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ABSTRACT

Remote sensing technology has the advantages of fast information acquisition, short
cycle, and a wide detection range. It is frequently used in surface resource monitoring
tasks. However, traditional remote sensing image segmentation technology cannot
make full use of the rich spatial information of the image, the workload is too large,
and the accuracy is not high enough. To address these problems, this study carried
out atmospheric calibration, band combination, image fusion, and other data
enhancement methods for Landsat 8 satellite remote sensing data to improve the data
quality. In addition, deep learning is applied to remote-sensing image block
segmentation. An asymmetric convolution-CBAM (AC-CBAM) module based on
the convolutional block attention module is proposed. This optimization module of
the integrated attention and sliding window prediction method is adopted to
effectively improve the segmentation accuracy. In the experiment of test data,

the mIoU, mAcc, and aAcc in this study reached 97.34%, 98.66%, and 98.67%,
respectively, which is 1.44% higher than that of DNLNet (95.9%). The AC-CBAM
module of this research provides a reference for deep learning to realize the
automation of remote sensing land information extraction. The experimental code of
our AC-CBAM module can be found at https://github.com/LinB203/remotesense.

Subjects Artificial Intelligence, Computer Vision, Spatial and Geographic Information Systems
Keywords Attention mechanism, Automatic extraction, Band fusion, Sliding window prediction,
Semantic segmentation

INTRODUCTION

Semantic segmentation is critical tasks when processing remote sensing images. It is used
to segment objects on the earth, such as vegetation, roads, buildings, water bodies, and
other objects. Its main purpose is to extract semantic information effectively and divide the
studied image pixels into a number of object areas. Pixels belonging to the same category
are classified as a specific homogeneous area while ensuring heterogeneity between
different object areas. Traditional semantic segmentation methods are based on
geometry and statistics, and before deep learning methods became popular, semantic
segmentation methods based on traditional machine learning classifiers such as Texton
Forest (Shotton, Johnson ¢ Cipolla, 2008) and Random Forest (Schroff, Criminisi ¢
Zisserman, 2008) were more commonly used. More recently, many models based on level
sets (Osher ¢ Sethian, 1988; Ball & Bruce, 2007; Ma ¢ Yang, 2009), deep learning
(Ldngkvist et al., 2016; Zhao, Du & Emery, 2017; De et al., 2017; Tang et al., 2018; Zhao
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et al., 2017), and Markov random field models have been proposed (Li, 1994; Besag, 1986;
Nishii, 2003; Feng, Jia ¢ Liu, 2010; Zheng, Zhang ¢ Wang, 2017).

In recent years, many techniques and prior information have been added to improve
the accuracy of semantic segmentation technology. In particular, deep learning technology
has greatly improved the performance of remote sensing image classification, remote
sensing image retrieval, remote sensing image target detection, and other related
technologies. Therefore, based on deep learning, the semantic segmentation of remote
sensing images can be reasonably performed, the label of each pixel in the image can
be predicted, and then be accurately classified. Long, Shelhamer ¢ Darrell (2015) proposed
a fully convolutional network (FCN) in 2014, applying deep learning to semantic
segmentation for the first time, achieving end-to-end, pixel-to-pixel training, and
combining traditional convolutional neural networks. The fully connected layer in the
convolutional neural network (CNN) (Kalchbrenner, Grefenstette & Blunsom, 2014) is
transformed into a convolutional layer, and the fully connected layer is removed to realize
the input of any size image. The encoding part only obtains the feature layer through
convolution and pooling processing, and the decoding part restores the feature map
obtained by the last convolution layer through deconvolution and upsampling, thereby
achieving pixel-level semantic segmentation. However, the use of FCN-based semantic
segmentation has many problems such as chaotic sampling structure, loss of object details,
or smoothness in the receptive field by fixed segmentation.

Therefore, in 2015, Badrinarayanan, Kendall ¢ Cipolla (2017) proposed the SegNet
algorithm. It uses a symmetrical structure to improve accuracy and efficiency, and uses
pooling indices to save the contour information of the image, reducing the number of
parameters. Chen et al. (2014) proposed the Deeplab algorithm and continuously
optimized it on this basis. The v1 series not only considers the DCNN output but also
considers the pixel value around the pixel when classifying each pixel so that the boundary
of the semantic segmentation result is clear. To solve the problems caused by insufficient
accuracy, pooling, and down-sampling repetition, the V2 series (Chen et al., 2017)
chose to design a porous spatial pyramid pooling (ASPP) module based on the cavity
convolution algorithm to expand the receptive field. V3 (Chen et al., 2017) further
improved the ASPP module. There is also a v3+ series (Chen et al., 2018). One approach is
to design a decode module based on v3 to refine the result, the other is to use modified
Xception as the backbone. These are semantic segmentations based on the encoder-
decoder (up-sampling/deconvolution) structure. Cheng et al. (2021) proposed a new
training method, that was realized by adding a metric learning regularization term.
Cheng et al. (2018) used context coding loss for canonical model training and proposed a
novel feature enhancement network for detection. In addition, semantic segmentation
models based on attention have been developed to obtain context information, such as
non-local neural network (Wang et al., 2018) and DANet (Xue et al., 2019). These deep
learning-based semantic segmentation algorithms can also be continuously optimized
by ResNet (He et al., 2016) to continuously improve segmentation performance.

In this study, the method of introducing the attention mechanism into the semantic
segmentation model is adopted to improve the accuracy. The attention mechanism was
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first proposed in computer vision. In 2014, the Google Mind team used the attention
mechanism (Mnih, Heess ¢ Graves, 2014) on the RNN model for image classification.
Since then, the attention mechanism has been widely used in computer vision fields such as
target detection and semantic segmentation.

Subsequently, Bahdanau, Cho & Bengio (2014) used a mechanism similar to that used to
simultaneously perform translation and alignment on machine translation tasks. Their
work is regarded as the first to apply the attention mechanism to the field of NLP.

Attention mechanism is widely used in various NLP tasks based on neural network
models such as RNN/CNN. In 2017, Google used the self-attention mechanism to learn
text representations (Vaswani et al., 2017). Since then, the attention mechanism has
become a research hotspot.

Aiming at the object classification and recognition of remote sensing images, this article
addresses the problems of traditional remote sensing image extraction such as low
accuracy, poor generalization ability, and low degree of automation. The original
AC-CBAM module is created, and a full convolution based on the DNLNet encoding and
decoding structure is constructed. A neural network is used for remote sensing image
extraction, aiming to realize the precision and intelligence of remote sensing image
extraction. Our main contributions are as follows:

1. Based on Landsat 8 OLI sensor data, this study preprocessed the image band. The
preprocessed image is combined with the original image to form a 4-channel image as
the input.

2. Based on the requirements of practical and experimental tasks, a new convolution
attention module, AC-CBAM, is proposed in this paper. The innovative module
combines asymmetric convolution and CBAM, which has better effect than CBAM and
mainstream segmentation network in object classification and segmentation of remote
sensing images.

3. Besides proposing the AC-CBAM module, this study analyzes how to effectively
extract its features from the things, so that accuracy can be improved without a large
number of search and experimental network structures. By analyzing the features of
categories, in this study water and roads were found to have unique shape features, and,
therefore, the idea of extracting features by using the uniqueness of asymmetric
convolution is proposed.

4. We use sliding window prediction that ignores the edges to predict the entire remote
sensing image, avoiding the problem of obvious splicing traces after the conventional
grid cut prediction. Experiments show that the entire remote sensing image has a good
prediction result.

DATA PREPROCESSING

This chapter introduces the necessity and methods of remote sensing image preprocessing,
gives the preprocessing results, and describes the difficulties and concerns of remote-
sensing image block segmentation. Second, through Gaussian filtering, image fusion, and
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band combination, the image quality and parcel information are enhanced, and the remote
sensing image parcel dataset is prepared, which lays a good data foundation.

Land parcel identification process

Remote sensing image classification technology provides a means to observe and analyze
specific phenomena in the fields of commerce, ecology, forestry, and urban and regional
planning. It has a wide application prospects in these fields. Land parcel segmentation
using in-depth learning technology for remote sensing images is an important research
topic in all fields. Precise land parcel extraction results will provide further research in all
fields. This has great significance. In a real application scenario, the result of land parcel
information extraction is highly required, but there are many interference factors in the
land parcel information extraction of remote sensing images. For example, there is more
cloud cover in the remote sensing image, and some areas have distinct brightness
differences on the visual level, different bands perform differently on water, and in some
bands, land and water have the same visual performance, as well as the shadows of land
objects, which all increase the difficulty of land parcel extraction. If the remote sensing
image is simply preprocessed, instead of enhancing and highlighting the land parcel
information, a large number of pixel misclassifications will often occur. This causes
unsatisfactory land extraction results and fails in practical application scenarios. In
addition to the above interference factors, the remote sensing image itself has more
complex and diverse feature information. Classifying water bodies, vegetation, buildings,
roads and other objects from these complex feature information not only requires many
human and material resources, but also makes it difficult to ensure extraction accuracy. For
efficiency and accuracy of land parcel extraction, this study excludes the ground object
information outside water, vegetation, buildings and roads. It only focuses on the land
parcel information of remote sensing images, simplifies the task of remote sensing
image recognition, focuses on the land parcel extraction of remote sensing images, and
simplifies the multi-classification problem of remote sensing images into five classification
problems of water, vegetation, buildings, roads and others while improving the efficiency
and reduces the workload of human visual interpretation, and improves the efficiency
and accuracy of remote sensing image block extraction.

The neural network obtains the global optimal weight matrix by forward error
conduction and reverse weight updating. The trained matrix is used to predict the remote
sensing image and obtain the final land parcel prediction result. Remote sensing land
parcel identification is a pixel-level classification task, which classifies each pixel point into
five categories: water, vegetation, buildings, roads, and others. The specific process of
land parcel identification is as follows: (1) the remote sensing image is input into the
trained network model; (2) the output of the model is the confidence level at which the
pixel points belong to five categories, and the pixel point category is determined according
to the confidence level; (3) the color is filled according to the decision category of the
pixel points to achieve five classifications of the land masses of the remote sensing image;
(4) the classification results are smoothed and denoised by the median filter to obtain the
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Table 1 Study the basic information table of the image.

The study area Image acquisition time Cloud content (%)
Kunming Dianchi Lake, Fuxian Lake, Yangzonghai 2020.1.18 0.03

Pan Yang Lake 2019.1.23 1.6

Leshan city, Yibin city area 2018.4.18 0.09

final remote sensing land mass prediction results. The output of the two-dimensional
median filter is:

g(x, y) =med{f(x—k, y—1), (k, le W)} (1)

where f(x, y) and g(x, y) are the original image and the processed image respectively.

Study area

We chose Kunming in southwestern China as our research city. The longitude and latitude
of Kunming are 102°10" ~ 103°40’'E and 24°23" ~ 26°22'N. The research area includes
three large lakes: Dianchi Lake, Fuxian Lake and Yangzonghai Lake. In this study, the
Minjiang River and part of the Jinsha River water bodies in Leshan City were selected. The
longitude and latitude were 102°15" ~ 104°15’E and 28°28 ~ 29°56'N. The mixed complex
region mainly refers to the region with complex block combinations, with latitude and
longitude ranging from 115°47’ to 116°45’E and 28°22’ to 29°45'N. Blocks in this region
were used to test the comprehensive extraction ability of the model. Poyang Lake in
southeast China was selected as the study area. The relevant information is presented in
Table 1.

The data used in this study are from the Landsat 8 satellite data. Landsat 8 remote
sensing satellite was launched by NASA in 2013. Compared with Landsat 7, Landsat 8 only
adjusts the bands of the data, eliminating the effects of atmospheric scattering and
absorption, water vapor and other factors on the data. In addition, two new bands, blue
band (band 1 0.433-0.453 um) and short-band infrared band (band 9 1.360-1.390 pum),
have been added. The original image of remote sensing data is shown in Fig. 1.

Landsat 8 satellite data are widely used in geological exploration, environmental
management, resource assessment and other domains, providing a large amount of remote
sensing observational data for various disciplines and related research. It has a total of
eleven bands, including eight multispectral bands, one panchromatic band and two
thermal infrared bands, which can address different application scenarios. The main
parameters are listed in Tables 2 and 3.

In this study, the red, green, and near-infrared bands were selected from Landsat 8 OLI
data and fused with 15-meter panchromatic band to enhance resolution, covering three
research areas. In this study, automatic extraction and manual verification were used to
complete the plot labeling. The image label after manual interpretation was accurate
enough, so we took the result of plot marking as the mapping label of the sample image and
the baseline of the test image.
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Figure 1 The original image.

Full-size K&l DOT: 10.7717/peerj-cs.847/fig-1

Table 2 Landsat 8 satellite sensor parameters.

The sensor Band Wavelength Signal to Spatial
range/pum noise ratio resolution/m

OLI 1-COASTAL/AEROSOL 0.43-0.45 130 30
2-Blue 0.45-0.51 130 30
3-Green 0.53-0.59 100 30
4-Red 0.64-0.67 90 30
5-NIR 0.85-0.88 90 30
6-SWIRL 1.57-1.65 100 30
7-SWIR2 2.11-2.29 100 30
8-PAN 0.50-0.68 80 15
9-Cirrus 1.36-1.38 50 30
10-TIR 10.60-11.19 0.4k 100

TIRS 11-TIR 11.50-12.51 0.4k 100

Image preprocessing

Remote sensing image preprocessing involves eliminating and suppressing some

influences and errors in imaging, which mainly come from external conditions during

imaging, such as the satellite sensor itself, absorption and scattering of ultraviolet radiation

Shun et al. (2022), Peerd Comput. Sci., DOI 10.7717/peerj-cs.847

6/30


http://dx.doi.org/10.7717/peerj-cs.847/fig-1
http://dx.doi.org/10.7717/peerj-cs.847
https://peerj.com/computer-science/

PeerJ Computer Science

Table 3 Data product parameters.

The parameter types Values

The product type Level 1T terrain correction image

The output format GeoTIFF

Sampling methods Cubic convolution algorithm

Map projection UTM-WGS84 projected coordinate system
Fastest return cycle >72h

Angle 98.2 degrees

Operation cycle 98.9 minutes

Rail type Near polar solar synchronous orbit

Track height 705km

by atmosphere, solar altitude angle, earth surface topography and other factors. To obtain
real reflectance data, methods such as radiometric calibration and atmospheric correction
are used to preprocess remote sensing images to obtain real image data. In addition, in
order to obtain richer remote sensing information and higher-quality images, image
enhancement is first carried out on remote sensing images to highlight image edges and
improve the overall quality of data products, thus laying a data foundation for subsequent
data set division, thus improving the accuracy of plot discrimination.

A Gaussian filter is a linear smoothing filter that is widely used in image processing. It is
mainly used to suppress noise and smooth images. Because noise is transmitted, it is a
severe problem in the later application of digital images. Then most of the noise in the
image is Gaussian noise, so the Gaussian filter is widely used in image denoising.

For remote sensing classification tasks, the selected size of Gaussian kernel is 7 x 7, the
average pixel weight of the Gaussian kernel is larger, and the surrounding pixels are
smaller, which reduces the importance of surrounding pixels and reduces image blur
during anti-aliasing. The main function of Gaussian filtering is to smooth the image. Based
on this, the original image with twice the size can be subtracted from the image after
Gaussian filtering, and the resulting image has more obvious block edges.

Means of improving the image quality based on existing Landsat 8 data must be
considered because the resolution of the satellite data is limited. In the data, the resolution
of the panchromatic band is higher than that of multispectral data, so image fusion is
used to fuse multispectral data to improve the image resolution. Brovey transformation
fusion, which is a simple and effective method, is mainly used for the process. The
processed image not only highlights the spatial resolution of the panchromatic band data,
but also highlights the differences in the features of the objects in different bands.

While being generated, remote sensing images will be distorted to a certain extent owing
to the influence of the satellite-sensor tilt angle, atmospheric scattering, water vapor, and
other factors. To produce remote sensing images as realistically as possible, certain
methods must be used to preprocess them to inhibit and eliminate interference. The image
contents and different research objectives require different pretreatment methods.
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Radiometric calibration and atmospheric correction

Remote sensing technology receives electromagnetic wave information reflected by
various objects on the Earth surface from outer space and carry out attribute analysis
and imaging. The satellite sensor receives the solar radiation reflected from the Earth
surface, and the final original image is a synthesis of all information due to atmospheric
scattering, water vapor absorption, surrounding objects and other factors. The process of
atmospheric correction is the process of separating specific spectral information from
the study an object's attributes. Because there are errors in sensor imaging, these errors
need to be eliminated when using remote sensing images for analysis and research, which
is the process of radiation correction. The remote sensing data processing software used in
this study is ENVI 5.3, through which remote sensing images can be atmospherically
corrected. The ENVI FLAASH module was used for the atmospheric correction of remote
sensing images after radiometric calibration.

Remote sensing image enhancement

The main purpose of remote sensing image enhancement is to enhance the image
quality and information, so that the plot information can be observed more clearly and
intuitively under the observation of human eyes, which plays a crucial role in the
discrimination of plots. Common remote sensing image enhancement methods include
image synthesis, numerical filtering and contrast stretching. Different enhancement
methods have been adopted to match diverse research content and methods. In this study,
numerical filtering was used to enhance image quality, band combination was used to
enhance image block information, and the effect of block discrimination is strengthened.

(1) Image enhancement in spatial domain. In this study, a Gaussian low-pass filter was
used to denoise and smooth the image. A low-pass filter is mainly used to carry out
two-dimensional convolution calculations through a Gaussian checking image.

7 x 7 Gaussian kernel is adopted in this paper, and the specific structure is shown in
Fig. 2.
Gaussian low-pass filtering processing flow:

a) Reading of various bands required.
b) The selected band is processed by the Gaussian filter.

c) The Gaussian kernel is moved across each pixel in the image, and the pixel value of the
corresponding pixel is convolved by the kernel.

d) The calculated value is taken as the final pixel value.
The actual processing results are shown in Fig. 3.

(2) Band combination image enhancement. Generally, color images are RGB false color
images. In remote sensing image classification, different RGB components are selected
according to different classification targets to combine new standard false color images.
Landsat8 has many different bands, and the combination of different bands also has
different uses. The specific band combination scheme and uses are shown in Table 4.
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Figure 2 Gauss kernel structure.

Full-size K4l DOI: 10.7717/peerj-cs.847/fig-2

Figure 3 Comparison before and after enhancement.

Full-size K&l DOT: 10.7717/peerj-cs.847/fig-3

Table 4 Band combination scheme table.

RGB combination

Main uses

4 (Red), 3 (Green), 2 (Blue)

7 (SWIR2), 6 (SWIR1), 4 (Red)
5 (NIR), 4 (Red), 3 (Green)

6 (SWIR1), 4 (NIR), 3 (Blue)

7 (SWIR2), 6 (SWIR1), 5 (NIR)
5 (NIR), 6 (SWIR1), 2 (Blue)

5 (NIR), 6 (SWIR1), 4 (Red)

7 (SWIR2), 5 (NIR), 3 (Green)

7 (SWIR2), 5 (NIR), 4 (Red)

6 (SWIR1), 5 (NIR), 4 (Red)

Natural true color

City

Standard false color images, vegetation, water

Agricultural

Penetrating the atmosphere, surveying special geological structures

Healthy vegetation

Land

Remove the natural surface of the atmospheric image

Short wave infrared

Vegetation analysis
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Figure 4 Before and after band combination with Gaussian filtering. (A) Original image, (B) the
image after band combination, and (C) the image after Gaussian filtering.
Full-size K&] DOTI: 10.7717/peerj-cs.847/fig-4

For Landsat 8 OLI remote sensing products with atmospheric correction, which provide
a variety of band data, including panchromatic, near-infrared, and green bands, we can
easily produce standard false-color image data. The green, red, and infrared bands of the
remote sensing data are assigned to the blue, green and red band in RGB respectively. It is
well known that the colors of vegetation and water are similar in unprocessed remote
sensing images. By synthesizing standard false color images, vegetation will be
predominantly red, water will be green, blue, dark blue, and so on, depending on the
number of microorganisms inside. One of the best benefits of converting remote
sensing images to standard false color images is to distinguish vegetation from the color
of water. According to the above description, we use five (NIR), four (Red) and three
(Green) bands to enhance the band combination of remote sensing images and enhance
the land parcel information. The results are shown in Fig. 4.

Image fusion

Because the resolution of multispectral data is low, and the panchromatic band has a better
resolution than multispectral data the panchromatic band was fused with the selected
multispectral band. The new images have improved resolution, retain their multispectral
characteristics, and the image quality and performance are enhanced.

There are information differences among the satellite sensors. To eliminate such
differences, composite models are generally used to integrate data from different sensors to
obtain clearer images and more pronounced ground object information. This is more
conducive to remote sensing classification. In the case of limited existing data, it is of great
practical significance to make full use of existing data to extract ground object information
from remote sensing images. In a real scene, data from different sources fill the entire
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experimental stage, and data from different sources have different advantages and
disadvantages. Image fusion can effectively complement the advantages of data and
compensate for the shortcomings of a single data source.

Landsat 8 satellite multi-spectral data resolution is 30 m, band 8 is panchromatic and
the band resolution is 15 m, the selection of multi-spectral data band 5 (near infrared),
band 4 (red), band 3 (green), and panchromatic band image fusion can effectively improve
image clarity and data quality. Existing image fusion methods include HIS transform,
multiplication transform fusion, wavelet transform fusion and Brovey transform fusion.
The Brovey ratio transform fusion method was used in this study.

The Brovey ratio transformation and fusion method is a multiplicative band operation
with a panchromatic band after the multispectral data has undergone normalized
processing, and it clearly represents surface objects such as mountains, vegetation, and
water bodies. This fusion method can improve the segmentation effect, and is, therefore,
used in this study.

In this study, the Brovey transform fusion method uses the image and panchromatic
bands of the red band (R), green band (G), and near-infrared (NIR) to conduct fusion,
finally obtaining good spatial resolution from the information and retaining multispectral
images. This method also promotes the extraction of detail.

The fusion formula of Brovey transformation is as follows:

( R
BT,y =Panx— —
R+ G + NIR

R

BT,.— Pan X — 2
ge = P X PTG NIR @
NIR

BT, — Pan x —
\ R+ G+ NIR

BTred, BTgre, and BTnir respectively are pixel values of red, green, and near-infrared
images after fusion. Where, R, G, and NIR are pixel values of red, green, and near-infrared
bands in multi-spectral images respectively, and Pan is a pixel value of panchromatic
band of high-resolution images. Images are processed according to the Brovey formula
above, which improves visibility to the human eye, sharpens plot features and achieve
higher image quality.

In this study, only Landsat 8 satellite data were used as the data source, and Brovey
transformation was used for image fusion of partial multispectral band data and
panchromatic bands in the image. This effect is shown in Fig. 5.

Dataset preprocessing

The convolutional neural network has certain standards for the size of the input image,
and the size should be standard and uniform. Too large a size is not conducive to the
extraction of detailed features by the convolutional layer, and too little feature information
extracted from too small a size is not conducive to pixel classification. The particularity
of the convolutional operation requires that the length and width of the input feature map
be consistent. Therefore, it is critical to determine the input end of the model. If the size of
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Figure 5 Before and after fusion. The left is the image before fusion, and the right is the image after
fusion. Full-size k&l DOL: 10.7717/peerj-cs.847/fig-5

Figure 6 Visualization of training set image and corresponding label taking water body as an
example. Full-size K&l DOT: 10.7717/peerj-cs.847/fig-6

the input end is larger, some image details will be lost, and if the size of the input end is
smaller, training errors will be generated because many blocks of a certain type, thus
affecting the accuracy of the model. As the spatial resolution of the remote sensing image
data obtained from Landsat 8 OLI satellite is 30 m, it has medium resolution. Considering
the image input size and label distribution comprehensively, image cutting should be
performed first. The cutting method randomly selects coordinates, which are taken as the
origin of interception, and sampling interception is carried out. Large remote sensing
images and corresponding labeled images are cut into sub-images in the above way, with
sizes of 512 x 512, 256 x 256 and 128 x 128. Figure 6 shows only a sample image of the
water segmentation.

Remote sensing images are too large to be placed directly into the neural network, and
the number of remote sensing images is small. Therefore, OpenCV is used to expand and

Shun et al. (2022), PeerJ Comput. Sci., DOl 10.7717/peerj-cs.847 12/30


http://dx.doi.org/10.7717/peerj-cs.847/fig-5
http://dx.doi.org/10.7717/peerj-cs.847/fig-6
http://dx.doi.org/10.7717/peerj-cs.847
https://peerj.com/computer-science/

PeerJ Computer Science

add noise to the images, to effectively improve the training accuracy and generalization
ability of the network. The main processing steps are as follows:

1. The original and labeled images were rotated by 90, 180, and 270 degrees along the Y-
axis.

2. Noise, including salt and pepper noise, Gaussian noise, and other noise transformations
were added to the original image transformation.

3. Light transformation was performed on the original image, including for brightness.

4. The original image was processed using fuzzy methods.

After image cutting and data expansion, the amount of data reached 10,000 pieces. In
addition to image expansion, corresponding label images were expanded. After expansion,
the classification distribution of the dataset was balanced, and the image resolution
was sufficient to meet the demands of training the model. After the cutting image was
trained, the prediction image was output. The predicted images were backtracked to the
origin of the cutting and were individually spliced into the original large image. After a
simple adjustment, the final prediction remote sensing image was obtained.

In this study, 512 pixels were selected as the reference scale, which, because of its rich
background information, is the most appropriate scale for the human eye to recognize
differences. We divide the complete and test images into three levels, namely 512 x 512,
256 x 256, 128 x 128, thus obtaining the initial sample set and test set. See Fig. 7.

We selected three scene images for data augmentation processing. Because the
neural network is sensitive to data with different directions, different colors, and with or
without noise points, we expand each image to a photo set with 128 x 128, 256 x 256,
512 x 512 sizes by randomly cutting, angle rotating and adding noise points. Then, for the
128 x 128 data graph, set the category proportion threshold to 50%, delete the images
whose category proportion exceeds the threshold, and form the following training set, as
shown in Table 5.

For Landsat 8 OLI sensor data, the first four bands of image preprocessing obtain
real remote sensing images, by removing the interference of the satellite sensor itself as
much as possible. The tagged data produced by the third national census data of water
conservancy projects are automatically checked after expanding and dealing with the noise
of the dataset, for it to have a certain size and diversity.

METHOD
Attention mechanism of computer vision

In human vision, the visual attention mechanism processes brain signals. Human vision
functions by rapidly scanning the global image to focus on the target area. Therefore, this
area should receive more attention to obtain detailed information about the target and
suppress irrelevant information. For example, when people view pictures, they tend to
focus on noteworthy objects but pay less attention to the background. There are three
common types of attention mechanism models: the spatial attention model, channel
attention model, and spatial and channel mixed attention model.
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Figure 7 Part of the training set image processed by data enhancement.
Full-size K&l DOT: 10.7717/peerj-cs.847/fig-7

Table 5 Number of samples at different scales.

Image size Number
128 x 128 5000
256 x 256 3000
512 x 512 2000
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Figure 9 Spatial attention mechanism structure. Full-size K&l DOT: 10.7717/peerj-cs.847/fig-9

Channel attention
A good example of the channel attention mechanism is SENet (squeeze and congestion
net). The SENet principle involves squeezing the tensor size. Then, it is changed into a
tensor of 1 x 1 x C, for the feature graph of each channel to become a real number, thus
completing feature compression. The compressed tensor was used for the excitation
operation. The excitation operation uses the parameter W to generate weights for each
characteristic channel. The parameter W is learned to explicitly model the correlation
between feature channels, thereby realizing the weight distribution for each channel. SENet
uses two layers of bottlenecks to multiply the corresponding elements. Thus, the output
tensor with the characteristic of the attention distribution in the channel can be obtained.
This structure is shown in Fig. 8.

SENet can achieve notable network performance improvements with minimal
additional computation. Because this idea can be applied to various existing network
structures, SENet has many derivatives. A typical combination is ResNet and SENet.

Spatial attention

The spatial attention mechanism differs slightly from the channel attention mechanism.
If the channel attention mechanism achieves the distribution of attention along the
channel, the spatial attention mechanism obtains the spatial distribution of attention,
known as the distribution on a two-dimensional picture. This structure is shown in Fig. 9.
Then a convolution operation is used to transform the feature graph with the number
of channels two into the feature graph with the number of channels. To realize the
principle of the spatial attention mechanism a feature graph with a channel number of two
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Refined Feature

must first be obtained from the channel dimension by compression. Then, a convolution
operation is used to transform the feature graph with two channels into the feature graph
with one channel. This obtains the spatial distribution of attention. The eigenmatrix is
then multiplied by the corresponding elements of the input tensor to obtain the output
tensor characterized by the attention distribution along the channel.

Integration of channel and spatial attention mechanism

The convolution block attention module (CBAM) is a simple and effective attention
module. Given an input tensor, the CBAM takes it in two directions: spatial attention and
channel attention. Finally, the attentional feature distribution is multiplied by the input
tensor to achieve adaptive feature optimization. The structure of CBAM is shown in
Fig. 10.

The advantage of the CBAM is that it is lightweight, and, considering its general
purpose, it can be integrated into any convolutional neural network. Second, compared
with SENet, CBAM adopts both global average pooling and global maximum pooling, and
experiments confirm that, when simultaneously using two types of pooling, the CBAM has
a better effect than only using one type of pooling.

Asymmetric convolution

Asymmetric convolution operates with different lengths and widths of the convolution
kernel. Christian Szegedy's Rethinking Inception Architecture for computer vision is an
example of asymmetric convolution. Its structure is shown in Fig. 11. Compared to
ordinary convolution, the significance of designing asymmetric convolution lies in several
factors. First, the asymmetric convolution with the convolution kernel size of n x 1

and then the asymmetric convolution with a convolution kernel size of 1 x n is equivalent
to the result of convolution with the convolution kernel size of n x n. Meanwhile,
asymmetric convolution requires only 2 x n multiplications, while ordinary convolution
requires n x n multiplications. Therefore, the larger convolution kernel requires less
computation.

AC-bottleneck

The basic bottleneck structure is shown in Fig. 12. First, it reduces the dimensions using a
1 x 1 convolution kernel. Then, it is convolved with a 3 x 3 convolution kernel. Finally, the
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Figure 11 Asymmetric convolution module structure. Full-size Kl DOT: 10.7717/peerj-cs.847/fig-11

dimension is raised by a convolution kernel of size 1 x 1. The main function is to deepen
the network and reduce the amount of calculation by reducing the number of parameters.
Feature extraction is more effective after reducing the dimensionality.

After extensive experiments, the Swish activation function has proved superior to ReLU.
However, compared with ReLU, it has the disadvantage of a higher computational
overhead. To reduce the computational overhead of Swish, H-swish was proposed.
Therefore, in this study, H-swish directly replaces the ReLU activation function.

ReLU6(x + 3)
X—
6

h — swish(x) = (3)
The input tensors were separately convolved asymmetrically twice, and the two results
were added. Then, the result activated by the h-swish function is passed to the CBAM.
Finally, the result was added to the residuals to obtain the final result. Asymmetric
convolution, the CBAM, and residual structure can greatly improve the training effect with
a small amount of computational overhead, as shown in Fig. 13. Compared with the
CBAM, the AC-CBAM introduced an h-swish function. The introduction of the h-swish
function reduced the computational cost of asymmetric convolution and increased the
computational speed. In addition, the AC-CBAM added two asymmetric convolutions in
front of the CBAM module compared with the unmodified CBAM. In remote sensing
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images, water and roads were found to differ from others features, being mainly in long
strip shapes. The other features are mainly square, requiring the long-strip image features

to be extracted using asymmetric convolution.

EXPERIMENTAL PROCESS

Experimental settings
The program in this study adopts Pytorch, the mainstream deep learning framework, and

the hardware and software configurations of the machine are shown in Table 6.
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Table 6 Hardware and software configuration table.

Configuration project Detail

CPU Intel (R) Xeon (R) Gold 5218 CPU @ 2.30 GHz
RAM 128 G

Graphics card 2 x NVIDIA Quadro RTX 5000

Operating system 64-bit Windows 10

CUDA Cuda 10.2

Data processing Python 3.8

Table 7 Network model parameter list.

Parameters Value
epochs 150
batch_size 4

activation h-swish
Input_tensor (512, 512, 4)

The parameters of the deep learning network model used in this study are shown in
Table 7.

The ratio of the training set to the validation set in the dataset was 4:1. The initial
learning rate was set to 0.01. At the same time, due to the limitations of the experimental
environment in this paper, the batch size and iteration times (epoch) were set to 4 and 300,
respectively, and the performance was optimal. The optimizer selects SGD because it
converges to the global optimal solution.

Experimental results
Experiment 1: Three CBAM modules were added to the convolution layer. Simultaneously,
the ReLU function is replaced by the h-swish function.

Experiment 2: After adding three CBAM modules to the convolution layer, the third
CBAM module was replaced with the AC-CBAM module. Simultaneously the ReLU
function is replaced by the h-swish function.

Experiment 3: The AC-CBAM module was added only after the third convolution layer.
Simultaneously, the ReLU function is replaced by the h-swish function.

Experiment 4: Based on Experiment 3, the AC-CBAM of the last convolution was
replaced by the CBAM.

The corresponding structure is shown in Fig. 14.

The relevant experimental results are shown in Tables 8 and 9.

By comparing Tables 8 and 9, it can be concluded from Experiments 1 and 2 is that
under the same conditions, adding the CBAM module to the first two convolutions and the
AC-CBAM module to the last convolution in Bottleneck is better than adding the CBAM
module to the third convolution.
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Figure 14 Comparison of the three botttleneck diagrams of the experiments. Experiment 1 is on the left, Experiment 2 in the middle and
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Experiment 3 on the right.

Table 8 Results of three experimental schemes.

Experiment 1

Experiment 2

Class IoU Acc Class IoU Acc
others 95.65 97.93 others 94.35 96.97
forest 98.33 99.14 forest 97.8 98.79
road 97.34 98.47 road 96.52 98.24
building 98.01 98.91 building 97.27 98.74
water 95.43 97.84 water 93.88 97.31
Experiment 3 Experiment 4

Class IoU Acc Class IoU Acc
others 96.21 97.97 others 76.21 84.41
forest 98.58 99.3 forest 87.63 93.67
road 97.68 98.87 road 83.33 92.29
building 98.32 99.19 building 88.79 94.69
water 95.9 97.99 water 79.08 89.49

Note:

IoU represents the intersection ratio between image prediction results and real labels, and Acc represents the accuracy of

pixel prediction.

Conclusions can be drawn from Experiments 1 and 3, confirm that, under the same

other conditions, the effect of not adding CBAM to the first two convolutions and adding
AC-CBAM to the last convolution is better than that of adding CBAM to the first two
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Table 9 Average accuracy of the three schemes.

Experiment 1

Experiment 2

Scope mloU mAcc aAcc Scope mloU mAcc aAcc

global 96.95 98.46 98.46 global 95.96 98.01 97.97

Experiment 3 Experiment 4

Scope mloU mAcc aAcc Scope mloU mAcc aAcc

global 97.34 98.66 98.67 global 83.01 90.91 90.35
Note:

mloU represents the average IoU of all categories, mAcc represents the proportion of correctly classified categories
calculated separately, and aAcc represents the average mAcc of each category.

Table 10 Relevant models are compared with AC-CBAM accuracy.

Model Backbone mIQU IoU.others IoU.forest IoU.road IoU.building IoU.water
PointRend (Kirillov et al., 2020) ResNet101 0.948 0.926 0.972 0.953 0.956 0.924
OCRNet (Yuan, Chen & Wang, 2020) HRNet48 0.936 0.906 0.966 0.938 0.959 0.912
GCNet (Peng et al., 2017) ResNet101 0.940 0.914 0.968 0.944 0.961 0.916
Deeplabv3+ (Chen et al., 2018) ResNet101 0.945 0.921 0.975 0.949 0.963 0.922
DANet (Wu et al., 2021) ResNet101 0.948 0.926 0.972 0.953 0.965 0.924
APCNet (He et al., 2019) ResNet101 0.952 0.933 0.974 0.959 0.969 0.929
ANN (Zhu et al., 2019) ResNet101 0.934 0.903 0.965 0.936 0.959 0.907
DNLNet (Yin et al., 2020) ResNet101 0.959 0.942 0.978 0.964 0.973 0.937
Ours ResNet101 0.973 0.962 0.986 0.977 0.983 0.959
AC-CBAM
Note:

Relevant models are compared with AC-CBAM accuracy, where IoU. A represents the value of IoU in category A.

convolutions and adding AC-CBAM to the last convolution. AC-CBAM alone was found
to be more effective.

The conclusions drawn from Experiments 3 and 4, confirm that under the same
conditions, the effect of adding the AC-CBAM to the bottleneck structure is better than
that of the CBAM.

The conclusions drawn from Experiments 2 and 4, confirm that under the same
conditions, the effect of adding the CBAM and AC-CBAM in the bottleneck is inferior to
adding only the AC-CBAM. To test the robustness and effectiveness of the model in this
study, we compared the SOTA model proposed in recent years with AC-CBAM, and
the results are shown in Table 10. The mIoU of the AC-CBAM model reached 97.34%,
which is 1.44% higher than that of DNLNet (95.9%), and the IoU of each category was the

highest.

Slide window prediction

In the process of prediction, the remote sensing image is too large to be directly predicted,

so it is necessary to segment the remote sensing image and predict the segmented sub-
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blocks. Finally, the prediction image is spliced according to the segmentation sequence to
obtain the prediction image of the original remote sensing image.

However, through local amplification, we found that this effect was not ideal. Because of
the problem of the receptive field of the convolutional network, attention was focused
on the middle region, and the segmentation effect was poor for the edges of small blocks of
images, and the sense of abruptness after fusion was obvious. Using only a simple
segmentation prediction an image will exhibit a strong edge with the high error rate of edge
prediction causing obvious abrupt changes, and other shortcomings. Therefore, the sliding
window prediction method was used for enhancement.

In sliding window prediction, the overlapping sliding window strategy (sliding window
step size < sliding window size) was adopted. In prediction, only the central region of the
prediction results is retained, and the edges of images with inaccurate predictions are
discarded. In this study, we make a slide-window prediction based on the segmentation of
the original image and obtain a good prediction effect.

We set the length of the original image as x and the height as y, and the relevant filling
and sliding window settings are as follows:

1. Fill 1 (yellow part): Fill the lower right boundary to an integer multiple of the size of
the sliding window prediction window to facilitate divisible cutting;

) X L

Padding x_yellow = “ride x stride — x (4)
. Y 1

Padding_y_yellow = stride stride — y (5)

2. Fill 2 (blue part): Fill the outer border with 1/2 sliding step size (considering the
expansion prediction of edge data). The filling effect is illustrated in Fig. 15.

trid
Padding,; . = % (6)
3. Only the prediction result of the center stride x stride of the Sliding window is

reserved for each prediction, as shown in Fig. 16.

RESULTS AND DISCUSSIONS

Contribution to semantic segmentation of remote sensing

Data preprocessing is essential before model training. A superior processing method
effectively improves model accuracy. Because the sensor records from orbit, the imaging
process will inevitably be affected by many factors, such as the action of external radiation
and the atmosphere, resulting in a degree of error between the remote sensing image
and the original view. Here, we adopt radiometric calibration and atmospheric
correction to eliminate maximally the influence of error. There are usually many different
bands in remote sensing images, and different bands are combined depending on the land
parcel category. The practice of band combination in this study will provide a reference for
the field of remote sensing parcel segmentation. Panchromatic band images have the
advantage of higher resolution. Further to enhance the information contained in the
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Figure 15 Filling diagram. Full-size ] DOT: 10.7717/peerj-cs.847/fig-15

Figure 16 A sketch of a sliding window. The horizontal sliding window predicting process is on the left
and the vertical sliding window predicting process is on the right.
Full-size K&l DOT: 10.7717/peerj-cs.847/fig-16
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Figure 17 OCRNet prediction map. Full-size K&l DOT: 10.7717/peerj-cs.847/fig-17

image, we fuse the selected multispectral band data with panchromatic band data. In this
study, blocks of vegetation, water, and roads are highlighted by the Brovey transform
fusion method to improve segmentation accuracy. This paper provides a reference for the
selection of image fusion data sources and fusion methods.

The dataset used in this experiment includes five categories: forest, building, water
body, rationale, and other categories. After training with GCNet, PointRend, OCRNet,
DANet, APCNet, and other semantic segmentation networks, it was found that the
pixel points of the roads category were mainly distributed in thin strips and had fewer
numbers than other categories when inferring the prediction images. The OCRNet model
prediction map for a remote sensing image is shown in Fig. 17.

The main reason for the above results is that in the process of feature extraction for
images, roads are mainly strip-shaped and occupy a relatively small area. If a larger general
symmetric convolution kernel is used to extract features from images, the effect may
change because the convolution kernel size is too large to achieve accurate feature
extraction and other unnecessary information will be introduced. For recognizing and
segmenting traditional remote sensing images the method of introducing an attention
mechanism effectively improves the model training accuracy and can also solve a series of
problems in object classification. The introduction of the attention mechanism could
also alleviate problems in remote sensing image extraction. However, because the road
shape is a strip, the image can be extracted using the asymmetric convolution core of the
bar shape, and the attention mechanism module of CBAM can be used to obtain the target
area requiring attention. Simultaneously, the two introduced structures can enhance the
outcome of the entire training process. Therefore, the original AC-CBAM module was
created. A comparison of the predictions is shown in Fig. 18.

The experiments show that the entire remote sensing image predicts well. This method
effectively extracts a complete image. Overall, this study undertook the following research.

1. Introduction of related theory and technology: Related theories such as neural networks
and their training processes were introduced to commonly used methods of remote
sensing image segmentation.

2. Study area selection and remote sensing image preprocessing: To improve the image
quality, remote sensing image is preprocessed.

3. Dataset preparation: Label data were generated by automatic labeling and manual
validation for data preprocessed from remote sensing images, and the dataset is
expanded to 10,000 pieces.
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4. In the decoder part, we created the AC-CBAM module and added the h-swish activation
function. The experimental results show that the performance of the model was
somewhat improved.

5. Rethinking the network structure from object features: According to the experimental
results, the AC-CBAM module and sliding window prediction can improve the accuracy
of extraction to some extent, which proves that the combination of computer vision
and remote sensing knowledge will bring new ideas to solve many problems in the field
of remote sensing.

Different from existing methods

The CBAM has proven to be an attention mechanism module that can be widely used in
target detection and semantic segmentation tasks. However, through experiments, we
found that the unmodified CBAM is not suitable for the semantic segmentation of remote
sensing images. Because the CBAM is an attention mechanism module based on ordinary
convolution, a symmetrical square convolution kernel was used in feature extraction,
whereas the improved AC-CBAM used a strip asymmetric convolution kernel, which is
more in line with the category characteristics in the experimental task. When extracting
features from the convolution kernel, most of the information obtained in the convolution
area is acquired from categories; thus, when integrating information, the variance in
different information is greater and more conducive to identification.

We obtained the results of semantic segmentation of OcrNet, Deeplabv3+, and other
networks, and compared the effects of each method. First, we used OcrNet. The purpose of
the object context information proposed by OcrNet is explicitly to enhance the object
information. First, the regional feature expression of a group of objects is calculated, and
then the representation of these regional-feature objects is propagated to each pixel
according to the similarity between the regional-feature object’s representation and the
pixel feature’s representation, to achieve the intended effect. However, for the category of
very narrow roads, the advantages of OcrNet were not fully reflected in this experiment.
Then, we used Deeplabv3+, which introduces hole convolution, for each convolution
output to contain a large range of information without losing any. However, a large range
of information does not necessarily contain sufficient information, and will not meet the
experimental requirements. Thereafter, we continued to use other methods, and finally,
through experimentation, obtained the best effect with the DNLNET method and further
improved it.

Limitations and future work

The image quality extracted from satellites is limited by the complexity of cloud and fog
masking geographical features which reduces the accuracy of the obtained images. Owing
to the irregular distribution of plots and the mutual embedding of various plots, the
traditional convolutional neural network cannot better extract the edge feature
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Figure 18 The comparison groups of four different regions. (A-C) The comparison groups of three
different regions. For each group, the figure above is the ACB prediction chart and the figure below is
OCRNet prediction chart. Full-size K&l DOT: 10.7717/peerj-cs.847/fig-18

information of junctions, thus having a considerable impact on the model’s recognition
capability.

In the future, this research will further improve the channel separation attention-
detection network. There are two approaches to improving the network structure: one is
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the enhancement algorithm of defogging by fusing the improved dark channel and Retinex
(Zhou, Chen ¢ Sun, 2014). By using the single-scale Retinex algorithm to enhance the
restored image the problem of low accuracy caused by the incorrect estimation of
transmittance could be somewhat alleviated. The enhanced image is more consistent
with human visual characteristics, and the image details are more obvious. Another
direction is to introduce a deformable convolution (Dai et al., 2017). In this method, the
fixed-shape convolution matrix is transformed into a variable convolution matrix that
can adapt to the shape of the object for the network structure itself to adapt. In addition,
the edge information of the image is better extracted further to improve the fitting effect of
the model.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions

e Zhao Shun conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, authored or reviewed drafts of the
paper, and approved the final draft.

e Danyang Li performed the experiments, performed the computation work, authored or
reviewed drafts of the paper, and approved the final draft.

e Hongbo Jiang conceived and designed the experiments, performed the experiments,
performed the computation work, authored or reviewed drafts of the paper, and
approved the final draft.

e Jiao Li performed the computation work, prepared figures and/or tables, authored or
reviewed drafts of the paper, and approved the final draft.

e Ran Peng conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, authored or reviewed drafts of the
paper, and approved the final draft.

e Bin Lin conceived and designed the experiments, performed the experiments, analyzed
the data, performed the computation work, prepared figures and/or tables, authored or
reviewed drafts of the paper, and approved the final draft.

e QinLi Liu analyzed the data, prepared figures and/or tables, and approved the final draft.

e Xinyao Gong analyzed the data, prepared figures and/or tables, authored or reviewed
drafts of the paper, and approved the final draft.

e Xingze Zheng performed the experiments, analyzed the data, prepared figures and/or
tables, and approved the final draft.

e Tao Liu performed the computation work, authored or reviewed drafts of the paper, and
approved the final draft.

Shun et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.847 27/30


http://dx.doi.org/10.7717/peerj-cs.847
https://peerj.com/computer-science/

PeerJ Computer Science

Data Availability
The following information was supplied regarding data availability:

The data is available at figshare: Bin, Lin (2021): 512.rar. figshare. Figure.
https://doi.org/10.6084/m9.figshare.16767214.v1.

The code is available at GitHub: https://github.com/LinB203/remotesense.

REFERENCES

Badrinarayanan V, Kendall A, Cipolla R. 2017. Segnet: a deep convolutional encoder-decoder
architecture for image segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence 39(12):2481-2495 DOI 10.1109/TPAMIL.2016.2644615.

Bahdanau D, Cho K, Bengio Y. 2014. Neural machine translation by jointly learning to align and
translate. ArXiv. Available at https://arxiv.org/abs/1409.0473.

Ball JE, Bruce LM. 2007. Level set hyperspectral image classification using best band analysis. IEEE
Transactions on Geoscience and Remote Sensing 45(10):3022-3027
DOI 10.1109/TGRS.2007.905629.

Besag J. 1986. On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society:
Series B 48(3):259-279 DOI 10.1111/j.2517-6161.1986.tb01412.x.

Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. 2014. Semantic image segmentation
with deep convolutional nets and fully connected CRFs. ArXiv. Available at https://arxiv.org/abs/
1412.7062.

Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL. 2017. Deeplab: semantic image
segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE
Transactions on Pattern Analysis and Machine Intelligence 40(4):834-848
DOI 10.1109/TPAMI.2017.2699184.

Chen LC, Papandreou G, Schroff F, Adam H. 2017. Rethinking atrous convolution for semantic
image segmentation. ArXiv. Available at https://arxiv.org/abs/1706.05587.

Chen LC, Zhu Y, Papandreou G, Schroff F, Adam H. 2018. Encoder-decoder with atrous
separable convolution for semantic image segmentation. In: Proceedings of the European
Conference on Computer Vision (ECCV). 801-818.

Cheng G, Lang C, Wu M, Xie X, Yao X, Han J. 2021. Feature enhancement network for object
detection in optical remote sensing images. Journal of Remote Sensing 2021:1-14
DOI 10.34133/2021/9805389.

Cheng G, Yang C, Yao X, Guo L, Han J. 2018. When deep learning meets metric learning: remote
sensing image scene classification via learning discriminative CNNs. IEEE Transactions on
Geoscience and Remote Sensing 56(5):2811-2821 DOI 10.1109/TGRS.2017.2783902.

Dai ], Qi H, Xiong Y, Li Y, Zhang G, Hu H, Wei Y. 2017. Deformable convolutional networks.
In: Proceedings of the IEEE International Conference on Computer Vision. Piscataway: IEEE,
764-773.

De S, Bruzzone L, Bhattacharya A, Bovolo F, Chaudhuri S. 2017. A novel technique based on
deep learning and a synthetic target database for classification of urban areas in PolSAR data.
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11(1):154-170
DOI 10.1109/JSTARS.4609443.

Feng W, Jia J, Liu ZQ. 2010. Self-validated labeling of Markov random fields for image
segmentation. IEEE Transactions on Pattern Analysis and Machine Intelligence
32(10):1871-1887 DOI 10.1109/TPAMIL.2010.24.

Shun et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.847 28/30


https://doi.org/10.6084/m9.figshare.16767214.v1
https://github.com/LinB203/remotesense
http://dx.doi.org/10.1109/TPAMI.2016.2644615
https://arxiv.org/abs/1409.0473
http://dx.doi.org/10.1109/TGRS.2007.905629
http://dx.doi.org/10.1111/j.2517-6161.1986.tb01412.x
https://arxiv.org/abs/1412.7062
https://arxiv.org/abs/1412.7062
http://dx.doi.org/10.1109/TPAMI.2017.2699184
https://arxiv.org/abs/1706.05587
http://dx.doi.org/10.34133/2021/9805389
http://dx.doi.org/10.1109/TGRS.2017.2783902
http://dx.doi.org/10.1109/JSTARS.4609443
http://dx.doi.org/10.1109/TPAMI.2010.24
http://dx.doi.org/10.7717/peerj-cs.847
https://peerj.com/computer-science/

PeerJ Computer Science

He J, Deng Z, Zhou L, Wang Y, Qiao Y. 2019. Adaptive pyramid context network for semantic
segmentation. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition. Piscataway: IEEE, 7519-7528.

He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition. In: Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 770-778.

Kalchbrenner N, Grefenstette E, Blunsom P. 2014. A convolutional neural network for
modelling sentences. ArXiv. Available at https://arxiv.org/abs/1404.2188.

Kirillov A, Wu Y, He K, Girshick R. 2020. Pointrend: image segmentation as rendering. In:
Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition.
Piscataway: IEEE, 9799-9808.

Li SZ. 1994. Markov random field models in computer vision. In: European Conference on
Computer Vision. Berlin, Heidelberg: Springer, 361-370.
Long J, Shelhamer E, Darrell T. 2015. Fully convolutional networks for semantic segmentation. In:

Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:
IEEE, 3431-3440.

Langkvist M, Kiselev A, Alirezaie M, Loutfi A. 2016. Classification and segmentation of satellite
orthoimagery using convolutional neural networks. Remote Sensing 8(4):329
DOI 10.3390/rs8040329.

Ma H, Yang Y. 2009. Two specific multiple-level-set models for high-resolution remote-sensing
image classification. IEEE Geoscience and Remote Sensing Letters 6(3):558-561
DOI 10.1109/LGRS.2009.2021166.

Mnih V, Heess N, Graves A. 2014. Recurrent models of visual attention. In: Advances in Neural
Information Processing Systems. 2204-2212.

Nishii R. 2003. A Markov random field-based approach to decision-level fusion for remote sensing
image classification. IEEE Transactions on Geoscience and Remote Sensing 41(10):2316-2319
DOI 10.1109/TGRS.2003.816648.

Osher S, Sethian JA. 1988. Fronts propagating with curvature-dependent speed: algorithms based
on Hamilton-Jacobi formulations. Journal of Computational Physics 79(1):12-49
DOI 10.1016/0021-9991(88)90002-2.

Peng C, Zhang X, Yu G, Luo G, Sun J. 2017. Large kernel matters-improve semantic
segmentation by global convolutional network. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. Piscataway: IEEE, 4353-4361.

Schroff F, Criminisi A, Zisserman A. 2008. Object class segmentation using random forests. In:
BMVC. 1-10.

Shotton J, Johnson M, Cipolla R. 2008. Semantic texton forests for image categorization and
segmentation. In: IEEE Conference on Computer Vision and Pattern Recognition. Piscataway:
IEEE, 1-8.

Tang X, Zhang X, Liu F, Jiao L. 2018. Unsupervised deep feature learning for remote sensing
image retrieval. Remote Sensing 10(8):1243 DOI 10.3390/rs10081243.

Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, Kaiser L, Polosukhin I.
2017. Attention is all you need. In: Advances in Neural Information Processing Systems.
5998-6008.

Wang X, Girshick R, Gupta A, He K. 2018. Non-local neural networks. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 7794-7803.

Shun et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.847 29/30


https://arxiv.org/abs/1404.2188
http://dx.doi.org/10.3390/rs8040329
http://dx.doi.org/10.1109/LGRS.2009.2021166
http://dx.doi.org/10.1109/TGRS.2003.816648
http://dx.doi.org/10.1016/0021-9991(88)90002-2
http://dx.doi.org/10.3390/rs10081243
http://dx.doi.org/10.7717/peerj-cs.847
https://peerj.com/computer-science/

PeerJ Computer Science

Wu X, Wu Z, Guo H, Ju L, Wang S. 2021. DANNet: a one-stage domain adaptation network for
unsupervised nighttime semantic segmentation. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. Piscataway: IEEE, 15769-15778.

Xue H, Liu C, Wan F, Jiao J, Ji X, Ye Q. 2019. Danet: divergent activation for weakly supervised
object localization. In: Proceedings of the IEEE/CVF International Conference on Computer
Vision. Piscataway: IEEE, 6589-6598.

Yin M, Yao Z, Cao Y, Li X, Zhang Z, Lin S, Hu H. 2020. Disentangled non-local neural networks.
In: European Conference on Computer Vision. Cham: Springer, 191-207.

Yuan Y, Chen X, Wang J. 2020. Object-contextual representations for semantic segmentation. In:
Computer Vision-ECCV 2020: 16th European Conference. Part VI 16. Glasgow, UK: Springer
International Publishing, 173-190.

Zhao W, Du S, Emery WJ. 2017. Object-based convolutional neural network for high-resolution
imagery classification. IEEE Journal of Selected Topics in Applied Earth Observations and Remote
Sensing 10(7):3386-3396 DOI 10.1109/JSTARS.2017.2680324.

Zhao W, Du S, Wang Q, Emery WJ. 2017. Contextually guided very-high-resolution imagery
classification with semantic segments. ISPRS journal of Photogrammetry and Remote Sensing
132:48-60 DOI 10.1016/j.isprsjprs.2017.08.011.

Zheng C, Zhang Y, Wang L. 2017. Semantic segmentation of remote sensing imagery using an
object-based Markov random field model with auxiliary label fields. IEEE Transactions on
Geoscience and Remote Sensing 55(5):3015-3028 DOI 10.1109/TGRS.2017.2658731.

Zhou YW, Chen Q, Sun QS. 2014. Remote sensing image enhancement based on dark channel
prior and bilateral filtering. Journal of Image and Graphics 19(2):313-321
DOI 10.11834/jig.20140218.

Zhu Z, Xu M, Bai S, Huang T, Bai X. 2019. Asymmetric non-local neural networks for semantic
segmentation. In: Proceedings of the IEEE/CVF International Conference on Computer Vision.
Piscataway: IEEE, 593-602.

Shun et al. (2022), Peerd Comput. Sci., DOl 10.7717/peerj-cs.847 30/30


http://dx.doi.org/10.1109/JSTARS.2017.2680324
http://dx.doi.org/10.1016/j.isprsjprs.2017.08.011
http://dx.doi.org/10.1109/TGRS.2017.2658731
http://dx.doi.org/10.11834/jig.20140218
http://dx.doi.org/10.7717/peerj-cs.847
https://peerj.com/computer-science/

	Research on remote sensing image extraction based on deep learning
	Introduction
	Data preprocessing
	Method
	Experimental process
	Results and discussions
	References


