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ABSTRACT
In many countries, there is an energy pricing policy that varies according to the time-
of-use. In this context, it is financially advantageous for the industries to plan their
production considering this policy. This article introduces a new bi-objective
unrelated parallel machine scheduling problem with sequence-dependent setup
times, in which the objectives are to minimize the makespan and the total energy
cost. We propose a mixed-integer linear programming formulation based on the
weighted sum method to obtain the Pareto front. We also developed an NSGA-II
method to address large instances of the problem since the formulation cannot solve
it in an acceptable computational time for decision-making. The results showed that
the proposed NSGA-II is able to find a good approximation for the Pareto front when
compared with the weighted sum method in small instances. In a large number of
instances, NSGA-II outperforms, with a 95% confidence level, the MOGA and
NSGA-I multi-objective techniques concerning the hypervolume and hierarchical
cluster counting metrics. Thus, the proposed algorithm finds non-dominated
solutions with good convergence, diversity, uniformity, and amplitude.

Subjects Artificial Intelligence, Optimization Theory and Computation
Keywords Unrelated parallel machine, Total energy cost, Makespan, Mixed-integer linear
programming, NSGA-II, Multi-objective optimization

INTRODUCTION
The industrial sector is one of the largest consumers of energy in the world. According to
EIA (2016), this sector consumes around 54% of the total energy distributed globally.

Among the various forms of energy used by the manufacturing industry, electricity has
been one of the most consumed. In China, for example, this sector consumes about 50% of
the electricity produced in the country (Liu et al., 2014).

In recent years, electricity prices have continuously increased for manufacturing
companies in industrialized countries (Willeke, Ullmann & Nyhuis, 2016). In Norway, the
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industrial electricity price, including taxes, increased by 47% between 2017 and 2018
(BEIS, 2020). This increase has an impact on production costs and can reduce the
competitiveness of companies. In countries that implement a pricing policy so that the
energy price depends on the time-of-use, the reduction of electricity costs can occur
through production planning that prioritizes periods when energy is less expensive.

However, few studies address scheduling problems in which the energy price depends
on the time-of-use tariffs. Among them, we mention Ebrahimi et al. (2020), Zeng, Che &
Wu (2018),Wang et al. (2016), Shrouf et al. (2014), Zhang et al. (2014), where the objective
includes to minimize the total energy cost.

On the other hand, among several scheduling environments, the unrelated parallel
machine one has received much attention recently, given its wide applicability in the
industry (Cota et al., 2019). In terms of performance measures, makespan minimization is
one of the most common because this criterion aims at the good utilization of the machines
(Pinedo, 2016). Lastly, the sequence-dependent setup times appear in many industrial
and service applications (Kopanos, Lanez & Puigjaner, 2009). However, as far as we know,
no work reported in the literature addresses the unrelated parallel machine scheduling
problem with sequence-dependent setup times (UPMSP-SDS), considering minimizing
the makespan and the total energy cost. This paper, therefore, aims to fill this gap.

The main contributions of this work are the following: (i) introducing a new bi-objective
unrelated parallel machine scheduling problem; (ii) introducing a new mixed-integer
linear programming formulation able to solve small-scale instances of this problem;
(iii) proposing an adapted version of the NSGA-II algorithm to treat large-scale instances
of this problem; (iv) creating a set of instances for this problem; (v) performing an
experimental study of the proposed methods.

We organized the remainder of this article as follows: In “Literature Review”, we review
the literature. In “Problem Statement”, we detail the problem addressed. In “Weighted
Sum Method”, we introduce the proposed mathematical model. In “Proposed NSGA-II”,
we show the adaptation of the NSGA-II algorithm to the problem. In “Computational
Experiments”, we report the computational results, which include a comparison of the
results of the proposed algorithm with the exact method on small instances and a
comparison with other multi-objective algorithms on large instances. Finally, we present
the conclusions and directions for future work in “Conclusions”.

LITERATURE REVIEW
Here, we present a literature review with previous research that addressed scheduling
problems and considered objectives related to this work.

Some studies address the scheduling problem only to minimize energy consumption.
For example, Shrouf et al. (2014) proposed a mathematical model for the scheduling
problem on a single machine. However, the model cannot solve large instances within a
reasonable computational time for decision-making. For this reason, they also proposed a
genetic algorithm. The computational results indicated the possibility of reducing
energy consumption by up to 30% when they compared the genetic algorithm solution and
the “as soon as possible” heuristic solution. Tsao, Thanh &Hwang (2020) presented a fuzzy
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model integrated into a genetic algorithm for a problem similar to that described
previously. They tested their method in instances of up to 200 jobs. The results indicated a
4.20% reduction in total energy consumption compared to the traditional genetic
algorithm.

Other studies address the scheduling problem and consider a second objective beyond
minimizing energy consumption. Cota et al. (2018) proposed a mathematical model
and applied a mathematical heuristic called multi-objective smart pool search for the
UPMSP-SDS. The objective functions are to minimize the makespan and the total energy
consumption. In the experiments, they used a set of instances with up to fifteen jobs,
and five machines randomly generated. They adopted hypervolume and set coverage
metrics to compare the proposed algorithm with the e-constraint exact method. They
showed that the objectives are conflicting and that energy consumption strongly influences
the solution’s quality. Cota et al. (2019) introduced the MO-ALNS and MO-ALNS/D
algorithms to handle instances of up to 250 jobs and 30 machines of the same problem
described previously. The MO-ALNS algorithm is a multi-objective version of the
Adaptive Large Neighborhood Search–ALNS (Ropke & Pisinger, 2006), and MO-ALNS/D
combines the multi-objective MOEA/D (Zhang & Li, 2007) with ALNS. The MO-ALNS/D
algorithm was able to find better results than MO-ALNS in most instances in the
hypervolume, set coverage, and Hierarchical Cluster Counting (HCC) (Guimaraes,
Wanner & Takahashi, 2009) metrics. (Wu & Che, 2019) proposed a memetic differential
evolution (MDE) algorithm for the UPMSP in which the objectives are also to minimize
the makespan and the total energy consumption. The computational results showed
that the proposed approach provides a significant improvement over the basic DE.
Also, the MDE outperforms the SPEA-II and NSGA-II algorithms. (Liang et al., 2015)
presented the Ant Colony Optimization algorithm with the Apparent Tardiness Cost
(ACO-ATC) rule for the UPMSP seeking to minimize the total tardiness and the energy
consumption. In this problem, machines need to wait until jobs are ready. However, it
is necessary to decide whether the machine remains on or off during the wait. Turning off
the machine to wait for the job to be ready saves energy. On the other hand, keep on the
machine while waiting for the job saves time because it eliminates the need to prepare
the machine again. They compared the ACO-ATC results with the classic ACO and a
GRASP-based algorithm (Feo & Resende, 1995). The proposed algorithm was better than
the other approaches in most of the tested instances.

There are studies that only address the minimization of the total energy cost. Ding et al.
(2016) presented two approaches to UPMSP: the first introduces a time-interval-based
Mixed Integer Linear Programming (MILP) formulation. The second consists of a
reformulation of the problem using the Dantzig-Wolfe decomposition and a column
generation heuristic. According to the results, the MILP formulation overcame the column
generation method in terms of solution quality and execution time when electricity
prices stay stable for a relatively long period. On the other hand, the column generation
method performed better when the electricity price frequently changed (i.e., every half
hour). Cheng, Chu & Zhou (2018) improved the formulation by Ding et al. (2016) and
performed computational experiments with 120 randomly generated instances to compare
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the two formulations. The results showed that the new formulation achieves better results
concerning the solution quality and execution time. Saberi-Aliabad, Reisi-Nafchi &
Moslehi (2020) proposed the fix-and-relax heuristic algorithm in two stages for this
same problem. In the first stage, jobs are assigned to the machines, and the second one
solves a scheduling problem on simple machines. They tested its method in 20 instances
randomly generated following the same parameter values as other previous studies.
They compared the proposed method with the algorithms of Che, Zhang &Wu (2017) and
Cheng, Chu & Zhou (2018). The results showed that the fix-and-relax algorithm overcame
the others.

Finally, we present studies that address the scheduling problem considering minimizing
the energy cost combined with another objective. Zeng, Che & Wu (2018) dealt with
the bi-objective uniform parallel machine scheduling to minimize the total energy cost and
the number of machines. They proposed a new mathematical model and a heuristic
algorithm for it. The computational results showed that the heuristic method generates
high-quality solutions in a reasonable time limit for instances of up to 5,000 jobs. Cheng,
Wu & Chu (2019) presented a mathematical formulation and a genetic algorithm for
the UPMSP. They considered the objective of minimizing the weighted sum of makespan
and total electricity cost. The results presented by their formulation overcome that of
the genetic algorithm in terms of solution quality. Kurniawan et al. (2017) proposed a
genetic algorithm with a delay mechanism for the UPMSP to minimize the weighted sum
of makespan and total energy cost. The proposed algorithm handled instances of up to 30
jobs and 15 machines. The results showed that the proposed method provided better
solutions than the classical genetic algorithm.

Although there are studies correlated to ours, of our knowledge, there is no work
addressing the unrelated parallel machine scheduling problem with sequence-dependent

Table 1 Summary of characteristics addressed by our work compared to literature studies.

Reference Unrelated
parallel
machines

Sequence-
dependent
setup

Makespan Total
energy
cost

Time-of-
use

Multi-
objective

Exact
method

Metaheuristic
method

Shrouf et al. (2014)
p p p

Liang et al. (2015)
p p p p

Ding et al. (2016)
p p p p

Kurniawan et al. (2017)
p p p p p p

Cota et al. (2018)
p p p p p

Cheng, Chu & Zhou (2018)
p p p p

Zeng, Che & Wu (2018)
p p p p p

Cota et al. (2019)
p p p p p

Wu & Che (2019)
p p p p

Cheng, Wu & Chu (2019)
p p p p p p

Tsao, Thanh & Hwang (2020)
p p p

Saberi-Aliabad, Reisi-Nafchi
& Moslehi (2020)

p p p p p

Our proposal
p p p p p p p p
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setup times to minimize the makespan and the total energy cost. Table 1 summarizes the
characteristics of scheduling problems treated by our work compared to literature
references.

PROBLEM STATEMENT
To define the UPMSP-SDS, we characterize the problem in this section and introduce a
MILP formulation to solve it.

The following are the characteristics of the problem addressed in this work:
• There are a set N ¼ f1; . . . ; ng of jobs, a set M ¼ f1; . . . ;mg of machines, and a set

L ¼ f1; . . . ; og of different operation modes, such that each operation mode l 2 L is
associated with a multiplication factor of speed vl and a multiplication factor of power �l;

• The machines are unrelated parallel. In other words, the processing time of job j 2 N
can be different on each machine i 2 M;

• There is a planning horizon that consists of a set of H ¼ f0; . . . ; jHjg of time instants,
and we must perform all jobs within this horizon;

• All jobs are available to be processed at the beginning of the planning horizon h ¼ 0;
• Each job j 2 N must be allocated to exactly one machine i 2 M;
• There is a processing time pij to process a job j 2 N on a machine i 2 M;
• There is a sequence-dependent setup time Sijk to execute a job k 2 N after another job

j 2 N on a machine i 2 M;
• Each machine i 2 M has a power pi at normal operating speed;
• The operation mode l 2 L of each job determines the multiplication factor of power

(�l). It also determines the multiplication factor of speed (vl), which, in turn, is related to
the execution time of each job;

• There is a set D of days on the planning horizon H;
• Each day is discretized into sizeD time intervals. For example, for discretizing a day in

minutes, sizeD = 1,440; for the discretization of one day in hours, sizeD = 24;
• To each day t 2 H, we have a peak hour, which starts at the time startpt 2 H and ends

at the time endpt 2 H;
• EToff and ETon represent the energy tariff ($/KWh) in off-peak hours and on-peak

hours, respectively.
Table 2 presents the decision and auxiliary variables that are needed to model the

problem.
Thus, we can define the problem through Eqs. (1)–(12).

Table 2 Decision and auxiliary variables for the problem.

Name Description

Xijhl Binary variable that assumes value 1 if the job j is allocated on the machine i at time h and in the operation mode l, and value 0, otherwise

PECon
t Partial Energy Cost ($) during the on-peak in day t 2 D

PECoff
t

Partial Energy Cost ($) during the off-peak in day t 2 D

Cmax The maximum completion time of the jobs, also known as makespan

TEC Total Energy Cost ($)
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minCmax (1)

minTEC (2)

Subject to:

Xm
i¼1

Xo
l¼1

XjHj� Pij
Vl

l m
h¼0

Xijhl ¼ 1 8j 2 N (3)

Xijhl þ
Xmin hþ Pij
Vl

l m
þSijk�1;jHj

� �
u¼h

Xo
l1¼1

Xikul1 � 1 8i 2 M; j 2 N; k 2 N; l 2 L; j 6¼ k (4)

Cmax � Xijhl � hþ Pij
Vl

� �� �
; 8i 2 M; j 2 N; h 2 H; l 2 L (5)

PECon
t �

Xm
i¼1

Xn
j¼1

Xo
l¼1

�l � pi � ETon � 24
sizeD

� (6)

Xstartpt�1

h¼sizeD�ðt�1Þ
Xijhl �

8<
: max 0;min hþ Pij

Vl

� �
� 1; endpt

� 	
� ðstartpt � 1Þ

� 	� �

þ
Xendpt�1

h¼startpt
Xijhl � min hþ Pij

Vl

� �
; endpt þ 1

� 	
� h

� �

8t 2 D

PECoff
t �

Xm
i¼1

Xn
j¼1

Xo
l¼1

�l � pi � EToff � 24
sizeD

� (7)

� Xstartpt�1

h¼sizeD�ðt�1Þ
Xijhl�

�
min

�
hþ

�
Pij
Vl

�
; startpt

	
� hþmax

�
0; hþ

�
Pij
Vl

�
� endpt � 1

	�

þ
Xendpt�1

h¼startpt
Xijhl �

�
max

�
0; hþ

�
Pij
Vl

�
� endpt � 1

	�

þ
XjHj�1

h¼endpt
Xijhl �

�
Pij
Vl

�

8t 2 D

TEC �
XsizeD
t¼1

PECoff
t þ PECon

t

� �
(8)

Xijhl 2 f0; 1g 8i 2 M; j 2 N; h 2 H; l 2 L (9)

Cmax � 0 (10)

PECoff
t � 0 8t 2 D (11)

PECon
t � 0 8t 2 D (12)

The objectives of the problem are to minimize, simultaneously, the makespan and the
total energy cost, defined by Eqs. (1) and (2), respectively. The set of constraints (3) ensures
that every job j 2 J is allocated on a machine has a single operation mode, and ends its
execution inside the planning horizon. Constraints (4) define that if the job k is assigned to
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the machine i immediately after the job j, then the start time of the job k must be
greater than the sum of the end time of the job j and the setup time between them. It is
important to highlight that for the previous model to be valid, the setup and processing
times must satisfy the triangular inequality, as defined by Rosa & Souza (2009). The set
of constraints (5) determines a lower bound for the makespan. Constraints (6) and (7)
define a lower bound for the partial energy cost in the on-peak hours (PECon) and the
total energy cost for off-peak hours (PECoff ), respectively. It is important to note that a job
can be partially performed in the on-peak hours and partially in the off-peak hours and
that the total energy cost is directly related to the energy price and the job execution
time. Constraint (8) ensures a lower bound for the total energy cost. Constraints (9)–(12)
define the domain of the decision and auxiliary variables of the problem.

The calculation of the energy cost of a job j depends on its execution time during the on-
peak and off-peak time. Thus, there are six possible cases:

Case 1: The job j starts and ends before the on-peak hours;
Case 2: The job j starts before the on-peak hours and ends in the on-peak hours;
Case 3: The job j starts and ends in the on-peak hours;
Case 4: The job j starts during the on-peak hours and ends after the on-peak hours;
Case 5: The job j starts and ends after the on-peak hours;
Case 6: The job j starts before the on-peak hours and ends after the on-peak hours.
To illustrate cases 1 to 5, let Fig. 1. It shows the execution of five jobs N ¼ f2; 4; 1; 5; 3g

in the scheduling of a single machine i ¼ 1 in a single operation mode l ¼ 1 on day t ¼ 1
of the planning horizon. Let the start of the on-peak hours (startp1) equal to 18; the
end of the on-peak hours (endp1) equal to 21; the multiplication factor of power (�l) equal
to 1; the energy consumption of machine at normal operation (p1) equal to 100; the
energy tariff in the on-peak hours (ETon) equal to 0:10$=KWh and in the off-peak hours
(EToff ) equal to 0:05$=KWh; the multiplication factor of speed vl equal to 1. In this
example, we consider discretization in hours. This figure shows that jobs 4, 1, and 5 are
performed in the on-peak hours, partially or totally, and jobs 2 and 3, in turn, in the
off-peak hours.

For this example, Eqs. (6) and (7) are reduced to Eqs. (13) and (14) below:

PECon
1 ¼

Xn
j¼1

1� 100� 0:10� 24
24|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Parcel 1ðaÞ

� (13)

Figure 1 Example to illustrate the calculation of the energy cost on a machine.
Full-size DOI: 10.7717/peerj-cs.844/fig-1
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X18�1
h¼0

X1jh1�
(

max 0;min hþ P1j
1

� �
� 1; 21

� 	
� ð18� 1Þ

� 	� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Parcel 2ðbÞ

þ
X21�1
h¼18

X1jh1 � min hþ P1j
1

� �
; 21þ 1

� 	
� h

� �)
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Parcel 3ðcÞ

PECoff
1 ¼

Xn
j¼1

1� 100� 5� 24
24|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Parcel 1ðdÞ

� (14)

X18�1
h¼0

X1jh1�
(

min hþ P1j
1

� �
; 18

� 	
� hþmax 0; hþ P1j

1

� �
� 21� 1

� 	� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Parcel 2ðeÞ

þ
X21�1
h¼18

X1jh1 � max 0; hþ P1j
1

� �
� 21� 1

� 	� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Parcel 3ðf Þ

þ
X24�1
h¼21

X1jh1 �
P1j
1

� �)
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Parcel 4ðgÞ

Table 3 illustrates the contribution of each job to the total energy cost, according to the
example in Fig. 1. The column “# Job” represents the job, the column “Case” shows the
contemplated case, and the columns “Contr. on-peak” and “Contr. off-peak” show the
contributions of the job to the energy cost of each job in the on-peak and off-peak hours,
respectively.

The total energy cost found to the schedule shown in Fig. 1 is 105.

Table 3 Energy cost by job in the example of Fig. 1.

# Job Case Contr. on-peak hours Contr. off-peak hours

2 1 10|{z}
ðaÞ
�ð 0|{z}

ðbÞ
þ 0|{z}

ðcÞ
Þ ¼ 0 5|{z}

ðdÞ
�ð 11|{z}

ðeÞ
þ 0|{z}

ðfÞ
þ 0|{z}
ðgÞ
Þ ¼ 55

4 2 10|{z}
ðaÞ
�ð 1|{z}

ðbÞ
þ 0|{z}

ðcÞ
Þ ¼ 10 5|{z}

ðdÞ
�ð 2|{z}

ðeÞ
þ 0|{z}

ðfÞ
þ 0|{z}
ðgÞ
Þ ¼ 10

1 3 10|{z}
ðaÞ
�ð 0|{z}

ðbÞ
þ 1|{z}

ðcÞ
Þ ¼ 10 5|{z}

ðdÞ
�ð 0|{z}

ðeÞ
þ 0|{z}

ðfÞ
þ 0|{z}
ðgÞ
Þ ¼ 0

5 4 10|{z}
ðaÞ
�ð 0|{z}

ðbÞ
þ 1|{z}

ðcÞ
Þ ¼ 10 5|{z}

ðdÞ
�ð 0|{z}

ðeÞ
þ 1|{z}

ðfÞ
þ 0|{z}
ðgÞ
Þ ¼ 5

3 5 10|{z}
ðaÞ
�ð 0|{z}

ðbÞ
þ 0|{z}

ðcÞ
Þ ¼ 5|{z}

ðdÞ
�ð 0|{z}

ðeÞ
þ 0|{z}

ðfÞ
þ 1|{z}
ðgÞ
Þ ¼ 5
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To illustrate case 6, consider Fig. 2. It shows the execution of three jobs N ¼ f2; 1; 3g
on a single machine i ¼ 1 in operating mode l ¼ 1 during day t ¼ 1 of the planning
horizon. Let also the start of the on-peak hours (startp1) equal to 18; the end of the on-peak
hours (endp1) equal to 21; the multiplication factor of power (�l) equal to 1; the energy
consumption of machines at normal operation (p1) equal to 100; the energy tariff in
the on-peak hours (ETon) equal to 0.10 $=KWh and in the off-peak hours (EToff ) equal to
0:05 $=KWh; and the multiplication factor of speed equal to 1. Such as in the previous
example, we consider discretization in hours. This figure shows that job 1 is performed in
the on-peak hours and jobs 2 and 3, in turn, in the off-peak hours.

The contribution of the job 1 to the energy cost in the on-peak hours is 30, and the
contribution to the cost in the off-peak hours is 50.

Thus, calculating similarly to the previous example, we conclude that the total energy
cost for the schedule shown in Fig. 2 is 155.

WEIGHTED SUM METHOD
We used the weighted sum method (Marler & Arora, 2004) to solve the multi-objective
optimization problem addressed using a mathematical programming solver. This method
converts the multi-objective problem into a single objective problem using the weighted
sum of the objectives.

For this, consider Eq. (15):

min zðXÞ ¼ a� Cmax

jHj
� 	

þ ð1� aÞ � TEC
Costmax

� 	� �
(15)

where:
• a: real number in range [0, 1];
• jHj: represents the cardinality of the set H;
• Costmax: is the estimate for the maximum energy cost used to normalize the total

energy cost. It is calculated using a heuristic, as shown in “Initial Population”;
The problem constraints are those defined by Eqs. (3)–(12).
Algorithm 1 describes all the steps of the weighted sum method implemented.
Algorithm 1 receives as input: the set D with the values for a and the time limit. In line,

we initialize the non-dominated set (NDS) as empty. Then, we execute the loop defined
between lines 2–7 for each value a. In line 3, we obtain the result from the execution of
the model. Then, we get the Makespan and TEC values resulting from the model
execution. Then, in line 6, we add the solution obtained to the NDS. Finally, in line 8, the
method returns the generated non-dominated set.

Figure 2 Schedule example for case 6. Full-size DOI: 10.7717/peerj-cs.844/fig-2
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In the weighted sum method, the decision-maker must define a weight for each
objective function. The value of this weight reflects the relative importance of each
objective in the overall solution. We adopted several combinations of weights to find the
most significant number of optimal Pareto solutions to the problem addressed.

We used the following parameters for Algorithm 1:
• The set D ¼ f0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1g with the possible values for a;
• The time limit for each execution of the mathematical model, defined as time_limit

¼ 800� n� lnðmÞ sec for each a value, where m is the number of machines and n is
the number of jobs;

• sizeD ¼ 144: to discretize the day at intervals of 10 min each.

PROPOSED NSGA-II
The problem addressed belongs to the NP-hard class because it is a generalization of the
identical parallel machine scheduling problem, which is NP-hard (Garey & Johnson, 1979).
For this reason, we used the NSGA-II multi-objective algorithm (Deb et al., 2002) to
address the problem since there are in literature many reports of successful use of this
algorithm (Deb, UdayaBhaskaraRao & Karthik, 2007; Liu et al., 2014; Wang et al., 2017;
Babazadeh et al., 2018). This algorithm is an alternative to the exact method described in
the previous section to find an approximation of the Pareto-optimal front in large
instances in an adequate computational time for decision-making.

Algorithm 2 describes how the implemented NSGA-II works.
Algorithm 2 receives the following input parameters: the population size (sizepop), the

probability of mutation (probmut), and the stopping_criterion. In line 2, we created an
initial population P0. Then, in the main loop (lines 4–25), we combine the parent Pt and
offspring populationQt to generate a new populationRt (line 5). In line 6, we apply the fast
non-dominated sorting method to divide the population Rt into non-dominated sets,
called fronts, F 1;F 2; . . . ;F k. A front F i dominates another F j, if and only if, i < j and
Rt ¼ F 1 [ F 2 . . .F k. In lines 9–13, we select the best frontiers of F to include in the
population Pt+1. We repeat this procedure as long as it is possible to include a new frontier
in Pt+1 without exceeding the population size. Then we check the size of the population

Algorithm 1 Weighted sum method.

input: D ¼ fa1; a2; � � � ; ang, time_limit

1 NDS  �;
2 foreach ai 2 D do

3 model_result )RunWeightedSumModel(ai, time_limit);

4 s.Makespan)GetMakespan(model_result);

5 s.TEC)GetTEC(model_result);

6 NDS)AddSolution(s);

7 end

8 return NDS ;
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obtained. If it is not exactly sizepop, then we order the next frontier i of F that has not yet
been included in Pt+1, according to the crowding distance, and we select the sizepop - |Pt+1|
first to fill all spaces of the population Pt+1. In lines 22 and 23, we apply the crossover and
mutation operators in Pt+1 to generate the population Qt+1.

The following subsections describe how an initial population is generated and the
crossover and mutation operators, respectively.

Initial population
The initial population of the NSGA-II contains sizepop individuals. Two of them are
constructed through a greedy strategy, one of which considers only the objective of

Algorithm 2 NSGA-II.

input :sizepop, probmut, stopping_criterion

1 P0 )Generate initial population of sizepop individuals ;

2 Q0 ) �;
3 t )0 ;

4 while stopping_criterion not satisfied do

5 Rt )Pt ∪Qt ;

6 F )Fast non-dominated sorting(Rt ) ;

7 Pt+1 ) � ;

8 i)1 ;

9 while |Pt+1|+|Fi| ≤ sizepop do

10 Compute Crowding Distance of Fi ;

11 Pt+1 )Pt+1 ∪Fi;

12 i)i+1 ;

13 end

14 if |Pt+1| < sizepop then

15 Sort (Fi, ≺n);

16 j = 1 ;

17 while |Pt+1| < sizepop do

18 Pt+1 )Pt+1 ∪ Fi[ j] ;

19 j) j+1 ;

20 end

21 end

22 Qt+1 )Crossover(Pt+1) ;

23 Qt+1 )Qt+1 ∪ Mutation(Pt+1, probmut ) ;

24 t )t +1 ;

25 end

26 NDS)non-dominated solutions of Pt ;

27 return NDS ;
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minimizing the makespan. In this case, we always choose the operation mode related to the
highest speed factor. The other individual considers only the total energy cost. In this case,
we choose the operation mode related to the lowest consumption factor. The other
individuals (sizepop-2) of the initial population are randomly generated.

Algorithm 3 describes the greedy strategy for generating an individual to the initial
population.

Algorithm 3 starts with an empty initial individual (line 1). The loop between lines 2
and 7 allocates each job n on the machines. Therefore, first, we randomly select a job j,
which has not yet been allocated (line 3). Then, we identified in the best machine ibest of
the individual s and the best position pos to insert the job j (line 5). In this case, we
consider only one of the objectives of the problem: minimize the makespan or the total
energy cost. Then, we allocate job j in position pos of machine ibest in individual s (line 6).
At the end of this procedure, we return a valid individual s (line 8).

Crossover
We used the binary tournament selection method to choose each pair of individuals for the
crossover operator. We run two tournaments with two individuals each and select the
winner of each tournament for the crossover. In our approach, the dominant individual
wins the tournament. If both individuals are non-dominated, then we randomly choose an
objective and use it to define the winner of the tournament.

Figure 3 illustrates the crossover between two individuals.
After selecting two individuals named parent 1 and parent 2, respectively, we applied

the crossover operator to generate new individuals. We adopted the One Point Order
Crossover operator from Vallada & Ruiz (2011) adapted to the parallel machine problem.
We describe its operation below:

1. We define, at random, the crossover points of each machine, as shown in Fig. 3A;

2. We generate two offspring. The first receives the genes to the left of the crossover point
defined on each machine of parent 1. The second receives the genes to the right, as
shown in Fig. 3B;

Algorithm 3 Greedy constructive heuristic.

input: N,n,m,obj

1 s) �;
2 for i = 1 to n do

3 j)random job ∈ N;

4 N)N\ { j};

5 (ibest,pos))GreedyChoice(s, j, obj);

6 s)Insert(s, j, ibest,pos);

7 end

8 return s ;
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3. We mark in parent 2 the genes present in each offspring, as shown in Fig. 3C;

4. We add the unmarked genes of parent 2 to offspring 1 and 2. We add these genes in
the position that results in the lowest value for the objective function, whereas this
problem has two objective functions, so we randomly select one at each crossover. In the
end, we will have two new individuals, as shown in Fig. 3D.

We repeat this procedure until to generate sizepop new individuals.

Mutation
We implemented three mutation operators (Swap, Insert, and Swap of operation mode),
described below. These operators maintain the population’s genetic diversity and reduce
the chances that the algorithm getting stuck at a local optimum.

Swap

The swap operator works by randomly choosing a job j1, initially allocated in position a on
machine i1 and another job j2 allocated in position b of machine i2. Then, we allocate job j1
in position b of machine i2, and we allocate job j2 in position a of machine i1.

Figure 4 illustrates the swap between two jobs j1 and j2. They are initially allocated on
machines i1 and i2, respectively. After swapping, we allocate job j2 on machine i1 and job j1
on machine i2.

Insertion
The insertion operator consists of randomly choosing a job j1 allocated at position a of
machine i1 and randomly choosing position b of another machine i2. Then job j1 is
removed from machine i1 and inserted into position b on the machine i2.

Figure 5 illustrates this move. The left side shows the scheduling before, and the right
side shows it after the insertion move.

Mode change
In the operation mode change operator, we randomly select a job and change its operation
mode at random.

Figure 6 illustrates the application of this operator to the scheduling of offspring 1 of
Fig. 3D, which involves 12 jobs. As can be seen, job 8, which is in the sixth position of
machine 2, has operation mode 3. After the application of this operator, the job changes to
operation mode 1.

The NSGA-II algorithm implemented performs a mutation with a probability equal to
probmut .

COMPUTATIONAL EXPERIMENTS
We coded the NSGA-II algorithm in the C++ language and implemented the
mathematical model with the Gurobi 7.0.2 API ( Gurobi Optimization, 2020). We
performed the tests on a microcomputer with the following configurations: Intel (R) Core
(TM) i7-4510U processor with a frequency of 2 GHz, 16 GB of RAM, and 64-bits Ubuntu
19.10 operating system.
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Figure 3 Crossover adapted from Vallada & Ruiz (2011).
Full-size DOI: 10.7717/peerj-cs.844/fig-3

Figure 4 Swap move between jobs j1 and j2. Full-size DOI: 10.7717/peerj-cs.844/fig-4
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Furthermore, we compared the performance of the NSGA-II algorithm with two
basic multi-objective algorithms: MOGA of Murata & Ishibuchi (1995) and NSGA-I of
Srinivas & Deb (1994). These algorithms use the same NSGA-II crossover and mutation
operators described in “Crossover” and “Mutation” and the same stopping criterion.

This section is organized as follows. “Instances Generation” and “Metric description”
describe the instances and the metrics used to assess the quality of the set of non-
dominated solutions generated by the algorithms. “Tuning of Algorithms’ Parameters”
shows the parameter calibration of the algorithms. “Results” reports the results.

Instances generation
Since, as far as we know, there is no set of instances in the literature for the problem
addressed, we adapted two instance sets from the literature that deal with similar problems.
The first one, called set1, is a subset of the small instances of Cota et al. (2018) satisfying the
triangular inequality, in which we add information about the energy price on-peak and
off-peak hours. The second set, named set2, is also a subset of the large instances of Cota
et al. (2018), in which we included instances of 750 jobs. Table 4 shows the characteristics
of these sets of instances, which are are available in Rego, Cota & Souza (2021).

Metric description
The quality of the set of non-dominated solutions found by a method can be analyzed
under three aspects: convergence, extension, and distribution. Convergence refers to the
proximity of this set to the Pareto-optimal front or to the reference set. In turn, the
extension assesses the breadth of the region covered by this set of non-dominated

Figure 5 Insertion move of job j1 on machine i2. Full-size DOI: 10.7717/peerj-cs.844/fig-5

Figure 6 Example of the mode change operator. Full-size DOI: 10.7717/peerj-cs.844/fig-6
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solutions. Finally, the distribution refers to the uniformity of the spacing between the
solutions within the set.

The hypervolume metric is sensitive for convergence and extension and the HCC
metric, in turn, is sensitive for distribution and extension.

Hypervolume
The hypervolume or S metric is a measure of quality often used to compare results
from multi-objective algorithms and it was proposed by Zitzler & Thiele (1998). This
metric has the ability to provide a combined estimate of convergence and diversity of a set
of solutions (Deb, 2014). The hypervolume of a non-dominated set measures the area
covered or dominated by this set’s points, limited by a Reference Point (RP). In
maximization problems, it is common to use the point (0; 0), while in minimization
problems, an upper bound, also known as the Nadir point, is used to limit this area. In
Fig. 7, the shaded area defines the hypervolume of the set of non-dominated solutions A
for a problem with two objective functions, in which the point ðmaxx;maxyÞ defines
the upper limit. We denote by HVðAÞ the hypervolume of a set of non-dominated
solutions A relative to a reference point (Deb, 2014).

HCC
Hierarchical cluster counting (HCC) is a metric proposed by Guimaraes, Wanner &
Takahashi (2009) to evaluate the quality of non-dominated sets that were obtained by

Table 4 Instance characteristics.

Parameter set1 set2 Based on

n 6, 7, 8, 9, 10 50, 250, 750 Vallada & Ruiz (2011); Cota et al. (2018)

m 2 10, 20 Vallada & Ruiz (2011); Cota et al. (2018)

o 3 5 Mansouri, Aktas & Besikci (2016); Ahilan et al. (2013); Cota et al. (2018)

Pij U½1; 99� U ½1; 99� Vallada & Ruiz (2011); Cota et al. (2018)

Sijk U½1; 9� U ½1; 9�, U½1; 124� Vallada & Ruiz (2011); Cota et al. (2018)

pi U½40; 200� U ½40; 200� Cota et al. (2018)

Vl 1.2, 1, 0.8 1.2, 1.1, 1, 0.9, 0.8 Mansouri, Aktas & Besikci (2016); Ahilan et al. (2013); Cota et al. (2018)

kl 1.5, 1, 0.6 1.5, 1.25, 1, 0.8, 0.6 Mansouri, Aktas & Besikci (2016); Ahilan et al. (2013); Cota et al. (2018)

Figure 7 Hypervolume for set A. Full-size DOI: 10.7717/peerj-cs.844/fig-7
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multi-objective optimization algorithms. It is based on hierarchical clustering techniques,
such as the Sphere Counting (SC) (Wanner et al., 2006) metric. According to Guimaraes,
Wanner & Takahashi (2009), the extent and uniformity of a non-dominated set is
directly proportional to the HCC value calculated for it.

We calculate the HCC for a set of points A as follows:

1. Initially, we create a grouping for each point in the set, and consider that each group
created is a sphere of radius equal to zero;

2. Then, we calculate the minimum distances of fusion, which is a new assumed value for
the radius of the spheres capable of decreasing the number of clusters;

3. We group the points into the same cluster;

4. We repeat steps 2 and 3 until all the points belong to the same grouping;

5. We obtain the HCC value by adding, in each iteration, the product between the
distances of fusion and the amount of grouping formed.

Consider Fig. 8, which illustrates the steps to calculate the HCC for a six-point non-
dominated set. Figure 8A shows the first cluster in which each point is in a different sphere
with radius zero. Figure 8B shows the points grouped into five spheres, each with radius r1.

Figure 8 Example of how to calculate the HCC metric (Guimaraes, Wanner & Takahashi, 2009).
Full-size DOI: 10.7717/peerj-cs.844/fig-8
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Figure 8C shows the points grouped into four spheres, each with radius r2. Figure 8D
shows, in the Cartesian plane, the relationship between the number of clusters and the the
radius of each cluster. The gray region area represents the value of the HCC metric for the
set shown in Fig. 8.

Tuning of algorithms’ parameters
The parameter values used in the NSGA-II, MOGA, and NSGA-I algorithms can affect its
performance. Therefore, we use the Irace package (López-Ibáñez et al., 2016) to find the
best values for these parameters. Irace is a software encoded in the R language that
automatically performs an iterative procedure to find the most appropriate optimization
algorithm settings.

Table 5 shows the test scenarios used. In the first column, we present the description of
each NSGA-II parameter; in the second column, the set of values tested for each parameter,
and in the third column, the best value returned by Irace.

Results
In this section, we presented the results of two experiments used to evaluate the NSGA-II
algorithm’s performance. First, we compare the NSGA-II results with those of the
weighted sum method in instances with up to 10 jobs and two machines. Then, we
compared the performance of the NSGA-II algorithm with that of the MOGA and NSGA-I
algorithms in larger instances, with up to 750 jobs and 20 machines. In both cases, we
executed the algorithms 30 times in each instance.

We used the Relative Percentage Deviation (RPDHV
i ) to evaluate the HV metric for each

method Alg and instance i. It is calculated by Eq. (16):

RPDHV
i ðAlgÞ ¼

HVRS
i � HVv

i

HVRS
i

; (16)

whereHVRS
i is the hypervolume value of the reference set in 30 executions of the algorithm

Alg in the instance i. v can assume three values: min, max and avg, representing,
respectively, the smallest, the largest, and the average of the hypervolume in 30 executions
of the algorithm in the instance i.

Table 5 Test scenarios for algorithms’ parameters.

Method Description Tested values Irace best value

NSGA-II Population size (sizepop) 80, 90, 100, 110 110

Probability of mutation 0.04, 0.05, 0.06, 0.07 0:05

MOGA Population size (sizepop) 80, 90, 100, 110 80

Probability of mutation 0.04, 0.05, 0.06, 0.07 0:06

NSGA-I Population size (sizepop) 80, 90, 100, 110 80

Probability of mutation 0.04, 0.05, 0.06, 0.07 0:06
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NSGA-II � Gurobi
In this section, we reported the results of the NSGA-II algorithm and the exact method in
the set of instances set1.

Table 6 shows the reference set data for these instances. In this table, the first two
columns show the instance identifier and name, respectively. The next two columns
show the number of jobs and machines, respectively. The fifth column presents the
hypervolume of this reference set. Finally, the last column presents the reference point
(Cmax; TEC) used to calculate the hypervolume of each instance.

Tables 7 and 8 show the method results concerning the RPDHV and the HCCmetrics. In
these tables, the first column identifies the instance. The next three columns show the
minimum, maximum and average values of the RPDHV and HCC, respectively, concerning
the NSGA-II method. The fifth column shows the standard deviation of the results.
The seventh column shows the upper bound (UB) returned by the exact method

Table 6 Reference set data in the set1.

# ID # Instance n m HV RP

1 6_2_1439_3_S_1-9 6 2 6,406.67 (250; 239.91)

2 7_2_1439_3_S_1-9 7 2 15,918.87 (400; 260.68)

3 8_2_1439_3_S_1-9 8 2 3,338.29 (260; 302.58)

4 9_2_1439_3_S_1-9 9 2 22,256.33 (440; 357.69)

5 10_2_1439_3_S_1-9 10 2 31,789.09 (500; 370.68)

Table 7 RPDHV and runtime of the methods in the set1.

NSGA-II Gurobi

# ID min max avg sd time (s) UB time (s)
(%) (%) (%) (%)

1 0.00 0.00 0.00 0.00 4.16 1.89 172.09

2 0.68 0.68 0.68 0.00 4.85 1.12 549.86

3 0.00 0.00 0.00 0.00 5.54 0.34 2,140.40

4 0.00 0.75 0.62 0.28 6.24 5.12 8,312.92

5 0.66 0.89 0.66 0.04 6.93 1.51 39,396.63

Table 8 HCC and runtime of the methods in the set1.

# ID NSGA-II Gurobi

min max avg sd time (s) UB time (s)

1 305.16 305.16 305.16 0.00 4.16 253.78 172.09

2 75.87 75.87 75.87 0.00 4.85 43.52 549.86

3 356.33 356.33 356.33 0.00 5.54 215.71 2,140.40

4 70.63 80.64 78.97 12.80 6.24 6.56 8,312.92

5 84.98 87.79 87.70 2.05 6.93 77.15 39,393.63
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concerning the RPDHV and HCC metrics. Finally, the sixth and eighth columns show the
times, in seconds, of the NSGA-II and the exact method, respectively.

We can see in Table 6 that in the set of instances set1, the RPDHV of the NSGA-II
algorithm is lower in all comparisons (min, max e avg) compared to the exact method. We
can also verify that the standard deviation of the NSGA-II algorithm in instances with up
to 8 jobs (ID 1, 2, 3) is equal to zero. In other words, in these instances, all NSGA-II
executions obtained the same set non-dominated. We also can note that the execution time
of the NSGA-II is much less than that of the exact algorithm.

Concerning Table 8, we noted that the NSGA-II algorithm has a higher HCC value than
the exact method in all comparisons. Thus, we can conclude that the non-dominated set of
the NSGA-II method has better diversity and uniformity.

Figure 9 presents the non-dominated sets obtained by an NSGA-II execution and the
other using the exact method in two randomly selected instances. The first instance has
six jobs and two machines, and the second has 10 jobs and two machines. In this figure,
the blue dots represent the solutions of the NSGA-II, and the red dots represent the
solutions of the exact method. The x axis represents the makespan, and the y axis
represents the total energy cost.

We can notice in Fig. 9A that the NSGA-II non-dominated set contains all the solutions
found by the exact method, plus two additional solutions. In this example, the two
methods have the same amplitude, and the NSGA-II was able to find a set of solutions with
higher cardinality. On the other hand, Fig. 9B shows that the non-dominated set contains
six of the eight solutions found by the exact method and eight other solutions. In this
example, the exact method showed better amplitude than the NSGA-II, but this obtained
higher cardinality than the exact method.

Considering these results, we observed that the NSGA-II finds good quality solutions
and requires less computational time than the exact method.

NSGA-II in large instances compared with other literature algorithms
Here, we presented the results of the NSGA-II, MOGA, and NSGA-I algorithms in the set
of instances set2.

Table 9 shows the reference set data for the instances of set2. Its organization follows the
same description as the previous section’s tables.

Figure 9 Frontiers found by NSGA-II and Gurobi methods.
Full-size DOI: 10.7717/peerj-cs.844/fig-9

Rego et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.844 20/29

http://dx.doi.org/10.7717/peerj-cs.844/fig-9
http://dx.doi.org/10.7717/peerj-cs.844
https://peerj.com/computer-science/


Tables 10 and 11 report the RPDHV and HCC values, respectively, of the algorithms in
the set of instances set2. As can be seen, NSGA-II achieved the best average results
regarding hypervolume in all instances. On the other hand, it won in 2/3 of the instances
concerning the HCC. These results indicate that the NSGA-II algorithm outperforms
MOGA and NSGA-I algorithms concerning these metrics.

Figures 10A and 10B illustrate the Pareto front obtained from each algorithm in two
different instances. The first instance has 50 jobs and 20 machines, and the second has 750
jobs and 10 machines. As can be seen, the NSGA-II produced sets of non-dominated

Table 9 Reference set data in the set2.

# ID # Instance n m HV RP

1 50_10_1439_5_S_1-9 50 10 56,872 (280; 452.653)

2 50_10_1439_5_S_1-124 50 10 181,673 (456; 909.559)

3 50_20_1439_5_S_1-9 50 20 15,933 (114; 323.339)

4 50_20_1439_5_S_1-124 50 20 151,884 (392; 642.568)

5 250_10_1439_5_S_1-9 250 10 1,488,058 (1,457; 2,245.16)

6 250_10_1439_5_S_1-124 250 10 6,986,225 (4,374; 2,930.02)

7 250_20_1439_5_S_1-9 250 20 526,773 (420; 2,570.86)

8 250_20_1439_5_S_1-124 250 20 1,383,849 (988; 3,179.8)

9 750_10_1439_5_S_1-9 750 10 7,678,168 (3,665; 5,630.8)

10 750_10_1439_5_S_1-124 750 10 105,897,123 (19,400; 9,442.33)

11 750_20_1439_5_S_1-9 750 20 3,791,005 (1,364; 5,573.7)

12 750_20_1439_5_S_1-124 750 20 34,971,819 (7,740; 7,065.71)

Table 10 RPDHV and runtime of the algorithms in the set2.

# ID MOGA NSGA-I NSGA-II

min (%) max (%) avg (%) sd min (%) max (%) avg (%) sd min (%) max (%) avg (%) sd time (s)

1 0.08 0.28 0.19 0.06 0.04 0.18 0.10 0.03 0.01 0.18 0.10 0.03 115.13

2 0.03 0.20 0.12 0.04 0.05 0.20 0.11 0.04 0.03 0.20 0.10 0.04 115.13

3 0.04 0.27 0.15 0.06 0.07 0.25 0.15 0.05 0.05 0.21 0.12 0.05 149.79

4 0.04 0.16 0.11 0.03 0.02 0.16 0.10 0.03 0.02 0.17 0.09 0.03 149.79

5 0.22 0.27 0.24 0.02 0.02 0.09 0.06 0.02 0.01 0.04 0.03 0.01 575.65

6 0.01 0.11 0.06 0.03 0.01 0.04 0.02 0.01 0.01 0.03 0.02 0.01 575.65

7 0.13 0.36 0.24 0.06 0.05 0.14 0.10 0.02 0.01 0.08 0.05 0.02 748.93

8 0.03 0.11 0.07 0.02 0.04 0.12 0.08 0.02 0.04 0.12 0.07 0.02 748.93

9 0.21 0.33 0.24 0.03 0.02 0.06 0.04 0.01 0.01 0.02 0.01 0.00 1,726.94

10 0.10 0.15 0.13 0.01 0.01 0.03 0.02 0.00 0.01 0.02 0.01 0.00 1,727.94

11 0.13 0.21 0.17 0.02 0.05 0.17 0.10 0.03 0.01 0.05 0.02 0.01 2,246.80

12 0.04 0.07 0.06 0.01 0.01 0.02 0.02 0.00 0.00 0.02 0.01 0.00 2,246.80

Note:
The best average values are highlighted in bold.
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solutions with good convergence, diversity, uniformity, and amplitude when compared
with others algorithms.

Figures 11 and 12 show the boxplot of the RPD and HCC results, respectively.
To verify if the differences between the results presented by the algorithms are

statistically significant, we performed the hypothesis tests below.�
H0 : l1 ¼ l2 ¼ l3
H1 : 9i; j j li 6¼ lj

In the first test, l1, l2, and l3 represent the average RPD
HV for NSGA-II, MOGA, and

NSGA-I, respectively. In the second test, l1, l2, and l3 represent the average HCC for the
algorithms in the same sequence.

Table 11 HCC and runtime of the algorithms in the set2.

# ID MOGA NSGA-I NSGA-II Time (s)

min max avg sd min max avg sd min max avg sd

1 555.75 835.13 701.86 89.97 1,181.10 1,654.00 1,422.89 129.12 1,253.90 1,715.60 1,446.94 128.44 115.13

2 846.86 2,116.50 1,503.49 278.61 1,234.80 2,466.60 1,844.78 343.75 1,063.80 2,224.00 1,653.94 323.72 115.13

3 171.46 639.33 401.74 97.33 210.11 2,466.60 397.67 106.53 279.32 659.35 431.34 89.45 149.79

4 1,343.70 2,357.30 1,838.98 271.90 1,251.30 573.29 1,885.60 240.14 1,325.60 2,530.40 1,861.56 276.50 149.79

5 713.06 1,217.10 937.12 105.39 6,684.20 573.29 8,270.10 788.31 8,268.30 10,702.62 9,187.19 535.43 575.65

6 1,483.80 10,998.41 5,175.87 2,765.31 9,301.70 2,402.80 10,844.27 1,222.07 9,866.60 12,470.58 11,042.90 669.22 575.65

7 448.98 1,231.10 762.16 226.50 1,726.60 2,402.80 3,429.42 903.29 1,878.40 4,193.80 2,556.17 514.60 748.93

8 6,488.40 9,807.20 8,451.12 954.44 6,942.00 9,516.80 8,739.29 864.36 7,360.40 10,702.12 8,790.46 872.03 748.93

9 1,441.00 2,348.90 1,796.00 220.21 17,117.09 9,516.80 19,413.19 946.57 20,218.49 23,418.80 21,967.44 858.86 1,726.94

10 9,766.60 26,604.74 18,781.83 3,936.60 50,872.40 14,703.88 61,504.40 9,730.96 53,824.74 75,091.86 60,472.87 6,184.92 1,726.94

11 900.31 1,775.60 1,386.85 199.20 8,076.50 14,703.88 11,851.43 1,450.16 10,215.91 15,284.62 12,925.00 1,473.66 2,246.80

12 6,576.30 14,153.94 10,179.42 2,092.55 25,197.32 5,275.80 29,611.39 3,419.31 26,060.88 33,175.70 29,703.90 1,663.63 2,246.80

Note:
The best average values are highlighted in bold.

Figure 10 The Pareto front obtained from each algorithm.
Full-size DOI: 10.7717/peerj-cs.835/fig-10
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Figure 11 Boxplot of the RPDHV results. Full-size DOI: 10.7717/peerj-cs.844/fig-11

Figure 12 Boxplot of the HCC results. Full-size DOI: 10.7717/peerj-cs.844/fig-12
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Before performing the hypothesis tests, we need to choose the test type, parametric or
non-parametric. Generally, parametric tests are more powerful; however, to use them, it is
necessary to satisfy three assumptions:

1. Normality: every sample must originate from a population with normal distribution,

2. Independence: the samples must be independent of each other,

3. Homoscedasticity: there must be equality of variances across samples.

We applied the Shapiro-Wilk normality test to the samples with the RPDHV and HCC
values from each algorithm and showed its results in Table 12.

With confidence level of 95% (a ¼ 0:05), we can say that the results presented in
Table 12 not present evidence that the results of the algorithms come from a population
with normal distribution.

Thus, we applied the paired Wilcoxon signed-rank non-parametric test (Wilcoxon,
1945). Table 13 reports the results of this test obtained by the NSGA-II, MOGA, and
NSGA-I algorithms for the samples of the RPDHV and HCC values.

According to Table 13, there are significant statistical difference between each pair of
algorithms. Thus, these tests confirm the results in Tables 10 and 11, indicating that
NSGA-II outperforms both MOGA and NSGA-I.

CONCLUSIONS
This paper addressed the unrelated parallel machine scheduling problem with sequence-
dependent setup times for minimizing the total energy cost and the makespan.

To solve it, we developed a mixed-integer linear programming formulation and applied
the weighted sum method to generate sets of non-dominated solutions to the problem.
Considering that this formulation could not solve larger instances of the problem, we
adapted the NSGA-II algorithm to deal with them.

To test the two solution methods, we adapted instances of the literature to contemplate
all the problem’s characteristics. We divided these instances into two groups. The first

Table 12 p-values of the Shapiro-Wilk normality test concerning RPDHV and HCC values.

Algorithm RPDHV HCC

MOGA 0.0072 2.2e−16

NSGA-I 0.0002 2.2e−16

NSGA-II 2.289e−06 2.2e−16

Table 13 p-values of the paired Wilcoxon signed-rank test concerning RPDHV and HCC values
(a ¼ 0:05).

Comparison RPDHV HCC

MOGA vs NSGA-I 8.0e−08 2e−16

MOGA vs NSGA-II 7.8e−10 2e−16

NSGA-I vs NSGA-II 1.8e−08 0.0001
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group consists of small instances with up to 10 jobs and 2 machines, while the second
group contains large instances, with up to 750 jobs and 20 machines. We evaluated the
methods concerning the hypervolume and HCC metrics.

Initially, we used part of the set of instances to tuning the parameter values of the
NSGA-II algorithm. To this end, we used the Irace package.

We validated the NSGA-II algorithm in small instances, comparing its results with
those produced by the exact method. The NSGA-II algorithm showed good convergence
and diversity. Besides, it spent much shorter CPU time than that required by the exact
method.

In large instances, the results showed that the NSGA-II outperforms, with 95%
confidence level, MOGA and NSGA-I algorithms concerning the hypervolume and HCC
metrics. Thus, the proposed algorithm finds non-dominated solutions with good
convergence, diversity, uniformity, and amplitude.

As future work, we suggest testing other crossover and mutation operators for the
NSGA-II. Besides, we intend to implement other multi-objective algorithms, such as
Strength Pareto Evolutionary Algorithm 2 (SPEA2), Niched Pareto Genetic Algorithm
(NPGA), Pareto Envelope-based Selection Algorithm II (PESA-II), Multi-objective
Variable Neighborhood Search (MOVNS), and Multi-objective Evolutionary Algorithm
Based on Decomposition (MOEA/D).
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