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ABSTRACT
Science across all disciplines has become increasingly data-driven, leading to
additional needs with respect to software for collecting, processing and analysing
data. Thus, transparency about software used as part of the scientific process is
crucial to understand provenance of individual research data and insights, is a
prerequisite for reproducibility and can enable macro-analysis of the evolution of
scientific methods over time. However, missing rigor in software citation practices
renders the automated detection and disambiguation of software mentions a
challenging problem. In this work, we provide a large-scale analysis of software usage
and citation practices facilitated through an unprecedented knowledge graph of
software mentions and affiliated metadata generated through supervised information
extraction models trained on a unique gold standard corpus and applied to more than
3 million scientific articles. Our information extraction approach distinguishes
different types of software and mentions, disambiguates mentions and outperforms
the state-of-the-art significantly, leading to the most comprehensive corpus of 11.8 M
software mentions that are described through a knowledge graph consisting of more
than 300 M triples. Our analysis provides insights into the evolution of software
usage and citation patterns across various fields, ranks of journals, and impact of
publications. Whereas, to the best of our knowledge, this is the most comprehensive
analysis of software use and citation at the time, all data and models are shared
publicly to facilitate further research into scientific use and citation of software.

Subjects Data Mining and Machine Learning, Data Science, Digital Libraries, Natural Language
and Speech, World Wide Web and Web Science
Keywords Knowledge graph, Software mention, Named entity recognition, Software citation

INTRODUCTION
Science across all disciplines has become increasingly data-driven, leading to additional
needs with respect to software for collecting, processing and analyzing data. Hence,
transparency about software used as part of the scientific process is crucial to ensure
reproducibility and to understand provenance of individual research data and insights.
Knowledge about the particular version or software development state is a prerequisite for
reproducibility of scientific results as even minor changes to the software might impact
them significantly.

How to cite this article Schindler D, Bensmann F, Dietze S, Krüger F. 2022. The role of software in science: a knowledge graph-based
analysis of software mentions in PubMed Central. PeerJ Comput. Sci. 8:e835 DOI 10.7717/peerj-cs.835

Submitted 8 October 2021
Accepted 7 December 2021
Published 14 January 2022

Corresponding authors
David Schindler,
david.schindler@uni-rostock.de
Frank Krüger,
frank.krueger@uni-rostock.de

Academic editor
Sedat Akleylek

Additional Information and
Declarations can be found on
page 42

DOI 10.7717/peerj-cs.835

Copyright
2022 Schindler et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj-cs.835
mailto:david.�schindler@�uni-rostock.�de
mailto:frank.�krueger@�uni-rostock.�de
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.835
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/computer-science/


Furthermore, from a macro-perspective, understanding software usage, varying citation
habits and their evolution over time within and across distinct disciplines can shape
the understanding of the evolution of scientific disciplines, the varying influence of
software on scientific impact and the emerging needs for computational support within
particular disciplines and fields. Initial efforts are made to provide publicly accessible
datasets that link open access articles to respective software that is used and cited, for
instance, the OpenAIRE Knowledge Graph (Manghi et al., 2019) or SoftwareKG
(Schindler, Zapilko & Krüger, 2020). Given the scale and heterogeneity of software
citations, robust automated methods are required, able to detect and disambiguate
mentions of software and related metadata.

Despite the existence of software citation principles (Smith, Katz & Niemeyer, 2016;
Katz et al., 2021), software mentions in scientific articles are usually informal and often
incomplete—information about the developer or the version are often missing entirely,
see Fig. 1. Spelling variations and mistakes for software names, even common ones
(Schindler, Zapilko & Krüger, 2020), increase the complexity of automatic detection and
disambiguation. Training and evaluation of information extraction approaches requires
reliable ground truth data of sufficient size, raising the need for manually annotated gold
standard corpora of software mentions.

Most works concerned with recognition of software mentions in scientific articles apply
manual analysis on small corpora in order to answer specific questions (Howison &
Bullard, 2016; Nangia & Katz, 2017) or are limited to specific software (Li, Lin &
Greenberg, 2016; Li, Yan & Feng, 2017). Automatic methods, enabling large scale analysis,
have been implemented by iterative bootstrapping (Pan et al., 2015) as well as machine
learning on manually engineered rules (Duck et al., 2016). However, both achieve only
moderate performance. Extraction through deep learning with a Bi-LSTM-CRF (Schindler,
Zapilko & Krüger, 2020) shows promise, but requires sufficient and reliable ground truth
data which only recently became available.

Available corpora (Duck et al., 2016; Schindler, Zapilko & Krüger, 2020; Du et al., 2021)
do not cover all available metadata features, cater for disambiguation of different spelling
variations of the same software or distinguish between the purpose of the mention such
as creation or usage. In SOMESCI (Schindler et al., 2021b), we have introduced a gold
standard knowledge graph of software mentions in scientific articles. To the best of our

Figure 1 Annotated sentences from SOMESCI missing information required by software citation
standards. Full-size DOI: 10.7717/peerj-cs.835/fig-1
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knowledge, SOMESCI is the most comprehensive gold standard corpus of software mentions
in scientific articles, created by manually annotating 3,756 software mentions with
additional information about types of software, mentions and related features, resulting in
7,237 labeled entities in 47,524 sentences from 1,367 PMC articles.

In this work, we provide a large-scale analysis of software usage and citation practices
facilitated through an unprecedented knowledge graph of software mentions and affiliated
metadata generated through a supervised information extraction model trained on
SOMESCI and applied to more than 3 million scientific articles. In summary, our
contributions include:

� A large-scale analysis of software usage across 3,215,386 scholarly publications
covering a range of diverse fields and providing unprecedented insights into the
evolution of software usage and citation patterns across various domains, distinguishing
between different types of software, mentions as well as rank of journals and impact of
publications. Results indicate strongly discipline-specific usage of software and an
overall increase in software adoption. To the best of our knowledge, this is the most
comprehensive analysis of software use and citation at the time.

� A comprehensive knowledge graph of software citations in scholarly publications
comprising of 301,825,757 triples describing 11.8 M software mentions together with
types and additional metadata. The knowledge graph is represented using established
vocabularies capturing the relations between citation contexts, disambiguated software
mentions and related metadata and provides a unique resource for further research
into software use and citation pattern.

� Robust supervised information extraction models for disambiguating software
mentions and related knowledge in scholarly publications. As part of our experimental
evaluation, our model based on SciBERT and trained on SOMESCI Schindler et al. (2021b)
for NER and classification outperforms state-of-the-art methods for software extraction
by 5 pp on average. Software mentions are disambiguated and different variations
interlinked, e.g., abbreviations and name- and spelling-alternatives, of the same
software.

Through these contributions, we advance the understanding of software use and
citation practices across various fields and provide a significant foundation for further
large-scale analysis through an unprecedented dataset as well as robust information
extraction models.

The remaining paper is organized as follows. Related work is discussed in the following
section, whereas the Methods and Materials introduces developed information
extraction methods together with datasets used for training and testing. Results:
Information Extraction Performance describes the performance results obtained on the
various information extraction tasks, while the Results: Analysis of Software Mentions
introduces an in-depth analysis of the extracted data. Key findings are discussed in the
Discussion, followed by a brief conclusion and introduction of future work.
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RELATED WORK
Requirements for large scale software citation analyses
Software mentions in scientific articles have been analyzed for several reasons including
mapping the landscape of available scientific software, analyses of software citation
practices and measuring the impact of software in science (Krüger & Schindler, 2020). This
includes manual analyses based on high quality data, such as Howison & Bullard (2016),
Du et al. (2021), Nangia & Katz (2017) and Schindler et al. (2021b) but also automatic
analyses such as Pan et al. (2015), Duck et al. (2016) and Schindler, Zapilko & Krüger
(2020). While manual analyses provide highly reliable data, results often only provide a
small excerpt and do not generalize due to small sample size. Analyses based on automatic
data processing, in contrast, allow to make more general statements, for instance,
regarding trends over time or across disciplines, but require high quality information
extraction methods which themselves rely on reliable ground truth labels for supervised
training. Table 1 compares manual and automatic approaches with respect to sample
size and quality indicators such as IRR or FScore. Manual approaches provide
substantial to almost perfect IRR, but are restricted to less than 5,000 articles at most.
Howison & Bullard (2016), for instance, analyzed software mentions in science by
content analysis in 90 articles. The main objective of Du et al. (2021) and Schindler et al.
(2021b) was to create annotated corpora of high quality for supervised learning of
software mentions in scientific articles. Du et al. (2021) provide labels for software,
version, developer, and URL for articles from PMC, which is multidisciplinary but
strongly skewed towards Medicine (see Table A11) and Economics. Schindler et al.
(2021b) exclusively used articles from PMC, and provide labels for software, a broad
range of associated information, software type, mention type, and for disambiguation of
software names.

Early automatic approaches, such as Pan et al. (2015) andDuck et al. (2016) achieve only
moderate recognition performance of 0.58 and 0.67 FScore, but perform analyses on up to
714 K articles raising doubts about the reliability and generalizability of the described
results. Pan et al. (2015) used iterative bootstrapping—a rule-based method that learns
context rules—as well as a dictionary of software names based on an initial set of seed

Table 1 Summary of investigations concerning software in science together with source of the
articles, number of articles and software, and a quality indicator. Level of extracted details varies
between listed approaches. Note that PLoS is a subset of PMC. M, manual; A, automatic; k, Cohen’s; F,
FScore; O, Percentage Overlap.

Approach Quality Source Articles Software

M Howison & Bullard (2016) O = 0.68–0.83 Biology 90 286

Nangia & Katz (2017) – Nature (Journal) 40 211

Du et al. (2021) O = 0.76 PMC, Economics 4,971 4,093

Schindler et al. (2021b) κ = 0.82, F = 0.93 PMC 1,367 3,756

A Pan et al. (2015) F = 0.58 PLoS ONE 10 K 26 K

Duck et al. (2016) F = 0.67 PMC 714 K 3.9 M

Schindler, Zapilko & Krüger (2020) F = 0.82 PLoS (Social Science) 51 K 133 K

Schindler et al. (2022), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.835 4/47

http://dx.doi.org/10.7717/peerj-cs.835/supp-1
http://dx.doi.org/10.7717/peerj-cs.835
https://peerj.com/computer-science/


names. Duck et al. (2016) employ machine learning classifiers on top of manually
engineered rules. With the availability of large language models and deep learning methods
for sequence labeling, Schindler, Zapilko & Krüger (2020) employed a Bi-LSTM-CRF
and achieved an FScore of 0.82 for the recognition of software mentions in scientific
articles. Most recently, Lopez et al. (2021) compare Bi-LSTM-CRF and SciBERT-CRF
models on Softcite (Du et al., 2021) software entity recognition at paragraph level. They
achieve 0.66 and 0.71 FScore, respectively, and further improved performance to 0.74
FScore by linking entities to Wikidata during postprocessing.

Beside high recognition rates, and thus the basis for reliable statements, Schindler,
Zapilko & Krüger (2020) demonstrate the capabilities of semantic web technologies for
information structuring and data integration with respect to analyzing software usage.
They provide a KG—SoftwareKG—representing a source for structured data access for
analyses. Moreover, the performed disambiguation of software mentions allows to draw
conclusion on the level of software rather than software mentions, even with spelling
variations. Finally, the linked nature of KG allows the integration of external data sources
enabling further analyses. Following the direction of Schindler, Zapilko & Krüger (2020),
large scale analyses of software mentions in scholarly articles requires (1) robust
information extraction and disambiguation techniques that achieve results on the level of
manual approaches, and (2) the provision of all data in a standardized way that allows the
reuse and the integration of external knowledge.

Previous analyses of software in scholarly publication
As described above, previous studies on software mentions in scholarly publication
were based on high quality manual analyses with small sample sizes or automatic analyses
with large sample size but moderate quality. Most studies report basic descriptive statistics
such as the number of overall mentions given in Table 1 or the distribution of software
mentions over different software. Howison & Bullard (2016) report an average of 3.2
software mentions per article in Biology whileDuck et al. (2016) report 12.9. In PMC,Duck
et al. (2016) report an average of 5.5 mentions while Du et al. (2021) report 1.4 and
Schindler et al. (2021b) 2.6. Similarly, Pan et al. (2015) and Schindler, Zapilko & Krüger
(2020) report values of 2.7 and 2.6 for sub-selections of PLoS. Interestingly, Du et al. (2021)
report a low value of 0.2 for Economics and Duck et al. (2016) a high value of 30.8 for
Bioinformatics. Some of those results clearly show disciplinary differences, while others
such as the PMC discrepancies might be attributed to methodical differences, for instance,
publication time of articles in the investigated sets. Articles within Du et al. (2021) are
significantly older than articles in Schindler et al. (2021b) which could result in a lower
average software usage. This is also supported by the finding of Duck et al. (2016) who
analyze software mentions up to 2013 and report a rapid increase in software usage
between 2000 and 2006.

Other findings regard the distribution with respect to unique software names. Pan et al.
(2015) report that 20% of software names account for 80% of mentions. Duck et al. (2016)
report that 5% of software names account for 47% of mentions, and, similarly, 6.6% of
entities are responsible for 50% of mentions in Schindler et al. (2021b). Therefore, all prior
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studies agree that the distribution of software within articles is highly skewed, pointing
towards the fact that there are few pieces of general purpose software such as SPSS or R
that support the scientific infrastructure. On the other hand, there is a high number of
rarely mentioned software that is likely to be highly specialized towards problems and
domains. Duck et al. (2016) perform an analysis of domain specific software to investigate
disciplinary differences in software usage. They were able to confirm the existence of
domain specific software and showed, for instance, that 65% of software used in medicine
was not used in other analyzed domains. They also analyze journal specific software and
applied a clustering analysis with respect to journal and software names.

Completeness of software mentions and citations is of high importance since
employed software can only be clearly identified with sufficient information. Providing
information such as the specific version or developer of software is, therefore, essential for
provenance of study results or to provide credit for the creation of scientific software.
For this purpose, guidelines for proper software citation have been established (Smith, Katz
& Niemeyer, 2016; Katz et al., 2021) that recommend the following information to be
included: name, author, version/release/date, location, venue, and unique ID, e.g., DOI.
Howison & Bullard (2016) analyze the completeness of software mentions with respect to
formal citation 44%, version 28%, developer 18% and URL 5%. Based on the given
information they were able to locate 86% of software online, but only 5% with the specific
version. Completeness analyses by Du et al. (2021) showed that a total of only 44% of
software mentions include further information with version being included in 27%,
publisher in 31%, and URL in 17%. An analysis by Schindler et al. (2021b) showed that 39%
mentions included a version, 23% a developer, 4% a URL and 16% a formal citation.
Overall, the studies show that software mentions are still often informal and incomplete,
but exhibit some notable differences between reported values. The problem of formal
and informal software citation was also included in the automatic analysis of Pan et al.
(2015) who identified formal citations for recognized software by automatic string pattern
matching. They report a correlation between the number of mentions of a software and its
formal citation frequency.

Availability of used software is crucial as studies conducted with commercial software
might not be reproducible by other research teams. Furthermore, implementation details
for non open source software cannot be reviewed by the scientific community and can
potentially bias study results. Therefore, different studies included analyses regarding
commercial, free and open source software usage. Pan et al. (2015) found that of the
most frequent software mentions, which were labeled for availability manually, 64% are
free for academic use. Moreover, they found that free software received more formal
citations than commercial software. Howison & Bullard (2016) include an analysis for
accessibility, license and source code availability and report that commercial software is
more likely to be mentioned similar to scientific instruments (including details on
developer and its location) while open access software is more often attributed with formal
citations. However, they note that there is no overall preferred style for any group of
software. Schindler, Zapilko & Krüger (2020) show a comparison of software mention
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numbers for free, open source and commercial software over time that showed no clear
trend towards a specific group.

Beside analyses about software in scholarly publications in general, several studies
focus on particular aspects such as specific software or the relation of software usage to
bibliometric measures. Li, Lin & Greenberg (2016), analyze mentions of the specific
engineering software (LAMMPS) and found that the given information is often not
complete enough to determine how it was applied with respect to version, but also
regarding software specific settings. Li, Yan & Feng (2017) analyze software citation for
R and R packages. They report inconsistency resulting from a variety in citation standards,
which are also not followed well by authors. Overall, they show a trend towards more
package mentions, and find a comparably high number of formal citations for R packages
(72%).Mayernik et al. (2017) discuss data and software citation and conclude that there is
no impact measure for software available. Allen, Teuben & Ryan (2018) analyse the
availability of source code in astrophysics and report that it could only be located for 58%
of all mentions. Pan et al. (2018) analyze the completeness for usage statements of
three specific bibliometric mapping tools and find provided versions in 30% of cases, URLs
in 24%, and formal citations in 76%. They argue that the high formal citation might be due
to good author citation instruction given by the tools. Howison & Bullard (2016) report
that articles published in high impact journals mention more software. The platform
swMATH (Greuel & Sperber, 2014) aims to establish a mapping of software used in
mathematical literature by manually labeling software present in zbMATH articles
pre-filtered through an automatic, heuristic search.

Most studies agree that software citation is important but often incomplete and
report similar trends about the frequency of software mentions. They deviate, however,
when it comes to particular numbers such as software mentions per article. This could
be the result of (1) discipline specific citation habits, (2) small sample sizes in analysis
studies, and (3) insufficient quality of automatic information extraction. A large scale study
based on reliable automatic information extraction is required to draw conclusions across
different disciplines.

METHODS AND MATERIALS
Information extraction
Training dataset
We apply automatic information extraction based on supervised machine learning for
recognizing software in science and use SOMESCI—Software Mentions in Science—a corpus
of annotated software mentions in scientific articles (Schindler et al., 2021b). It contains
3,756 software annotations in 1,367 PubMed Central (PMC) articles as well as annotations
for different software types such as Programming Environment or Plug-In, mention types
such as Usage or Creation, and additional information such as Version or Developer.
Moreover, it provides unique entity identities for all software annotations, which allows to
not only develop a system for software name recognition but also for disambiguating
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names, an essential inference step in building a software Knowledge Graph. This level of
detail is not represented in other available software datasets such as BioNerDs (Duck et al.,
2016) or Softcite (Du et al., 2021). SOMESCI does also contain recent articles and is,
therefore, suited to represent the recent shift in awareness and recommendations for
software citation. Quality of SOMESCI annotations was assessed through IRR and is
reported to be high with a value of κ = 0.82. SOMESCI is available from Zenodo (https://doi.
org/10.5281/zenodo.4968738) and an annotated example with markup from the web-
based annotation tool BRAT (Stenetorp et al., 2012) is given in Fig. 2. For all reported
information extraction problems described below we use the same 60:20:20 division in
train, development, and test set as the SOMESCI baseline.

An overview of the different annotations along with the overall statistics of the SOMESCI
dataset is given in Table 2. SOMESCI distinguishes each mention of a software by two types:
mention and software. Mention type can take the values of Usage if the software was
actively used and is contributing to the articles results, Creation if it was created in the
scope of the article, Deposition if it was created and additionally published, and Allusion
if its name was merely stated, e.g., in an comparison with another software. Similarly,
software type is distinguished between, Application if the software can be run as a stand-
alone software, PlugIn if it is an extension to an existing host software, Operating System
and Programming Environment if it is a framework for writing and executing program
code. More details on the different types and relations are provided in the Taxonomy for
Software and Related Information.

Figure 2 Sentence from SOMESCI annotated with respect to software, additional information,
mention type, and software type as well as corresponding relations.

Full-size DOI: 10.7717/peerj-cs.835/fig-2

Table 2 Overview of the SOMESCI corpus. Further details can be found in Schindler et al. (2021b).

SOMESCI statistics

# Articles 1,367

# Sentences w/ Software 2,728

# Sentences w/o Software 44,796

# Annotations 7,237

# Software 3,756

# unique Software 883

# Relations 3,776

Software Type Application, PlugIn, Operating System (OS), Programming Environment (PE)

Mention Type Allusion, Usage, Creation, Deposition

Additional Information Developer, Version, URL, Citation, Extension, Release, License, Abbreviation,
Alternative Name
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Inference dataset
The inference dataset includes 3,215,386 articles indexed in PMC acquired via bulk
download (https://www.ncbi.nlm.nih.gov/pmc/tools/ftp/). on January 22, 2021.
Construction of SoftwareKG requires metadata and plain text of each article. To acquire
the information, JATS was used instead of the also available Portable Document
Format (PDF). PDF is the standard form in which humans consume scientific articles,
however, there are drawbacks for machines due to formatting artifacts caused by elements
such as headers, footers, page numbering, or multi-column formats. While some tools,
such as GROBID (2021), perform well on pdf to text conversion, using JATS prevents
errors resulting from text formatting. JATS on the other hand is an XML-based format,
and while specific tagging conventions vary between different journals indexed in PMC,
they all follow a common scheme, making it a suited source for both metadata and
plain text. Both were extracted using a custom implementation available in the associated
source code (https://github.com/dave-s477/SoftwareKG).

Entity recognition and classification
The objective of this information extraction step is to recognize software mentions and
associated additional information, and to classify software according to its Software Type
and Mention Type. The target labels are summarized in Table 2. The task is modelled
as an NER sequence tagging problem where each sentence is considered as a sequence of
tokens each of which has to be assigned a correct output tag.

Different suited state-of-the-art machine learning models are considered for the task.
We compare the given baseline results on SOMESCI Schindler et al. (2021b), which were
established by an un-optimized Bi-LSTM-CRF model, to other machine learning models
suited for scientific literature, for instance, SciBERT (Beltagy, Lo & Cohan, 2019). To
establish a consistent naming scheme we label all implemented and tested models by type,
classification target and optimization state: Mtype,target,optimization. Results for NER are
reported by mean and standard deviation for repeated training runs because performance
can vary between runs due to randomization in initialization and training. Results of at
least 4 different training runs are provided for hyper-parameter optimization and 16 for
final performance estimation. The best model is selected on the problem of identifying
software mentions (M−,sw,−) as we consider it the most important quality measure and the
main problem all other tasks relate to.

Bi-LSTM-CRFs (ML,sw,−) were selected as they are well established for NER and have
been reported to achieve state-of-the-art results (Ma & Hovy, 2016). Further, they have
previously been applied to the problem of recognizing software in scientific literature
(Schindler, Zapilko & Krüger, 2020; Schindler et al., 2021b; Lopez et al., 2021). More details
on the model can be found in Ma & Hovy (2016), Schindler, Zapilko & Krüger (2020) as
well as in the implementation details in our published code.

BERT (Devlin et al., 2019) is a transformer-based model that is pre-trained on a masked
language prediction task and has proven to achieve state-of-the-art performance across a
wide range of NLP problems after fine-tuning. Different adaptions of the BERT
pre-training procedure exist for scientific literature resulting in the two well established
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models BioBERT (Lee et al., 2019) (MBB,sw,−) and SciBERT (Beltagy, Lo & Cohan, 2019)
(MSB,sw,−). While BioBERT is pre-trained on PubMed abstracts as well as PMC full-texts
SciBERT is pre-trained on full-text articles from semantic scholar with 18% of articles
coming from the domain of Computer Science and the remaining 82% from Biomedicine.
To reduce run-time requirements, hyper-parameter optimization was only performed for
the best performing BERT model that was chosen by comparing both models after fine-
tuning with the default configuration summarized in Table 3. The parameter Sampling
reduces the size of the training set by randomly suppressing sentences from the training
corpus that do not contain software.

The overall, best model based on the development set is selected and extended to solve
the 3 main objectives (M−,sw+info,−) of the initial information extraction step: (1) recognize
software mentions and corresponding additional information, (2) classify software type,
(3) classify mention type of extracted software mentions. The combined problem is
modeled as hierarchical multi-task sequence labeling and illustrated in Fig. 3. Multi-task
learning can improve recognition performance and help to learn better representations
if the given tasks are related as it implicitly increases the sample size (Ruder, 2017).
Therefore, the main layers of the model share their weights across all sub-tasks
and are updated with loss signals from all individual tasks. The output of each sub-task
is calculated by a separate fully connected layer with softmax activation. For
backpropagation we chose the simple approach of summing over the three cross-entropy
losses, however, this could be further explored in the future, for instance, as described by
Kendall, Gal & Cipolla (2018).

The hierarchical component is added by passing the classification result of lower
hierarchy sub-tasks as input to higher sub-tasks. The classification layer for mention type
receives the output of software recognition and the software type layer the output of
both software recognition and mention type. There is no gradient passed backward
through the hierarchy so the weight updates in each classification layer are only based on
the individual task loss. Teacher forcing—passing the correct prediction regardless of
the actual prediction—is performed during training with respect to the output of lower
layers in the hierarchy. As a result, we expect better update steps and faster learning
convergence by providing more gold label information to higher classification layers.
Additionally, teacher forcing should motivate the constraint that a software type or
mention type should only be classified if a software was classified before. Note, that
hyper-parameters for theM−,sw+info,opt are based on the best set of parameters identified for
software recognition M−,sw,opt.

Table 3 Hyper-parameters considered for BERT models including their default setting.

Parameter Default

Learning Rate (LR) 1e−5

Sampling all data

Dropout 0.1

Gradient Clipping 1.0
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As labels for multiple tasks have to be combined with potential tagging inconsistencies
for each task we experimented with adding a CRF layer on top of BERT to improve
performance by learning inter-dependencies and constraints between labels. We found no
improvement in performance but additional time complexity and did not further
pursue the model. Instead, we enforce tagging consistencies by applying a simple set of
rules: (1) all I-tags without leading B-tags are transformed to B-tags—including I-tags that
do not match their leading B-tags; (2) entity boundaries for higher hierarchy tasks are
adjusted to the base task entity boundaries; (3) when there are multiple conflicting labels in
higher hierarchy steps for one identified software entity, the label for the first token is
chosen. An example is given in Table 4.

The performance of M−,sw+info,opt is evaluated against the SOMESCI baseline (Schindler
et al., 2021b) described above. In contrast to our implementation, information is not
shared between tasks in the baseline model. Instead, all classifications are performed
hierarchically and individually. Therefore, the reported results for the baseline are

# # # # # # # # # ##

Figure 3 Illustration of the employed multi-task, hierarchical, sequence labeling model. Features are
generated based on shared layers. The features are passed to 3 separate tasks and loss signals are summed to
update shared weights. Outputs of classification layers are passed back to the network as input features to
other classification layers, depicted from left to right in the image. Teacher forcing—replacing lower level
classification outputs with gold label data—is used during training to stop potentially wrong classification
outputs from being passed to other classification layers. Colors represent similar types of information.

Full-size DOI: 10.7717/peerj-cs.835/fig-3

Table 4 Example for enforcing tagging consistency. Inconsistencies are underlined.

Sentence We Used SPSS Statistics 16 .

Entities O O B-App I-App I-Ver O

Types O O B-Use I-Mention O O

Fixed O O B-App-Use B-App-Use B-Ver O
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subject to error propagation as recognition of additional information, software type
classification and mention type classification all assume an underlying perfect software
recognition. As our implementation does take error propagation into account the SOMESCI
baseline overestimates performance in a direct comparison.

Relation extraction
For Relation Extraction (RE), the task of classifying if and which relationships exist
between entities, we considered all relations available from the training dataset. All
additional information can be related to software, versions and developers to licenses, and
URLs to licenses or developers. Software mentions can be related to each other by the
plugin-of relation, representing one mention as the host software and the other as the
PlugIn, or by the specification-of relation if both mentions refer to the same real world
entity. Some possible relations are also depicted in Fig. 2. Its important to note that RE is
the second information extraction step and, therefore, directly dependent on entity
extraction. For developing and testing RE we rely on gold level entities, but in practice RE
performance is expected to be lower due to false negatives and false positives resulting
from entity extraction errors.

SOMESCI (Schindler et al., 2021b) provides a baseline model for classifying relations
between software associated entities based on manually engineered features and an
optimized Random Forest classifier. All features are implemented to yield Integer or
Boolean results and take into account (1) entity order, (2) entity types, (3) entity length,
(4) entity distance, (5) number of software entities, (6) sub-string relations, and
(7) automatically generated acronyms.

We chose to adapt and enhance the SOMESCI baseline model instead of using more
complex deep learning models because the baseline achieved good results. Moreover, RE
for software associated entities is less challenging as general RE problems as we impose a
large number of constraints on how entities can be related. To improve the given rule
set we individually fine-tuned the implementation of each rule. Moreover, we
experimented with multi-layer perceptrons and SVMs as alternative to the Random Forest
classifier. In initial tests, they did not achieve better performance and we chose to retain
the Random Forest classifier as it has the benefit of offering better explainability. The
Random Forest was trained with 100 trees, unlimited maximum depth, and no restrictions
to splitting samples.

Software disambiguation
Software is referred to by different names due to abbreviations, geographical differences, or
time. Schindler, Zapilko & Krüger (2020), for instance, report up to 179 different spelling
variations for the commonly used software SPSS. This raises the need for software
name disambiguation as a core requirement for constructing SoftwareKG. SOMESCI
provides a gold standard for this problem through manually assigned unique identifiers in
form of links to external knowledge bases. However, existing knowledge bases, such as
Wikidata (Vrandečić, 2012) or DBpedia (Auer et al., 2007), are sparse when it comes to
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scientific software which is illustrated by an analysis of the SOMESCI disambiguation
ground truth: only 205 of 883 (23%) unique and 2,228 of 3,717 (60%) software mentions
are represented in Wikidata. Therefore, we adapt and develop an entity disambiguation
method able to handle previously unknown software names such as those from creation
statements without the need to link to external knowledge bases. In consequence, we
contribute to establish a more complete KG of software.

The objective of software entity disambiguation is as follows: Given a pair (E1, E2) of
software entities the goal is to determine whether they refer to the same real world
entity. For that purpose we employ agglomerative clustering following the procedure
illustrated in Fig. 4. First, manually engineered features are calculated for each pair,
resulting in a feature vector vE1,E2. Features take into account: (1) string similarity,
(2) similarity of extracted context information, (3) automatically generated abbreviations,
and (4) software related information queried from DBpedia.

For each pair (E1,E2), vector vE1,E2 is mapped to a probability estimate plink for if
they should be linked by a 4-layer perceptron (15 × 10 × 5 × 1) with low complexity
plink = fperceptron (vE1,E2). The model is trained supervised to predict if a link exist l = {0,1}
based on splitting all possible combinations from the ground truth set in train,
development and test set in a 60:20:20 ratio. Since the class was trained as a binary
classification the output of the perceptron is the result of a sigmoid layer d ∈ [0,1] and is
used in combination with a threshold in the following steps. We considered applying
dropouts but found a decreasing performance in initial tests. We also did not find any
increase in performance for increasing model complexity.

For disambiguation we have to consider the influence of the sample size on the
density of samples in the resulting features space. For n extracted mentions of software the
number of entity pairs that need to be disambiguated accumulates to n2 − n. In the
small training set data points are less dense than in the large inference set. Moreover, the
inference set does contain false positive mentions with strong resemblance to software
resulting from prediction errors in the entity extraction step. This makes it difficult to find
reliable decision boundaries on the training set alone. During testing it became apparent
that due to the described effect the perceptron trained only on gold standard labels

'

 
   

Figure 4 Overview of the software name disambiguation. For all pairs of extracted software entities
(E1, E2), features are extracted (feature extraction) and used to determine a probability of linking
(perceptron). Finally, agglomerative clustering is performed to cluster similar software names.

Full-size DOI: 10.7717/peerj-cs.835/fig-4
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could not learn suited decision boundaries to disambiguate entities pairs in the inference
set. To counteract this problem, data augmentation was applied to add further entities
resembling false positive extracted software names, which should not be linked to any
other mentions. To simulate closeness to existing software names the new samples were
generated by recombining sub-strings of existing samples, for instance, ImageJ and SPSS
Statistics could be combined to form Image Statistics. During creation we made sure to
not re-create given software names as well as duplicates. In total, 2n augmented samples
were created once for the n original software mentions and included at each training
epoch. They were also included in the test set with the same factor in order to estimate
performance under the chance of false positive samples. As we only add negative samples
to the test set there is no risk to overestimate the performance with the employed metrics of
Precision and Recall.

Based on the predicted probabilities plink for entity pairs a agglomerative clustering is
performed. In each step, the two clusters with the largest probability are combined. As
stopping criterion the threshold t is introduced and defined as the minimal probability for
which pairs are linked. It is optimized based on the available gold standard labels. Here, the
creation of reliable decision boundaries within the densely populated feature space is
also an issue. To counteract it the threshold is optimized taking into account all available
data points from gold standard and inference set by combining both sets. This approach
allows to evaluate how well the gold labeled mentions are clustered within the densely
populated feature space. The performance is estimated in terms of Precision, Recall and
FScore at t.

We considered single and average linkage for clustering and found almost identical
performance for varying thresholds based on gold standard mentions only. Given the
similar performance during the initial tests, single linkage was preferred as it offers benefits
in run-time and space complexity because it allows to re-use the initially calculated
similarities. Average linking, in contrast, would require additional computation for the
per-cluster-pair average similarity. Due to the run-time issues described below an
evaluation of average linkage would not have been feasible with the evaluation method
described above. Single linkage was then applied and evaluated as described.

A major issue we faced for disambiguation was run-time complexity as the number of
pairs accumulates to n2 − n with n > 11M software mentions. Therefore, we had to
optimize for run-time complexity. Our initial optimization step was to assume symmetric
feature vectors between entities E1 and E2 vE1,E2 = vE2,E1 reducing the number of required
compares to nðn�1Þ

2 , even so they are not strictly symmetric because string length of entities
are included as normalization factors. Further, we made the assumption that all software
with the same exact string refers to the same real-world software entity and only included a
limited number of nunique = 6 samples of each name. The work of Schindler et al. (2021b)
showed that this can in rare cases lead to false positive clustering, but in this case the
benefit outweighs this risk because otherwise the computation would not have been
feasible. Disambiguation on the remaining set of ~1.4 M mentions took approximately
6 days, with feature calculations parallelized over 6 Intel� Xeon� Gold 6248 CPUs
(2.50 GHz, 40 Threads).
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Schindler et al. (2021b) provide a baseline implementation for entity disambiguation
on SOMESCI which uses manually engineered rules and external knowledge from DBpedia
to disambiguate software names. For completeness we provide baseline results, however, as
explained above, the density of the features space increases strongly by including
additional data samples and our evaluation specifically includes augmented negative
samples. Thus, the baseline cannot directly be compared to the implemented method in
terms of disambiguation quality, but serves as an indicator.

SoftwareKG: knowledge graph of software mentions
Taxonomy for software and related information
We define software and its related information following the taxonomy presented by
Schindler et al. (2021b) that describes the intricacies of in-text software mentions in
scientific publications. The taxonomy distinguishes Type of Software describing which
artifacts are considered as software, Type of Mention describing the context in which
software was applied, and Additional Information that is provided to closer describe a
software entity.

Type of software
Based on the distinction between end-user application (software) and package introduced
by Li, Yan & Feng (2017), Schindler et al. (2021b) distinguish the following categories of
software:

Applications are standalone programs, designed for end-users, that usually result in
associated data or project files, e.g., Excel sheets. This definition includes software
applications that are only hosted and available through web-based services, but excludes
web-based collections of data. The definition also excludes databases that are used to store
collections of scientific data. To be considered as an application a web-service has to
provide functionality beyond filtered access to data.

Programming Environments (PE) are environments for implementing and executing
computer programs or scripts. They are built around programming languages such as
Python but also integrate compilers or interpreters in order to create executables from
developed code. PEs play an important role in many scientific investigations and are
particularly important for computationally heavy scientific disciplines such as computer
science.

PlugIns are extensions specifically developed to be used with existing applications or
PEs and cannot be used individually. As such, in the context of PEs, the category
PlugIn could also be called package or library. Often, the original application can be
concluded from the PlugIn, e.g., scikit-learn is a frequently used Python package for
machine learning. The usage of Plugins is well established in the scientific community as it
allows to extend the function range of well established software libraries. This allows to
implement custom software without the need to establish more complex stand-alone
application.
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Operating Systems (OS) build the basis for running software on a computer by
managing its hardware components and the execution of all other software. OS are
necessary when running a software application and they are, overall, less mentioned than
other software. In many cases authors still choose to attribute common operating systems
such as Windows, OS X, or Android as well as lesser used ones such as Ubuntu or
Raspbian.

Type of mention
The definition of Schindler et al. (2021b) introduces a hierarchy of reasons why software is
mentioned within scholarly articles based on the basic distinction between mention and
usage introduced by Howison & Bullard (2016):

Allusion of software describes each mention of a software name within a scholarly
article. Aside appearance of the software name there are no further requirement for an
allusion. It should especially be noted that no indication of actual usage is required, for
instance, a fact about the software can be stated or multiple software can be compared. In
the context of software mentions, allusions are comparable with scholarly citations used to
refer to related work.

Usage (sub-type of Allusion) defines that a software made a contribution to a study and
was actively used during the investigation, which makes the software a part of the
research’s provenance. Therefore, usage statements are required to allow conclusions
regarding provenance. This is in line with the definition of software usage by Lopez et al.
(2021).

Creation (sub-type of Allusion) indicates that software was developed and implemented
as part of a scientific investigation and is itself a research contribution. Knowledge of
creation statements allows to track research software to its developers in order to provide
credit to them as well as to discover and map newly published scientific software.

Deposition (sub-type of Creation) indicates that a software was published in the scope of
a scientific investigation on top of being developed. In difference to creation statements,
depositions require that authors provide either a URL to access the software or the
corresponding publication license. Deposition statements, therefore, allow to provide
additional information about discovered scientific software.

Both Type of Software and Type of Mention are required to fully describe a software
mention in a scientific publication.

Additional Information and Declarations
Software is constantly updated and changing. Moreover, software names are ambiguous
(Schindler, Zapilko & Krüger, 2020). Therefore, software citation principles (Smith, Katz &
Niemeyer, 2016; Katz et al., 2021) have been established to precisely identify software
in publications. They require that software mentions in scholarly articles are accompanied
by additional information allowing the unique identification of the actually used
software, information that is often missing in practice (Howison & Bullard, 2016; Du et al.,
2021; Schindler et al., 2021b). Here we employ the following definitions for additional
information about software as defined by Schindler et al. (2021b). Developer describes the
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person or organization that developed a software while Version indicates a defined state in
the software life-cycle, typically identified by a version number, Release indicates a defined
state in the software life-cycle by using a date based identifier, and Extension indicates
different function ranges for the same base software such as professional and basic
versions. URL gives a location for further information and download, Citation provides a
formal, bibliographic citation, and License covers the permission and terms of usage.
Lastly, Abbreviation gives a shortened name for a software while Alternative Name
provides a longer name. All additional information is related to the specific entity it
describes. In most cases this is a software, but licenses can also be specified by versions,
URLs and abbreviations, while developers can be closer described by URLs and
abbreviations.

Data Model and RDF/S lifting
In order to ensure interpretability and reusability, extracted data is lifted into a structured
KG based on established vocabularies. KGs represent a meaningful way to semantically
structure information in an unambiguous way and provide a reasonable approach to make
data accessible for later reuse. In particular, KGs enable the FAIR publication of research
data.

The data model of the KG is depicted in Fig. 5. It can be subdivided into different areas
that represent different types of information. Bibliographic information about articles,
journal and authors (depicted in violet color) is represented by employing terms from the
Bibliographic Ontology (BIBO) (D’Arcus & Giasson, 2009), Dublin Core Metadata
Initiative Terms (DCT) (DCMI Usage Board, 2020), Simple Knowledge Organization
System (SKOS) (Miles et al., 2005), and schema.org (Guha, Brickley & Macbeth, 2016).

+++ +++

Figure 5 Data model of the Knowledge Graph representing extracted software mentions and their
related information. For reasons of conciseness some details are left out.

Full-size DOI: 10.7717/peerj-cs.835/fig-5
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The representation of entity mentions that were automatically extracted from the texts
(orange color), is mainly built upon the NLP Interchange Format (NIF) (Hellmann et al.,
2013) and Datacite (Peroni et al., 2016). Disambiguated software are represented by
Software from Informatics Research Artifacts Ontology (IRAO) (Bach, 2021). For the
metadata of software we examined dedicated vocabularies and ontologies including DOAP
(Description of a Project) (Wilder-James, 2018), SDO (Software Description Ontology)
(Garijo et al., 2019), SWO (Software Ontology) (Malone et al., 2014), OS (OntoSoft)
(Gil, Ratnakar & Garijo, 2015), and Codemeta (Jones et al., 2017) (including their
crosswalk), but did not use those terms as they do not represent the textual information
but the real entities. For clear separation of fact and prediction we opted to not create
entities from our mentions but model the mentions as they are and provide information
inferred on top of them in the form of reification statements (green color). Whenever we
were not able to identify existing vocabularies that allow the representation, we introduced
new terms under the prefix skg (http://data.gesis.org/softwarekg/vocab/). This was
necessary for modelling the information, mention and software types.

Articles and mentions are central entities of the KG. Mentions of all pieces of
information extracted from an article (schema:ScholarlyArticle) such as software, version
or developer are represented by nif:String. Software mentions are assigned a software
type (skg:softwareType) and a mention type (skg:mentionType, yellow). For all other
mentions the type is noted using the skg:informationType property (yellow). To represent
relations at the textual level, we introduced predicates for each possible relation. The
mention of a software, for instance, refers to the corresponding version via skg:
referredToByVersion.

In order to indicate different degrees of probabilities for information aggregated over
disambiguated software entities we use reification statements (rdf:Statement) instead of
domain entities. Confidence values based on the frequency within and across articles
are used to provide a measure of certainty. Formally, let Ir,x be the set of all forms of a
piece of information for a given relation r and software x. Further, let D be the set of all
articles and mr,a,x the mapping of a piece of information a ∈ Ir,x to x under the relation r,
we then define the confidence score cma,x

as given in:

cmr;a;x ¼
1

jfd 2 Djmr;b;x 2 d; b 2 Ir;xgj �
X

d2D

jfmr;a;x 2 dgjP
b2Ir;x jfmr;b;x 2 dgj ; a � b:

a ≡ b signals that both, a and b represent the same type of information, e.g., name or
developer. This way we achieve a ratio based fair weighting on mention level and on
document level. All values range from 0 to 1 and also add up to 1.

Additional information sources
SoftwareKG was build upon data from PMC making use of the PMC OA JATS XML data
set as structured information source for article metadata. Data from PubMedKG (Xu et al.,
2020) was integrated to allow bibliometric and domain specific analyses. In particular, we
used PKG2020S4 (1781-Dec. 2020), Version 4 available from http://er.tacc.utexas.edu/
datasets/ped. It includes Scimago data on journal H-index, journal rank, best quartiles as
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well as their domains and publishers. Moreover, it includes citation information for articles
in PubMed from PubMed itself and Web of Science. For integration of PubMedKG we
matched PMC identifiers to PubMed identifiers based on PMC’s mapping service,
available at https://www.ncbi.nlm.nih.gov/pmc/pmctopmid/. Specifically, we used their
CSV table to match the PMC-ID in PubMed Central with PM-ID from PubMedKG.

Journal specific information vary over time so we modelled them in an skg:JournalInfo-
entity that encapsulates information per year. Citation data are integrated in two ways:
(1) all citations between PMC Open Access articles are inserted as schema:citation in
the KG and (2) the overall number of citations an article received is included as a citation
count. This allows analyses based on citation counts, but also provides a basis to identify
particular citations paths.

RESULTS: INFORMATION EXTRACTION PERFORMANCE
Entity recognition and classification
Performance for software recognition on development set, used to select the best model, is
summarized in Table 5. All values are provided by mean and standard deviation for
repeated training to assess the effect of randomization in the training process of deep
learning models. We found that both BERT based models perform better thanML,sw,opt in
both Precision and Recall. As described above, MSB,sw,plain and MBB,sw,plain were initially
compared with the same set of default hyper-parameters and only the best of the two
models was optimized. In the initial comparison, MSB,sw,plain showed better performance
than MBB,sw,plain with respect to Recall and was therefore selected. We found that hyper-
parameter optimization for MSB,sw,plain improved performance further, especially in
terms of Recall. A detailed overview of all performed hyper-parameter tests for the
Bi-LSTM-CRF (ML,sw,−) is given in supplementary Tables A1–A6 and for SciBERT
(MSB,sw,−) in supplementary Tables A7–A10. The chosen hyper-parameter configuration
for MSB,sw,opt is summarized in Table 6. It outperforms baseline by 7 pp on the
development set and is selected as the best model for the task.

The test set performance of MSB,sw+info,opt on all classification tasks is summarized and
compared to the baseline in Table 7. Software extraction and overall entity recognition
perform well with respective FScores of 0.883 (±0.005) and 0.885 (±0.005). The entity
types Extension, Release, and AlternativeName, for which the fewest data samples are

Table 5 Development set results on software mention recognition. Models marked with opt were
optimized with respect to hyper-parameters, models marked with plain were not. Bold results highlight
best performance for both plain and optimized models.

Precision Recall FScore
Model compare (n = 499)

SOMESCI Baseline 0.82 0.77 0.79

ML,sw,opt 0.829 (±0.016) 0.762 (±0.011) 0.794 (±0.004)

MBB,sw,plain 0.862 (±0.005) 0.808 (±0.011) 0.834 (±0.006)

MSB,sw,plain 0.863 (±0.016) 0.844 (±0.009) 0.853 (±0.003)

MSB,sw,opt 0.868 (±0.006) 0.865 (±0.012) 0.866 (±0.008)
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available, show a lower performance compared to the other entities. Software types are
recognized with a good overall performance of 0.800 (±0.008). Especially the types
Programming Environment and Operating System are recognized with high performance.
The software type Application is also recognized well, but PlugIn shows a lower
performance of 0.5 (±0.023). Mention type classification also performs well with 0.806

Table 6 Selected hyper-parameters for MSB,sw,opt fine-tuning.

Parameter Value

Learning Rate (LR) 1e−6

Sampling all data

Dropout 0.2

Gradient clipping 1.0

Table 7 Software mention extraction results for MSB,sw+info,opt in comparison with SOMESCI baseline
as reported by Schindler et al. (2021b), where n denotes the number of samples available for each
classification target. Please note that the baseline model applies hierarchical classifiers on the task
and does not adjust the performance for error propagation between the initial classification of software
and all other down-stream tasks. Therefore, all baseline results except for software are prone to
overestimate performance when compared to the given results. Bold results highlight best performance in
terms of FScore.

MSB,sw+info,opt SOMESCI baseline

Precision Recall FScore FScore n

Software 0.876 (±0.011) 0.891 (±0.009) 0.883 (±0.005) 0.83 590

Abbreviation 0.884 (±0.046) 0.879 (±0.025) 0.881 (±0.029) 0.71 17

AlternativeName 0.719 (±0.09) 0.734 (±0.061) 0.726 (±0.075) 0.25 4

Citation 0.868 (±0.018) 0.855 (±0.027) 0.861 (±0.015) 0.87 120

Developer 0.867 (±0.025) 0.901 (±0.029) 0.883 (±0.023) 0.88 110

Extension 0.331 (±0.045) 0.688 (±0.099) 0.444 (±0.053) 0.60 5

License 0.799 (±0.056) 0.83 (±0.061) 0.814 (±0.057) 0.80 14

Release 0.499 (±0.049) 0.771 (±0.027) 0.605 (±0.042) 0.82 9

URL 0.858 (±0.028) 0.979 (±0.006) 0.914 (±0.016) 0.95 53

Version 0.927 (±0.014) 0.94 (±0.006) 0.934 (±0.008) 0.92 190

Entities 0.875 (±0.009) 0.897 (±0.009) 0.885 (±0.005) 0.85 1,112

Application 0.788 (±0.012) 0.865 (±0.014) 0.824 (±0.007) 0.81 415

OS 0.933 (±0.036) 0.852 (±0.023) 0.89 (±0.023) 0.82 30

PlugIn 0.652 (±0.05) 0.408 (±0.029) 0.5 (±0.023) 0.43 78

PE 0.924 (±0.014) 0.998 (±0.005) 0.96 (±0.009) 0.99 63

Software Type 0.792 (±0.010) 0.818 (±0.01) 0.800 (±0.008) 0.78 590

Creation 0.784 (±0.043) 0.805 (±0.024) 0.794 (±0.029) 0.64 53

Deposition 0.71 (±0.058) 0.821 (±0.018) 0.761 (±0.036) 0.65 28

Allusion 0.603 (±0.058) 0.464 (±0.046) 0.522 (±0.038) 0.29 71

Usage 0.832 (±0.013) 0.883 (±0.011) 0.857 (±0.007) 0.80 438

Mention Type 0.794 (±0.016) 0.823 (±0.01) 0.806 (±0.01) 0.74 590
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(±0.01). Here, mention type Allusion is the most challenging target with 0.522 (±0.038)
FScore, while all other targets are extracted with a satisfactory performance.

Relation extraction
The results for RE by the Random Forest as well as the original SOMESCI baseline on both,
development set and test set are given and compared in Table 8. In summary, high
recognition rates with 0.94 FScore are observed, showing improvements resulting from our
extension and optimization to the baseline. At the level of the individual relation types,
high FScores (>0.9) are observed for all types except for Release F1 = 0.82, PlugIn F1 = 0.78,
and Specification F1 = 0.71. This indicates that relations between two software entities,
i.e., PlugIn and Specification, are particularly challenging classification targets.

Software disambiguation
As described above, the disambiguation first uses a perceptron model to estimate linking
probabilities between entity pairs and afterwards uses the probabilities for agglomerative
clustering. The optimized perceptron predicted links between software entities with a
Precision 0.96, Recall 0.90, and FScore 0.93. These values were estimated on the test dataset
with a threshold of t = 0.5 based on the sigmoid output. The perceptron performance
does influence the final performance, but during clustering entity pairs plink(EA,EC) < t can
still be linked even if they have not been predicted by the perceptron through a chain of
closer entities: plink(EA,EB) > t, plink(EB,EC) > t. Therefore, evaluation of the perceptron
alone does not allow to make statements about disambiguation quality.

For the actual agglomerative clustering based on single linkage performance was
estimated with a Precision of 0.99, Recall of 0.96, and FScore of 0.97 at a optimal threshold
of t = 0.00347 for clustering all gold label data in a common features space with all

Table 8 Summary of RE results for both development and test set. SOMESCI represents baseline
FScores for comparison. P, Precision; R, Recall; F1, FScore; n, Number of samples per relation. Bold
results highlight best performance in terms of FScore.

Development set Test set

Random forest SOMESCI Random forest SOMESCI

Label P R F1 F1 n P R F1 F1 n

Abbreviation 1.00 1.00 1.00 1.00 17 1.00 0.94 0.97 0.97 17

Developer 0.94 0.97 0.95 0.95 87 0.95 0.95 0.95 0.94 111

AltName 1.00 1.00 1.00 0.83 6 1.00 1.00 1.00 1.00 4

License 0.88 0.70 0.78 0.57 10 1.00 0.93 0.96 0.64 14

Citation 0.94 0.97 0.95 0.83 90 0.94 0.92 0.93 0.86 121

Release 0.78 1.00 0.88 0.80 7 0.88 0.78 0.82 0.53 9

URL 0.93 0.94 0.94 0.80 70 0.98 0.92 0.95 0.89 53

Version 0.97 0.99 0.98 0.96 139 0.98 0.96 0.97 0.95 190

Extension 1.00 1.00 1.00 1.00 5 1.00 1.00 1.00 0.89 5

PlugIn 0.77 0.66 0.71 0.60 35 0.85 0.72 0.78 0.65 39

Specification 0.67 0.67 0.67 0.60 6 0.83 0.62 0.71 0.22 8

Overall 0.93 0.94 0.93 0.87 472 0.95 0.92 0.94 0.88 571
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extracted data. The SOMESCI baseline results are reported with Precision of 0.99, Recall of
0.96 and FScore of 0.97, but as noted above they cannot be compared to the results
reported here. The small threshold is a clear indicator of how densely populated the feature
space is considering all extracted software mentions. In total 605.364 clusters of software
were generated.

RESULTS: ANALYSIS OF SOFTWARE MENTIONS
KG statistics
The KG was constructed from 301,825,757 subject-predicate-object triples, representing
11.8 M software mentions in more than 3.2 M articles in 15,338 journals from 2,136
publishers. On average, each journal contains 210 articles, ranging from 1 article to
239,962 articles in the journal PLoS One.

For ~8.7 K journals (containing 2.8 M articles, 86.7%) additional information, including
citations, research domain and journal ranks was identified from integrating data of
PubMedKG (Xu et al., 2020). For almost 2.5 M articles a citation count different from
0 could be found. In summary, 303 categories from 27 top level domains were found, see
Table 9.

A detailed overview of article and journal frequencies per research domain is provided
in supplementary Table A11. As expected from a repository of Open Access articles
from Biomedicine and Life Sciences, the distribution of journals and articles is skewed
towards Medicine, as ~1.9 M articles from 4,455 journals are related to Medicine, while
only 2,178 articles from 181 journals are related to Economics. However, there is a
high relative amount of articles not directly related to medicine (more than 30%). This
includes disciplines such as Computer Science (~77 K articles from 396 journals) and
Mathematics (~39 K articles 364 journals), but also Business (~3 K articles from
173 journals) and Arts and Humanities (~9 K articles from 469 journals).

Software mentions
Different spellings of the same software were grouped during disambiguation, resulting in
605,362 unique software instances with 1.08 different spellings and 19.48 mentions on
average. A highly skewed distribution of mentions per software can be observed, where
about 10% of the software account for about 90% of the software mentions across all
articles. Figure 6 illustrates this distribution graphically. Table 10 provides an overview
of the 10 most frequent software, including their absolute and relative number of mentions
across all articles. Furthermore, the number of articles containing at least one mention
of the respective software is given in the column # Articles. With 539,250 respectively
469,751 mentions, SPSS and R are mentioned most frequently across all articles, where 440
different spellings were observed for SPSS and only 1 for R. The different spellings for
SPSS include common names such as “SPSS” (78.4%), “SPSS Statistics” (10.8%), and
“Statistical Package for the Social Sciences” (3.8%), but also those with spelling mistakes
such as “Statistical Package for the Spcial [sic] Sciences”.

Figure 7 illustrates the top 10 software per research domain. Domain-specific
differences can be observed from the plot. No domain is consistent with the
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domain-independent view (see Table 10), and each domain is characterized by a different
distribution of the top 10 software. While SPSS (top 1 for 13/27) and R (top 1 for 6/27)
together represent the top mentioned software in more the 70% of the domains, Excel,
BLAST, Prism, and ArcGIS (each 1/27) are the top software in Economics, Energy,
Immunology, and Business, respectively. The software SHELXL, SHELXS, SAINT, and
SHELXTL play a mayor role in Chemistry, Materials, and Physics, taking ranks among 1–5
in each of these domains, but are not among the top 10 in any other field. Several
programming environments are listed among the top 10 software, including R, Python,
Java, C, and C++, most prominent in Mathematics, Engineering, and Computer Science.
Material Science plays a special role, when it comes to domain specific software because

Table 9 Overview of the 27 main research domains and 3 of their sub categories that were used to group journals. Bold font highlights the
abbreviation of the respective research domain used here.

Main research domain Research subcategories (excerpt)

Physics and Astronomy Acoustics and Ultrasonics, Astronomy and Astrophysics, Atomic and Molecular Physics, and Optics

Chemistry Analytical Chemistry, Chemistry (miscellaneous), Electrochemistry

Social Sciences Anthropology, Archeology, Communication

Materials Science Biomaterials, Ceramics and Composites, Electronic

Engineering Aerospace Engineering, Architecture, Automotive Engineering

Economics, Econometrics and Finance Economics and Econometrics, Economics, Econometrics and Finance (miscellaneous)

Multidisciplinary Multidisciplinary

Energy Energy (miscellaneous), Energy Engineering and Power Technology, Fuel Technology

Agricultural and Biological Sciences Agricultural and Biological Sciences (miscellaneous), Agronomy and Crop Science, Animal Science and
Zoology

Environmental Science Ecological Modeling, Ecology, Environmental Chemistry

Veterinary Equine, Food Animals, Small Animals

Nursing Advanced and Specialized Nursing, Assessment and Diagnosis, Care Planning

Decision Sciences Statistics, Probability and Uncertainty, Information Systems and Management

Earth and Planetary Sciences Atmospheric Science, Computers in Earth Sciences, Earth and Planetary Sciences (miscellaneous)

Pharmacology, Toxicology and
Pharmaceutics

Drug Discovery, Pharmaceutical Science, Pharmacology

Mathematics Algebra and Number Theory, Analysis, Applied Mathematics

Computer Science Artificial Intelligence, Computational Theory and Mathematics, Computer Graphics and Computer-
Aided Design

Biochemistry, Genetics and Molecular
Biology

Aging, Biochemistry, Biochemistry

Dentistry Dentistry (miscellaneous), Oral Surgery, Orthodontics

Neuroscience Behavioral Neuroscience, Biological Psychiatry, Cellular and Molecular Neuroscience

Arts and Humanities Archeology (arts and humanities), Arts and Humanities (miscellaneous), Conservation

Psychology Applied Psychology, Clinical Psychology, Developmental and Educational Psychology

Business, Management and Accounting Accounting, Business and International Management, Business

Medicine Anatomy, Anesthesiology and Pain Medicine, Biochemistry (medical)

Immunology and Microbiology Applied Microbiology and Biotechnology, Immunology, Immunology and Microbiology (miscellaneous)

Health Professions Chiropractics, Complementary and Manual Therapy, Health Information Management

Chemical Engineering Bioengineering, Catalysis, Chemical Engineering (miscellaneous)
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the Operating System Windows is the only software that is shared with the top 10 overall
software, while the remaining software allows a unique characterization. Regarding
operating systems, Windows is frequently mentioned in all research domains, except for
Earth and Planetary Sciences and Energy. The Linux operating system, in contrast, is
ranked 5th in Mathematics, 7th in Decision Sciences, and 9th in Computer Science,
respectively. The source code and data repositories GitHub and FigShare are listed among
the top 10 software in Decision Science with rank 5 and 9.

Article level statistics
On the article level, we observe that each article contains 3.67 software mentions on
average, ranging from 0 software mentions for 1,301,192 articles to a maximum of 673
mentions for one article. Looking at the number of articles per year, it can be observed that
the relative number of articles mentioning at least one software increases over all articles.
Figure 8 (blue line) illustrates this graphically. Considering those articles only, a similar

Figure 6 Cumulative distribution of software mentions per unique software. Left (bottom) scale gives the relative values, whereas right (top) scale
provides the absolute numbers. Full-size DOI: 10.7717/peerj-cs.835/fig-6

Table 10 Information about the 10 most frequent software mentions across all disciplines together
with their absolute and relative number of mentions, the number of articles that contain at least one
mention and the number of spelling variation that could be disambiguated.

Software Absolute # Relative # # Articles # Spellings

SPSS 539,250 4.57 466,505 440

R 469,751 3.98 235,180 1

Prism 220,175 1.87 189,578 1

ImageJ 228,140 1.93 144,737 83

Windows 140,941 1.19 127,691 6

Stata 147,586 1.25 118,413 141

Excel 151,613 1.29 118,082 54

SAS 140,214 1.19 112,679 215

BLAST 271,343 2.30 104,734 383

MATLAB 160,164 1.36 89,346 6
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trend can be observed from the mean frequency of software mentioned within one article
(Fig. 8, green line). Due to the low number of software mentions before 1997 (blue line),
the estimation of mean software frequencies per article is less reliable before 1997.

Figure 7 Top 10 software per domain.Higher rank within the domain is represented by darker color. The number on the tile gives the rank within
the domain. Software with rank higher than 10, are excluded from the plot to improve readability. Software are ordered by rank over all domains left
to right. Full-size DOI: 10.7717/peerj-cs.835/fig-7

Figure 8 Blue: Relative frequency of articles with at least one software mention per year. Green:
Absolute mean frequency of unique software mentioned per article with at least one software
mention per year. Please note that standard deviations are at the same level as the actual average
values but are omitted here for reasons of readability. Full-size DOI: 10.7717/peerj-cs.835/fig-8
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In 1997, a steep increase in the number of articles with software can be observed which
remains constant until 2000. From 2001 another increase until 2008 can be observed,
which is followed by a phase where the relative frequency of articles with software increases
more slowly until 2021. From 2007 more than 50% of the articles contain at least one
software, increasing to almost 75% in 2021. A notable decrease was observed for 2020.
With respect to the number of software per article (green line), the frequency remains at a
constant level of ~4 from 2005. Standard deviations are omitted but are on a high level
between 2 for low mean values and 4 for higher means. To determine the effect of the year
on the number of software per article, a linear model was fitted to explain the binary
logarithm of the number of software per article by the interaction of year and domain. We
found a significant (p < 0.001) but small influence of the year (slope = 0.017, Se = 0.0006, R2

= 0.06525), when considering the interaction with the domain.
When looking at the relative amount of articles with software per research domain, we

found notable differences between the individual domains. Figure 9 (blue line) illustrates
those differences graphically. While in Arts and Economics only 40% of the articles
contain software mentions, in Mathematics, Agriculture and Biological Sciences, and
Decision Sciences, more than 80% of the articles mention at least one software. The
number of different software per article draws a similar picture (Fig. 9, green line), ranging
from values of 2 or 3 in Arts, Economics, and Dentistry to values above 8 for Computer
Science, Mathematics, and Decision Science. A one-way ANOVA revealed these
differences to be significant (p < 0.001, F26,3468692 = 7950.1).

Comparing the amount of articles with software mentions with journal rank and
citation count per year, similar observations were found. Both graphs are illustrated in
Fig. 10. The graph illustrates the ventiles (20-quantiles) of the journal rank, grouped by
domain to prevent domain specific biases due to higher journal ranks. In detail, in the
first step, for each domain, the journals were distributed according to their rank ventiles
and the resulting ventiles were then merged across all domains. A similar approach was

Figure 9 Blue: Relative frequency of articles with at least one software mention per research domain.
Green: Average number of different software mentioned per article with at least one software
mention given by research domain. Note that standard deviations are large (similar to average
values) and are omitted here. Full-size DOI: 10.7717/peerj-cs.835/fig-9
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chosen for summarizing the articles via citation count ventiles. Please note that while for
journal rank based analysis all ranked journals could be considered, for citation count
analysis we restricted the analysis to all articles published before 2020 to reduce a bias
towards 0 citations. When considering the journal rank, we found that almost 75% of the
articles on the lowest rank contain software mentions, followed by a strong decrease for
the next two ventiles (blue line). For the remaining ventiles an increasing trend up to
almost 80% for higher journal ranks could be observed. When considering the amount of
software per article, an initial high-point and decrease for the four lower journal ranks
could be observed followed by an increasing trend with increasing journal rank (Fig. 10,
green line). A linear model to explain the relation between binary logarithm of the number
of software per article and the journal rank grouped by domain revealed a small but
significant (p < 0.001) effect (slope = 0.18, Se = 0.0017, R2 = 0.087).

Similarly, a high value followed by a slight decrease could be observed for the
relative number of articles mentioning at least one software per citation count per year
(blue line), even though the pattern is not that distinctive. After reaching the minimum
frequency of articles containing software mentions in the 2nd ventile, the graph shows an
increasing trend for the remaining ventiles, with a slow decrease for the last seven ventiles.
The maximum frequency of articles with software mentions is reached at 13th citation
count ventile. A linear model to explain the relation between binary logarithm of the

Figure 10 Blue: Relative frequency of articles that contain at least one software mention per rank of
bibliometric measure. Green: Average number of different software per article per bibliometric
measure. Note that the high standard deviation (at the same level as average values) are left out to
increase readability. Full-size DOI: 10.7717/peerj-cs.835/fig-10
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number of software per article and the citation count per year grouped by domain revealed
a small but significant (p < 0.001) effect (slope = 0.01, Se = 0.0003, R2 = 0.065).

Software citation completeness
Considering articles containing software mentions, we analysed the amount of
information necessary to identify particular software provided for each software
mentioned within one article. For each unique software (which might be referred to
multiple times within the same article) we examined whether the version and/or the
developer was mentioned within the article. Moreover, the frequency of formal citation
(a citation referring to the bibliography of the article) was investigated.

Figure 11 depicts the completeness of software mentions per year. From the numbers
at the top of the bars, it can be seen that the number of unique software per article
increased over the years, ending with 1.44 M software mentions (unique per article) in
2020. The low number in 2021 reflects the time of data retrieval. Regarding citation
completeness, from 1990 to 1996 the amount of both, information accompanying mentions
as well as formal citations, is low for an overall low number of software mentions. From 1997
to 2000 there is a peak in additional information provided for software mentions with a
low number of corresponding formal citations. Afterwards, up to year 2007, there is a decay
in additional information for informal mentions and a contrary increase in formal citations.
From 2008 to 2010 there is another increase of the amount of provided information and
a decrease in formal citation. The numbers then stagnate up to 2021. Overall, it can be seen
that the frequency of software with developer decreases and with version increases. Both, the
relative amount of formal citations and the amount of software accompanied with
version and developer remained constant since 2009.

Considering domain specific software citation habits, Fig. 12 illustrates the amount of
information provided per software over different research domains. Mathematics,
Decision Science, and Computer Science provide the least additional information with

Figure 11 Distribution of software completeness per year with the percentage of unique software per
article that is cited with provided additional information. The colored bars represent the different
levels of completeness while the line chart separately indicates how many software mentions were
accompanied by a formal citation. The numbers at the top of the bars represent the absolute number of
software considered per year. Full-size DOI: 10.7717/peerj-cs.835/fig-11
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down to 20% of mentions, but all three have comparably high numbers of formal
citation with around 40%. Dentistry, Nursing, and Materials, in contrast, provide most
additional information with up to 70% of mentions but low numbers of formal citations
with down to 5%. Nursing and Dentistry also have the highest share of software together
with version and developer. In general, citation completeness is not better in domains
that use most software.

With respect to journal rank, a slight negative correlation between the rank ventile and
the amount of additional information can be observed. Figure 13 illustrates this relation
graphically. In contrast, a positive correlation between amount of formal citation and
journal rank can be seen. While most software are accompanied with developer for low
ranked journals (almost 70%), the percentage decreases with rising journal rank,

Figure 12 Distribution of software completeness per research domain. The numbers at the top of the
bars represent the absolute numbers of software considered per domain. Please note that articles may
belong to multiple categories. Full-size DOI: 10.7717/peerj-cs.835/fig-12

Figure 13 Distribution of software completeness per ventile of journal rank per research domains.
The numbers at the top of the bars represent the absolute numbers considered per ventiles.

Full-size DOI: 10.7717/peerj-cs.835/fig-13
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reaching a first local minimum at rank 8 and the absolute minimum at the highest rank.
The use of formal citations, in contrast, shows an increase from ∼10% at the lowest ranked
journals to about 30% at the highest ranked journals.

Considering the citation rank (see Fig. 14), a slight increase in provided additional
information could be observed in the first four ventiles and a slight decrease in the last four.
No notable difference could be observed for the remaining citation ventiles. For formal
citation, a slight increase over the ventiles can be observed, starting with 20% and reaching
up to over 25%.

Types of software mention
For each software mention, the KG contains information about the type of mention and
the type of software. The most frequent type of software is Application with 84.49%,
followed by Programming Environment with 7.29%, PlugIn with 6.27%, and Operating
Systems with 1.95% of the mentions. When looking at the disambiguated software, 88.52%
of the software are Applications, 10.74% PlugIns, 0.41% Programming Environments, and
0.33% Operating Systems. With respect to the type of mention, we observed that most
mentions of software reflect Usage with 82.31%, whereas 15.09% represent Allusion. Only
2.01% (0.6%) of the software mentions represent Creation (Deposition) statements.
Table 11 gives a fine-grained overview of the relation between type of mention and type of
software. The mention type Usage is prevalent over all software types and the software
type Application over all mention types. Furthermore, we found that the relative frequency
for both Creation and Deposition is 0 for Operating Systems and Programming
Environments. When looking into domain specific differences, it can be observed that
Mathematics (51.4%), Engineering (55.0%), and Computer Science (55.0%) have the
lowest share of usage statements, while disciplines such as Energy (90.2%), Materials
Science (93.1%), Nursing (93.3%), Dentistry (93.9%), and Veterinary (95.7%) have the
highest share of usage statements. The opposite trend can be observed for software

Figure 14 Distribution of software completeness per ventile of citation count per research domain.
Note that only articles published before 2020 were included to prevent a bias towards lower citation
ventiles. Full-size DOI: 10.7717/peerj-cs.835/fig-14
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Allusion statements, starting with Veterinary (3.9%) and ending with Mathematics
(40.7%). Software Creation statements have the highest proportion in Mathematics with
6% of all mentions, followed by Engineering (5.4%) and Computer Science (5.4%). In
Dentistry and Veterinary only 0.3% and 0.4% are Creation statements. Decision Sciences
(1.8%), Mathematics (1.7%) and Computer Science (1.5%) have the highest share of
deposition statements, in contrast, less than 0.1% of software mentions are Deposition
statements in Materials Science and Veterinary.

The software type PlugIn plays a special role, as it can only be used together with
another software, requiring the mention of both, the host software and the PlugIn.
Table 12 lists the top 10 host software together with the number of PlugIns identified for
this software, the overall amout of PlugIn mentions for the software and its top 5 PlugIns.
The Programming Environment R was found to be by far the software with most
PlugIns (19,442 distinct PlugIns), followed by Matlab and Python. As most frequently
mentioned PlugIns for R we found Bioconductor, ggplot2, lme4, vegan, and DESeq2 which
together account for 17.2% of all R PlugIn mentions. Note that the two different spellings
Python and python were not linked together but reflect a similar distribution of PlugIns.

Table 12 Most frequent host software, i.e., mentioned together with a PlugIn, in combination with the most frequently used PlugIns for each
of them. # PlugIn, distinct, disambiguated PlugIns; # Mention, overall PlugIn mentions.

Software #
PlugIn

#
Mention

Top 5 PlugIn incl. % of mentions

R 19,442 220,750 Bioconductor (4.79%), ggplot 2 (3.63%), lme 4 (3.21%), vegan (3.09%), DESeq 2 (2.52%)

MATLAB 4,442 18,616 Psychophysics Toolbox (6.75%), Psychtoolbox (6.03%), Statistics Toolbox (3.92%), Image Processing Toolbox (2.87%),
Neural Network Toolbox (1.43%)

Python 3,157 11,688 scikit - learn (12.55%), SciPy (4.10%), TensorFlow (3.75%), Network (2.37%), scipy (2.30%)

python 1,449 3,533 scikit - learn (10.44%), scipy (3.85%), sklearn (2.83%), matplotlib (2.52%), HTSeq (2.12%)

ImageJ 1,286 10,761 Fiji (44.10%), NeuronJ (3.00%), Cell Counter (2.77%), MTrackJ (2.11%), Analyze Particles (1.64%)

Stata 809 2,190 metan (5.94%), runmlwin (3.06%), mvmeta (2.33%), Image Composite Editor (1.87%), metareg (1.78%)

Perl 774 1,176 MISA (3.74%), speaks - NONMEM (2.64%), Bioconductor (2.21%), NONMEM (1.36%), Shell (1.11%)

Excel 644 1,946 XLSTAT (17.83%), nSolver (3.96%), Microsatellite Toolkit (2.77%), Analysis ToolPak (2.00%), @ Risk (1.95%)

Cytoscape 553 5,902 ClueGO (13.62%), MCODE (13.00%), BiNGO (7.66%), NetworkAnalyzer (7.56%), Enrichment Map (5.71%)

SPM 521 2,671 DARTEL (20.10%), MarsBaR (9.55%), Marsbar (2.92%), CONN (2.62%), DPARSF (2.55%)

Table 11 Overview of the relative frequency of software and mention types as well as their
combinations over all software mentions. Note that overall numbers do not necessarily sum to 100
due to rounding issues.

Allusion Creation Deposition Usage Overall

Application 13.95 1.80 0.56 68.14 84.49

OperatingSystem 0.26 0.00 0.00 1.69 1.95

PlugIn 0.47 0.17 0.04 5.58 6.27

ProgrammingEnvironment 0.40 0.00 0.00 6.88 7.29

Overall 15.09 2.01 0.60 82.31 100.00
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Software creation and deposition
Software Usage and Deposition statements are often accompanied by URLs to provide a
location to access a software and make it findable for the scientific community. Table 13
shows the most common domains of URLs mentioned in combination with software
Usage and software Depositions. Usage domains (right) correspond to specific software,
for instance, blast.ncbi.nlm.nih.gov or r-project.org for BLAST and R, but also to software
repositories such as GitHub and specific software package repositories such as CRAN
cran.r-project.org. For Depositions (left) we found that most of the URLs point to source
code and software repositories. GitHub (github.com) is the most frequent domain with
14% of overall URLs, but other public repositories such as SourceForge, BitBucket or
Google Code are present as well as repositories focused on packages such as CRAN and
BioConductor.

Another aspect of recognizing software Creation and Deposition statements in articles
is that it allows to identify journals that are most frequently used for the description of new
software. By analyzing the relative number of articles per journal that contain either a
software Creation or Deposition statement, we were able to find the most active journals
when it comes to software description. Considering only journals with at least 10 articles,
we found that with 90% of the articles containing software Creation statements, the
Proceedings of the VLDB Endowment is ranked highest among journals introducing
software. It is followed by the journal Source Code for Biology and Medicine with 84.4%,
Database: the journal of biological databases and curation with 74.4%, and the Journal of
Open Research Software and Bioinformatics with 72.7% and 70.8%, respectively. The
journal Source Code for Biology and Medicine contains the most articles with software
Deposition statements (64.7%), followed by the Journal of Open Research Software and
Neuroinformatics with 54.5% and 47.1%, respectively. From 15,388 journals, only 3,622
journals contain at least one article with either Creation or Deposition statements.

Table 13 Top 10 most frequent URLs accompanying software deposition and usage statements
together with their absolute and relative frequencies.

Deposition Usage

URL Absolute Relative URL Absolute Relative

github.com 8,602 13.93 github.com 18,918 3.90

journals.plos.org 5,926 9.60 ncbi.nlm.nih.gov 16,832 3.47

sourceforge.net 918 1.49 r-project.org 13,176 2.71

cran.r-project.org 673 1.09 pacev2.apexcovantage.com 10,504 2.16

bioconductor.org 651 1.05 ebi.ac.uk 9,850 2.03

ebi.ac.uk 478 0.77 blast.ncbi.nlm.nih.gov 8,797 1.81

ncbi.nlm.nih.gov 454 0.74 cbs.dtu.dk 6,539 1.35

bitbucket.org 423 0.69 fil.ion.ucl.ac.uk 6,439 1.33

code.google.com 353 0.57 cran.r-project.org 6,015 1.24

string-db.org 204 0.33 targetscan.org 5,738 1.18
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DISCUSSION
Reliable method for software mention extraction
Information extraction is based on reliable ground truth data from SOMESCI (IRR F = 0.93,
κ = 0.82). In combination with state-of-the-art language models for scientific articles
such as SciBERT, we achieve state-of-the-art performance for software mention extraction
in scientific articles. Regarding software recognition, the SOMESCI baseline was
outperformed by a notable margin raising performance to F = 0.88 from F = 0.83 by 5 pp.
This also represents an increase over the previous automatic approaches by Pan et al.
(2015) with F = 0.58, Duck et al. (2016) with F = 0.67, Lopez et al. (2021) with F = 0.74 and
Schindler, Zapilko & Krüger (2020) with F = 0.82, however, as prior work was based on
different data bases, the results are not directly comparable. With respect to the chosen
NER architecture, SciBERT achieved superior recognition rates when compared with
Bi-LSTM based models, illustrating the effectiveness of SciBERT for mining scholarly
documents. Interestingly, Lopez et al. (2021) report notable lower performances for both
architectures, which we believe results from the less reliable input including PDF
conversion artifacts and ground truth annotation.

Regarding the identification of additional information (F = 0.89, baseline F = 0.85) as
well as software type (F = 0.80, SOMESCI baseline F = 0.78) and mention type (F = 0.81,
SOMESCI baseline F = 0.74), we achieve better performance than baseline results,
especially considering that the reported results already take error propagation into
account, which is not the case for baseline results. We also achieve better performance for
Version, Developer, and URL as reported for the Softcite corpus (Du et al., 2021; Lopez
et al., 2021), however, these results cannot be directly compared due to different training
and test data. Moreover, the study presented here is the first that classifies software
mentions according to both, software and mention type. However, we found that software
type PlugIn and mention type Allusion were extracted with lower performance as other
types. In both cases the lower performance is mainly due to confusion with another
class (Application and Usage) with corresponding higher prior probability but a difficult to
distinguish context. This is consistent with the results of the manual annotation performed
for SOMESCI (Schindler et al., 2021b), where annotation IRR was also found to be lowest
for these classes.

RE and disambiguation for software mentions has, to the best of our knowledge, not
been evaluated as part of any scientific investigation of software mentions in scholarly
publications besides the SOMESCI baseline. We improve RE performance by 6 pp from
F = 0.88 to F = 0.94. RE performs well for additional information related to software, but it
is challenging (F = 0.71–0.78) to predict relations between software entities such as the
plugin-of relation. This was expected since, by definition, additional information is always
related to another entity while two software entities are not necessarily related to each
other. Consequently, relations between software are rare compared to the overall number
of software mentions. It should also be noted that both, baseline and our reported results,
do not take error propagation from entity recognition to RE into account. Overall, we
achieved superior recognition rates compared to previous, automatic, large scale analyses
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of software mentions in scholarly publications and conclude, thus, that software mentions
and additional information extracted by our pipeline are more reliable.

With respect to disambiguation, it has to be noted that previous large scale analyses
did not consider spelling variations but only summarized software mentions with equal
(or similar) spellings. As this is the first study to use disambiguation methods for
software mentions, comparison to state-of-the-art results is not possible. However, the
disambiguation baseline performance for SOMESCI of F = 0.97 was matched, while
considering a much denser feature space. In small data sets, only few spelling variations
(and other features used for disambiguation) of software exist; this number increases with
the size of the data set. This means that finding reliable boundaries between different
software gets harder with increasing size of the data set as rare spelling variations (and
other features) of software with similar names tend to overlap stronger with increasing
amounts of data. In our case, the training data set contains 3,756 software mentions from
637 different software while information extraction resulted in almost 12 M software
mentions. To recreate this effect for the training data, we included a large set of augmented,
fictional software names. With respect to evaluation, the negative effect of increasing
sample size on the ability of finding reliable boundaries between different software
prevents the transfer of quality statement from training to inference dataset. To counteract
this effect, we included the manually disambiguated training data in the inference dataset,
determined the clustering threshold, and evaluated the quality based on those samples.
Same as for RE, it should be noted that error propagation from the previous information
extraction steps influence disambiguation performance. The additional augmented
samples simulate the effect of false positives, but we cannot estimate to what extent they are
successful at suppressing resulting errors. False negative samples do in practice directly
influence linking quality.

Due to computational and space complexity we chose a single linkage-based clustering,
which is known for semantic drift away from cluster means, but enables an efficient
implementation when distance between all pairs is pre-computed and sorted up to a given
threshold. Average linkage would have required to re-compute the average distance of all
clusters in each step. An initial evaluation showed only marginal differences between
single and average linking based clustering for disambiguation, which seemed sufficient for
the task at hand. Overall, disambiguation provides reasonable results; 440 different
spellings for SPSS1, have, for instance, been discovered. For the different spellings python
and Python (see Table 12), however, no common cluster could be determined. While this
clearly represents an error when considering the string only, our machine learning
based distance additionally considers the context and accompanying entities such as
developer and URL. We believe that the reason here is the low number of spelling
variations that prevent the semantic drift to counteract misleading linking probabilities. In
consequence, this would mean that more frequent software (with many different contexts
and spelling variations) are more likely to be disambiguated than less frequent software
(with fewer contexts and spelling variations), which may have had a reinforcing effect on
the power law distribution of mentioned software. For software with more frequent
spelling and context variations, in contrast, this might result in more false positives and

1 All 440 different spellings of SPSS have
manually been validated.
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thus overestimate the software use. For Excel, 54 spelling variations were found that
represent 152 K mentions. From those only about 150 K mentions (from 13 different
spellings) can be considered as correctly classified. The remaining mentions contain
software such as Firefox (1,162, 0.7%) or F (185, 0.1%). A similar phenomenon could be
observed for Stata. While disambiguation performance is satisfactory the algorithm can be
improved in future work, for instance, by including information on PlugIns provided
with software names after an initial disambiguation of the PlugIn names. However, this
would lead to higher run-time requirements because a higher number of mention contexts
needs to be considered to cover rare features such as PlugIns. The number is currently
limited to n ¼ 6.

SoftwareKG: knowledge graph of software mentions
SoftwareKG represents the largest dataset of software mentions and related metadata in
scholarly publication. It contains 11.8 M software mentions of over 605 K different
software automatically extracted from more than 3 M Open Access articles from PMC.
Moreover information from PubMedKG was integrated to allow bibliometric analyses.
The KG was created by re-using established vocabularies for data representation, such as
schema.org, BIBO, and DCT and is available as JSON-LD under Creative Commons
Attribution at Zenodo (Schindler et al., 2021a). The published version of the KG only
contains information available under open licenses. As this is not the case for most of the
bibliometric data, those parts where excluded from publication.

SoftwareKG consists of over 300 M triples describing the properties and relations
between more than 55 M resources. A summary of the properties of SoftwareKG is given in
Table 14. In SoftwareKG, we employ frequency-based confidence values to provide a
transparent way to analyse errors that originate from information extraction or author
spelling variations. For names, developers as well as software type and other information
we included those confidence values in the reification statements to allow further analyses.

SoftwareKG facilitates the large-scale analysis of software mentions in scholarly
publications and allows to give insights into the role of software in science. A tutorial to
recreate all tables and figures from the KG is included in the Supplemental Material
(https://github.com/f-krueger/SoftwareKG-PMC-Analysis). This article contains first
analyses and sketches the potential for more elaborate studies. This includes the creation of
an impact measure for scientific software but also to provide a software mapping for
science in general such as swMath (Greuel & Sperber, 2014) for Mathematics.

The role of software in science/PMC
Software mentions

With an average of 3.67 software mentions per article, our result confirms previous studies,
ranging from 2.6 (Schindler et al., 2021b) to 3.2 (Howison & Bullard, 2016) to 5.5 (Duck
et al., 2016) in different subsets of PMC. With over 605 K, the number of different software
from over 11.8 M mentions is high, given that 3.2 M articles were investigated. This
number probably overestimates the actual number of software used in science, due to
errors from information extraction and disambiguation. The distribution of software
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mentions per software shows that only few software are used in a large number of articles
and thus play a major role in science. This distribution partly confirms the general
trend but shows even higher skewness as previously reported statements about the
distribution of software mentions in scholarly articles (Pan et al., 2015; Duck et al., 2016).
This amplified trend could be the result of software name disambiguation which was not
applied in previous studies and highlights the importance of considering all spelling
variations for software usage analysis. The most frequent software (7 from the top 10) are
mainly used for statistical data analysis. A closer look at the domain specific distribution of
the top 10 software revealed domain specific differences as it characterizes all of the
analysed domains uniquely. The software SHELXL and SAINT, for instance, are most
frequently but exclusively used in Chemistry, Materials and Physics, whereas Excel is
frequently used in almost all other research domains except for them. Overall, an increased
role of applications that can be controlled via scripts rather than point and click software
can be observed. Schindler, Zapilko & Krüger (2020) reported that the Programming
Environment R superseded SPSS in an excerpt of articles in PLoS One from 2017. While a
similar trend can be seen here, the particular ranks did not change yet, see Fig. 15.
While the usage of SPSS, Excel, and SAS remained constant over the last 5 years at the
relative level, usages of R and Python increased. Considering articles from PLoS One only,
R replaced SPSS at the top position, which confirms the result and suggests journal specific
software preferences.

Table 14 Statistics of SoftwareKG. Left: general KG properties. Right: frequencies of resources per
type.

Property Frequency

Triples 301,825,757

Resources 55,953,270

Distinct Types 12

Distinct Properties 47

Reification Statements 2,042,076

Type Frequency

nif:String 22,066,759

schema:Person 20,373,227

schema:Organization 7,063,708

schema:ScholarlyArticle 3,215,346

rdf:Statement 2,042,076

irao:Software 605,352

skg:SoftwareVersion 380,234

skg:JournalInformation 134,369

bibo:Journal 15,338

dct:LicenseDocument 4,748

skos:Concept 303

skos:ConceptScheme 27
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Article level statistics

The importance of software increased in recent years for both, the actual investigation as
well as the reporting within the scholarly publication. This is suggested by the increasing
trend of including software mentions into the textual description and the increasing
number of different software per article. A reason could be the growing complexity of data
driven analyses requiring more software to be employed, coupled with a high awareness
about transparency and reproducibility in general. The positive correlation between
journal rank and number of different software supports this by suggesting strong rigor in
the description of the analysis2. The positive correlation of the number of software and
the number of citations per article indicates a growing appreciation of the traceability of
the described research processes. The observed domain specific difference in software
usage could reflect the role of data in those domains. While in Arts and Humanities and
Economics only few articles mention only few software suggesting an important role of
manual data analysis, in Mathematics, Computer Science, Decision Science, and
Agricultural and Biological Science many articles mention multiple different software
indicating automatic and complex data collection and analyses.

Figure 15 Relative and absolute amount of articles per year mentioning the top statistical software.
Full-size DOI: 10.7717/peerj-cs.835/fig-15

2 When interpreting the journal rank as an
indicator of journal quality and thus for
review quality.
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Software citation completeness
Citation completeness has not improved over recent years, that is, the information
provided to identify the particular software is not provided to full extent. This suggests a
lack of awareness about the necessity to understand and reproduce research processes and
its requirement for identifying particular software versions. When comparing formal
citation, i.e., providing a formal literature reference, with in-text mention, we found
contrary trends both over time and across categories. Here, we consider in-text citations as
complete when version and developer are included, while formal citations are always
considered sufficient. Following this definition, only about 38% of the articles in 2020 allow
the unique identification of the used software based on the provided information.
Software usages in the technical domains use formal citation more frequently in contrast to
research domains related to medicine. We believe the reason to be that the latter more
frequently employ other materials and devices and adapt the same citation style for
all research objects other than scholarly publications. With respect to journal rank, we see a
growing trend in the usage of formal software citation with rising rank and a contrary
trend in the completeness of in-text software mention. We believe that this supports the
statement of increasing rigor in scholarly review and the request for more traceable
descriptions in higher quality journals. This is also supported by the slight increase of
formal citation frequency and contrary decrease of citation completeness for rising
citation count. In summary, our results indicate that software citation standards, as
suggested by Katz et al. (2021) or Smith, Katz & Niemeyer (2016) have not been adequately
adapted in scholarly publications, yet.

Types of software mention
Each software mention is classified according to mention type indicating the reason why
the software was mentioned within the scholarly article and software type providing
information about the particular kind of software. Analyses of disciplinary differences
showed that most software is created and published by scientists from the technical
domains (Mathematics, Engineering and Computer Science). This reflects the domains
with the highest interest in automating complex calculations combined with the
programming knowledge to implement new suited software applications. Further, software
allusions without actual usage are also more common within scholarly publications from
those disciplines indicating more description, discussion and comparison between
software entities. On the other hand there are disciplines which mostly reuse existing
scientific software such as Material Science, Nursing, Dentistry, and Veterinary.

When looking at the different kinds of software, we found an increasing trend of using
PlugIns over recent years, see supplementary Fig. A1. The relative frequency of
Application mentions, in contrast, declined. We see this as an indicator toward the usage
and extension of established software frameworks. With respect to the host software, we
found a notable overlap in the most frequently used software (Table 10) and the most
important host software (Table 12). This includes the Programming Environments R and
Matlab, but also the Applications ImageJ, Stata, and Excel. More than 19 K PlugIns
were found for the Programming Environment R making it the most important host
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software for scientific investigations. While this number seems high at first glance,
inspecting the two most important package repositories, CRAN (https://cran.r-project.org/)
and Bioconductor (https://www.bioconductor.org/) with 18,312 and 2,042 unique
packages3 indicates these results to be plausible. However, the comparably low FScores for
the identification of PlugIns might have resulted in an overestimation of less frequent
PlugIns. This growing interest in the Programming Environment R and its package
universe was previously investigated (Li, Yan & Feng, 2017; Li & Yan, 2018), some results
of which are confirmed here. In particular, we see an overlap for the most frequent R
packages.

Software creation and deposition

By analyzing the mention types Creation and Deposition, we were able to identify the most
important targets for the publication of software. On the one hand this includes web
services such as GitHub for general purpose software and CRAN for R packages, on
the other hand software journals. Specifically designed repositories to host and assign
Digital Object Identifiers (DOI) to scientific research data such as Zenodo are not
commonly used for publishing scientific software with a share of <1% of depositions.
While this allows to provide researchers with recommendations on where to publish their
software and/or the corresponding description, it also enables the search for software.
Moreover, the identification of Creation and Deposition allows to track the scientific
software landscape with low latency. It has to be noted that the second most frequent
deposition URL is the result of a false software mention detection and its propagation.

Summary
The importance of software in science has been growing in recent years, in both relative
and absolute numbers. The awareness for providing all necessary information to enable the
identification of the particular software by others, in contrast, remains unchanged.
Software citation principles have not been adapted yet in scholarly publications. However,
articles in higher ranked journals tend to more formal software citations instead of in-text
citations, which reflects recent software citation recommendations (Katz et al., 2021).
Articles in lower ranked journals provide more complete in-text citations, i.e., Version and
Developer. We identified domain specific software citation habits: Medicine related
domains prefer in-text citation, while technical domains tend to more formal citations.
Domain independent as well as domain specific software is used across most research
domains, the top 10 of which represent domain specific characteristics. Most software
mentioned in scholarly articles are software for statistical analysis, such as SPSS, R, and
Prism. Interestingly, we identified an increased interest in the usage of PlugIns, which
allow the problem specific extension of general purpose software. The most important
representatives of them are the Programming Environments R, MATLAB, and Python.
Finally, we confirmed GitHub as a central repository for scientific software, for both
publication and re-use, as previously assumed (Russell et al., 2018).

3 Package counts for CRAN and Bio-
conductor were retrieved on October 4th,
2021.
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Limitations of the study
The study presented in this article involves complex data processing and information
extraction steps, where each of these is subject to limitations that are discussed in the
following.

The articles in SoftwareKG cover a broad range of scientific disciplines, however, the
selection of PMC as primary data source implies a bias towards Medicine. While the
training data set SOMESCI itself is also taken from PMC, the selection might introduce
domain specific biases. Therefore, the trends reported here, might be different if we look at
a domain such as computer science in general. For instance, BLAST is the second most
used software in computer science in our set, which would likely not be true when looking
at computer science in general, as this software is primarily used in Bioinformatics.
Another bias in the selection of articles is towards open access, as all article are from
the PMC Open Access subset. Researchers choosing to publish under open access might
also be supporters of open data movement and, therefore, have a better awareness for
attributing other open work such as software.

For information extraction and disambiguation, we found high performance for all
employed machine learning methods. However, it is important to consider error
propagation between them. The given evaluation for software and mention type
classification does take error propagation into account, but the results for RE and
entity disambiguation do not. Therefore, the F = 0.94 performance for RE might
overestimate the true performance as it relies on results of F = 0.885 entity recognition.
For disambiguation we model the effects of false positive entities by data augmentation,
but it is hardly possible to tell if this completely suppresses their effect and false
negatives do directly influence disambiguation performance. Moreover, evaluation for
disambiguation has proven to be challenging and the gold standard dataset alone is no
good predictor for performance on large scale entity disambiguation. We, therefore,
adjusted our evaluation method to take the large scale data into account, but note that
further systematic evaluation is required for entity disambiguation.

Our analyses regarding domains, journal rank and citation count rely on external
data and are, thus, influenced by their quality. For instance, only 86.7% of our data was
covered by Scimago data on domains and journal rank. Regarding the external citation
data we assumed completeness but in case article citations were missing from the list they
were not included in the computed citation count. In case one article would miss
completely it would be counted with a citation count of 0.

An analysis of the article types (skg:documentType) contained in SoftwareKG showed
that aside the largest group of research articles it also covers review articles and
abstracts, but also case reports or letters and several other categories. For each of the
groups we did find publications that cite software, but the prior probability for software
mentions across article types differs. Therefore, it is important to note that the reported
results are not specific to only research articles but to the distribution of scientific
publications indexed in the PMC OA subset. The information about the article type,
however, is included in the KG enabling others to analyse these effects.
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CONCLUSION
In this article we presented the largest analysis of software usage in scholarly publications
over the longest duration covering articles between 1990 and 20214. Software mentions
were identified by automatic information extraction covering NER for software and
associated information, software and mention type classification, and RE between software
and additional information. Moreover, in difference to previous studies, software names
were automatically disambiguated to allow reasoning about software usage even when
the same software is referred to by different names. The analysis covers 3.2 M articles,
mentioning a total of 11.8 M software.

From the extracted information, we created SoftwareKG, the largest KG describing
software mentions in scholarly publications. The KG was created by re-using existing
vocabularies and published under an Open Access license to support further research on
the role of software in science. SoftwareKG consists of over 300 M triples and contains
information about software, accompanying information as well as information about
articles, journals, authors, and publishers.

We performed a large-scale analysis on SoftwareKG with respect to publication date,
article domain, journal rank and article citation count in order to identify differences and
trends in software mention. Overall, the results show that software usage has increased
over the course of the last 10 years, but we found no change in citation completeness
during this time frame. This leads us to believe that there is still a lack in awareness for
software citation in science, even so software citation standards have been available and
promoted since 2016, e.g., by Smith, Katz & Niemeyer (2016).

We also identified a trend towards using extendable software architectures instead of
stand-alone software, especially in combination with the Programming Environment R.
Overall, their design allows an easy extension and offers high flexibility. Especially
adding functionality and publishing new packages or PlugIns is facilitated. We could also
show this trend by analyzing which infrastructure is used by scientists to publish their
software, with GitHub playing a central role, but CRAN and Bioconductor being especially
important in combination with R.

In general, we show that there are many domain specific peculiarities in software usage.
We showed that the amount of software usage as well as the most used software per domain
and their application purpose varies significantly. Domain specific citation habits are also
reflected in preferences to formal and informal software citation, ranging from 5–40% in
formal citation contrasting to 1–35% software citation completeness with opposing trends.

Overall, we believe that SoftwareKG provides a valuable data source for further
investigations about the role of software in science. One finding that should be further
investigated is, for instance, the influence of journal rank on formal citation of software
usage. The trend could, for instance, be explained by higher review quality and journal
policies enforcing better software citation. Further insights could allow to give better
recommendations for journals to encourage software citations habits.

In future work SoftwareKG can build the basis to further explore software usage in
science, for instance, as a mapping for available software and newly established software.

4 SoftwareKG actually contains articles
from before 1990, but we restricted most
analyses to time between 1990 and 2021.
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It can also be used to track software usage and establish software impact measures.
Furthermore, the investigation of formal software citations should be extended to
include the citation targets. Currently, formal citations are recognized, but not further
analysed. In the future we need to include a distinction between software citation and
software article citation and model citation completeness within formal citations.

Software and Data
We implemented all machine learning models for information extraction in Python 3.9.5
(Van Rossum&Drake, 2009), utilizing the following packages: PyTorch 1.9.0 (Paszke et al.,
2019) for deep learning models, Huggingface transformers 4.9.1 (Wolf et al., 2020) to load
and fine-tune pre-trained BERT models, Gensim 4.0.1 (Řehůřek & Sojka, 2010) for
pre-training word embeddings, scikit-learn 0.24.2 (Pedregosa et al., 2011) for
implementation of RE models, articlenizer R-14.06.2021 (Schindler, Zapilko & Krüger,
2020, https://github.com/dave-s477/articlenizer) for preprocessing of scientific articles,
and NLTK 3.6.2 (Loper & Bird, 2002) for feature extraction. Moreover, to extract JATS
XML meta data we used lxml 4.6.3 (Behnel, Faasen & Bicking, 2005) and for knowledge
graph construction rdflib 6.0.0 (RDFLib Team https://github.com/RDFLib/rdflib). For
statistical analysis and generation of figures we used R 4.1.1 (R Core Team, 2021), utilizing
tidy verse 1.3.1 (Wickham et al., 2019) for data processing and plotting and SPARQL 1.16
(van Hage et al., 2013) to access the KG interface. To setup a SPARQL endpoint for
SoftwareKG we used OpenLink Virtuoso Open Source Edition 07.20.3229 (OpenLink,
2021), available as docker from https://hub.docker.com/r/tenforce/virtuoso/.

Source code for construction and analysis is published on GitHub at https://github.com/
f-krueger/SoftwareKG-PMC-Analysis and the data for SoftwareKG (Schindler et al.,
2021a) itself is available on Zenodo via https://doi.org/10.5281/zenodo.5553737. To
facilitate reproducibility of our data analysis, a docker file including a suited R
environment to execute analyses on SoftwareKG is included.

ABBREVIATIONS
KG Knowledge Graph

IRR Inter-Rater Reliability

PMC PubMed Central

pp percentage points

JATS Journal Article Tag Suite

NER Named Entity Recognition

RE Relation Extraction
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