
Submitted 15 September 2021
Accepted 14 December 2021
Published 3 January 2022

Corresponding author
HyunJin Kim,
hyunjin2.kim@gmail.com

Academic editor
Yilun Shang

Additional Information and
Declarations can be found on
page 22

DOI 10.7717/peerj-cs.842

Copyright
2022 Shin and Kim

Distributed under
Creative Commons CC-BY 4.0

OPEN ACCESS

PresB-Net: parametric binarized neural
network with learnable activations and
shuffled grouped convolution
Jungwoo Shin and HyunJin Kim
School of Electronics and Electrical Engineering, Dankook University, Yongin, South Korea

ABSTRACT
In this study, we present a novel performance-enhancing binarized neural network
model called PresB-Net: Parametric Binarized Neural Network. A binarized neural
network (BNN) model can achieve fast output computation with low hardware costs
by using binarized weights and features. However, performance degradation is themost
critical problem in BNNmodels. Our PresB-Net combines several state-of-the-art BNN
structures including the learnable activation with additional trainable parameters and
shuffled grouped convolution. Notably, we propose a new normalization approach,
which reduces the imbalance between the shuffled groups occurring in shuffled
grouped convolutions. Besides, the proposed normalization approach helps gradient
convergence so that the unstableness of the learning can be amortized when applying
the learnable activation. Our novel BNNmodel enhances the classification performance
compared with other existing BNN models. Notably, the proposed PresB-Net-18
achieves 73.84% Top-1 inference accuracy for the CIFAR-100 dataset, outperforming
other existing counterparts.

Subjects Algorithms and Analysis of Algorithms, Artificial Intelligence, Computer Vision, Data
Mining and Machine Learning
Keywords Binarized neural network, Computer vision, Convolutional neural network, Machine
learning, Residual neural network

INTRODUCTION
Developments of neural networks lead us to provide solutions in many areas. The image
classification has been advanced with the advent of convolutional neural networks (CNNs)
such as LeNet-5 (LeCun et al., 1998), AlexNet (Krizhevsky, Sutskever & Hinton, 2012),
VggNet (Simonyan & Zisserman, 2014), GoogLeNet (Szegedy et al., 2015), ResNet (He et
al., 2016), DenseNet (Huang et al., 2017), etc. Their remarkable successes have increased
demands for implementing CNNs on lightweight devices with limited resources (Phan et
al., 2020; Sandler et al., 2018). However, CNNs require large computational and storage
resources, which has been a major obstacle to lightweight implementations. A CNNmodel
in Courbariaux et al. (2016) binarizes its weights. BNN models (Courbariaux et al., 2016;
Rastegari et al., 2016) approximate real-value computations via binarized quantizations
of both activations and weights, thus significantly reducing computational and storage
resource usages. The binarized filter weights and activations in BNN models allow
convolutions to be performed via bitwise XNOR and bit-counting operations. Therefore,

How to cite this article Shin J, Kim HJ. 2022. PresB-Net: parametric binarized neural network with learnable activations and shuffled
grouped convolution. PeerJ Comput. Sci. 8:e842 http://doi.org/10.7717/peerj-cs.842

https://peerj.com/computer-science
mailto:hyunjin2.kim@gmail.com
mailto:hyunjin2.kim@gmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.842
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.842


BNN models can achieve tremendous resource savings compared with real-valued CNN
models. Although there are significant benefits in terms of hardware costs and operating
speed by using BNN models, their low classification accuracies are the most critical issue
when applying the BNNmodels. Although memory usage and computational overhead are
dramatically reduced in BNNs, classification performance can be significantly degraded. For
example, the binarizedResNet-18 (Rastegari et al., 2016) has classification results lower than
that of real-valued ResNet-18 by 18.1%. Since then, various BNN models (Rastegari et al.,
2016; He et al., 2018; Lin, Zhao & Pan, 2017; Liu et al., 2018; Bulat & Tzimiropoulos, 2019;
Zhuang et al., 2019; Chakraborty et al., 2019; Bethge et al., 2019; Phan et al., 2020; Bethge
et al., 2020; Liu et al., 2020) have been proposed to overcome performance degradation
of BNN models. Recently, ReActNet (Liu et al., 2020), one of the latest existing studies,
has just lower than 3.0% of ResNet-18. Notably, Bi-Real-Net (Liu et al., 2018) shows that
the shortcut connection per each binarized convolutional layer and weight initialization
can help increase the classification accuracies of BNN models. Recently, ReActNet (Liu
et al., 2020) dramatically increases the classification accuracies of BNN models. Besides,
AresB-Net (Kim, 2021) adopts both shortcut addition and concatenation to increase
classification accuracy. However, there are still significant performance degradations
compared to real-valued counterparts.

For achieving higher classification accuracy, this paper proposes a novel BNN model
called PresB-Net using learnable activation in the shuffled grouped convolutions. Besides,
this proposed BNN model adopts a new normalization approach that applies batch
normalization globally after applying layer normalization for each group. The proposed
normalization approach can show better learning results by considering the association
of groups and eliminating distribution imbalances that can arise between groups within
a channel shuffle and grouped convolution. When applying a learnable activation that
consists of the ReLU (Rectified Linear Unit) activation function with trainable slope and
scaling parameters, it is difficult to provide convergence of gradients in the learning step
when more parameters are added. However, our new normalization approach helps the
gradient convergence. Our classification performance is improved by using additional
reverse parametric ReLUs (RPReLU) in Liu et al. (2020). In our experiments, the PresB-
Net model based on the ResNet-18 (He et al., 2016) results in the classification accuracy
of 73.84%, which achieves a performance improvement of 3.04% compared with the
ReActNet model (Liu et al., 2020).

RELATED WORKS
Binarized neural networks
As the complexity of neural networks becomes higher, memory requirements and
computing costs increase, posing a considerable burden on power-hungry systems. Highly
quantized CNN-based models significantly reduce the required storage size and hardware
costs. BNNmodels can achieve lightweightCNNsby quantizing eitherweights (Courbariaux
et al., 2016), activations (Hubara et al., 2016), or both (Rastegari et al., 2016) into into
{+1,−1} in inference step. Thus, the BNN models replace floating-point operations with

Shin and Kim (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.842 2/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.842


binarized ones, approximating a bundle of floating-point multiply-accumulate operations
into bitwise XNOR and bit counting operations. The XNOR-Net model in Rastegari et al.
(2016) achieves ≈ 32× storage saving and ≈ 58× computation speedup, thus proving that
the BNNs can be a realistic quantized CNN approach for power-hungry mobile systems.
Although BNN models can significantly reduce hardware costs and power consumption,
highly degraded classification accuracies limit their applications.

Several approaches presented training methods and neural network structures for
BNN models. Firstly, a training method for BNNs was introduced in Courbariaux, Bengio
& David (2015). The XNOR-Net (Rastegari et al., 2016) presented a BNN basic block
for generating binarized activations and scaled convolution outputs. The basic block in
the binarized CNN models showed the validity of this new BNN structure empirically.
However, their degraded accuracies seemed to be substantial compared with those from
real-valued models.

Until now, many works have focused on enhancing the performance of BNN models.
Several works proposed novel BNN structures to solve this problem of BNN models.
Notably, many state-of-the-art BNN models were based on residual networks using
so-called shortcuts. The binarized ResNet using the XNOR-Net scheme (Rastegari et
al., 2016) contained shortcuts per two binarized convolutional layers, like the original
ResNet model (He et al., 2016). In Liu et al. (2018), unlike the original ResNet model,
each binarized convolutional layer has a shortcut. The shortcuts increased resolutions
in each binarized convolutional layer, amortizing the error from binarizations in Liu et
al. (2018). Several BNN models were motivated by other successful CNN models. The
binarized depth-wise separable convolution in He et al. (2018) and Phan et al. (2020)
adopted grouped convolutions and increased the number of channels. In Bethge et al.
(2019) and Bethge et al. (2020), shortcuts were concatenated to expand channels motivated
from the DenseNet (Huang et al., 2017) model. In AresB-Net (Kim, 2021), the grouped
convolutions and shortcut concatenations were performed with shuffled channels. In Liu
et al. (2020) andWang et al. (2020a), the binary activation layers with a learnable shift were
proposed. After reviewing these existing works, we conclude that specific structures and
layers for BNN models help increase classification accuracies.

Several works considered training scheme and parameter optimization for BNN models
in Alizadeh et al. (2018), Zhu, Dong & Su (2019), Wang et al. (2019), Hubara et al. (2017),
Ghasemzadeh, Samragh & Koushanfar (2018), Gu et al. (2019a), Helwegen et al. (2019),
Ding et al. (2019),Martinez et al. (2020), Kim et al. (2021) and Chen et al. (2021). Although
these specific methods can increase the performance of BNN models, we focus on a new
BNN structure and do not consider specific training optimization schemes in this paper.

Shortcut and shuffled grouped convolution
In residual neural networks, convolutional layers are piled up, skip connections called
shortcuts make input features of a layer merged with the outputs of a convolutional layer.
The shortcut introduced in He et al. (2016) can bypass the block layer, so that it allows
CNNs to achieve fast training models. Besides, the shortcut provides ensemble-like effects
and reduces the vanishing gradient effect. This method in He et al. (2016) shows the

Shin and Kim (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.842 3/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.842


Figure 1 Group convolution and shuffle.
Full-size DOI: 10.7717/peerjcs.842/fig-1

skip connection by adding the skipped features to the convolutional output, so that the
number of channels is not increased. On the other hand, DenseNet (Huang et al., 2017)
concatenates skip connection to the convolutional output, thus increasing the number of
channels. Recently, AresB-Net (Kim, 2021) uses a mix of two skip connection methods,
expanding the number of channels without additional computational costs.

In a CNN model, channels mean feature maps that contain image information, so
that channels allow us to provide desired information from the model. As the number of
channels increases,more image information can be available in neural networks. BNNs have
a weak point in that weights and features are quantized into 0 or 1. ShuffleNet (Zhang et al.,
2018) uses grouped convolution and shuffles channels along with expanding channels. The
grouped convolution and shuffle process for two groups is illustrated in Fig. 1. In grouped
convolutions, channels are divided for each group to perform convolutions in each group
separately, which significantly reduces computational costs. When expanding channels,
grouped convolutions can provide more features without increasing computational costs.
However, if only a grouped convolution is applied, there is no interaction between groups
which weakens the representation of the information. The channel shuffle (Zhang et al.,
2018) can address this problem, mixing channels between groups. In the channel shuffle,
channels within each group are divided into subgroups, and subgroups from different
groups are gathered into a new group. A channel shuffle can mix channels between groups
so that features of all groups can be associated with each other in grouped convolutions.
This shuffled grouped convolutional network is called a shuffle network.

Learnable activation
ReActNet (Liu et al., 2020) presents a new approach called the reverse parametric rectified
linear unit activation function (RPReLU). RPReLU uses PReLU activation and learnable
biases together.

PReLU (He et al., 2015) activation function learns a slope parameter for negative values
and updates the parameter during training. The learnable parametric slope enables us

Shin and Kim (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.842 4/25

https://peerj.com
https://doi.org/10.7717/peerjcs.842/fig-1
http://dx.doi.org/10.7717/peerj-cs.842


Figure 2 Graphical representation of RPReLU (Liu et al., 2020).
Full-size DOI: 10.7717/peerjcs.842/fig-2

to proceed with more suitable activations. RPReLU adds learnable biases to the PReLU
activation. The learnable biases are located both before and after the PReLU activation.
Overall, the binarized convolutions in BNNs could shift their output distribution compared
with real-value counterparts because features are quantized into −1,1. It is known that
RPReLU amortizes the imbalanced distribution using additional learnable biases, thus
providing better classification performance.

RPReLU is formulated in Eq. (1), where i,xi denote the channel index and a feature
of ith channel, respectively. Besides, terms γi,ζi are learnable biases to make distribution
more balance. Eq. (1) is illustrated in Fig. 2. Term β denotes the learnable parametric slope
to control the negative part slope originated from PReLU.

f (xi)=

{
xi−γi+ζi if xi>γi
β(xi−γi)+ζi if xi≤ γi

}
. (1)

Batch normalization
Batch normalization (Ioffe & Szegedy, 2015) can stabilize the learning process and accelerate
the learning speed. A training set is divided into several subsets called mini-batches in
batch normalization. During training, the reason for the learning instability is due to the
rough optimization landscape (Santurkar et al., 2018). To address this, batch normalization
calculate the mean and variance from the mini-batch and normalizes features using them
for each channel. This normalization process makes the optimization landscape smoother,
achieving a more stable learning step (Santurkar et al., 2018).

The batch normalization process to normalize in a mini-batch is formulated in Eq. (2).
Terms γ and β denote trainable parameters. Term M denote the size of mini-batch B,
where µB and σ B denote the mean and variance of the mini-batch B. Features xi are
normalized based on µB and σ B. In Eq. (2), term x̂i denotes the normalized values by

Shin and Kim (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.842 5/25

https://peerj.com
https://doi.org/10.7717/peerjcs.842/fig-2
http://dx.doi.org/10.7717/peerj-cs.842


Figure 3 Illustration of adopted layer normalization.
Full-size DOI: 10.7717/peerjcs.842/fig-3

using µB, σ B. Term epsilon means a small value (e.g., 1e−5) that is used to to prevent the
divide-by-zero error. After scaling and biasing x̂i with γ and β, BNγ ,β(xi) is the output of
the batch normalization process.

B={x1,x2 ···xM }

µB
=

1
M

M∑
i=1

xi σ B
=

√√√√ 1
M

M∑
i=1

(xi−µB)2

x̂i=
xi−µB√
(σ B)2+ε

BNγ ,β(xi)≡ γ x̂i+β. (2)

Layer normalization
Layer normalization (Ba, Kiros & Hinton, 2016), unlike batch normalization, does not
depend on batches and normalizes features across channels. In the layer normalization
process, both mean and variance are computed across all channels and a spatial feature
dimension is shown in Fig. 3. In Fig. 3, feature maps are illustrated with H ,W as the
spatial axes, B as the batch axis, and C as the channel axis, respectively. A batch consists of
multiple images, which are used as input at a time during training. In layer normalization,

Shin and Kim (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.842 6/25

https://peerj.com
https://doi.org/10.7717/peerjcs.842/fig-3
http://dx.doi.org/10.7717/peerj-cs.842


the features of these entire channels are normalized for a single image so that the normalized
result for a single image does not depend on features of other images in a batch.

The formulation of the layer normalization process is shown in Eq. (3). Term H denote
the number of features along with the feature direction. Similar to batch normalization in
Eq. (2), µl and σ l denote the mean and variance of a layer. After calculating µl and σ l ,
features are normalized using µl and σ l . Term âi denotes the normalized value and adding
bias in âi is the output of the layer normalization process. After scaling and biasing âi with
γ and β, the layer normalization process outputs LNγ ,β(xi).

µl
=

1
H

H∑
i=1

ali σ l
=

√√√√ 1
H

H∑
i=1

(ali−µl)2

âi=
ai−µl√
(σ l)2+ε

LNγ ,β(ai)≡ γ âi+β (3)

PROPOSED BNN MODEL
The proposed BNN model applies a new normalization approach by using both batch
and layer normalization. For high classification accuracy, we take the state-of-the-art
BNN structures described in Kim (2021) and Liu et al. (2020). The proposed BNN model
expands channels by using grouped convolution and uses a shuffle network tomix channels
of different groups. Besides, the proposed model adopts the learnable bias and activation.
In this section, the proposed model structure and its adopted blocks are described in detail.
Besides, the normalization and training methods are explained.

Binarized convolution
In our BNN model, the binarized convolution can handle operations by binarized weights
and features. The binarized convolution performs its filtering using bitwise XNOR and
bit-counting operation, rather than real-valued multiplications and accumulations. Binary
activation can be performed using sign function. In Eq. (4), input x quantifies the values
to 0 and 1 based on the negative positive number.

x ∈ {I }, Sign(x)=

{
1 x ≥ 0
−1 x < 0

}
, (4)

Binarized convolutions can be shown in Eq. (5).

Sign(I )∈ {1,−1}Ci×w×h Sign(W )∈ {1,−1}Ci×Co×w×h

BConv(I ,W )= Sign(I )~Sign(W )�α. (5)

Superscripts Ci×w×h and Ci×Co×w×h are the number of vector dimensions. Term
α denotes the scaling factor for weights, which can be 1

Ci×w×h
in Rastegari et al. (2016).

Shin and Kim (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.842 7/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.842


Symbols ~ and � denote the binarized convolution using bitwise XNOR & bit-counting
operations, and element-wise scalar multiplication, respectively. In other words, each
weight is scaled by being multiplied with α. After binarizing weights, the multiplication
with the binarized activations is approximated using the bitwise XNOR operation. Terms
Ci and Co denote the numbers of input channels and output channels. Terms w and h
mean the width and height of a feature map. For an image classification, Sign(I ) outputs
(Ci×w×h)-dimensional binary value of −1 or 1. Term BConv(I ,W ) denotes binarized
convolution with binarized inputs and binarized weights.

Instead of conventional convolution, we use grouped convolution. Eq. (6) formulates
how the grouped binarized convolution works when the number of groups is two, where
the term GBConv denotes the grouped binarized convolution. After input I is quantized
into {1,−1}, it is divided into two groups I1 and I2 of the channels. After the grouping,
the binarized convolution is performed with each group. Each binarized convolution
adopt weightW1 andW2, respectively, which is also quantified to 1,−1. The two binarized
convolution results, BConv(I1,W1) and BConv(I2,W2), are concatenated for achieving the
final grouped binarized convolution result denoted as GBConv(I ,W ). Symbol⊕ indicates
the concatenation for producing the final result.

Sign(I1)∈ {1,−1}
Ci
2 ×w×h, Sign(I2)∈ {1,−1}

Ci
2 ×w×h

Sign(W1)∈ {1,−1}
Ci
2

Co
2 wh, Sign(W2)∈ {1,−1}

Ci
2

Co
2 wh

GBConv(I ,W )=BConv(I1,W1)⊕BConv(I2,W2) (6)

In the grouped binarized convolution, the number of parameters is 1
2×Ci×Co×w×h

while the conventional convolution has Ci×Co×w×h parameters. Therefore, with only
half the parameters, the grouped binarized convolution can reduce the required number of
parameters, which allows the computation of doubled input channels without additional
computational costs.

Proposed normalization approach
Activation is carried out after performing the grouped binarized convolution. The grouped
convolution makes the activation output have the imbalanced distribution and produces
rough optimization landscape (Santurkar et al., 2018). The imbalanced distribution and
rough optimization landscape make gradients hard to converge in the learning step. In a
typical CNN, normalization prevents this distribution imbalance and difficulty of gradient
convergence.

Our proposed new normalization technique overcomes the aforementioned difficulties
by making the optimization landscape smooth in the learning process and considering
the relationship between channels in grouped convolution. As described in our binarized
convolution, the output of the convolutional layers are divided intomultiple groups. Firstly,
our proposed approach performs layer normalization in a channel-wise manner. Layer
normalization proceeds the normalization of values over the entire channels, adjusting the
outputs of all group convolutions to the same scale. After finishing layer normalization,
batch normalization is performed on the values from the layer normalization layer. This

Shin and Kim (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.842 8/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.842


Figure 4 Proposed normalization.
Full-size DOI: 10.7717/peerjcs.842/fig-4

process is illustrated in Fig. 4, which illustrates H ,W as the spatial axes, B as the batch
axis, and C as the channel axis, respectively. The blue-colored part represents features to
be normalized.

All channels are considered in channel-wise layer normalization so that the layer
normalization is not restricted in the channels of a group. The layer normalization calculates
both mean and variance, which are applied to each channel. Relationships between one
group and another group can also be considered. Besides, because layer normalization
considers the features of other groups, features on each group are normalized by deviation
of the features from all groups. Therefore, even though significant imbalances exist between
features of different groups, the imbalance could be smoothed, which makes it possible to
alleviate abrupt changes in features between groups. If the imbalance between features of
groups is too significant, the imbalance should be reduced to maintain the difference as
shown in Fig. 5. If the imbalance between groups is too small, it makes groups balanced
on the same scale while maintaining the difference, as shown in Fig. 6. This method
makes groups have the same scaling factor for balancing to eliminate imbalance, no matter
what imbalance exists after grouped convolution. Next to layer normalization, additional
activation and batch normalization are placed, which is illustrated in Figs. 7 and 8 of Basic
and expand blocks subsection.

Therefore, the grouped binarized convolution results are normalized in both channel-
wise and batch-wise manner. The proposed normalization approach allows the normalized
convolutional results in both channel-wise and batch-wise manners, which can consider
data of other groups to normalize and relieve imbalance between groups.

In our proposed normalization, the biased PReLU for a nonlinear activation with
learnable parameters is adopted. The biased RPeLU contains a learnable bias for each
channel and then performs the conventional PReLU (He et al., 2015). PReLU has been
used in various existing models such as ReActNet (Liu et al., 2020) and PReLU-Net (He et
al., 2015). Considering our evaluation results, PReLU increases classification performance
by adding parametric slope values in ReLU. Unlike RPReLU (Liu et al., 2020), term ζi of
Eq. (1) is not required in the biased PReLU. Eq. (7) formulates the proposed normalization.
In Eq. (7), ihw denotes an input vector of channels when its position is (h,w) on the height
and width axes of a feature map. Terms g denotes a group, and term γg denotes the
learnable bias for the group g . Term β denotes the learnable parametric slope of the biased

Shin and Kim (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.842 9/25

https://peerj.com
https://doi.org/10.7717/peerjcs.842/fig-4
http://dx.doi.org/10.7717/peerj-cs.842


Figure 5 Large distribution gap group and scaled balanced group.
Full-size DOI: 10.7717/peerjcs.842/fig-5

Figure 6 Small distribution gap and scaled balanced group.
Full-size DOI: 10.7717/peerjcs.842/fig-6

PReLU. these values are calculated for each group. Applying bias γg and PReLU with slope
β, f (xi) is the result of biased PReLU. These results conduct layer normalization. It solves
the imbalance between groups arising from shuffled grouped convolution by considering
the other group data and allows the results of each group have the same balanced output,
thereby increasing performance by the balanced group and increasing the convergence.

f (xi)=

{
xi−γg if xi>γg
β(xi−γg ) if xi≤ γg

}
,xi ∈Xi. (7)

Basic and expand blocks
As shown inRastegari et al. (2016), Liu et al. (2018), Liu et al. (2020) andKim (2021), BNNs
with shortcuts can provide good performance. The proposed basic block can be suitable
for the stacked structure such as ResNet (He et al., 2016). In the following description, the
proposed blocks are applied to the stacked structure. In our model, the downsampling

Shin and Kim (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.842 10/25

https://peerj.com
https://doi.org/10.7717/peerjcs.842/fig-5
https://doi.org/10.7717/peerjcs.842/fig-6
http://dx.doi.org/10.7717/peerj-cs.842


Figure 7 Basic blocks.
Full-size DOI: 10.7717/peerjcs.842/fig-7

Shin and Kim (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.842 11/25

https://peerj.com
https://doi.org/10.7717/peerjcs.842/fig-7
http://dx.doi.org/10.7717/peerj-cs.842


Figure 8 Expand blocks.
Full-size DOI: 10.7717/peerjcs.842/fig-8

reduces the width and height of an input feature map with the factor of stride as 2. At the
same time, the number of channels is doubled.

Figures 7 and 8 illustrate the basic and expand blocks. The blocks contain two binarized
grouped convolutional layers. After proceeding grouped convolution layer, the channel is
shuffled. This grouped convolution and channel shuffle are used to increase the channel
with the same amount of computation in ShuffleNet Zhang et al. (2018) and AresB-Net in
Kim (2021). The channel expansion and binarized grouped convolution adopt the structure
in Kim (2021). Similarly, we adopt binarized grouped convolution rather than grouped
convolution for binarized operation. The input and output channels of a basic block have
the same feature map size. Besides, the numbers of input and output channels are the
same. On the other hand, the number of output channels is doubled over that of input
channels in an expand block. Besides, the width and height of an input feature map are

Shin and Kim (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.842 12/25

https://peerj.com
https://doi.org/10.7717/peerjcs.842/fig-8
http://dx.doi.org/10.7717/peerj-cs.842


reduced by half. In both blocks, after shuffling channels, the binary activation layer with
the learnable bias for each channel is located. The learnable bias for each channel is added
to input features. Then, the values are binarized based on Eq. (4). Each block performs
its first binarized grouped convolutions with 3×3 kernels for two groups. The number of
output channels in the first binarized grouped convolution depends on the stride. If the
stride for the basic block is one, there is no downsampling in the first convolution. In the
expand block, the downsampling is performed in the first binarized grouped convolution
with the factor of stride as 2.

Terms Ci and Co are denoted as the numbers of input and output channels for a block.
Let g1 and g2 denote the group index for the grouped convolution, Ci(g1) and Ci(g2) can be
1
2×Ci, respectively, so thatCi=Ci(g1)+Ci(g2). In the basic block,Co(g1)=Co(g2)= 1

4×Ci.
Therefore, the binarized grouped convolution has 1

2 ×Ci output channels, which is
illustrated in Fig. 7. On the other hand, in the expand block, Co(g1)=Co(g2)= 1

4 ×Ci.
the binarized grouped convolution has Ci output channels. Figures 7 and 8 describe the
doubled number of output channels in the expand block by expressing the number of
channels with the length of each layer. Note that Fig. 6 has a longer length, which means
that it has more output channels compared with the basic block.

Let the costs of a 3× 3 kernel and two-dimensional feature map of a channel be
costk,w,h in our binarized convolution. Since the computation costs of a convolution are
proportional to the number of input and output channels, the costs of the binarized
convolution for a group is 1

2 ×Ci×
1
4 ×Ci× costk,w,h. Therefore, the computation costs

can be 1
4 ×C2

i × costk,w,h. When channels are not expanded, the conventional binarized
convolutional layer (Rastegari et al., 2016; Liu et al., 2018) based on ResNet (He et al.,
2016) can have 1

2 ×Ci input channels and 1
2 ×Ci output channels in their basic block.

Therefore, the computation costs of the conventional binarized convolution can be also
1
4×C

2
i ×costk,w,h. Therefore, although input channels are expanded, the computation costs

do not increase by using grouped convolution in our blocks.
The proposed normalization approach is applied so that the layer and batch

normalizations are performed after applying the biased PReLU, respectively. Then, two
different types of shortcuts are concatenated to expand channels. Like Kim (2021), the
shortcut from 1

2×Ci input channels are added to the output of batch normalization and
concatenated. Besides, 1

2×Ci input channels after the channel shuffle are concatenated so
that Ci channels are obtained from the channel concatenation. In the expand block, the
average pooling is used for shrinking the size of each feature map. The Ci channels from
the average pooing are concatenated so that 2×Ci channels are prepared for the next step.
Then, RPReLU (Liu et al., 2020) is placed, which further increases performance by adding
parameters in Eq. (1).

A channel shuffle is performed on the output of this RPReLU. Then, the binary
activation, binarized grouped convolution, and the proposed normalizationwith additional
parameters are performed in order. After concatenating shortcuts and applying RPReLU,
the final output is produced. While the number of output channels of the expand block is
twice that of input channels in the expand block, the numbers of input and output channels
in the basic block are the same.

Shin and Kim (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.842 13/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.842


Figure 9 Model structure of PresB-Net-18.
Full-size DOI: 10.7717/peerjcs.842/fig-9

Like ResNet (He et al., 2016), the proposed model skips two binarized grouped
convolutions and add input features to the output of the final RPReLU. Because the basic
block does not change the size of a featuremap, the shortcut with the input features is added
directly. On the other hand, the size of feature map changes in the expand block. So the
shortcut contains the average pooling, 1×1 binarized convolution, and batch normalization
layers. Generally, 1×1 convolutions are used in the downsampling of residual CNNs.While
real-valued 1×1 convolutions are adopted in several existing BNNs (Rastegari et al., 2016;
Liu et al., 2018), the proposed blocks use 1×1 binarized convolutions, which can reduce
hardware costs significantly, but compared with existing ReActNet and AresB-Net, the
additional 1×1 convolution for shortcuts can increase computational and storage costs.
However, our proposed model can increase the classification accuracy compared with
ReActNet and AresB-Net, which will be shown in Experimenal Results section.

Model structure
The proposed blocks are used to build our PresB-Net, which has a pyramid structure
by stacking basic and expand blocks. Figure 9 illustrates a model structure of PresB-Net
containing stacked 8 blocks for the CIFAR-100 dataset as an example. The number in a
small box indicates the number of output channels. In the first 3×3 convolutional layer,
the real-valued convolution takes three channels for the red, blue, and green colors) from a
target image and have 128 output channels. Themodel structure in Fig. 9 follows ResNet-18
(He et al., 2016) so that the model is called PresB-Net-18 with a suffix representing the
number of convolutional layers. The number of binarized grouped convolutional layers is
16. After finishing the final basic block, the average pooling is applied. The fully connected
linear layer is used to produce classification results. In total, 18 convolutional layers are
placed in the example. Following Figs. 7 and 8, the red arrows inside blocks indicate the
direction of features including shortcuts for each binarized grouped convolution. The
red arrows outside blocks illustrate the direction of features and shortcuts that skip two
binarized grouped convolutions for each block.

The downsampling is performed in the expand blocks. The model shown in Fig. 9 has
1,024 output channels after the final basic block. After performing 4 binarized grouped
convolutions, the channels are expanded. PresB-Net-18model structure can be represented

Shin and Kim (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.842 14/25

https://peerj.com
https://doi.org/10.7717/peerjcs.842/fig-9
http://dx.doi.org/10.7717/peerj-cs.842


as PresB-Net (2,2,2,2) in detail, whichmeans that 2 blocks have the same number of output
channels. Besides, PresB-Net (2,2,2,2) indicates that PresB-Net-18 has 8 blocks in total.
The width and height of each featuremap are reduced by half in the downsampling. Various
models can be built depending on the number of stacking blocks and downsamplings and
datasets. For example, PresB-Net-10 and PresB-Net-34 are represented as PressB-Net
(1,1,1,1) and PresB-Net (3,4,6,3), respectively.

Training and Inference
The conventional training method in Rastegari et al. (2016) is adopted in the training.
During the training, real-valuedweights are updated by backwardpropagation. Then, kernel
weights are binarized for the binarized convolutions and then used in the forward pass.
Besides, the binarized grouped convolutions take the binarized input features, as shown in
Eq. (4). The derivative of the binary activation using sign() function is approximated with
the baseline straight-through-estimator in Courbariaux et al. (2016). Binary weights for the
binarized grouped convolutions are only maintained for the inference, which can reduce
storage resource requirements.

For better classification performance, pre-trained real-valued weights are used to
initialize model parameters, as known in Lin, Zhao & Pan (2017), Liu et al. (2018) and
Liu et al. (2020). In this case, binary activation layers are not placed. Besides, real-valued
grouped convolutions replace the binarized grouped convolutions in the target model.
After pretraining, the real-valued model parameters with the best accuracy are obtained
and are binarized in the initialization.

EXPERIMENTAL RESULTS
Experimental setups
We evaluated the proposed model and other counterparts on the CIFAR datasets
(Krizhevsky & Hinton, 2009). The CIFAR dataset has 60,000 32×32 color images. The
training and validation adopt 50,000 and 10,000 images, respectively, where CIFAR-10 and
CIFAR-100 contain 10 and 100 different classes. In the data augmentation, each image
in CIFAR-10 and CIFAR-100 was padded with zeros to make a 40×40 image. Then, the
random cropping was applied to obtain a 32×32 image, and we horizontally flipped the
images with p= 0.5 probability. Augmentation is not adopted during inference.

For initialization, real-valued weights were obtained with 400 epochs. we used the Adam
optimizer (Kingma & Ba, 2014) with the learning rate of 0.0005 and weight decay of 0.0001.
The real-valued weights were used in the initialization of the binarized model. Then, 400
epochs were performed again with the binarized model, where the Adam optimizer with a
learning rate of 0.0005 was adopted. Notably, we did not apply weight decay because the
binarization can provide enough regularization (Liu et al., 2018; Liu et al., 2020).

We trained PresB-Net-10, PresB-Net-18, and PresB-Net-34 on the CIFAR-10 and
CIFAR-100 datasets. The details of the above models are explained in Model structure
subsection.

Shin and Kim (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.842 15/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.842


Figure 10 Training graph on CIFAR-10 dataset.
Full-size DOI: 10.7717/peerjcs.842/fig-10

Experimental results
Accuracy graphs in the learning process are shown in Figs. 10 and 11 on the CIFAR-10 and
CIFAR-100 datasets. Each graph shows the accuracy of PresB-Net-10, PresB-Net-18, and
PresB-Net-34 for each learning epoch. As shown in these graphs, the number of overall
training epochs was set to 800. As previously explained, the first 400 epochs initialized
weights for the real-valued convolutions, and the next 400 epochs proceeded with the
binarized convolutions and activations. The results of the comparison model AresB-Net,
ReActNet, and proposed model PresB-Net can be seen in Table 1 when initialization was
performed to real values for the CIFAR-100 dataset. The real-valued parameters were
binarized from the 400-th epoch, so that accuracy decreased sharply and then increased
again. At the final epoch, the accuracies were very close to thosewith real-valued parameters.
Besides, as the number of stacked layers increased, the proposed model can achieve higher
classification accuracy. It was concluded that the proposed model structures can be well
trained on the described learning process. Figures 10 and 11 show the characteristics of
the proposed model for obtaining better performance along with increasing number of
stacked layers.

For fair comparisons, we applied the same hyperparameters of the learning process and
training method to baseline AresB-Net and ReActNet. We used Adam optimizer which
requires little tuning and conducted without complex and detailed parameter tuning
in the learning process, so comparison results show lower accuracy than the results of
the model presented in AresB-Net (Kim, 2021). In this training method, we initialize
the model with real values. The results of real value initialization are shown in Table 1.
Although the proposed PresB-Net-18 shows a −3.3% decline in performance compared

Shin and Kim (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.842 16/25

https://peerj.com
https://doi.org/10.7717/peerjcs.842/fig-10
http://dx.doi.org/10.7717/peerj-cs.842


Figure 11 Training graph on CIFAR-100 dataset.
Full-size DOI: 10.7717/peerjcs.842/fig-11

Table 1 Comparisons in terms of top-1 accuracies (%) on real value initialization (400 epochs).

Dataset Baseline Top-1 Top-5 Top-1 gap

ResNet-18 75.61 93.05 −3.3
CIFAR-100 AresB-Net-18 71.98 90.29 0.3

ReActNet-18 70.76 88.44 1.5
PresB-Net-10 67.4 85.9 –

CIFAR-100 PresB-Net-18 72.3 89.8 –
PresB-Net-34 73.3 89.3 –

to ResNet-18 created for real value operation purposes, PresB-Net-18 results show 72.3%
Top-1 accuracy, which is 0.3% and 1.5% higher than 71.98% of AresB-Net and 70.76% of
ReActNet, respectively.

PresB-Net shows higher accuracy for real value initialization, which is the basis for higher
accuracy results for binary operations after initialization. In comparison, our proposed
model shows better results in terms of Top-1 classification accuracy. These proposed
model training results are shown in Table 2. In Fig. 12, PresB-Net-18 achieves 73.8%
Top-1 accuracy, which is 2.8% and 3.0% higher than 71.0% of AresB-Net and 70.8%
of ReActNet, respectively. Besides, PresB-Net-10 achieves 67.03% Top-1 accuracies on
the CIFAR-100 dataset, which are 1.6% and 0.3% higher than 65.4% of AresB-Net-10
and 66.7% of ReActNet-10, respectively. PresB-Net-34 achieves 73.56% Top-1 accuracies
on the CIFAR-100 dataset, which are 1.9% and 2.7% higher than 71.6% of AresB-Net-
34 and 70.9% of ReActNet-34, respectively. Compared with AresB-Net, it is expected
that biased PReLU and the new proposed normalization improved its classification

Shin and Kim (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.842 17/25

https://peerj.com
https://doi.org/10.7717/peerjcs.842/fig-11
http://dx.doi.org/10.7717/peerj-cs.842


Table 2 Summary of accuracies (%) on CIFAR-10, CIFAR-100 and ImageNet datasets.

Dataset Model Final Top-1 (%) Best Top-1 (%) Top-5 (%)

PresB-Net-10 91.76 91.81 –
CIFAR-10 PresB-Net-18 93.36 93.57 –

PresB-Net-34 93.64 93.87 –
PresB-Net-10 67.03 67.03 85.83

CIFAR-100 PresB-Net-18 73.84 73.87 90.55
PresB-Net-34 73.56 73.93 90.39

ImageNet PresB-Net-18 63.03 63.03 83.70

Figure 12 Comparison of accuracies (%) on CIFAR 100 dataset.
Full-size DOI: 10.7717/peerjcs.842/fig-12

performance. Similarly, compared with ReActNet, the grouped shuffled convolution and
new proposed normalization could help increase performance. In addition, PresB-Net
shows better classification accuracy than several existing real-valued lightweight models
such as ShuffleNet and MobileNet. The classification result of PresB-Net-18 is 11.3%
and 14.2% higher than those of ShuffleNet (62.5% Top-1 accuracy) and MobileNet
(59.634% Top-1 accuracy), respectively. Moreover, Top-1 accuracy of PresB-Net-18 is
only 1.77% lower than 75.61% Top-1 accuracy of the real-valued ResNet-18. The summary
of experimental results on CIFAR-100 dataset and comparisons between PresB-Net and
other existing models are listed in Table 3 below. Accuracies of the proposed PresB-Net
and other counterparts are illustrated in Fig. 12.

We additionally proceeded with an experiment on ImageNet dataset (Russakovsky
et al., 2015b) which contains 1.2 million training and 50,000 validation color images
classified into 1,000 categories. We resized images into 256 × 256 images and cropped
the original image into 224 × 224 with a scale of 0.446 0.875. And we applied horizon
flip to data argumentation. This same argumentation scheme is shown in Kim (2021) and

Shin and Kim (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.842 18/25

https://peerj.com
https://doi.org/10.7717/peerjcs.842/fig-12
http://dx.doi.org/10.7717/peerj-cs.842


Table 3 Comparison in terms of accuracies (%) on CIFAR-100 dataset.

Model accuracy Model Top-1 (%) Top-5(%) Top-1 gap (%)

ShuffleNet 62.51 82.60 11.33
Full-precision model MobileNet 59.63 79.88 14.21

ResNet-18 75.61 93.05 −1.77
ReActNet-10 66.69 85.83 0.34
ReActNet-18 70.81 89.00 3.03

Binary-precision model ReActNet-34 70.89 89.24 2.67
AresB-Net-10 65.41 88.22 1.63
AresB-Net-18 70.91 90.04 2.93
AresB-Net-34 71.63 88.85 1.93

Table 4 Comparison in terms of accuracies (%) on ImageNet dataset.

Model accuracy Model Top-1 (%) Top-5(%) Top-1 gap (%)

Full-precision model ResNet-18 69.3 89.2 −6.3
ReActNet-18 60.4 82.2 2.6

Binary-precision model AresB-Net-18 54.8 78.2 8.2
PresB-Net-18 63.0 83.7 –

He et al. (2016). The number of overall training epochs was set to 100 and as same as
training strategy in CIFAR-100 dataset, and, 50 epochs proceeded with real-valued initial
weights. We trained our proposed model PresB-Net-18 with ADAM optimizer(Kingma
& Ba, 2014) with the learning rate of 0.1. When producing real-valued weights, not in
binary operation, we used the weight decay of 1e−5. These training results of PresB-Net-18
and other counterparts are shown in Table 4. Our PresB-Net-18 achieves 63.0% Top-1
accuracy, which is 8.2% and 2.6% higher than 54.8% of AresB-Net and 60.4% of our
ReActNet evaluation, respectively. Moreover, the Top-1 accuracy of PresB-Net-18 is 63.0%
lower than 69.3% Top-1 accuracy of the real-valued ResNet-18 by 6.3%.

In these results, PresB-Net has outstanding accuracy to our evaluation of ReActNet
and AresB-Net in the ImageNet dataset. Same as a reason in CIFAR-100 datasets results,
proposed normalization method and new activation which is not applied to AresB-Net
make PresB-Net show outstanding accuracy on various datasets.

The computation speed and memory usage of PreB-Net are analyzed as follows.
Layer normalization does not consume additional memory space, so it only requires the
computation overhead that calculates mean and variance. Since it has negligible overhead
compared with the computational intensive convolution operation, we approximate
the calculated FLOPs using the method described in Kim (2021). Our PresB-Net model
achieves dramatical speed up over real-valued ResNet-18 by FLOPS(ResNet−18)

FLOPS(PresB−Net−18) ≈ 36.8
on CIFAR datasets. The difference in the number of channels of the first layer and
the additional shortcut make computational speed slower than the AresB-Net-18 by
FLOPS(AresB−Net−18)
FLOPS(PresB−Net−18) ≈ 0.9. However, the proposed PresB-Net shows better classification
results compared with those of AresB-Net. In terms of memory usage, PresB-Net-18

Shin and Kim (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.842 19/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.842


Figure 13 Summary of ablation studies.
Full-size DOI: 10.7717/peerjcs.842/fig-13

can reduce storage usage over real-valued ResNet-18 by Storage(PresB−Net−18)
Storage(ResNet−18) ≈ 0.038 on

CIFAR datasets. It is noted that PresB-Net-18 has storage usage similar to AresB-Net with
remarkable increasing classification results.

Ablation studies
Ablation studies are summarized in Fig. 13 and Table 5, containing the results of accuracy
with the use of learnable biases and PReLU layers in Eq. (1). Terms LN and BN denote
layer and batch normalizations, respectively. Term Bias means the learnable bias before
normalizations. In the ablation study, PresB-Net-18 was evaluated, where several layers
were modified to know their effectiveness. When learnable biases were not adopted before
layer and batch normalizations(No Bias for LN and BN in Fig. 13), Top-1 accuracy was
72.61%, which is lower than the proposed model by 0.62%. When learnable biases were
applied only before layer normalization(Bias only for LN in Fig. 13), Top-1 accuracy was
72.67%, which was 0.56% lower than that using learnable biases before both layer and
batch normalizations. It was concluded that the additional learnable parameters of the
biased PReLUs help increase Top-1 accuracies compared with the cases only using PReLUs.

Furthermore, Fig. 13 and Table 5 summarizes the effects of batch and layer
normalizations in training stage. When layer normalization was not adopted (w/o LN
in Fig. 13), Top-1 accuracy was 72.03%, showing 1.2% accuracy drop compared with
the model using the layer normalization. The absence of layer normalization can bring
imbalances between groups, which it was expected to make gradient convergence difficult.
When batch normalization was removed, Top-1 accuracy was only 72.02%, showing 1.21%
accuracy drop. The absence of batch normalization alsomade gradient convergence difficult
due to its rough optimization field, (Santurkar et al., 2018) which make convergence
difficult. As training does not work well even when learning parameters are applied, it can

Shin and Kim (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.842 20/25

https://peerj.com
https://doi.org/10.7717/peerjcs.842/fig-13
http://dx.doi.org/10.7717/peerj-cs.842


Table 5 Summary of inference accuracies(%) on varying structures in ablation studies.

Model 1. Activation 2. Normalization 3. Activation 4. Normalization Top-1

PresB-Net-18 Biased PReLU LN Biased PReLU BN 73.84
No Bias for LN and BN – LN – BN 72.61
Bias only for LN Biased PReLU LN – BN 72.67
w/o LN Biased PReLU – Biased PReLU BN 72.03
w/o BN Biased PReLU LN Biased PReLU – 72.02
w/RPReLU RPReLU LN RPReLU BN 73.10
w/ReLU ReLU LN ReLU BN 71.36

be seen that it is also important to apply suitable normalization techniques like proposed
normalization method. From these experimental results, we evaluated the cases when each
activation or normalization was removed. In these experiments, the highest accuracy was
achieved when the proposed PresB-Net-18 was adopted.

It is noted that RPReLU contains the first learnable bias, PReLU, and the second
learnable bias layers in order. The biased PReLU did not use the second learnable bias, so
that term ζi is removed from Eq. (1) of RPReLU. When applying RPReLU (Liu et al., 2020)
instead of the biased PReLU, the final Top-1 accuracy was 73.10%, which was slightly lower
than the case using the biased PReLU. When original ReLU is used instead of a biased
PReLU, the final Top-1 accuracy is 71.36%, which is 2.48% lower than 73.86% from the
proposed PresB-Net. This means that the biased PReLU could be usefully adopted for
BNNs.

CONCLUSION
This paper proposes a novel BNN structure called PresB-Net for achieving higher
classification accuracy. The shuffled grouped convolution is applied to expand the channel
with reduced computation resources. Our proposed normalization approach can solve
the imbalance between groups in the grouped convolution. The new normalization
technique adopts both layer and batch normalizations to normalize the entire channel and
eliminate the imbalance between channel groups. Furthermore, we use the biased PReLU
activation function with a learnable slope and binary activation with biases to improve
performance. These normalizaiton, biased PReLU, and grouped shuffled convolution are
used to construct basic blocks and expansion blocks. This paper described the proposed
PreB-Net, which consists of stacked basic and expand blocks. Notably, the blocks have
shortcuts for each binarized grouped convolution. Besides, there are shortcuts that skip
two binarized grouped convolutions for each block. In our evaluation, PresB-Net-18
achieves 93.36% and 73.84% Top-1 final test accuracy on CIFAR-10 and CIFAR-100
datasets, respectively. When adopting same hyperparmeters and comparable structures,
the proposed model can enhance Top-1 final accuracy 1.6%–2.4% over existing ReActNet
and AresB-Net.

Shin and Kim (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.842 21/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.842


ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Jungwoo Shin conceived and designed the experiments, performed the experiments,
analyzed the data, performed the computation work, prepared figures and/or tables,
authored or reviewed drafts of the paper, and approved the final draft.
• HyunJin Kim analyzed the data, authored or reviewed drafts of the paper, and approved
the final draft.

Data Availability
The following information was supplied regarding data availability:

The data is available at Github: https://github.com/SHINJUNGWOO/PresB-Net.

REFERENCES
AlizadehM, Fernández-Marqués J, Lane ND, Gal Y. 2018. An empirical study of

binary neural networks’ optimisation. In: International conference on learning
representations.

Ba JL, Kiros JR, Hinton GE. 2016. Layer normalization. ArXiv preprint. arXiv:1607.06450.
Bethge J, Bartz C, Yang H, Chen Y, Meinel C. 2020.MeliusNet: can Binary Neural

Networks Achieve MobileNet-level Accuracy? ArXiv preprint. arXiv:2001.05936.
Bethge J, Yang H, BornsteinM,Meinel C. 2019. BinaryDenseNet: developing an

architecture for binary neural networks. In: Proceedings of the IEEE international
conference on computer vision workshops. Piscataway: IEEE.

Bulat A, Tzimiropoulos G. 2019. Xnor-net++: improved binary neural networks. ArXiv
preprint. arXiv:1909.13863.

Chakraborty I, Roy D, Ankit A, Roy K. 2019. Efficient hybrid network architectures
for extremely quantized neural networks enabling intelligence at the edge. ArXiv
preprint. arXiv:1902.00460.

Chen T, Zhang Z, Ouyang X, Liu Z, Shen Z,Wang Z. 2021. ‘‘BNN-BN=?’’: training
binary neural networks without batch normalization. In: Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition. Piscataway: IEEE, 4619–4629.

CourbariauxM, Bengio Y, David J-P. 2015. Binaryconnect: training deep neural net-
works with binary weights during propagations. In: Advances in neural information
processing systems. 3123–3131.

CourbariauxM, Hubara I, Soudry D, El-Yaniv R, Bengio Y. 2016. Binarized neural
networks: training deep neural networks with weights and activations constrained
to+ 1 or-1. ArXiv preprint. arXiv:1602.02830.

Shin and Kim (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.842 22/25

https://peerj.com
https://github.com/SHINJUNGWOO/PresB-Net
http://arXiv.org/abs/1607.06450
http://arXiv.org/abs/2001.05936
http://arXiv.org/abs/1909.13863
http://arXiv.org/abs/1902.00460
http://arXiv.org/abs/1602.02830
http://dx.doi.org/10.7717/peerj-cs.842


Ding R, Chin T-W, Liu Z, Marculescu D. 2019. Regularizing activation distribution for
training binarized deep networks. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. Piscataway: IEEE, 11408–11417.

GhasemzadehM, SamraghM, Koushanfar F. 2018. ReBNet: residual binarized neural
network. In: 2018 IEEE 26th annual international symposium on field-programmable
custom computing machines (FCCM). Piscataway: IEEE, 57–64.

Gu J, Li C, Zhang B, Han J, Cao X, Liu J, Doermann D. 2019a. Projection convolutional
neural networks for 1-bit cnns via discrete back propagation. In: Proceedings of the
AAAI conference on artificial intelligence, volume 33. 8344–8351.

He K, Zhang X, Ren S, Sun J. 2015. Delving deep into rectifiers: surpassing human-level
performance on imagenet classification. In: Proceedings of the IEEE international
conference on computer vision. Piscataway: IEEE, 1026–1034.

He K, Zhang X, Ren S, Sun J. 2016. Deep residual learning for image recognition.
In: Proceedings of the IEEE conference on computer vision and pattern recognition.
Piscataway: IEEE, 770–778.

He Z, Angizi S, Rakin AS, Fan D. 2018. BD-NET: a multiplication-Less DNN with
binarized depthwise separable convolution. In: 2018 IEEE computer society annual
symposium on VLSI (ISVLSI). Piscataway: IEEE, 130–135.

Helwegen K,Widdicombe J, Geiger L, Liu Z, Cheng K-T, Nusselder R. 2019. Latent
weights do not exist: rethinking binarized neural network optimization. In: Advances
in neural information processing systems. 7531–7542.

Huang G, Liu Z, Van DerMaaten L,Weinberger KQ. 2017. Densely connected convolu-
tional networks. In: Proceedings of the IEEE conference on computer vision and pattern
recognition. Piscataway: IEEE, 4700–4708.

Hubara I, CourbariauxM, Soudry D, El-Yaniv R, Bengio Y. 2016. Binarized neural
networks. In: Advances in neural information processing systems. 4107–4115.

Hubara I, CourbariauxM, Soudry D, El-Yaniv R, Bengio Y. 2017. Quantized neural
networks: training neural networks with low precision weights and activations. The
Journal of Machine Learning Research 18(1):6869–6898.

Ioffe S, Szegedy C. 2015. Batch normalization: accelerating deep network training by
reducing internal covariate shift. In: International conference on machine learning.
PMLR, 448–456.

KimH. 2021. AresB-Net: accurate residual binarized neural networks using shortcut
concatenation and shuffled grouped convolution. PeerJ Computer Science 7:e454
DOI 10.7717/peerj-cs.454.

KimH, Park J, Lee C, Kim J-J. 2021. Improving accuracy of binary neural networks using
unbalanced activation distribution. In: Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition. Piscataway: IEEE, 7862–7871.

Kingma DP, Ba J. 2014. Adam: a method for stochastic optimization. ArXiv preprint.
arXiv:1412.6980.

Krizhevsky A, Hinton G. 2009. Learning multiple layers of features from tiny images..

Shin and Kim (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.842 23/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.454
http://arXiv.org/abs/1412.6980
http://dx.doi.org/10.7717/peerj-cs.842


Krizhevsky A, Sutskever I, Hinton GE. 2012. Imagenet classification with deep con-
volutional neural networks. Advances in Neural Information Processing Systems
25:1097–1105.

LeCun Y, Bottou L, Bengio Y, Haffner P. 1998. Gradient-based learning applied to docu-
ment recognition. Proceedings of the IEEE 86(11):2278–2324 DOI 10.1109/5.726791.

Lin X, Zhao C, PanW. 2017. Towards accurate binary convolutional neural network. In:
Advances in neural information processing systems. 345–353.

Liu Z, Shen Z, Savvides M, Cheng K-T. 2020. Reactnet: towards precise binary neural
network with generalized activation functions. In: European conference on computer
vision. Springer, 143–159.

Liu Z,Wu B, LuoW, Yang X, LiuW, Cheng K-T. 2018. Bi-real net: enhancing the
performance of 1-bit cnns with improved representational capability and advanced
training algorithm. In: Proceedings of the European conference on computer vision
(ECCV). 722–737.

Martinez B, Yang J, Bulat A, Tzimiropoulos G. 2020. Training binary neural networks
with real-to-binary convolutions. ArXiv preprint. arXiv:2003.11535.

Phan H, He Y, Savvides M, Shen Z. 2020.Mobinet: a mobile binary network for image
classification. In: The IEEE winter conference on applications of computer vision.
Piscataway: IEEE, 3453–3462.

Rastegari M, Ordonez V, Redmon J, Farhadi A. 2016. Xnor-net: imagenet classification
using binary convolutional neural networks. In: European conference on computer
vision. Springer, 525–542.

Russakovsky O, Deng J, Su H, Krause J, Satheesh S, Ma S, Huang Z, Karpathy A, Khosla
A, BernsteinM. 2015b. Imagenet large scale visual recognition challenge. Interna-
tional Journal of Computer Vision 115(3):211–252 DOI 10.1007/s11263-015-0816-y.

Sandler M, Howard A, ZhuM, Zhmoginov A, Chen L-C. 2018.Mobilenetv2: inverted
residuals and linear bottlenecks. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. Piscataway: IEEE, 4510–4520.

Santurkar S, Tsipras D, Ilyas A, Mądry A. 2018.How does batch normalization help op-
timization? In: Proceedings of the 32nd international conference on neural information
processing systems. 2488–2498.

Simonyan K, Zisserman A. 2014. Very deep convolutional networks for large-scale image
recognition. ArXiv preprint. arXiv:1409.1556.

Szegedy C, LiuW, Jia Y, Sermanet P, Reed S, Anguelov D, Erhan D, Vanhoucke V,
Rabinovich A. 2015. Going deeper with convolutions. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. Piscataway: IEEE, 1–9.

Wang P, He X, Li G, Zhao T, Cheng J. 2020a. Sparsity-inducing binarized neural net-
works. In: Proceedings of the AAAI Conference on Artificial Intelligence. 12192–12199
DOI 10.1609/aaai.v34i07.6900.

Wang Z, Lu J, Tao C, Zhou J, Tian Q. 2019. Learning channel-wise interactions for
binary convolutional neural networks. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. Piscataway: IEEE, 568–577.

Shin and Kim (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.842 24/25

https://peerj.com
http://dx.doi.org/10.1109/5.726791
http://arXiv.org/abs/2003.11535
http://dx.doi.org/10.1007/s11263-015-0816-y
http://arXiv.org/abs/1409.1556
http://dx.doi.org/10.1609/aaai.v34i07.6900
http://dx.doi.org/10.7717/peerj-cs.842


Zhang X, Zhou X, LinM, Sun J. 2018. Shufflenet: an extremely efficient convolutional
neural network for mobile devices. In: Proceedings of the IEEE conference on computer
vision and pattern recognition. Piscataway: IEEE, 6848–6856.

Zhu S, Dong X, Su H. 2019. Binary ensemble neural network: more bits per network or
more networks per bit? In: Proceedings of the IEEE conference on computer vision and
pattern recognition. Piscataway: IEEE, 4923–4932.

Zhuang B, Shen C, TanM, Liu L, Reid I. 2019. Structured binary neural networks for
accurate image classification and semantic segmentation. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. Piscataway: IEEE, 413–422.

Shin and Kim (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.842 25/25

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.842

