
Graph coloring using the reduced quantum
genetic algorithm
Sebastian Mihai Ardelean and Mihai Udrescu

Computer and Information Technology, University Politehnica of Timisoara, Timisoara,
Timis, Romania

ABSTRACT
Genetic algorithms (GA) are computational methods for solving optimization
problems inspired by natural selection. Because we can simulate the quantum circuits
that implement GA in different highly configurable noise models and even run GA
on actual quantum computers, we can analyze this class of heuristic methods in
the quantum context for NP-hard problems. This paper proposes an instantiation of
the Reduced Quantum Genetic Algorithm (RQGA) that solves the NP-hard graph
coloring problem in O(N1/2). The proposed implementation solves both vertex and
edge coloring and can also determine the chromatic number (i.e., the minimum
number of colors required to color the graph). We examine the results, analyze the
algorithm convergence, and measure the algorithm's performance using the Qiskit
simulation environment. Our Reduced Quantum Genetic Algorithm (RQGA) circuit
implementation and the graph coloring results show that quantum heuristics can
tackle complex computational problems more efficiently than their conventional
counterparts.

Subjects Algorithms and Analysis of Algorithms, Quantum Computing
Keywords Quantum computing, Quantum genetic algorithms, Graph coloring

INTRODUCTION
In general, the heuristic methods—and genetic algorithms (GA) in particular—have
received a great deal of research interest, being one of the most straightforward and widely
applied forms of evolutionary computation Spector (2004). Indeed, GAs represent one of
the most known methods for solving optimization problems. In the context of classical
computation and conventional dedicated hardware, GAs achieve only marginal
performance improvements over the deterministic perspectives. Therefore, quantum
computing appears as one of the possible improvement solutions to approach NP-
complete problems (Udrescu, Prodan & Vlăduţiu, 2006).

Simulated genetic operators (such as mutation and crossover) and population
dynamical processes (such as reproduction and selection) underpin the GA. In the
simplest form, the candidate solutions to search or optimization problems are encoded in
arrays, referred to as chromosomes. The algorithm begins with a randomly generated
initial population of chromosomes, and then it evolves the population over multiple
generations in search of an optimal solution. A genetic algorithm has four phases:
initialization, selection, reproduction, and termination. Concisely, a GA is a search for the
optimal solution represented by the individual chromosome with the highest fitness value.

How to cite this article Ardelean SM, Udrescu M. 2022. Graph coloring using the reduced quantum genetic algorithm. PeerJ Comput. Sci.
8:e836 DOI 10.7717/peerj-cs.836

Submitted 27 July 2021
Accepted 7 December 2021
Published 3 January 2022

Corresponding author
Sebastian Mihai Ardelean,
sebastian.ardelean@student.upt.ro

Academic editor
Siddhartha Bhattacharyya

Additional Information and
Declarations can be found on
page 27

DOI 10.7717/peerj-cs.836

Copyright
2022 Ardelean and Udrescu

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.836
mailto:sebastian.�ardelean@�student.�upt.�ro
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.836
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/

On the other hand, as stated inNielsen & Chuang (2002) and in Spector (2004), quantum
computation is very powerful for solving various problems due to its specific properties
and phenomena such as entanglement, interference, and exponential parallelism. As
such, the merge between genetic algorithms and quantum computing is natural and
beneficial (Udrescu, Prodan & Vlăduţiu, 2006).

This paper aims to provide a method of instantiating the Reduced Quantum Genetic
Algorithm (RQGA) to solve the graph coloring problem. Our implementation solves the
most recognizable form of graph coloring, namely, vertex coloring (Kwok & Pudenz,
2020). The problem requires coloring each vertex of a graph such that no two adjacent
vertices have the same color. Furthermore, our approach can also solve the edge coloring
problem and find the chromatic number of a graph.

Accordingly, our main contributions to the state-of-the-art are defined by the following
facts:

I. RQGA is merely a framework and not a specific algorithm. Thus, our first contribution is
to instantiate the framework for the graph coloring problem and provide design solutions:

a) We provide an original design of the fitness function such that it accepts valid and
invalid individuals as arguments. (An invalid individual has a chromosome
configuration that does not satisfy given conditions).

b) We design the Oracle quantum circuit such that the search for the highest fitness will
not take place in the invalid individuals area.

c) We provide a solution for individual and fitness representation, inspired by the one
proposed by Fabrikant & Hogg (2002).

II. Our RQGA-based solution is a purely quantum method:

a) Our implementation solves the graph coloring problem in O ffiffiffiffi
N

p� �
oracle queries.

b) The same implementation solves both the node and edge coloring forms of the graph
coloring problem.

c) Our implementation determines the chromatic number of a graph.

BACKGROUND
Quantum computing
Classical computers are built according to the laws of classical physics. Therefore, a full
specification of its state can be specified by a measurable set of numbers. According to
Häner et al. (2016), sustaining the pace of Moore’s law has become increasingly difficult
such that an alternative should be considered to meet the power and performance
requirements; one of the most prominent such alternatives is quantum computing.

According to Spector (2004), quantum computing describes computational processes
that rely for their efficacy on information processing hardware having quantum
mechanical properties. Thus, as mentioned in Nielsen & Chuang (2002), quantum
computers offer an essential speed advantage over their classical equivalents.

Ardelean and Udrescu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.836 2/30

http://dx.doi.org/10.7717/peerj-cs.836
https://peerj.com/computer-science/

While in classical computers the bit is the basic information unit, the qubit is the
analogous concept for quantum computers; as mentioned in Udrescu-Milosav (2009),
qubits are the fundamental information storage unit. Like the classical bit that has a state
(either 0 or 1), the qubit can be in either |0⟩ or |1⟩ , which correspond to the classical ones,
respectively. Additionally, the qubit can also be in a superposition state

jwi ¼ aj0i þ bj1i; (1)

where

a; b 2 C; jaj2 þ jbj2 ¼ 1; (2)

until it is observed/measured. As presented in Nielsen & Chuang (2002), the first postulate
of quantum mechanics states that the state of a quantum system is described by a unit
vector in a complex Hilbert space, H. Thus, a system of n-qubits (referred as quantum
register) has 2n computational basis states of the form |x0x1 … xn − 1⟩, and its quantum
state is a normalized vector in H2n ,

jwi ¼
X2n�1

i¼0

aijii;
X2n�1

i¼0

jaij2 ¼ 1: (3)

According to the second postulate of quantum mechanics, the evolution of a closed
quantum system is described by a unitary transformation. Considering that |ψ1⟩ is the
quantum state of the system at time t1, |ψ1⟩ is related to the quantum state |ψ2⟩ at time t2, t1
< t2, by a unitary operator U. The unitary transformation U applied by a quantum
computer with n-qubits, also called a gate, is represented by a unitary matrix in C2n�2n .

As presented in Nannicini (2020), unitary matrices are norm-presenting; considering a
unitary matrix U and a vector x, ‖Ux‖ = ‖x‖. Therefore, for a n-qubit system, the quantum
state jw1i 2 C2n is an unitary vector and the result of applying U onto state |ψ1⟩,

jw2i ! U jw1i;U 2 C2n�2n ; (4)

is the unitary vector jw2i 2 C2n , leading to the observation that quantum operations are
linear and reversible.

According to Barenco et al. (1995), any unitary transformation can be expressed as a
composition of gates. Thus, infinitely many quantum gates can be constructed. A finite set
of quantum gates are universal for quantum computation since any unitary transformation
may be approximated by a quantum circuit involving only those gates. In Table 1 we
present some basic quantum unitary transformations we use in this paper, along with the
unitary matrix and the graphical representation used in the implementation of the RQGA.

The third postulate of quantum mechanics states that quantum measurement is
described by a measuring transformation of the quantum state (i.e., the measurement
operator Mm). For a quantum state |ψ⟩, the probability that the outcome of the
measurement is m is P mð Þ ¼ hwMy

mMmjwi.
The single qubit |ψ⟩ = α|0⟩ + β|1⟩ where a;b 2 C and |α|2 + |β|2 = 1 is projected by the

measurement onto the basis {|0⟩,|1⟩}, thus yielding the outcome |0⟩ with probability α2 or

Ardelean and Udrescu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.836 3/30

http://dx.doi.org/10.7717/peerj-cs.836
https://peerj.com/computer-science/

|1⟩ with probability β2. By measurement, the quantum state is irrevocably disturbed and
collapsed to the specific Hilbert space basis state, consistent with the measurement
result. Therefore, for any basis states |a⟩ and |b⟩ and the quantum state |ψ⟩ = α|a⟩ + β|b⟩
with |α|2 + |β|2 = 1 expressed in terms of the orthonormal base {|a⟩,|b⟩}, the measurement
can be performed with respect to the |a⟩ and |b⟩ basis and the outcome will be |a⟩ with
probability α2 or |b⟩ with probability β2.

According to Nielsen & Chuang (2002), two principles are applied to measurement: the
Principle of deferred measurement and the Principle of implicit measurement. The
principle of deferred measurement states that the measurement can be moved from an
intermediate stage of the circuit to its end. The principle of implicit measurement states
that any unterminated quantum wires may be assumed as measured at the end of the
circuit.

As presented in Nielsen & Chuang (2002), the fourth postulate describes the state space
of a composite physical system as the tensor product of the state spaces of the component
physical system.

Genetic algorithms and quantum computing
The literature proposes several quantum genetic algorithms, from algorithms that combine
operations running on classic computers with quantum operators to genuine quantum
evolutionary algorithms (Lahoz-Beltra, 2016). Using evolutionary algorithms for
synthesizing quantum circuits has been thoroughly investigated and relevant progress has
also been reported in the field of Quantum-Inspired Genetic Algorithm (QIGA) (Ruican
et al., 2007).

In Ruican et al. (2007), the authors propose a method of synthesizing quantum circuits
using genetic programming. The chosen approach is to split the potential circuits into
vertical and horizontal levels used for chromosome definition. Furthermore, Ruican et al.
(2008) propose an object-oriented framework for genetic algorithms in quantum circuit
synthesis.

Table 1 Quantum unitary transformations (i.e., gates) used in the implementation of the RQGA.

Gate Graphical representation Unitary matrix Description

Hadamard
H ¼ 1ffiffiffi

2
p 1 1

1 �1

� �
j0i ! 1ffiffiffi

2
p j0i þ j1ið Þ and j1i ! 1ffiffiffi

2
p j0i � j1ið Þ

Pauli-X
X ¼ 0 1

1 0

� � j0i ! j1i and j1i ! j0i

Pauli-Y
Y ¼ 0 �i

i 0

� � j0i ! ij1i and j1i ! �ij0i

Pauli-Z
Z ¼ 1 0

0 �1

� � j1i ! j � 1i and |0⟩ is left unchanged

Controlled-Not

CNOT ¼
1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

2
664

3
775

jcijti ! jcijt � ci, where |c⟩ is the control qubit
and |t⟩ is the target Nielsen & Chuang (2002)

Ardelean and Udrescu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.836 4/30

http://dx.doi.org/10.7717/peerj-cs.836
https://peerj.com/computer-science/

In Gepp & Stocks (2009), the authors analyze evolutionary algorithms for synthesizing
quantum algorithms. They claim that genetic algorithms and genetic programming
have been used with great success to analyse and optimize quantum algorithms. Moreover,
by successfully evolving small new quantum algorithms, scalable quantum algorithms are
proven.

In Malossini, Blanzieri & Calarco (2008), the authors propose a quantum genetic
algorithm called Quantum Genetic Optimization Algorithm (QGOA). The algorithm
starts with a qubit representation of the population and a quantum evaluation unit.
Then, the selection step of the GA uses the quantum selection procedure, while the
remaining steps (e.g., crossover, mutation, and substitution) are performed on a classical
computer.

Nowotniak (2010) briefly presents Quantum-Inspired Evolutionary Algorithm (QIEA).
Moreover, in Nowotniak & Kucharski (2010) the authors present the results after applying
a meta-optimization algorithm for tuning the QIEA parameters for numerical
optimizations problems coded in real numbers. The algorithm used for meta-optimization
is based on local unimodal sampling and is applied to adjust the crossover rate and the
contraction factor. According to Nowotniak & Kucharski (2010), the results show that
the local unimodal sampling is an effective method for the meta-optimization of QIEAs.

Zhang (2011) presents a survey of the research in QIEAs; the author shows the
differences between different solutions and compares the advantages and limitations of the
various solutions. The author introduces the Binary Observation QIEA, shows that the
use of Q-gates as a variation operator instead of crossover, recombination and mutation
have a positive impact on the optimality of the solutions. Compared to Binary Observation
QIEA, Binary Observation QIEA with crossover and mutation employs the mentioned
operators to replace the migration operator with benefits in population diversity, especially
in the later stages of evolution. Binary Observation QIEA with the novel update
method for Q-gates, defines the Q-gate angle θ = kf(α,β), which directly influences the
convergence speed. According to Zhang (2011), the algorithm also introduces the
catastrophe operator; the scope of the new operator is to replace the best individual with
the best individual of a new population if the best solution remains unchanged over some
generations.

SaiToh, Rahimi & Nakahara (2014) introduces a novel quantum genetic algorithm with
quantum crossover operation applied to all chromosomes in parallel. The proposed
solution uses two identical copies of a superposition corresponding to a generation to
relabel the qubits. They also show that the quantum genetic algorithm with quantum
crossover operations achieves a quadratic speedup over its classical counterpart.

Kumar & Kumar (2018) propose a novel Quantum-Inspired Evolutionary View
Selection Algorithm (QIEVSA). The authors also bring forward an experimental
comparison with other evolutionary view selection algorithms. The method makes
use of the Binary Observation QIEA algorithm to select the Top-K views from a
multidimensional lattice. The authors experimentally show that QIEA is able to select good
quality Top-K views for higher dimensional data sets (Kumar & Kumar, 2018).

Ardelean and Udrescu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.836 5/30

http://dx.doi.org/10.7717/peerj-cs.836
https://peerj.com/computer-science/

In Moussa, Calandra & Humble (2019), the authors present an iterative quantum
algorithm for finding the maximum value of a function along with the corresponding
implementations. The approach utilizes quantum search and extends the RQGA with a
dynamic oracle function.

Lahoz-Beltra (2016) presented a comparison between three algorithms: Quantum
Genetic Algorithm (QGA), Hybrid Genetic Algorithms (HGA), and RQGA. QGA and
HGA represent classical optimization methods, inspired by the principles of quantum
computing. The first QGA step is the initialization of a quantum population of
chromosomes; each chromosome is defined by a string of qubits. Hadamard gates and
rotation around Y-axis with a random number process each qubit. Then, a classical
computer performs the fitness evaluation, while a quantum computer (employing rotation
gates) performs the selection. The quantum computer also performs mutation using
inversion gates. Likewise, an HGA implements the above steps, the difference being that
the crossover operator is also quantum.

Graph coloring applications
As mentioned in Mahmoudi & Lotfi (2015), the graph coloring problem is a well-studied
NP-hard problem because of its multiple applications that include timetabling, scheduling,
radio frequency assignment, computer register allocation, printed circuit board testing,
and so forth.

The authors of Bincy & Presitha (2017) present the application of graph coloring in
scheduling problems, such as timetable scheduling, aircraft scheduling, and seating plan
design. In Dondi, Fertin & Vialette (2011), the authors present the use of graph coloring in
pattern matching.

In Hennessy & Patterson (2018), the authors also present the application of graph
coloring in register allocation algorithms; to this end, they build a graph representing all
possible candidates for allocation to a register.

In Orden et al. (2018), the authors present the application of graph coloring to
WI-FI channel assignment. Therefore, for a given spectrum of colors and a matrix of
interferences between each pair of colors, the authors use the Threshold Spectrum coloring
problem for fixing the number of colors available to minimize the interference threshold.
Moreover, they use the Chromatic Spectrum Coloring and a given threshold to find
the smallest number of colors that respect the constrain.

In Demange et al. (2015), the authors present the applications of graph coloring in
routing and wavelength assignment, dichotomy-based constrained encoding, frequency
assignment problems, and scheduling. As the authors mentioned, the routing and
wavelength assignment problem involves generating a set of light paths for each request—
routing—and selecting a light path per request, and assigning wavelengths to the selected
path–wavelength assignment. To solve the problem, the optical network is transformed
into a graph and the wavelengths are assigned using graph coloring. The dichotomy-based
constrained encoding problem can be reduced to a graph coloring problem and, as
mentioned by the authors, is used to generate asynchronous implementations of finite state
machines.

Ardelean and Udrescu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.836 6/30

http://dx.doi.org/10.7717/peerj-cs.836
https://peerj.com/computer-science/

Therefore, considering the large number of applications, solving graph coloring has
received a great deal of research interest Dokeroglu & Sevinc (2021). For instance, in
Aragón Artacho & Campoy (2018), the authors present a method for solving the graph
coloring problem using the Douglas-Rachford Algorithm. Indeed, they prove that the
algorithm is an effective heuristic for solving this NP-hard problem.

In Dokeroglu & Sevinc (2021), the authors propose a novel memetic Teaching-Learning-
Based Optimization (TLBO) algorithm, combined with tabu search, for solving the graph
coloring problem. Furthermore, they developed a version of TLBO that makes use of
parallelism for solving large graphs. The authors claim that the results of the parallel
version of the algorithm are better than those of its sequential counterpart, and the
solution is competitive with state-of-the-art solutions presented in the literature.

Mahmoudi & Lotfi (2015) present a new approach for solving the graph coloring
problem using a discrete Cuckoo Optimization Algorithm (COA). As stated by authors,
the success rate of the proposed solution is above 60% for solving DIMACS (Center for
Discrete Mathematics and Theoretical Computer Science) benchmark graphs, while in
most cases is close to 100%.

In Tomar et al. (2013), the authors propose a novel artificial bee colony optimization
algorithm for solving the graph coloring problem and compare the solutions with other
algorithms such as first fit, largest degree based ordering, and saturation degree based
ordering. They claim that the proposed solution can converge in a few iterations and
optimally allocate colors to the vertices of a graph. As mentioned by the authors, compared
to the other algorithms, their proposed solution can converge to the optimal solution in
very few iterations. Moreover, they show that the performance of the artificial bee
colony optimization algorithm improved with the increase of the graph size.

Graph coloring in quantum computing
Lately, quantum heuristic solutions for the graph coloring problem have received a great
deal of interest. Most of the proposed solutions rely on quantum implementations of
simulated annealing. In Kudo (2018), the authors use the Constrained Quantum Annealing
(CQA) to solve the graph coloring problem with the advantage of reducing the Hilbert
space dimension. Also, in Tabi et al. (2020) the authors introduce a space-efficient
embedding for quantum circuits that solve the graph coloring problem and present the
performance gain for this method. The authors indicate the limitation of the existing
Quantum Annealing (QA) hardware solutions by running various numerical simulations
and comparing results obtained with standard and enhanced Quantum Approximate
Optimization Algorithm (QAOA) circuits.

Titiloye & Crispin (2011) propose comparing Classical Annealing and QA in solving
graph coloring problems. The QA algorithm used in the comparison utilizes the Path-
Integral Monte Carlo for Quantum Annealing—a population-based extension to simulated
annealing inspired by quantum mechanics Titiloye & Crispin (2011). According to the
authors, the QA algorithm outperforms its classical counterpart, and even finds the best
algorithm solutions.

Ardelean and Udrescu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.836 7/30

http://dx.doi.org/10.7717/peerj-cs.836
https://peerj.com/computer-science/

In Silva et al. (2020), the authors start by formulating the Quadratic Unconstrained
Binary Optimization Problem (QUBO)—a powerful mathematical tool that can map any
problem to a quantum annealing computer. Silva et al. (2020) solve the problem using
different approaches: QUBO with classical simulated annealing in a simulated quantum
environment, using a D-Wave quantum machine, and reducing polynomial degree
using both the D-Wave library and their implementation. The results show that both
Simulated Annealing and QA produce good heuristics for the graph coloring problem,
although more solutions can be found using the quantum approach.

Kwok & Pudenz (2020) propose a comparison between a heuristic graph coloring
approximation algorithm—based on QA—and a fully classical implementation. The
metrics for calculating performance are success probability, wall clock time, and time-to-
solution. For wall clock time and time-to-solution, the quantum solution performs better
than its classical equivalents. As mentioned in Kwok & Pudenz (2020), the classical
algorithm takes significantly longer to return a graph coloring for all graph sizes. The same
is also true in the case of time-to-solution. The probability of success for the classical
algorithm is lower than the quantum algorithm in the case of smaller size graphs.
As the authors mention, the results of their experiments suggest a potential quantum
advantage (Kwok & Pudenz, 2020).

Fabrikant & Hogg (2002) also present a quantum computer heuristic search algorithm
for graph coloring. The authors consider the NP-complete case of 3 colors. For the
problem representation, the authors introduce the idea of associating each node with a
value from 0 to 3 (using two bits per node). As mentioned in Fabrikant & Hogg (2002), 0
represents an uncolored node, and any other value represents a specific color assigned to
the node. Since the generalized Hamming distance underpins the quantum algorithm,
using this representation has the benefit that the distance between the states is a simple
function of their bit strings.

Shimizu & Mori (2021) present an exponential-space quantum algorithm computing
the chromatic number using the Quantum Random Access Memory (QRAM); the
authors also describe a polynomial-space quantum algorithm not using QRAM for
the 20-coloring problem. Their main result is the theorem that states that, to solve the
chromatic number problem, the running time for the exponential-space bounded error
quantum algorithm using QRAM is O 1:9140nð Þ (Shimizu & Mori, 2021).

METHODOLOGY
Quantum computing promises substantial speedups over conventional machines in many
practical applications. To this end, the Qiskit toolchain fosters the development and
simulation of quantum algorithms and applications that will run on real quantum
machines Anis et al. (2021). As described inWille, Van Meter & Naveh (2019), Qiskit is an
end-to-end open-source software library for quantum computing, covering the full stack
from the actual interaction with the IBM Q hardware up to the application-level
algorithms. Compared to other quantum simulators, Qiskit Aer allows the execution of
algorithms on noiseless or noisy simulators, so that we observe the expected results, or the
effects of noise on the expected results.

Ardelean and Udrescu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.836 8/30

http://dx.doi.org/10.7717/peerj-cs.836
https://peerj.com/computer-science/

Therefore, we decided to instantiate the RQGA for solving the node coloring version of
the graph coloring problem. On randomly generated graphs, we employ RQGA to
color the nodes such that no two adjacent nodes have the same color (see Fig. 1). Our goals
are to observe the results, measure the performance of the algorithm in a simulated
environment, and use the results for further algorithm development.

The Reduced Quantum Genetic Algorithm is an entirely quantum evolutionary
algorithm proposed by Udrescu, Prodan & Vlăduţiu (2006), which puts forth a new
methodology for running genetic algorithms on a quantum computer (Lahoz-Beltra,
2016). They also provide a design for the special-purpose oracle that works with a modified
version of the maximum finding algorithm (Ahuja & Kapoor, 1999). Thus, the proposed
method reduces the quantum genetic algorithm to a Grover search. The RQGA takes
advantage of the fact that the best fitness value can be marked without destroying the
superposition of the quantum register. In this context, Grover’s algorithm (Grover, 1996)
can find the solution of the problem. The main steps of RQGA are:

� Initialize a superposition of all possible chromosomes

� Compute the unitary operation corresponding to fitness computation

� Apply Grover’s algorithm:

– Ask the oracle O to mark the fitness value bigger than some value max

– Apply Grover’s diffusion operator G to augment the quantum amplitude of the
marked fitness values

� Perform the measurement to get one of the marked fitness values

� Update max value with the measured fitness value

Assessment

by Fitness

Grover

Search

Ini�al
Popula�on

Assessed
Popula�on

|0> |0> . . . |0>

|0> |0> . . . |1>

|1> |1> . . . |1>

|1> . . . |1>

|0> |1> . . .

|1> |1> . . . |1>

|..>

|..>

0

2

3

1 1

3

2

0

Figure 1 The overview of applying RQGA to solve the graph coloring problem: we start with a
randomly generated graph, create the superposition of n × |V| basis states (representing the initial
population made of valid and invalid individuals) then apply the fitness function over the
individual register. The assessed population consists of invalid individuals represented as negative
numbers in two's complement and valid individuals represented as positive numbers (also in two's
complement). Grover Search is applied over the assessed population. The outcome of the algorithm are
the valid configurations for graph coloring. Full-size DOI: 10.7717/peerj-cs.836/fig-1

Ardelean and Udrescu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.836 9/30

http://dx.doi.org/10.7717/peerj-cs.836/fig-1
http://dx.doi.org/10.7717/peerj-cs.836
https://peerj.com/computer-science/

� Repeat the steps above until the max value is not improved

� Return the chromosome value corresponding to max as solution.

Problem statement
We consider an undirected graph G = (V,E) where V is the set of nodes and E is the
set of edges. We define K as the set of colors. Our problem is to find the best way of
assigning the colors in K to nodes from V, such that no two adjacent nodes have the same
color (eij ∈ E with k við Þ 6¼ k vj

� �
for distinct nodes vi and vj). Thus, coloring G is the

mapping k : V ! E such that k við Þ 6¼ k vj
� �

if ∃eij ∈ E, as mentioned in Titiloye & Crispin
(2011). The chromatic number of the graph, χ(G), can be found by first detecting the
coloring for a high estimate of χ(G) and then successively narrowing the available colors.

Test graphs
Let the K be the set of colors and G = (V,E) a randomly generated Erdős-Rényi graph with a
defined edge probability (Wang & Chen, 2003). In G, the number of edges in the graph is
|E|, and |V| is the number of nodes.

Implementation
The first step initializes all individual–fitness register pairs |u⟩i � |0⟩i as

jwi1 ¼
1ffiffiffiffiffiffi
2N

p
X2N�1

i¼0

juii � j0ii: (5)

The representation we use for graph coloring uses (Fabrikant & Hogg, 2002) work; the
difference is that we consider each binary combination a color. If the number of colors
used for coloring the graph is not a power of 2, then the unused combinations are
considered invalid. The chromosome is a (n × |V|)-qubit quantum register, where each
color is represented using n-qubits. Since there are 2n − 1 possible colors, we define a
subset F � K of invalid color combinations. The quantum chromosome is a superposition
of all (n × |V|)-bit classical chromosome values, representing valid and invalid
individuals, see Udrescu, Prodan & Vlăduţiu (2006) (an invalid individual represents a
combination that contains at least one of the invalid colors codes). The same approach can
be used for edge coloring with the difference that the chromosome is a (n × |E|)-qubit
quantum register. Algorithm 1 shows how to create the initial population.

We represent the individual using a (n× |V|)-qubit individual quantum register and the
fitness value using aM-qubit fitness register (see Fig. 2). As such, our algorithm uses 2n× |V|

− 1 quantum register pairs. In order to maintain correlation between each individual
and its corresponding fitness value, the fitness function must be an unitary operator, Ufit,
corresponding to the Boolean function f : f0; 1gn�jVj ! f0; 1gM .

The next step is to calculate the fitness value for all individuals. The step is achieved by
defining the function f : fG;Kg ! N [f�1g, G ¼ V ; Eð Þ as

Ardelean and Udrescu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.836 10/30

http://dx.doi.org/10.7717/peerj-cs.836
https://peerj.com/computer-science/

f ððV; EÞ; kÞ ¼
�1 k 2 F
0 ∄k við Þ; k vj

� � 2 K; k við Þ 6¼ k vj
� �

; eij 2 E
x 9k við Þ; k vj

� � 2 K; k við Þ 6¼ k vj
� �

; eij 2 E; x 2 N:

8<
: (6)

K is a set of colors

K ¼fxn�1 . . .xi . . .x00;xn�1 . . .xi . . .x01;. . .xn�1 . . .xi . . .x0j;. . . ;xn�1 . . .xi . . .x0jVj�1g; (7)

where xi ∈ {0,1} is a single bit and xn�1 . . . xi . . . x0j is the binary representation of a
color from the set K. The fitness function returns ’−1’ if the individual is invalid and ‘0’ if
there are no two adjacent nodes with different coloring. If there are adjacent nodes
with different coloring, then the fitness function will return x 2 N, representing the
number of edges between those nodes that met the criteria.

For solving the edge coloring problem, we can apply the same fitness function with
minimal adjustments. Thus, the fitness function f : fG;Kg ! N [f�1g, G ¼ V ;Eð Þ,
returns ’−1’ if the individual is invalid (the chromosome contains at least one of the invalid
colors), ’0’ if there are no two incident edges with different coloring and x 2 N,
representing the number of nodes with incident edges of different coloring. Equation

Algorithm 1 Quantum circuit initialization.

1: Create the individual quantum register |u⟩

2: Create the fitness quantum register |fitnessu⟩

3: Create the carry quantum register |carry⟩

4: Create the oracle quantum register |oracle⟩

5: Create the positive number of edges quantum register |val⟩

6: Create the quantum circuit QC

7: |u⟩ = H|u⟩

8: |oracle⟩ = H|oracle⟩

(a) The format of the (n × |V|) - qubit individual register.

(b) The format of the (M + 1) - qubit fitness register.

Figure 2 (A) The format of the individual register. A n-qubit binary combination of the color is
assigned to each node, such the size of the register is (n × |V|)-qubits. (B) The format of the fitness
register:M qubits used for fitness value representation in two’s complement, and 1 qubit used to indicate
the validity of the corresponding chromosome. Full-size DOI: 10.7717/peerj-cs.836/fig-2

Ardelean and Udrescu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.836 11/30

http://dx.doi.org/10.7717/peerj-cs.836/fig-2
http://dx.doi.org/10.7717/peerj-cs.836
https://peerj.com/computer-science/

f ððV; EÞ; kÞ ¼
�1 k 2 F
0 ∄k eij

� �
; k eikð Þ 2 K; k eij

� � 6¼ k eikð Þ; eij; eik 2 E
x 9k eij

� �
; k eikð Þ 2 K; k eij

� � 6¼ k eikð Þ; eij; eik 2 E

8<
: (8)

defines the fitness function for the edge coloring problem.
In both Eqs. (6) and (8), the fitness function accepts both valid and invalid individuals

as arguments. As mentioned in Udrescu, Prodan & Vlăduţiu (2006), the values of the
fitness function represented in the two’s complement belong to distinct areas in the
quantum state vector representation, corresponding to valid and invalid individuals.
Negative fitness values represent invalid individuals, with the most significant bit
indicating the validity (‘0’ on the most significant bit position represents an invalid
individual and ‘1’ represents a valid one). Thus, Ufit characterized by the fitness function f
is an unitary operator

Ufit : jui � j0i ! jui � jffitðuÞi; (9)

where |u⟩ � |0⟩ is the individual-fitness value quantum pair register. After applying

Ufit :
1ffiffiffiffiffiffi
2N

p
X2N�1

i¼0

juii � j0ii !
1ffiffiffiffiffiffi
2N

p
X2N�1

i¼0

juii � jffitðuÞii (10)

on the initial population, we obtain an assessed population

jwi2 ¼ Ufitjwi1 ¼
1ffiffiffiffiffiffi
2N

p
X2N�1

i¼0

juii � jffitðuÞii: (11)

We implement the fitness sub-circuit using n-qubit Controlled-Not gates. In Fig. 3, we
present the Ufit sub-circuit with input and output qubits, and in Algorithm 2 we present
the description of the subcircuit.

According to the algorithm presented in Udrescu, Prodan & Vlăduţiu (2006), the
next step involves the random generation of value max 2 N;max > 0 from the interval
[2M + 1, 2M + 2 − 1), withM representing the size of the fitness quantum register, such that
the search for the individual with the highest fitness will not occur in the invalid
individuals area.

In the implementation of the graph coloring problem, an individual is invalid if it
contains at least one of the invalid colors; the fitness value is −1 in that case. On the other
hand, the fittest individual contains the configuration that colors the biggest number of
nodes from G such that no two adjacent nodes vi,vj have the same color. The fitness value
of the fittest individual represents the number of edges between adjacent nodes with
different coloring. Thus, instead of the randomly generated max value, we can use the
number of edges in the graph, and so the search of the highest fitness will occur in the valid
individuals area.

In the next step, we apply the Oracle and Grover diffuser m − 1 times, where m is the
number of Grover Iterations.

Ardelean and Udrescu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.836 12/30

http://dx.doi.org/10.7717/peerj-cs.836
https://peerj.com/computer-science/

(a) Fitness assessment sub-circuit represented by Ufit.

(b) Gate-level implementation of the Ufit subcircuit.

Figure 3 The gate-level implementation of the Ufit in Grover's algorithm sub-circuit utilizes of n-
qubits Toffoli gates as presented in Nielsen & Chuang (2002). The qubits from the individual regis-
ter are control qubits, while the qubits from the fitness registers are the target qubits. v is the valid qubit
used for indicating the validity of the corresponding chromosome.

Full-size DOI: 10.7717/peerj-cs.836/fig-3

Algorithm 2 Ufit sub-circuit description.

1: Create the individual quantum register |u⟩

2: Create the fitness quantum register | fitnessu⟩

3: Create the quantum sub-circuit Uf it

4: for each individual in population do

5: fitness_value = calculate_fitness(adjacency_matrix, individual)

6: for i = 0 to M−1 do

7: if fitness_value[i] = 1 then

8: | fitnessu⟩i = CNOT(|u⟩, | fitnessu⟩i)

9: end if

10: end for

11: if fitness value is valid then

12: | fitnessu⟩ = CNOT(|u⟩, | fitnessu⟩valid)

13: end if

14: end for

Ardelean and Udrescu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.836 13/30

http://dx.doi.org/10.7717/peerj-cs.836/fig-3
http://dx.doi.org/10.7717/peerj-cs.836
https://peerj.com/computer-science/

The Oracle operates on the fitness register qubits except the validity qubit v and uses
two’s complement number representation for marking the states. As such, by adding −

(max + 1), (when max 2 N;max > 0) to the fitness value, the most significant qubit will
always be 0. The corresponding basis states are marked by shifting their amplitudes
and the fitness value is restored by adding max + 1. This way, the oracle ~OmaxðffitðuÞÞ is
applied

jwi3 ¼ ~Omaxjwi2 ¼ ð�1ÞgðuÞ 1ffiffiffiffiffiffi
2N

p
X2N�1

i¼0

juii � jffitðuÞii (12)

such that

gðuÞ ¼ 1 if jffitðuÞii � max
0 otherwise;

�
(13)

then the corresponding |ffit(u)⟩i basis states are marked.
In our algorithm, the oracle is implemented as described in Udrescu, Prodan &

Vlăduţiu (2006), using a quantum two’s complement subtractor and a quantum two’s
complement adder, and it is then applied on the entire fitness register (except for the
validity qubit). By using the two’s complement addition, the correlation between an
individual and its corresponding fitness value is not affected because—as presented in
Udrescu, Prodan & Vlăduţiu (2006)—the addition is a pseudo-classical permutation
function. Figure 4 shows the Oracle circuit implementation, while Algorithm 3 provides
the pseudocode for the Oracle description. All basis states for which the fitness value is
greater than the number of edges are marked by multiplying their amplitudes with −1.
For the subtractor and adder implementation, we use a Quantum Ripple Carry Adder
circuit, as presented in Cuccaro et al. (2004). The gate-level implementation of the adder
subcircuit is presented in Fig. 5. We analyzed the possibility of using a Quantum Carry
Look-Ahead Adder (Cheng & Tseng, 2002), but it presented the disadvantage of a higher

Fitness
register

Value
register

Figure 4 Oracle circuit made with two quantum two’s complement adders, two Hadamard gates and
one n-qubit Toffoli gate: f is the fitness quantum register, val is the quantum register storing themax
value, while c0 and c1 are the carry qubits used in the subtraction and addition circuits; v is the valid
qubit used to indicate the validity of the corresponding chromosome. Finally, ws is the oracle
workspace qubit as presented in Udrescu, Prodan & Vlăduţiu, 2006. To perform subtraction, we first
prepare the negative value in val quantum register, by applying the X-gate, and by setting c0 = 1.

Full-size DOI: 10.7717/peerj-cs.836/fig-4

Ardelean and Udrescu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.836 14/30

http://dx.doi.org/10.7717/peerj-cs.836/fig-4
http://dx.doi.org/10.7717/peerj-cs.836
https://peerj.com/computer-science/

Figure 5 Four-qubits Quantum Ripple Carry Adder circuit, as presented in Cuccaro et al. (2004).
(A) The adder sub-circuit with the two operands a and b and the carry qubits. The result of the addi-
tion is stored in b. Both operands are represented on 4-qubits. (B) The gate-level implementation of the
sub-circuit. Full-size DOI: 10.7717/peerj-cs.836/fig-5

Algorithm 3 Oracle subcircuit description.

1: Create |pqreg⟩, a quantum register that stores a positive value representing the maximum number of
edges

2: Create |fitnessu⟩–the fitness quantum register

3: Create |ws⟩–the oracle workspace quantum register

4: Create |cin⟩–the carry-in quantum register

5: Create |cout⟩–the carry-out quantum register

6: Create the Oracle quantum sub-circuit

7: Append Adder(|pqreg⟩,|fitnessu⟩,|cin⟩,|cout⟩ sub-circuit ▹ Subtract the number of edges from the fitness
value

8: |ws⟩ = H|ws⟩

9: |ws⟩ = CNOT(|fitnessu⟩,|ws⟩)

10: |ws⟩ = H|ws⟩

11: Append Adder(|pqreg⟩,|fitnessu⟩,|cin⟩,|cout⟩ sub-circuit ▹ Add the number of edges to the fitness value

Ardelean and Udrescu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.836 15/30

http://dx.doi.org/10.7717/peerj-cs.836/fig-5
http://dx.doi.org/10.7717/peerj-cs.836
https://peerj.com/computer-science/

number of qubits. Considering M the size of the fitness register and m ¼ O
ffiffiffiffiffiffi
2M

p� 	
the

number of Grover Iteration, by using the Ripple Carry Adder circuit we utilize one carry-in
qubit and 2 qubits for carry-out in each iteration (1 carry-out qubit for each adder),
thus a total of 2

ffiffiffiffiffiffi
2M

p
þ 1 qubits. For the Quantum Carry Look-Ahead Adder, we need a

total of 2(M + 1) carry qubits in each iteration (M + 1 carry qubits for each adder), hence
not an acceptable solution to be used in our implementation.

Next, we use the Grover diffuser, G, to augment the amplitude of the marked states, |ψ⟩i
= |ffit(u)⟩i with ffit(u) ≥ 0, in the fitness register:

jwi4 ¼ Gjwi3: (14)

We update the value of max with the state found. Figure 6 shows the Grover diffuser
sub-circuit and its implementation; f is the fitness quantum register, v is the valid qubit and
ws is the oracle workspace. In our implementation, we used the Hadamard Gate, the
Pauli-X gates and the n-qubit Toffoli gate.

The last step in the algorithm is to measure |ψ⟩m − 1 register to obtain the corresponding
individual. The measured value represents the solution found to solve the problem.

Complexity analysis
RQGA, as presented in Udrescu, Prodan & Vlăduţiu (2006), is an adaptation of the
quantum maximum finding algorithm introduced in Ahuja & Kapoor (1999). According
to Ahuja & Kapoor (1999), the algorithm requires O ffiffiffiffi

N
p� �

queries made to the oracle.
Since in RQGA the initial state processed using Grover’s Algorithm is an equally weighted
superposition, it means that no extra Grover Iterations are required in order to augment
the amplitudes (Udrescu, Prodan & Vlăduţiu, 2006)—the algorithm maintains the
number of steps of the quantummaximum finding algorithm. Thus, RQGA’s complexity is

O ffiffiffiffi
N

p� �
, where N is the search space size.

For solving the graph coloring problem using RQGA, we define a M-qubit fitness
quantum register. As shown, the size of the search space is 2M. Therefore, according to
Grover (1996) and Nielsen & Chuang (2002), the number of operations in which the oracle
is consulted is O

ffiffiffiffiffiffi
2M

p� 	
. Considering that there are N possible solutions to the problem,

according to Nielsen & Chuang (2002), the algorithm only needs to consult the oracle

O
ffiffiffiffiffi
2M
N

q
 �
; thus, the complexity of the algorithm in solving the graph coloring problem is

Fitness
register

Figure 6 Diffuser sub-circuit. (A) The sub-circuit with input and output qubits; (B) the gate-level
implementation. Full-size DOI: 10.7717/peerj-cs.836/fig-6

Ardelean and Udrescu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.836 16/30

http://dx.doi.org/10.7717/peerj-cs.836/fig-6
http://dx.doi.org/10.7717/peerj-cs.836
https://peerj.com/computer-science/

O
ffiffiffiffiffi
2M
N

q
 �
if there are N possible solutions.

MEASUREMENTS AND RESULTS
For performing the measurements, we implemented the algorithm as presented in Fig. 7,
using Qiskit—for the simulation we use the IBMQ back end (Anis et al., 2021). We
performed the simulations using the ibm-q provider with the ibmq_qasm_simulator back
end (version 0.1.547 with a configuration of 16 shots). The simulator is general and
context-aware—a general-purpose simulator for simulating quantum circuits, both ideally
and subject to noise modeling—limited to 32-qubit circuits. The following basic gates
are available on the mentioned simulator: U1, U2, U3, U, P, R, RX, RY, RZ, ID, X, Y, Z, H,
S, SDG, SX, T, TDG, SWAP, CX, CY, CZ, CSX, CP, CU1, CU2, CU3, RXX, RYY, RZZ,
RZX, CCX, CSWAP, MCX, MCY, MCZ, MCSX, MCP, MCU1, MCU2, MCU3, MCRX,
MCRY, MCRZ, MCR, MCSWAP, UNITARY, DIAGONAL, MULTIPLEXER,
INITIALIZE, KRAUS, ROERROR, DELAY. In the implementation of RQGA we used
Hadarmard, Pauli-X, Toffoli, and n-qubits Toffoli gates which correspond to the H, X,
CCX and MCX gates available in the simulator.

To study the complexity of the algorithm, we run it on 12 data sets. We utilize 10 data
sets for testing the node coloring; half of them are represented by 4-node randomly
generated graphs while the rest are 5-node randomly generated graphs. The remaining two
data sets are used for testing the edge coloring capabilities of the algorithm. Each graph is
colored using a maximum of 3 colors, K = 3. For the fitness representation, we use
4 qubits, thus, the number of Grover Iterations needed for finding the results is

O ffiffiffiffiffi
24

p� 	
� 4. To analyze the complexity of the algorithm, we variate the number of

Grover Iterations for each data set and perform each measurement 10 times. We are
interested in observing the convergence of the algorithm, and for this purpose we analyze

Figure 7 Reduced quantum genetic algorithm implementation for solving the graph coloring
problem. The individual quantum register is represented by i, the fitness quantum register by f, while
v is the valid qubit; val represents the max value as presented in Udrescu, Prodan & Vlăduţiu, 2006. The
carry-in and carry-out qubits used by adder sub-circuits are represented by c0 and c1. We represent only
one Grover Iteration for simplicity. Full-size DOI: 10.7717/peerj-cs.836/fig-7

Ardelean and Udrescu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.836 17/30

http://dx.doi.org/10.7717/peerj-cs.836/fig-7
http://dx.doi.org/10.7717/peerj-cs.836
https://peerj.com/computer-science/

the solutions that represent the local optimum (i.e., valid solutions) and those that
represent the global optimum (i.e., best solutions) for the coloring problem.

We start by presenting the results obtained after running the node coloring algorithm
on 4-node graphs and continue with the results obtained after running our algorithm
on 5-node graphs. The presented outcomes are ordered by the number of edges. Last, we
show the results obtained after running the edge coloring algorithm.

Experimental results
In Supplemental Information, Figs. S1, S2, and S3 we notice that the algorithm finds
only the best solutions, starting from the first Grover Iteration. As expected, we achieve the
best outcome in terms of the number of best solutions after 4 Grover iterations. In these
cases, our algorithm also found the chromatic number.

For the graphs in Fig. S4 from Supplemental Information, and Fig. 8—graphs with a
higher number of edges–the algorithm found valid and best solutions, with the best
outcome (in terms of number of solutions) obtained after 3 and 4 Grover iterations.

For the graphs presented in Supplemental Information, Figs. S5 and S6, the algorithm
determines both the best coloring and chromatic number, with best outcome (in terms of
number of solutions) obtained after 3 and 4 Grover iterations. In the case of graphs

Figure 8 (A) An Erdős-Rényi graph generated with edge probability 0.4 and 4 nodes, which we used
for the coloring problem. (B) The same graph colored with the solution found by our algorithm. The
result for this graph uses three colors, so that nodes 3 and 2 have the same color and nodes 0 and 1 are
colored using different colors. (C) The experimental results; after four iterations the algorithm
produced six valid solutions from which two are best solutions.

Full-size DOI: 10.7717/peerj-cs.836/fig-8

Ardelean and Udrescu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.836 18/30

http://dx.doi.org/10.7717/peerj-cs.836/supp-1
http://dx.doi.org/10.7717/peerj-cs.836/supp-1
http://dx.doi.org/10.7717/peerj-cs.836/supp-1
http://dx.doi.org/10.7717/peerj-cs.836/supp-1
http://dx.doi.org/10.7717/peerj-cs.836/supp-1
http://dx.doi.org/10.7717/peerj-cs.836/supp-1
http://dx.doi.org/10.7717/peerj-cs.836/fig-8
http://dx.doi.org/10.7717/peerj-cs.836
https://peerj.com/computer-science/

presented in Figs. S7 and S8 from Supplemental Information, and Fig. 9—graphs with a
higher number of edges—the algorithm determined the best coloring after 2 Grover
iterations.

In Figs. 10 and 11, we present the relationship between the number of Grover iterations
and the minimum, maximum, and average number of valid and best solutions found after
testing the node coloring algorithm on graphs with 4 and 5 nodes.

In Figs. 12 and 13, we present the results after using the algorithm to solve the edge
coloring problem. For the graph presented in Fig. 12, the algorithm determined the best
results after 1 Grover iteration. In Fig. 3, the algorithm finds the best solution after 2
Grover iterations. We obtain the best outcome from the point of view of valid and best
solutions, after 3 oracle queries.

DISCUSSIONS
We observed experimentally that, for the 4-node graphs, some of the best solutions found
used only 2 colors instead of the configured 3 colors. Thus, without any modifications in
the fitness function for simple graphs, the algorithm is capable of determining both the
coloring and the chromatic number. For more complex graphs, the algorithm can
determine the chromatic number by modifying the fitness function: for the valid
individuals that color the graph using a number of colors smaller than the configured one,

Figure 9 (A) An Erdős-Rényi graph generated with edge probability 0.4 and five nodes, which we
used for the coloring problem. (B) The same graph colored with the solution found by our
algorithm. The solution for this graph uses three colors, so that nodes 0 and 3 are colored using
the first color, nodes 1 and 4 are colored using the second color, node 2 is colored using the third
color. (C) The experimental results; after 3 iterations the algorithm produced eight valid solutions
from which two are best solutions. Full-size DOI: 10.7717/peerj-cs.836/fig-9

Ardelean and Udrescu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.836 19/30

http://dx.doi.org/10.7717/peerj-cs.836/supp-1
http://dx.doi.org/10.7717/peerj-cs.836/supp-1
http://dx.doi.org/10.7717/peerj-cs.836/fig-9
http://dx.doi.org/10.7717/peerj-cs.836
https://peerj.com/computer-science/

the fitness value will be amplified by a factor. Thus, solutions with a better (i.e., smaller)
chromatic number will have a bigger fitness value, which generates a higher probability
to be chosen as the best solutions.

In subsection Complexity analysis, we show that the expected complexity is O
ffiffiffiffiffi
2M
N

q
 �

oracle queries, whereM is the fitness quantum register size and N is the number of possible
solutions. Experimentally, the complexity assessment is confirmed; in most of the
experiments, the algorithm found best solutions to the problem after the first queries,

confirming that only O
ffiffiffiffiffi
2M
N

q
 �
iterations are required.

Compared to other solutions, our approach using RQGA can be used to solve both the
node and edge coloring forms of the graph coloring problem. Moreover, with minimal
adjustments to the fitness function, our solution can determine the chromatic number. In

(a) The relationship between the number of Grover iterations and the minimum,
maximum, and average number of valid solutions.

(b) The relationship between the number of Grover iterations and the minimum,
maximum, and average number of best solutions.

Figure 10 The solutions for the graph coloring problem described in subsection problem statement.
For each number of Grover iterations, both panels depict the minimum, maximum, and average number
of solutions extracted from the results obtained after coloring the 4-node graphs using our algorithm.

Full-size DOI: 10.7717/peerj-cs.836/fig-10

Ardelean and Udrescu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.836 20/30

http://dx.doi.org/10.7717/peerj-cs.836/fig-10
http://dx.doi.org/10.7717/peerj-cs.836
https://peerj.com/computer-science/

Table 2, we provide a comparison between our approach and other algorithms. Since
the literature presents different types of heuristic algorithms, a comparison from the point
of view of algorithm convergence is not relevant. Nevertheless, a possible comparison
approach is to use the perspective of the number of solutions and optimality. Such
comparisons with the heuristic algorithms presented would involve running RQGA on the
same data sets. Unfortunately, since our algorithm is simulated on a classical computer,
we have limitations on the number of qubits we can simulate, owing to the simulation
time and circuit complexity (i.e., number of Controlled-Not gates). Since our approach is
purely quantum, we need to compare it with purely quantum algorithms. Thus, we first
consider a comparison that focuses on the forms of graph coloring problem that are
solved, the ability to determine the chromatic number, and metrics used in order to
determine the algorithm’s performance. Additionally, we provide a comparison that
focuses on the solution count between RQGA and the algorithms presented in Silva et al.

(a) The relationship between the number of Grover iterations and the minimum,
maximum, and average number of valid solutions.

(b) The relationship between the number of Grover iterations and the minimum,
maximum, and average number of best solutions.

1 2 3 4

Number of Grover Iterations

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

N
um
be
r
of
So
lu
tio
ns
fo
un
d

0 0

1 11

2 2 2

Figure 11 The solutions for the graph coloring problem described in subsection problem statement.
For each Grover iteration, both panels depict the minimum, maximum, and average number of solutions
extracted from the results obtained after coloring the 5-node graphs with our algorithm.

Full-size DOI: 10.7717/peerj-cs.836/fig-11

Ardelean and Udrescu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.836 21/30

http://dx.doi.org/10.7717/peerj-cs.836/fig-11
http://dx.doi.org/10.7717/peerj-cs.836
https://peerj.com/computer-science/

(2020); we also compare our approach with the algorithms presented in Silva et al. (2020),
Tabi et al. (2020), and Aragón Artacho & Campoy (2018) from the perspective of the
number of iterations required to find a solution that colors a 5-node graph.

We performed 3 simulations with 8,192 repetitions to count the number of solutions
found by our approach that color the graph from Fig. 9, as presented in Fig. 14. In Fig. 15
we present the comparison between our approach and the algorithms presented in
Silva et al. (2020) that focus on the ratio between the number of solutions (optimal,
possible, and none) and the number of repetitions. RQGA performed 4 iterations 8,192
times while the algorithms presented in Silva et al. (2020) performed 5,000 iterations
10,000 times. For all algorithms, we divided the number of solutions found by the number
of iterations multiplied with the number of repetitions. Therefore, as presented in Fig. 15,
RQGA performed better than the other algorithms because our approach has a success
probability of 0.76% for finding the optimal solutions, compared to 0.0027% representing
the best of the algorithm C_Q_sim.

In Fig. 16 we present a comparison between RQGA and the algorithms presented in
Silva et al. (2020), Tabi et al. (2020), and Aragón Artacho & Campoy (2018), from the
perspective of the number of iterations required to find the solutions that color a 5-node
graph. As presented in subsection Complexity analysis and confirmed experimentally,
RQGA requires 4 iterations for finding the solutions while the mentioned heuristic
algorithms require 44, 5,000, and 100 iterations, respectively.

Figure 12 (A) An Erdős-Rényi graph generated with edge probability 0.4 and four nodes, which we
used for the coloring problem. (B) The same graph with edge colored using the solution found by our
algorithm. The solution for this graph uses two colors. (C) The experimental results: after three
iterations, the algorithm produced five valid solutions from which 1 is best solution.

Full-size DOI: 10.7717/peerj-cs.836/fig-12

Ardelean and Udrescu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.836 22/30

http://dx.doi.org/10.7717/peerj-cs.836/fig-12
http://dx.doi.org/10.7717/peerj-cs.836
https://peerj.com/computer-science/

Figure 13 (A) An Erdős-Rényi graph generated with edge probability 0.4 and four nodes, which we
used for the coloring problem. (B) The same graph with edge colored using the solution found by our
algorithm. The solution for this graph uses three colors. (C) The experimental results: after three
iterations, the algorithm produced eight valid solutions from which 2 are best solution.

Full-size DOI: 10.7717/peerj-cs.836/fig-13

Table 2 Comparison between different approaches in solving the graph coloring problem. Since we include different heuristic algorithms, the
comparison focuses on characteristics such as: graph coloring form, ability to determine the chromatic number, metrics used in order to
determine algorithm’s performance.

Algorithm Graph
coloring form

Chromatic
number

Observed metrics

RQGA Node and edge
coloring

Minimal
adjustments

O
ffiffiffiffiffiffi
2M

p
N

� 	
complexity

Quantum optimization for the graph coloring problem with
space-efficient embedding Tabi et al. (2020)

Node coloring Not mentioned Convergence and CPU time

Graph coloring with quantum annealing Kwok & Pudenz (2020) Node coloring Not mentioned Success probability, time to
solution,wallclock time

Graph coloring with quantum heuristics Fabrikant & Hogg (2002) Node coloring Not mentioned Asymptotic analysis

Quantum annealing of the graph coloring problem Titiloye & Crispin (2011) Node coloring Not mentioned Number of solutions found

Constrained quantum annealing of graph coloring Kudo (2018) Node coloring Not mentioned Residual energy and success
probability

Mapping graph coloring to quantum annealing Silva et al. (2020) Node coloring Not mentioned Number of optimal
solutions

Ardelean and Udrescu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.836 23/30

http://dx.doi.org/10.7717/peerj-cs.836/fig-13
http://dx.doi.org/10.7717/peerj-cs.836
https://peerj.com/computer-science/

Figure 14 Solutions count for RQGA. We performed three simulations with 8,192 repetitions to
solve the coloring of the graph from Fig. 9. We use the notations from Silva et al. (2020) to denote
best, valid, and invalid solutions. As such, optimal represents best solutions, valid solutions are called
possible, and the invalid ones are called none. Full-size DOI: 10.7717/peerj-cs.836/fig-14

Figure 15 Comparison between RQGA and the algorithms presented in Silva et al. (2020). All
algorithms solved the coloring of the graph from Fig. 9. We use the notations from Silva et al. (2020) to
denote best, valid, and invalid solutions. As such, optimal represents best solutions, valid solutions are
called possible, and the invalid ones are called none. Full-size DOI: 10.7717/peerj-cs.836/fig-15

Ardelean and Udrescu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.836 24/30

http://dx.doi.org/10.7717/peerj-cs.836/fig-14
http://dx.doi.org/10.7717/peerj-cs.836/fig-15
http://dx.doi.org/10.7717/peerj-cs.836
https://peerj.com/computer-science/

LIMITATIONS
Our study is limited by the fact that we propose a purely quantummethod that needs to be
simulated, given that we do not have access to a quantum computer. As mentioned in
Udrescu, Prodan & Vlăduţiu (2012), the simulation of a quantum circuit on classical
computers requires run-times exponential with the circuit size. Spector (2004), shows that
the space and time requirements for simulation are of the order 2n for a system with
n-qubits. Moreover, Viamontes, Markov & Hayes (2009) argues that the linear algebraic
simulation of quantum computers would have time and memory complexity Oð22nÞ for
an n-qubit system. Indeed, due to the fourth postulate of quantum mechanics, the
simulation of quantum behavior on classical computers has exponential complexity.

Consequently, since we simulated the algorithm, we have limitations on the number of
qubits, simulation time, and circuit complexity. Such limitations have an impact on the
size of the datasets on which we apply the algorithm. Knowing the number of nodes in a
graph, the number of colors available, and the number of Grover iterations, we calculate
with function f the number of qubits required by the algorithm

f ðjVj; n;M;mÞ ¼ jV j � nþ 2� ðM þmÞ þ 3: (15)

In Eq. (15), variable |V| represents the number of nodes in graph, n represents the
number of qubits needed for color representation (as presented in subsection
Implementation); M represents the number of qubits required by fitness representation in
two’s complement; m ¼ O

ffiffiffiffiffiffi
2M

p� 	
represents the number of Grover Iterations; 3 qubits

are needed for carry-in, oracle workspace, valid flag, while adders need 2 qubits for
carry-out in each Grover iteration.

As such, for the graph presented in the Supplemental Information, Graph coloring
example—with 4 nodes—2 qubits are used for color representation, and 4 qubits are

Figure 16 Comparison between RQGA and the algorithms presented in Silva et al. (2020), Tabi et al.
(2020), and in Aragón Artacho & Campoy (2018) from perspective of number of iterations required for
finding the solutions that colors an 5-nodes graph.Compared to the mentioned algorithms, our approach
needs only four iterations for coloring the graph. Full-size DOI: 10.7717/peerj-cs.836/fig-16

Ardelean and Udrescu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.836 25/30

http://dx.doi.org/10.7717/peerj-cs.836/fig-16
http://dx.doi.org/10.7717/peerj-cs.836
https://peerj.com/computer-science/

used for fitness value representation. Considering that we need 4 Grover iterations, the
circuit requires a total of f(4,2,4,4) = 4 × 2 + 2× 8 + 3 = 27 qubits. Therefore, according to
Spector (2004), the space and time requirement for the simulation of the circuit is 227.

An increased number of qubits have an exponential impact on the circuit complexity
and on the simulation time of the algorithm. Thus, considering the above-mentioned
limitations, we could not simulate the algorithm on more complex graphs (i.e., with a high
number of nodes and edges).

CONCLUSIONS
This paper describes the instantiation of the Reduced Quantum Genetic Algorithm for
solving the graph coloring problem with the Qiskit toolchain. By this means, we introduce

a pure quantum heuristic method that solves the problem in O
ffiffiffiffiffi
2M
N

q
 �
Grover oracle

queries. We also provide solutions for the graph node coloring problem, the edge coloring
problem, and finding the chromatic number of a graph with several fitness adjustments.

Because of the big number of qubits required by the algorithm implementation, our
experiments based on computer simulations are limited. We observed the results to
determine the convergence and complexity of the algorithm by analyzing the solutions for
the problem. Experimentally, we prove the complexity assessment and we demonstrate
that, at least for graphs with a small number of nodes, the algorithm not only finds the best
solutions for the problem, but also the chromatic number.

Future research can analyze how the complexity of the algorithm can be reduced by
employing meta-heuristics, as well as the impact of meta-heuristics on convergence.
Indeed, our focus will be on finding a way to reduce the number of oracle queries, such that
the complexity of the algorithm is reduced without affecting convergence.

ACKNOWLEDGEMENTS
We acknowledge the use of the IBM Q for this work. The views expressed are those of the
authors and do not reflect the official policy or position of IBM or the IBM Q team.

ACRONYMS
COA Cuckoo Optimization Algorithm. 5

CQA Constrained Quantum Annealing. 5

GA Genetic Algorithm. 1, 4

HGA Hybrid Genetic Algorithms. 4

QA Quantum Annealing. 5, 6

QAOA Quantum Approximate Optimization Algorithm. 5

QGA Quantum Genetic Algorithm. 4

QGOA Quantum Genetic Optimization Algorithm. 4

QIEA Quantum-Inspired Evolutionary Algorithm. 4

QIEVSA Quantum-Inspired Evolutionary View Selection Algorithm. 4

QIGA Quantum-Inspired Genetic Algorithm. 4

QRAM Quantum Random Access Memory. 6

Ardelean and Udrescu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.836 26/30

http://dx.doi.org/10.7717/peerj-cs.836
https://peerj.com/computer-science/

QUBO Quadratic Unconstrained Binary Optimization Problem. 6

RQGA Reduced Quantum Genetic Algorithm. 1–4, 6, 7, 14, 15, 22–25

TLBO Teaching-Learning-Based Optimization. 5

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The authors received no funding for this work.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Sebastian Mihai Ardelean conceived and designed the experiments, performed the
experiments, analyzed the data, performed the computation work, prepared figures and/
or tables, authored or reviewed drafts of the paper, and approved the final draft.

� Mihai Udrescu conceived and designed the experiments, analyzed the data, prepared
figures and/or tables, authored or reviewed drafts of the paper, and approved the final
draft.

Data Availability
The following information was supplied regarding data availability:

The data is available at GitHub: https://github.com/sebastianardelean/
graphcoloringusingrqga.

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj-cs.836#supplemental-information.

REFERENCES
Ahuja A, Kapoor S. 1999. A quantum algorithm for finding the maximum. Available at https://

arxiv.org/abs/quant-ph/9911082.

Anis MS, Abraham H, AduOffei, Agarwal R, Agliardi G, Aharoni M, Akhalwaya IY,
Aleksandrowicz G, Alexander T, Amy M, Anagolum S, Arbel E, Asfaw A, Athalye A,
Avkhadiev A, Azaustre C, Bhole P, Banerjee A, Banerjee S, Bang W, Bansal A, Barkoutsos P,
Barnawal A, Barron G, Barron GS, Bello L, Ben-Haim Y, Bevenius D, Bhatnagar D, Bhobe
A, Bianchini P, Bishop LS, Blank C, Bolos S, Bopardikar S, Bosch S, Brandhofer S, Brandon,
Bravyi S, Bronn N, Bryce-Fuller, Bucher D, Burov A, Cabrera F, Calpin P, Capelluto L,
Carballo J, Carrascal G, Carriker A, Carvalho I, Chen A, Chen CF, Chen E, Chen JC, Chen R,
Chevallier F, Chinda K, Cholarajan R, Chow JM, Churchill S, Claus C, Clauss C, Clothier C,
Cocking R, Cocuzzo R, Connor J, Correa F, Cross AJ, Cross AW, Cross S, Cruz-Benito J,
Culver C, Córcoles-Gonzales AD, Navaneeth D, Dague S, Dandachi TE, Dangwal AN, Daniel
J, Daniels M, Dartiailh M, Davila AR, Debouni F, Dekusar A, Deshmukh A, Deshpande M,
Ding D, Doi J, Dow EM, Drechsler E, Dumitrescu E, Dumon K, Duran I, EL-Safty K,
Eastman E, Eberle G, Ebrahimi A, Eendebak P, Egger D, ElePT, Emilio, Espiricueta A,

Ardelean and Udrescu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.836 27/30

https://github.com/sebastianardelean/graphcoloringusingrqga
https://github.com/sebastianardelean/graphcoloringusingrqga
http://dx.doi.org/10.7717/peerj-cs.836#supplemental-information
http://dx.doi.org/10.7717/peerj-cs.836#supplemental-information
https://arxiv.org/abs/quant-ph/9911082
https://arxiv.org/abs/quant-ph/9911082
http://dx.doi.org/10.7717/peerj-cs.836
https://peerj.com/computer-science/

Everitt M, Facoetti D, Farida, Fernández PM, Ferracin S, Ferrari D, Ferrera AH, Fouilland
R, Frisch A, Fuhrer A, Fuller B, George M, Gacon J, Gago BG, Gambella C, Gambetta JM,
Gammanpila A, Garcia L, Garg T, Garion S, Gates T, Gil L, Gilliam A, Giridharan A,
Gomez-Mosquera J, Gonzalo, de la Puente González S, Gorzinski J, Gould I, Greenberg D,
Grinko D, Guan W, Gunnels JA, Gupta H, Gupta N, Günther JM, Haglund M, Haide I,
Hamamura I, Hamido OC, Harkins F, Hasan A, Havlicek V, Hellmers J, Herok Ł, Hillmich
S, Horii H, Howington C, Hu S, Hu W, Huang J, Huisman R, Imai H, Imamichi T, Ishizaki
K, Ishwor, Iten R, Itoko T, Ivrii A, Javadi A, Javadi-Abhari A, Javed W, Jianhua Q, Jivrajani
M, Johns K, Johnstun S, Jonathan-Shoemaker, JosDenmark, JoshDumo, Judge J, Kachmann
T, Kale A, Kanazawa N, Kane J, Kang-Bae, Kapila A, Karazeev A, Kassebaum P, Kelso J,
Kelso S, Khanderao V, King S, Kobayashi Y, Kovi11Day, Kovyrshin A, Krishnakumar R,
Krishnan V, Krsulich K, Kumkar P, Kus G, LaRose R, Lacal E, Lambert R, Landa H, Lapeyre
J, Latone J, Lawrence S, Lee C, Li G. 2021. Qiskit: an open-source framework for quantum
computing. GitHub. Available at https://github.com/Qiskit/qiskit.

Aragón Artacho FJ, Campoy R. 2018. Solving graph coloring problems with the
Douglas-Rachford algorithm. Set-Valued and Variational Analysis 26(2):277–304
DOI 10.1007/s11228-017-0461-4.

Barenco A, Bennett CH, Cleve R, DiVincenzo DP, Margolus N, Shor P, Sleator T, Smolin JA,
Weinfurter H. 1995. Elementary gates for quantum computation. Physical Review A
52(5):3457–3467 DOI 10.1103/PhysRevA.52.3457.

Bincy A, Presitha BJ. 2017. Graph coloring and its real time applications an overview.
International Journal of Mathematics And its Applications 5(4-F):845–849.

Cheng K-W, Tseng C-C. 2002. Quantum plain and carry look-ahead adders. ArXiv. Available at
https://arxiv.org/abs/quant-ph/0206028.

Cuccaro SA, Draper TG, Kutin SA, Moulton DP. 2004. A new quantum ripple-carry addition
circuit. ArXiv. Available at https://arxiv.org/abs/quant-ph/0410184.

Demange M, Ekim T, Ries B, Tanasescu C. 2015. On some applications of the selective graph
coloring problem. European Journal of Operational Research 240(2):307–314
DOI 10.1016/j.ejor.2014.05.011.

Dokeroglu T, Sevinc E. 2021. Memetic teaching-learning-based optimization algorithms for large
graph coloring problems. Engineering Applications of Artificial Intelligence 102(2):104282
DOI 10.1016/j.engappai.2021.104282.

Dondi R, Fertin G, Vialette S. 2011. Complexity issues in vertex-colored graph pattern matching.
Journal of Discrete Algorithms 9(1):82–99 DOI 10.1016/j.jda.2010.09.002.

Fabrikant A, Hogg T. 2002. Graph coloring with quantum heuristics. In: AAAI/IAAI. 22–27.

Gepp A, Stocks P. 2009. A review of procedures to evolve quantum algorithms. Genetic
Programming and Evolvable Machines 10(2):181–228 DOI 10.1007/s10710-009-9080-7.

Grover LK. 1996. A fast quantum mechanical algorithm for database search. In: Proceedings of the
Twenty-eighth Annual ACM Symposium on Theory of Computing. 212–219.

Häner T, Steiger DS, Smelyanskiy M, Troyer M. 2016. High performance emulation of quantum
circuits. In: SC’16: Proceedings of the International Conference for High Performance Computing,
Networking, Storage and Analysis. Piscataway: IEEE, 866–874.

Hennessy JL, Patterson DA. 2018. Computer architecture: a quantitative approach. Amsterdam:
Elsevier.

Kudo K. 2018. Constrained quantum annealing of graph coloring. Physical Review A 98(2):022301
DOI 10.1103/PhysRevA.98.022301.

Ardelean and Udrescu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.836 28/30

https://github.com/Qiskit/qiskit
http://dx.doi.org/10.1007/s11228-017-0461-4
http://dx.doi.org/10.1103/PhysRevA.52.3457
https://arxiv.org/abs/quant-ph/0206028
https://arxiv.org/abs/quant-ph/0410184
http://dx.doi.org/10.1016/j.ejor.2014.05.011
http://dx.doi.org/10.1016/j.engappai.2021.104282
http://dx.doi.org/10.1016/j.jda.2010.09.002
http://dx.doi.org/10.1007/s10710-009-9080-7
http://dx.doi.org/10.1103/PhysRevA.98.022301
http://dx.doi.org/10.7717/peerj-cs.836
https://peerj.com/computer-science/

Kumar S, Kumar TV. 2018. A novel quantum-inspired evolutionary view selection algorithm.
Sādhanā 43(10):1–20 DOI 10.1007/s12046-018-0936-5.

Kwok J, Pudenz K. 2020. Graph coloring with quantum annealing. Available at https://arxiv.org/
abs/2012.04470.

Lahoz-Beltra R. 2016. Quantum genetic algorithms for computer scientists. Computers 5(4):24
DOI 10.3390/computers5040024.

Mahmoudi S, Lotfi S. 2015. Modified cuckoo optimization algorithm (mcoa) to solve graph
coloring problem. Applied Soft Computing 33(November):48–64
DOI 10.1016/j.asoc.2015.04.020.

Malossini A, Blanzieri E, Calarco T. 2008. Quantum genetic optimization. IEEE Transactions on
Evolutionary Computation 12(2):231–241.

Moussa C, Calandra H, Humble TS. 2019. Function maximization with dynamic quantum search.
In: International Workshop on Quantum Technology and Optimization Problems. Berlin:
Springer, 86–95.

Nannicini G. 2020. An introduction to quantum computing, without the physics. SIAM Review
62(4):936–981 DOI 10.1137/18M1170650.

Nielsen MA, Chuang I. 2002. Quantum computation and quantum information. Cambridge:
Cambridge University Press. Available at https://www.cambridge.org/highereducation/books/
quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52
D53BE9AE#overview.

Nowotniak R. 2010. Survey of quantum-inspired evolutionary algorithms. In: Materiały
konferencyjne Forum Innowacji Młodych Badaczy.

Nowotniak R, Kucharski J. 2010.Meta-optimization of quantum-inspired evolutionary algorithm.
In: Proceedings of the XVII International Conference on Information Technology Systems. 1:1–17.

Orden D, Gimenez-Guzman JM, Marsa-Maestre I, De la Hoz E. 2018. Spectrum graph coloring
and applications to wi-fi channel assignment. Symmetry 10(3):65 DOI 10.3390/sym10030065.

Ruican C, Udrescu M, Prodan L, Vladutiu M. 2007. Automatic synthesis for quantum circuits
using genetic algorithms. In: International Conference on Adaptive and Natural Computing
Algorithms. Berlin: Springer, 174–183.

Ruican C, Udrescu M, Prodan L, Vladutiu M. 2008. A genetic algorithm framework applied to
quantum circuit synthesis. In: Nature Inspired Cooperative Strategies for Optimization (NICSO
2007). Berlin: Springer, 419–429.

SaiToh A, Rahimi R, Nakahara M. 2014. A quantum genetic algorithm with quantum crossover
and mutation operations. Quantum Information Processing 13(3):737–755
DOI 10.1007/s11128-013-0686-6.

Shimizu K, Mori R. 2021. Exponential-time quantum algorithms for graph coloring problems. In:
Latin American Symposium on Theoretical Informatics. Berlin: Springer, 387–398.

Silva C, Aguiar A, Lima PM, Dutra I. 2020. Mapping graph coloring to quantum annealing.
Quantum Machine Intelligence 2(2):1–19 DOI 10.1007/s42484-020-00028-4.

Spector L. 2004. Automatic quantum computer programming: a genetic programming approach.
Vol. 7. Berlin: Springer Science & Business Media.

Tabi Z, El-Safty KH, Kallus Z, Hága P, Kozsik T, Glos A, Zimborás Z. 2020. Quantum
optimization for the graph coloring problem with space-efficient embedding. In: 2020 IEEE
International Conference on Quantum Computing and Engineering (QCE). Piscataway: IEEE,
56–62.

Ardelean and Udrescu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.836 29/30

http://dx.doi.org/10.1007/s12046-018-0936-5
https://arxiv.org/abs/2012.04470
https://arxiv.org/abs/2012.04470
http://dx.doi.org/10.3390/computers5040024
http://dx.doi.org/10.1016/j.asoc.2015.04.020
http://dx.doi.org/10.1137/18M1170650
https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE#overview
https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE#overview
https://www.cambridge.org/highereducation/books/quantum-computation-and-quantum-information/01E10196D0A682A6AEFFEA52D53BE9AE#overview
http://dx.doi.org/10.3390/sym10030065
http://dx.doi.org/10.1007/s11128-013-0686-6
http://dx.doi.org/10.1007/s42484-020-00028-4
http://dx.doi.org/10.7717/peerj-cs.836
https://peerj.com/computer-science/

Titiloye O, Crispin A. 2011. Quantum annealing of the graph coloring problem. Discrete
Optimization 8(2):376–384 DOI 10.1016/j.disopt.2010.12.001.

Tomar RS, Singh S, Verma S, Tomar GS. 2013. A novel abc optimization algorithm for graph
coloring problem. In: 2013 5th International Conference and Computational Intelligence and
Communication Networks. Piscataway: IEEE, 257–261.

Udrescu M, Prodan L, Vlăduţiu M. 2006. Implementing quantum genetic algorithms: a solution
based on grover’s algorithm. In: Proceedings of the 3rd Conference on Computing Frontiers. 71–
82.

Udrescu M, Prodan L, Vlăduţiu M. 2012. Simulated fault injection methodology for gate-level
quantum circuit reliability assessment. Simulation Modelling Practice and Theory 23:60–70
DOI 10.1016/j.simpat.2012.01.001.

Udrescu-Milosav M. 2009. Quantum circuits engineering: efficient simulation and reconfigurable
quantum hardware. Bucharest: Politehnica.

Viamontes GF, Markov IL, Hayes JP. 2009. Quantum circuit simulation. Berlin: Springer Science
& Business Media.

Wang XF, Chen G. 2003. Complex networks: small-world, scale-free and beyond. IEEE Circuits
and Systems Magazine 3(1):6–20 DOI 10.1109/MCAS.2003.1228503.

Wille R, Van Meter R, Naveh Y. 2019. Ibm’s qiskit tool chain: working with and developing for
real quantum computers. In: 2019 Design, Automation & Test in Europe Conference &
Exhibition (DATE). Piscataway: IEEE, 1234–1240.

Zhang G. 2011. Quantum-inspired evolutionary algorithms: a survey and empirical study. Journal
of Heuristics 17(3):303–351 DOI 10.1007/s10732-010-9136-0.

Ardelean and Udrescu (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.836 30/30

http://dx.doi.org/10.1016/j.disopt.2010.12.001
http://dx.doi.org/10.1016/j.simpat.2012.01.001
http://dx.doi.org/10.1109/MCAS.2003.1228503
http://dx.doi.org/10.1007/s10732-010-9136-0
http://dx.doi.org/10.7717/peerj-cs.836
https://peerj.com/computer-science/

	Graph coloring using the reduced quantum genetic algorithm
	Introduction
	Background
	Methodology
	Measurements and results
	Discussions
	Limitations
	Conclusions
	flink8
	Acronyms
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

