a mean of 9 (median 7) comments. In total, our analysis is composed of 181
codes extracted from those issues and PRs.

Analysis and interpretation approach

For our theme analysis, we started by capturing the type of conversation that took place in
the each issue. We used four conversation labels: adopt, use, switch or discard. The most
common case was that one issue contained one conversation, but in some cases we
found that a single issue contained multiple logical conversations. For example, an issue in
HypothesisWork/hypothesis [Hyp-747] started as a conversation about the usage of a
bot, but later became a conversation about switching bots after the developer of another
bot decided to join the conversation.

In parallel to identifying conversation labels, we performed open and axial coding
where we divided the conversations up into excerpts of relevant information (codes)
and assigned a second category of code labels named content labels to build our thematic
map. Open coding allowed us to generate and vary the categories to classify the codes,
whereas axial coding enables sorting of the coded data in new ways by identifying
relationships between those categories (e.g., themes and sub-themes) (Stol, Ralph ¢
Fitzgerald, 2016). Consequently, our list of code labels was not fixed in the beginning and
changed as we reviewed more discussion threads in our dataset.

We based our initial content labels on the bot-related benefits and challenges identified
in our earlier work (Erlenhov, de Oliveira Neto ¢ Leitner, 2020). Then, we iteratively
switched between axial and open coding as new sub-themes were identified. In order to
agree on a set of code labels, the first and second authors discussed and coded together
roughly 10% of the comments in the dataset. Then, the first author coded the remainder of
the dataset. However, due to the open and axial coding, new content themes would surface,
hence, triggering another round of discussions between the first and second authors to
reach a new agreement on the new set of code labels. This process continued until we
reached theory saturation, i.e., no new code labels were created as we sorted codes into the
categories. The final table of content code labels and corresponding themes is presented in
Table 4.

In summary, we extracted a number of excerpts each assigned with two code labels—
one for the conversation to keep the context of the discussion thread and a second label to
capture the content of the excerpt. These excerpts were then sorted into themes by content.
Each codes and their corresponding conversation and content labels are shared in our
replication package.

Erlenhov et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.849 18/28

https://doi.org/10.5281/zenodo.5567370
http://dx.doi.org/10.7717/peerj-cs.849
https://peerj.com/computer-science/

PeerJ Computer Science

Table 4 Description of each code label used in our qualitative study. For each content sub-theme, we also include the number of codes observed
in our dataset.

Theme Sub-theme Codes Description of Comments or Issues
Promote Creator input 13 Bot creator joins the discussion thread to clarify information about their bots.
bot
Company/Project credibility 9 Comments regarding whether the bot was developed or sponsored by a reputable company or
project.

Usability ~ Setup and configuration 10 Technical discussions about introducing and maintaining the bot in the project.
Unistall 7 Technical discussions about removing the bot and its artefacts from the project.
Understanding features 14 Comments regarding the comprehensibility of features offered by the bot.
Clashes in ways of working 21 Discussions about changes in the development process caused by the bot.
Bugs 4 Comments regarding faults and failures caused by the usage of the bot.

Noise Annoyance Discussions that mention whether the notifications created by the bots are disruptive.
Countermeasures 10 Comments suggesting fixes to reduce the notifications created by the bot.
Additional work (for 5 Discussion about increased workload on project resources caused by the bot (e.g., build time,

resources) tests).

Additional work (for people) 12 Discussions about increased workload on humans maintaining the project caused by the bot.

Benefits Improve quality 10 Comments about the functional and non-functional improvements caused by the bot.
Handling tasks at scale 2 Discussion about enabling development tasks to be performed at higher scales
Automation of tedious tasks 1 Comments regarding the bots automating manual and laborious tasks done by developers.
Information retrieval 2 Discussion about improved accessibility and availability of project information.

Trust Trustworthy 7 Conveys confidence on the bot’s agency.
Non-trustworthy 9 Conveys unease or suspicion about the bot’s agency.

Features Supported features 19 Describes features offered by the bot.

Missing features

21 Describes features not offered by the bot.

Results

A summary of our themes (content labels) and their relation to the conversation labels is
shown in Table 5. Our results showed that from the benefits described by Erlenhov, de
Oliveira Neto & Leitner (2020), improved quality was the main driver for (dependency)
bot adoption (primarily related to security and bugfixes). We also expected to find cases
related to support handling tasks at scale, since adopting a dependency management bot
should in principle also allow projects to handle dependency upgrades more easily.
Instead, we found that in many cases projects experienced an increase in the load put on
maintainers and resources, especially since our studied bots also introduce significant noise
in the form of additional work due to numerous PRs.

“The main driver for this change is to reduce maintenance burden on maintainers, and I
really appreciate the effort. However, [redacted]’s comment made me realise that it might
have the opposite effect.” -[Dja-2872]

The noise theme was the single theme associated with most coded excerpts related to
stop using a bot (i.e., discard). Following our results, the number of PRs generated by
the bot is in itself unproblematic, but the bot is perceived to add noise when too many PRs
are perceived as irrelevant. However, in some cases the project just accepted that this is just

Erlenhov et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.849 19/28

http://dx.doi.org/10.7717/peerj-cs.849
https://peerj.com/computer-science/

PeerJ Computer Science

Table 5 List of themes and the corresponding number of codes (comments excerpt) associated to
each theme and conversation labels.

Themes Adopt Use Switch Discard Total
Promote bot 12 3 7 0 22
Usability 17 22 14 3 56
Noise 12 9 5 6 32
Feature 15 6 18 1 40
Benefits 15 0 0 15
Trust 8 1 16
Total 79 45 46 11 181

“how bots work”. In one case, the developer considered the dependency management bot
more as a source of information on existing outdated dependencies than actually trusting it
to actually update them [Rea-2673-1]. However, in several cases, the initial load
produced by the bot was so large that the projects kept postponing the initial PR for several
months—at which point the PR was considered outdated, and the project decided to just
discard the bot and start over with a new one [Str-2433].

Our study also reveals multiple countermeasures to overcome bot noise, such as (i)
limiting the number of simultaneously open PRs from the same bot, (ii) batching the PRs
in a smart way, or (iii) letting the bot auto-merge PRs when certain criteria are fulfilled.
Evidently, the first and the second approach require developers to decide which PRs the
bot was supposed to open (or how to batch PRs). The third countermeasure is
strongly related to trust, both trust in the bot as well as trust in the project’s own quality
assurance processes. We observed that bot developers are themselves often careful with
automerging. For instance, when Dependabot was acquired by GitHub in May 2019
they removed the auto-merge feature in the bot (https://github.com/dependabot/
dependabot-core/issues/1973), instead urging the users to manually verify dependency
updates before merging.

“Auto-merge will not be supported in GitHub-native Dependabot for the foreseeable future.
We know some of you have built great workflows that rely on auto-merge, but right now,
we’re concerned about auto-merge being used to quickly propagate a malicious package
across the ecosystem. We recommend always verifying your dependencies before merging
them.” -[Dep-1973]

Another common theme in discussions around bot adoption or discarding was
usability. Setting up and configuring a bot is not always seen as an quick and easy task,
often requiring substantial trial and error. Instead of trying to make sense of the bots
manual [Rea-2673-2], many projects instead opted to set up and experiments with
different settings until a satisfactory result is achieved.

“Just tried turning on pyup.io and requires.io so we can see what they do :-)” -[Pyt-687]

Erlenhov et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.849 20/28

https://github.com/dependabot/dependabot-core/issues/1973
https://github.com/dependabot/dependabot-core/issues/1973
http://dx.doi.org/10.7717/peerj-cs.849
https://peerj.com/computer-science/

PeerJ Computer Science

This also applied to when the bot was adopted and the contributors tried to understand
what, how, and when the bot functioned. Core features that developers are particularly
interested in are support for collecting everything regarding dependency updates in to one
bot [Ang-19580] over having different bots for e.g., different languages. Further, many
feature discussions are again related to noise reduction.

“Hmm, I hadn’t heard of renovate before, but it claims to have python support and a lot of
tools for reducing noise.” -[Pyt-652]

Another common usability-related challenge was that bots may not necessarily fit the
workflow of the project well. We have observed both, cases where the team managed to
adapt the bot as well as cases where the team changed their workflow to accommodate
the bot requirements [Rea-2673-3], [Cal-16961]. We have also identified one case where a
bot was outright discarded because it was judged a bad fit for the team’s way of working
[Gre-247].

Finally, the last usability-associated theme we identified was related to bot promotion. In
several cases, the bot creator actively markets the bot by “popping into” relevant issue
discussions in open-source software projects, nudging the project to give their bot a try.
Similarly, once a project decides to adopt a bot, creators sometimes offers direct usability
support by explaining or proposing ways to use the bot or helping with onboarding
[Ang-20860].

Our theme analysis reveals that the key factors guiding the discussions about adoption
of dependency management bots are usability, benefits and features. In turn, most of the
discussion around discarding those types of bots revolved around the noise that the bot
generates. Some of those factors, such as noise (Wessel et al., 2021) or the benefits in
handling tasks at scale (Erlenhov, de Oliveira Neto ¢ Leitner, 2020), have also been seen in
other studies as relevant factors to, respectively, hinder or improve the development
workflow.

DISCUSSION

Central to our study is a distinction between automation tools and genuine software
development bots (Devbot), as defined in Erlenhov, de Oliveira Neto ¢ Leitner (2020). We
now summarise and contextualise our findings from exploring this difference based on the
BIMAN dataset (Dey et al., 2020a). We argue that our results have multiple key
implications for future research studying Devbots.

Most automation in open-source software projects is not through (human-like) bots,
but through automation scripts. Our manual analysis of a sample of 54 widely used
tools from the BIMAN dataset showed that only 10 (18.5%) comply with the Devbot
definition. However, this should not be seen as criticism of the dataset, as the remaining 44
tools are certainly not false positives according to their definition (which classified all
non-human contributors as “bots”). However, researchers need to be aware that a majority
of tools contained in a dataset such as this are relatively simple automation scripts that
do not exhibit any specific human-like traits, and are not qualitatively different to the kind
of scripting developers have been doing for a long time. To support the study of Devbots,

Erlenhov et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.849 21/28

http://dx.doi.org/10.7717/peerj-cs.849
https://peerj.com/computer-science/

PeerJ Computer Science

new datasets (which may have to be compiled manually, or at least in a semi-automated
manner) will be required.

Dependency management is a task where Devbots are indeed common, and there are
multiple widely used implementations of dependency management bots. From the
remaining 10 tools which we categorised as Devbots, nine were dependency management
bots. Hence, we conclude that dependency management is the one domain where Devbots
are indeed widespread and commonly used in open-source software projects. Further,
multiple widely-used bots are available serving a very similar purpose. An implication for
researchers of this finding is that a study of Devbots from datasets such as BIMAN is really
a study of dependency management bots, as these dominate the dataset.

However, we cannot necessarily conclude from our results that dependency
management bots are the only Devbots that open-source software projects use—since our
study was based on a dataset of code contributions, Devbots that interact with a projectin a
different manner, e.g., by welcoming newcomers in the issue management system
(Dominic et al., 2020), would not emerge in our work by design. Future research will be
required to assess the prevalence and impact of such other types of Devbots.

All analysed dependency management bots exhibit similar contribution patterns.
When studying the contribution behaviour of five of these dependency management bots
(Greenkeeper, Dependabot, Renovate, Pyup, and Depfu) in more detail, we observed that
all five bots exhibit comparable behaviour. This indicates that these tools are indeed
comparable, not only in terms of functionality but also in how they interact with
developers. Consequently, the five bots identified in our research can serve as a valid
starting point for future comparative studies.

We have not observed clear differences between bot commits and human commits
regarding the time until PRs are resolved. This is surprising, as our results do not confirm
earlier work (Wyrich et al., 2021), which has observed that developers handle bot
contributions with lower priority than human ones. More empirical research will be
required to establish if this discrepancy is due to differences in the sampling strategy, or if
there are indeed certain types of bot PRs that get handled similarly fast as human
contributions.

Many open-source software projects experiment with different dependency
management bots. However, sustained “co-usage” of multiple dependency
management bots is rare. A majority of 72 (77.4%) projects have used (or at least
experimented with) two or more dependency management bots during their lifetime. Four
projects have experimented with four of our five case study bots. This indicates that
projects are not opposed to evaluating alternative bots or switching entirely. Additionally,
we have observed that projects sometimes use multiple dependency bots in parallel,
although this is not common outside of a “switching phase”. Further research will be
required to investigate reasons for the co-usage of multiple dependency management bots.

Open-source software maintainers are hoping for improved software quality
when adopting dependency management bots. Common problems when adopting
these bots are usability issues, especially related to noise. From a thematic analysis of
discussions surrounding the adoption, discarding, or switching of bots we have learned

Erlenhov et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.849 22/28

http://dx.doi.org/10.7717/peerj-cs.849
https://peerj.com/computer-science/

PeerJ Computer Science

that developers predominantly expect higher code quality when using bots (e.g., related to
important security updates being discovered and merged earlier). Surprisingly, developers
do not seem to directly expect, nor achieve, higher productivity per se, as adopting a
dependency management bot often incurs significant noise. Particularly concerning in this
context is that prominent bots such as Dependabot have even reduced their feature set
related to handling noise (i.e., auto-merging). This indicates that ongoing research
related to the prevention of “bot spam” and bot-induced noise is timely (Wessel ¢
Steinmacher, 2020), and that more research in this direction may be required. This further
research will become particularly crucial if bot adoption continues to increase, as
developers are currently lacking the tools to systematically deal with a large influx of bot
contributions.

Clear bot definitions are crucial to study design. An overarching theme of our results
is that, when empirically studying a somewhat “fuzzy” new concept such as bots in
software engineering, great care needs to be taken to establish clear definitions of the study
subject upfront. It is easy to take an existing dataset such as BIMAN because it uses the
same keyword (“bot”) as basis of one’s own research, without realising that it may
have been constructed with a different definition in mind. This bears the danger of
overgeneralisation, when certain types of bots (e.g., dependency management bots) are
studied because they are readily available, but results are implicitly generalised to “all bots”.

Threats to validity
We now discuss the threats to the validity of our research.

Construct validity: Deciding on a reference framework to classify and sample bots is a
challenge faced by many bot-related studies, despite the existing taxonomies in literature to
support researchers (Erlenhov, de Oliveira Neto ¢ Leitner, 2020; Erlenhov et al., 2019;
Lebeuf et al., 2019). We mitigate this limitation by (i) using a bot taxonomy based on input
from practitioners using those bots, and (ii) choosing evaluation measures or code labels
(e.g., PRs, issues, bot noise, trust) that have been used in previous work (Wessel ¢
Steinmacher, 2020; Wyrich et al., 2021; Wessel & Steinmacher, 2020). Therefore, our
findings are limited by the characteristics prevalent in such types of bots, i.e., human-like
traits such as communication or autonomy. In turn, starting our sample from the BIMAN
dataset introduces the risk to skip bots used in that were not initially included in the
dataset. Consequently, the bot activity and factors discussed in RQ2 and RQ3 are limited to
our sample of projects using those bots. Future work can use our replication package to
analyse a new dataset of issues and PRs mined from projects using other dependency
management bots.

Conclusion validity: For RQ1 we quickly noticed that the GitHub projects and tool
documentation often miss details that hindered our classification of bots in RQ1 using the
flow-chart. Therefore, there is a risk that leads to false negatives in our sample. For
instance, some tools that we did not classify as bots in our list could be bots for, e.g., a
Charlie user persona or an Alex persona whose bots use other team communication
channels. We mitigate this threat by focusing our analysis on the distinction between true
(actual bots) and false positives (tools misclassified as bots) such that the false negatives

Erlenhov et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.849 23/28

http://dx.doi.org/10.7717/peerj-cs.849
https://peerj.com/computer-science/

PeerJ Computer Science

have smaller impact on our conclusions. The limited availability of tools documentation
was also a challenge in the classification done by Dey et al. (2020b), hence motivating the
identification based on activity patterns for the tool, instead of qualitative answers.

Moreover, comparing bot and human activity can be misleading, particularly, when
evaluating time to merge PRs or close issues because the expectation on human and bot
source code contributions are different. For instance, bots create many more PRs than
human contributors and those bot contributions are mainly dependency updates
(Wyrich et al., 2021). We mitigate the risk of comparing activities by delimiting our entire
sample around issues with similar purpose (e.g., the human created issues are inclusive of
either a bot mention or comments made by dependency update bots) and by including
results on bot activity per project. Moreover, one threat to our survival analysis is that
KM curves are limited to detect confounding variables in data that has more than one
strata (Kaplan & Meier, 1958). We mitigate this risk by using only one strata (bot authors)
in our analysis.

Internal validity: During our classification for RQ1, we quickly noticed that the
GitHub projects and tool documentation often miss details that would allow us to answer
some of the questions in the flow-chart (e.g., the first step asks whether the tool uses a
chat, which is often hard to answer conclusively without using the tool). This is a limitation
of the manual classification as it can lead to false negatives. For instance, some tools that we
did not classify as bots in our list could be bots for, e.g., a Charlie user persona or an
Alex persona whose bots use other team communication channels.

In order to avoid bias during open coding for RQ3, the first and second authors had
initial coding sessions until reaching agreement on a list of code labels. Then, both authors
triangulated their coded labels in three different 1-h sessions twice a week until they
reached theory saturation (i.e., no new themes or sub-themes were found). We mitigate
disagreement between coders by (i) using few and fixed labels for the PRs conversations
and (ii) using definitions from literature to label the content of discussions. Examples
of (ii) are the list of themes related to the benefits of using bots from Erlenhov, de Oliveira
Neto & Leitner (2020) or the definition of noise created by bots as proposed by Wessel et al.
(2021). Moreover, creating distinct categories of code labels to capture the context of
the PR conversation vs the content of the discussion allowed us to relate the discussions to
the factors listed in RQ3.

External validity: Our findings are limited to open-source software in GitHub, since
we did not collect data from other open-source software repositories or proprietary
software. In other words, we analyse the projects and corresponding bot activity based on
common praxis in GitHub projects, such that developers working in proprietary software
may guide their discussion around new or contrasting factors to the ones listed in RQ3
such as standards defined by a company or regulatory agencies.

CONCLUSIONS

Software engineering bots are increasingly becoming a major subject of academic study.
However, despite substantial research, the question of what exactly bots are and how they
differ from previously-existing automation tools still looms large. In this paper, we

Erlenhov et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.849 24/28

http://dx.doi.org/10.7717/peerj-cs.849
https://peerj.com/computer-science/

PeerJ Computer Science

contributed three-fold to this discussion. Firstly, we manually evaluated a sample of tools
from an existing dataset of bot contributions, and found that only 10 of 54 tools are
qualitatively different from routine automation tools. We further found that dependency
management is the one domain where tools that fit our stricter definition of bots are
currently in wide-spread use in open-source software projects. Secondly, we collected
GitHub data for a large set of projects that use five of these dependency management bots
to investigate how they are used in practice. We found that these tools have relatively
similar contribution patterns, and that most projects in practice adopt different
dependency management bots during their lifetime. Thirdly, we conduct a thematic
analysis of discussions around bot adoption, discarding, and switching, and found that
developers adopt dependency management bots to improve code quality. However, they
struggle with the noise that is (sometimes) introduced by these tools.

The main implications of our study for future research are the following. Firstly, our
results indicate that datasets of automated commits predominantly do not contain
genuine, practitioner-perceived bot contributions. Bot researchers should take care to take
this into account when analysing such data, and there may be a need for more targeted and
curated datasets of bot contributions. Furthermore, researchers should consider that the
practitioner-perceived bots that are contained are predominantly dependency
management bots. Secondly, our results show that bot noise remains an open issue that

practitioners struggle with, and which warrants further academic study.

APPENDIX

Table A1 IDs and corresponding URLs to the issues and comments referred in the text.

ID Conversation Theme Issue or Comment URL

Ang-19580 Switch Feature https://github.com/angular/angular-cli/pull/19580#issuecomment-743275784

Ang-20860 Adoption Usability https://github.com/angular/angular/issues/20860#issuecomment-364627889

Cal-16961 Adoption Usability https://github.com/Automattic/wp-calypso/issues/16961#issuecomment-390778832
Dja-2872 Adoption Noise https://github.com/pydanny/cookiecutter-django/pull/2872#issuecomment-702824915
Dep-1973 Usage Feature https://github.com/dependabot/dependabot-core/issues/1973#issuecomment-640918321
Dyn-215 Usage Usability https://github.com/Dynamoid/dynamoid/pull/215

Gre-247 Removal Usability https://github.com/greenkeeperio/greenkeeper/issues/247

Hyp-747 Switching Promoting bot https://github.com/HypothesisWorks/hypothesis/issues/747

Pyt-687 Switching Usability https://github.com/python-trio/trio/pull/687#issuecomment-425268701

Pyt-652 Adoption Feature https://github.com/python-trio/trio/issues/652#issuecomment-419605103

Rea-2673-1 Adoption Benefits https://github.com/react-boilerplate/react-boilerplate/issues/2673#issuecomment-501018290
Rea-2673-2 Adoption Usability https://github.com/react-boilerplate/react-boilerplate/issues/2673#issuecomment-501021447
Rea-2673-3 Adoption Usability https://github.com/react-boilerplate/react-boilerplate/issues/2673#issuecomment-500975888
Str-2433 Adoption Usability https://github.com/strapi/strapi/pull/2433#issuecomment-507554250

Erlenhov et al. (2022), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.849 25/28

https://github.com/angular/angular-cli/pull/19580#issuecomment-743275784
https://github.com/angular/angular/issues/20860#issuecomment-364627889
https://github.com/Automattic/wp-calypso/issues/16961#issuecomment-390778832
https://github.com/pydanny/cookiecutter-django/pull/2872#issuecomment-702824915
https://github.com/dependabot/dependabot-core/issues/1973#issuecomment-640918321
https://github.com/Dynamoid/dynamoid/pull/215
https://github.com/greenkeeperio/greenkeeper/issues/247
https://github.com/HypothesisWorks/hypothesis/issues/747
https://github.com/python-trio/trio/pull/687#issuecomment-425268701
https://github.com/python-trio/trio/issues/652#issuecomment-419605103
https://github.com/react-boilerplate/react-boilerplate/issues/2673#issuecomment-501018290
https://github.com/react-boilerplate/react-boilerplate/issues/2673#issuecomment-501021447
https://github.com/react-boilerplate/react-boilerplate/issues/2673#issuecomment-500975888
https://github.com/strapi/strapi/pull/2433#issuecomment-507554250
http://dx.doi.org/10.7717/peerj-cs.849
https://peerj.com/computer-science/

PeerJ Computer Science

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This research has been funded by Chalmers University of Technology Foundation and the
Swedish Research Council (VR) under grant number 2018-04127 (Developer-Targeted
Performance Engineering for Immersed Release and Software Engineers). The funders had
no role in study design, data collection and analysis, decision to publish, or preparation of
the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

Chalmers University of Technology Foundation and the Swedish Research Council (VR):
2018-04127.

Competing Interests
Philipp Leitner is an Academic Editor for Peer] CS.

Author Contributions

e Linda Erlenhov conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.

e Francisco Gomes de Oliveira Neto conceived and designed the experiments, performed
the experiments, analyzed the data, performed the computation work, prepared figures
and/or tables, authored or reviewed drafts of the paper, and approved the final draft.

e Philipp Leitner conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, authored or reviewed drafts of the
paper, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:

A replication package is available at Zenodo: Linda Erlenhov, Francisco Gomes de
Oliveira Neto, & Philipp Leitner. (2021). Dependency Management Bots in Open-Source
Systems-Prevalence and Adoption [Data set]. Zenodo. https://doi.org/10.5281/zenodo.
4974219.

REFERENCES

Cassee N, Kitsanelis C, Constantinou E, Serebrenik A. 2021. Human, bot or both? A study on the
capabilities of classification models on mixed accounts. In: Proceedings of the 37th International
Conference on Software Maintenance and Evolution (ICSME) - New Ideas and Emerging Results.

Cassee N, Vasilescu B, Serebrenik A. 2020. The silent helper: the impact of continuous integration
on code reviews. In: SANER, 2020-Proceedings of the 2020 IEEE 27th International Conference on
Software Analysis, Evolution, and Reengineering. Piscataway: IEEE, 423-434.

Dey T, Mousavi S, Ponce E, Fry T, Vasilescu B, Filippova A, Mockus A. 2020a. A dataset of bot
commits. Zenodo DOI 10.5281/zenodo.3610205.

Erlenhov et al. (2022), PeerdJ Comput. Sci., DOl 10.7717/peerj-cs.849 26/28

https://doi.org/10.5281/zenodo.4974219
https://doi.org/10.5281/zenodo.4974219
http://dx.doi.org/10.5281/zenodo.3610205
http://dx.doi.org/10.7717/peerj-cs.849
https://peerj.com/computer-science/

PeerJ Computer Science

Dey T, Mousavi S, Ponce E, Fry T, Vasilescu B, Filippova A, Mockus A. 2020b. Detecting and
characterizing bots that commit code. In: Proceedings of the 17th International Conference on
Mining Software Repositories, MSR °20. New York: Association for Computing Machinery, 209-
219.

Dominic J, Houser J, Steinmacher I, Ritter C, Rodeghero P. 2020. Conversational bot for
newcomers onboarding to open source projects. In: Proceedings of the IEEE/ACM 42nd
International Conference on Software Engineering Workshops, ICSEW’20. New York:
Association for Computing Machinery, 46-50.

Erlenhov L, de Oliveira Neto FG, Leitner P. 2020. An empirical study of bots in software
development: characteristics and challenges from a practitioner’s perspective. In: Proceedings of
the 28th ACM Joint Meeting on European Software Engineering Conference and Symposium on
the Foundations of Software Engineering, ESEC/FSE 2020. New York: Association for Computing
Machinery, 445-455.

Erlenhov L, de Oliveira Neto FG, Leitner P. 2021. Replication package-dependency management
bots in open-source systems-prevalence and adoption. Zenodo DOI 10.5281/zenodo.5567370.

Erlenhov L, de Oliveira Neto FG, Scandariato R, Leitner P. 2019. Current and future bots in
software development. In: First Workshop on Bots in Software Engineering, (BotSE ICSE).

Golzadeh M, Decan A, Constantinou E, Mens T. 2021a. Identifying bot activity in GitHub pull
request and issue comments. In: hird Workshop on Bots in Software Engineering, (BotSE ICSE).

Golzadeh M, Decan A, Legay D, Mens T. 2021b. A ground-truth dataset and classification model
for detecting bots in GitHub issue and PR comments. Journal of Systems and Software
175(1):110911 DOI 10.1016/j.jss.2021.110911.

Kaplan EL, Meier P. 1958. Nonparametric estimation from incomplete observations. Journal of the
American Statistical Association 53(282):457-481 DOI 10.1080/01621459.1958.10501452.

Lamba H, Trockman A, Armanios D, Kistner C, Miller H, Vasilescu B. 2020. Heard it through
the Gitvine: an empirical study of tool diffusion across the NPM ecosystem. In: Proceedings of the
28th ACM Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering. New York: ACM, 505-517.

Lebeuf C, Storey M-A, Zagalsky A. 2018. Software bots. IEEE Software 35(1):18-23
DOI 10.1109/MS.2017.4541027.

Lebeuf C, Zagalsky A, Foucault M, Storey M. 2019. Defining and classifying software bots: a
faceted taxonomy. In: 019 IEEE/ACM 1Ist International Workshop on Bots in Software
Engineering (BotSE). Piscataway: IEEE, 1-6.

Lin B, Robles G, Serebrenik A. 2017. Developer turnover in global, industrial open source projects:
Insights from applying survival analysis. In: 2017 IEEE 12th International Conference on Global
Software Engineering (ICGSE). Piscataway: IEEE, 66-75.

Okanovi¢ D, Beck S, Merz L, Zorn C, Merino L, van Hoorn A, Beck F. 2020. Can a chatbot
support software engineers with load testing? Approach and experiences. In: Proceedings of the
ACM/SPEC International Conference on Performance Engineering, ICPE °20. New York:
Association for Computing Machinery, 120-129.

Paikari E, van der Hoek A. 2018. A framework for understanding chatbots and their future. In:
Proceedings of the 11th International Workshop on Cooperative and Human Aspects of Software
Engineering, CHASE’18. New York: Association for Computing Machinery, 13-16.

Peng Z, Yoo J, Xia M, Kim S, Ma X. 2018. Exploring how software developers work with mention
bot in GitHub. In: In: ACM International Conference Proceeding Series. Vol. 18. New York:
Association for Computing Machinery, 152-155.

Erlenhov et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.849 27/28

http://dx.doi.org/10.5281/zenodo.5567370
http://dx.doi.org/10.1016/j.jss.2021.110911
http://dx.doi.org/10.1080/01621459.1958.10501452
http://dx.doi.org/10.1109/MS.2017.4541027
http://dx.doi.org/10.7717/peerj-cs.849
https://peerj.com/computer-science/

PeerJ Computer Science

Samoladas I, Angelis L, Stamelos I. 2010. Survival analysis on the duration of open source
projects. Information and Software Technology 52(9):902-922 DOI 10.1016/j.infsof.2010.05.001.

Stol K-J, Ralph P, Fitzgerald B. 2016. Grounded theory in software engineering research: a critical
review and guidelines. In: Proceedings of the 38th International Conference on Software
Engineering. 120-131.

Urli S, Yu Z, Seinturier L, Monperrus M. 2018. How to design a program repair bot? Insights
from the repairnator project. In: 2018 IEEE/ACM 40th International Conference on Software
Engineering: Software Engineering in Practice Track (ICSE-SEIP). Piscataway: IEEE, 95-104.

Usman M, Britto R, Borstler J, Mendes E. 2017. Taxonomies in software engineering: a systematic
mapping study and a revised taxonomy development method. Information and Software
Technology 85(4):43-59 DOI 10.1016/j.infsof.2017.01.006.

Wessel M, de Souza BM, Steinmacher I, Wiese IS, Polato I, Chaves AP, Gerosa MA. 2018. The
power of bots: characterizing and understanding bots in oss projects. In: Proceedings of the ACM
on Human-Computer Interaction, 2(CSCW).

Wessel M, Serebrenik A, Wiese I, Steinmacher I, Gerosa MA. 2020a. Effects of adopting code
review bots on pull requests to OSS projects. In: 2020 IEEE International Conference on Software
Maintenance and Evolution (ICSME). Piscataway: IEEE, 1-11.

Wessel M, Serebrenik A, Wiese I, Steinmacher I, Gerosa MA. 2020b. What to expect from code
review bots on GitHub? A survey with OSS maintainers. In: Proceedings of the 34th Brazilian
Symposium on Software Engineering. 457-462.

Wessel M, Steinmacher I. 2020. The inconvenient side of software bots on pull requests. In:
Proceedings of the IEEE/ACM 42nd International Conference on Software Engineering
Workshops, ICSEW’20. New York: Association for Computing Machinery, 51-55.

Wessel M, Steinmacher I, Wiese I, Gerosa MA. 2019. Should I stale or should I close? An analysis
of a bot that closes abandoned issues and pull requests. In: 2019 IEEE/ACM Ist International
Workshop on Bots in Software Engineering (BotSE). Piscataway: IEEE, 38-42.

Wessel M, Wiese I, Steinmacher I, Gerosa MA. 2021. Don’t disturb me: challenges of interacting
with softwarebots on open source software projects. CoORR 5(CSCW2):1-21
DOI 10.1145/3476042.

Wyrich M, Bogner J. 2019. Towards an autonomous bot for automatic source code refactoring. In:
Proceedings of the Ist International Workshop on Bots in Software Engineering, BotSE ’19.
Piscataway: IEEE, 24-28.

Wyrich M, Ghit R, Haller T, Miiller C. 2021. Bots don’t mind waiting, do they?

Comparing the interaction with automatically and manually created pull requests. ArXiv.
Available at arXiv:2103.03591.

Erlenhov et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.849 28/28

http://dx.doi.org/10.1016/j.infsof.2010.05.001
http://dx.doi.org/10.1016/j.infsof.2017.01.006
http://dx.doi.org/10.1145/3476042
arXiv:2103.03591
http://dx.doi.org/10.7717/peerj-cs.849
https://peerj.com/computer-science/

	Dependency management bots in open-source systems—prevalence and adoption
	Introduction
	Related work
	Study methodology
	Distinguishing bots and automation tools
	Activity analysis of dependency management bots
	What are the discussed challenges and preferences when adopting, switching or discarding bots?
	Discussion
	Conclusions
	Appendix
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

