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ABSTRACT
The demand for virtual machine requests has increased recently due to the growing
number of users and applications. Therefore, virtual machine placement (VMP) is
now critical for the provision of efficient resource management in cloud data centers.
The VMP process considers the placement of a set of virtual machines onto a set
of physical machines, in accordance with a set of criteria. The optimal solution for
multi-objective VMP can be determined by using a fitness function that combines the
objectives. This paper proposes a novel model to enhance the performance of the VMP
decision-making process. Placement decisions aremade based on a fitness function that
combines three criteria: placement time, power consumption, and resource wastage.
The proposed model aims to satisfy minimum values for the three objectives for
placement onto all available physical machines. To optimize the VMP solution, the
proposed fitness function was implemented using three optimization algorithms:
particle swarm optimization with Lévy flight (PSOLF), flower pollination optimization
(FPO), and a proposed hybrid algorithm (HPSOLF-FPO). Each algorithm was tested
experimentally. The results of the comparative study between the three algorithms
show that the hybrid algorithm has the strongest performance. Moreover, the proposed
algorithm was tested against the bin packing best fit strategy. The results show that the
proposed algorithm outperforms the best fit strategy in total server utilization.

Subjects Algorithms and Analysis of Algorithms, Autonomous Systems, Computer Networks and
Communications, Distributed and Parallel Computing, Optimization Theory and Computation
Keywords Cloud computing, Virtual machine placement, Multi-objectives, Particle swarm
optimization, Flower pollination optimization

INTRODUCTION
Virtualization is one of the most significant technologies in cloud computing systems. It
allows the distribution of required resources to multiple users viamultiple virtual machines
(VMs) (Singh, 2018). Cloud computing infrastructure incorporates a large number of data
centers (DCs) that can communicate over the internet. Each DC holds a vast number of
VMs that are hosted on different physical machines (PMs). Hence, each user request is
examined and modeled to determine the VM resources required to host and execute the

How to cite this article Mejahed S, Elshrkawey M. 2021. A multi-objective algorithm for virtual machine placement in cloud
environments using a hybrid of particle swarm optimization and flower pollination optimization. PeerJ Comput. Sci. 8:e834
http://doi.org/10.7717/peerj-cs.834

https://peerj.com/computer-science
mailto:sara.mongy@ci.suez.edu.eg
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj-cs.834
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj-cs.834


requested task (Rashid & Chaturvedi, 2019). The allocation of VMs onto PMs is known as
virtual machine placement (VMP) (Alashaikh & Alanazi, 2019). Cloud service providers
attempt to exploit VMP methods to maximize the number of VMs placed within each
PM, therefore maximizing the number of VMs that a DC can host. As such, VMP is an
important topic in the research area of cloud computing (Gupta & Pateriya, 2014). Several
factors make VMP a complex problem. These include scalability with respect to users
requests, PM heterogeneity, and resource multi-dimensionality (Ghobaei-Arani, Shamsi &
Rahmanian, 2017). Hence, VMPmethodology should account for the specific requirements
of a givenDC. The efficacy of a VMPmethodology can bemeasured by power consumption,
cost, resource utilization, and load balancing (Masdari, Nabavi & Ahmadi, 2016). Varied
research has been undertaken on metaheuristic algorithms (Alboaneen, Tianfield &
Zhang, 2016; Donyagard Vahed, Ghobaei-Arani & Souri, 2019) including particle swarm
optimization (PSO), genetic algorithms (GA), ant colony optimization(ACO), and the
flower pollination algorithm (FPA). These algorithms were employed to find the optimal
PM among all possible PMs in a DC. Optimal selection may be undertaken according
to the aforementioned objectives. Metaheuristic algorithms are more advanced than
exact strategies, which require high computational costs (Kumaraswamy & Nair, 2019).
Consequently, metaheuristic algorithms are the superior choice for VMP. This is because
the placement problem can be treated as an optimization problem that evaluates the best
solution for placement among all candidate solutions.

Generally, the optimization decision of each metaheuristic algorithm is made based
on the proposed fitness function. Each fitness function is formulated from parameters
that refer to the aforementioned objectives. Hence, each algorithm formulates the optimal
solution based on the combined values of the parameters which form the appropriate
fitness function, corresponding to the overall objective.

The fitness functions used in existing research consider objectives such as reduction in
power consumption, maximization of resource utilization, cost minimization, and load
balancing (Adamuthe, Pandharpatte & Thampi, 2013). They do not consider placement
time: the time consumed by placing a VM onto a cloud server. Specifically, placement
time is the difference in time between a VM being requested, and the VM being placed
onto a PM. This is an important metric for cloud service providers and potential users.
An increase in placement time can violate the service level agreement (Addya et al., 2015).
Such an infringement can upset users due to the violation of their technical requirements.
Hence, placement time should be considered to avoid any deficiencies caused by placement
time exclusion.

This paper proposes a novel model to address the problem of VMP by generating an
optimal solution through three objectives. These objectives are minimization of the total
time required to place each VM onto an appropriate PM, reduction in power consumption
of the PMs in the DC, and the minimization of wasted resources. Hence, a novel multi-
objective fitness function is proposed that incorporates three parameters that represent
these objectives. According to the importance of the three objectives, the intended fitness
function is the sum of three parameters of equal weight.
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The proposed fitness function is implemented using three algorithms: particle
swarm optimization with Lévy flight (PSOLF), flower pollination optimization (FPO),
and a proposed hybrid algorithm (HPSOLF-FPO). The particle swarm optimization
(PSO) algorithm has the capability to find the optimal solution by searching the local
neighborhood for the current best solutions. However, the algorithm can become trapped
in local optima even through the evaluation of successive iterations. In addition, particle
velocities decrease rapidly, and particle positions converge and search within the same
limited area to find the optimal solution from the candidate solutions (Schmitt & Wanka,
2015). Thus, the deduced optimal solution may be imprecise, as further possible solutions
that may include the precise optimal solution are excluded. The addition of Lévy flight
to update particle velocities is not sufficient for the algorithm to avoid becoming trapped
in local optima, as the particle velocities decrease after several iterations and the problem
reoccurs (Qingxi & Xiaobo, 2016). In addition, experiments show that the merging of Lévy
flight with PSO causes a large number of VMs to be allocated onto a single PM. Accordingly,
this allocation leads to substantial congestion on the selected PM.

The FPO algorithm is a modern optimization method derived from the pollination
behavior of flowers, anduses both local and global search. It explores the local neighborhood
of each of the best solutions such that the search spaces are guaranteed to be explored more
efficiently (Nabil, 2016). However, due to the nature of the random search mechanism,
over multiple iterations FPO struggles to find a compromise between global and local
search. This deficiency reduces the exploitation capability of the algorithm and as such it
tends towards fast convergence which limits its ability to find the optimal solution. Hence,
the independent implementation of FPO is inefficient (Hoang, Bui & Liao, 2016).

This paper proposes the HPSOLF-FPO algorithm to overcome the deficiencies of
the independent implementations of the PSO and FPO algorithms. The HPSOLF-FPO
algorithm is designed to combine the exploration capabilities of FPO with the exploitation
capabilities of PSO. Using the exploration capabilities of FPO, HPSOLF-FPO can move out
of any local optima. Using the exploitation capabilities of PSO, the optimal solution can
be obtained by intensifying the search around the local neighborhoods of the current best
solutions. The hybrid algorithm produces superior results to the separate implementations
of PSO or FPO. Furthermore, this combination gives rise to a search mechanism and
accuracy which improves the placement decisions for the VMs.

The paper is organized as follows. ‘Related Work’ discusses the related work of VMP
in a cloud computing environment. ‘VMP System Model and Problem Formulation’
details the mathematical formulation and system model of the optimization problem. ‘The
Implementation of the Proposed Fitness Function Using PSO, FPO and HPSOLF-FPO’
describes the proposed VMP optimization algorithms: PSO, FPO, and HPSOLF-FPO.
‘Simulation Evaluation’ demonstrates and discusses the simulations and experimental
results. Finally, ‘Conclusion and Future Work’ summarizes and concludes the paper and
discusses possible future works.

Mejahed and Elshrkawey (2021), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.834 3/27

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.834


RELATED WORK
The placement of VMs onto appropriate PMs is a critical topic in cloud computing. Diverse
algorithms have been proposed to resolve the issues and challenges facing this problem.
Each algorithm attempts to distribute VMs onto PMs according to specific objectives.
These objectives represent reduced power consumption, increased resource utilization, load
balancing, costminimization, and reduced service level agreement penetration (Gahlawat &
Sharma, 2014; Pires & Barán, 2015; Zhao, Zhou & Li, 2019; Silva Filho et al., 2018). Hence,
according to the implemented objectives, VMP algorithms may be categorized into two
principal approaches: single-objective algorithms and multi-objective algorithms. Single-
objective algorithms are deployed using just one of the aforementioned objectives. Saeedi
& Shirvani (2021) propose a resource skewness-aware VM consolidation based on the
improved thermodynamic simulated annealing algorithm, and a system framework with
differentmodules that allowVMP to bemodeled as an integer linear programming problem.
The algorithm outperforms two heuristics and two metaheuristics in minimization of the
number of used servers and reduction in data center resource wastage. Multi-objective
algorithms are implemented by combining a selection of the aforementioned objectives
into a single fitness function. Farzai, Shirvani & Rabbani (2020) propose a hybrid multi-
objective genetics-based optimization solution for VMP by considering three objectives:
reduced power consumption, reduced resource wastage, and reduced bandwidth usage in
consideration of the data center topology for co-hosting dependent VMs.

Generally, VMP algorithms may be classified into four principal classes (Attaoui &
Sabir, 2018). These classes are heuristic, metaheuristic, exact, and approximate. Exact
algorithms include constraint programming (Van, Tran & Menaud, 2010; Mann, 2016),
integer linear programming (López, Kushik & Zeghlache, 2019), mixed integer linear
programming (Regaieg et al., 2018), and pseudo-boolean optimization (Ribas et al., 2013).
Although these algorithms generate optimal solutions, they suffer from exponential
time complexity. Coffman et al. (2013) develop multiple approximate algorithms. Upon
inspection, these algorithms are capable of resolving one-dimensional bin packing.
However, it has been verified that two-dimensional bin packing algorithms cannot be
examined in polynomial time. It is therefore unlikely that an exact algorithm or an effective
approximate algorithm is suitable (Mann, 2015).

In consideration of this, recent research has been directed towards heuristic or
metaheuristic algorithms (Mollamotalebi & Hajireza, 2017; Chang et al., 2018; Satpathy
et al., 2018; Masdari et al., 2019). The first fit decreasing algorithm (Keller et al., 2012)
places the PMs into a successive list and sorts the VMs in descending order according to
their resource demand. When a VM is hosted, it selects the first PM that has adequate
resources. The best fit decreasing algorithm (Varasteh & Goudarzi, 2015) imitates the first
fit decreasing algorithm by placing the VMs in descending order. Subsequently, the VM
is allocated to a PM which has the minimum remaining resources adequate for this VM.
The modified best fit decreasing algorithm (Esfandiarpoor, Pahlavan & Goudarzi, 2015)
arranges the VMs according to their CPU requirement. Following this, a VM is assigned to
the server which produces the smallest energy increment for the DC. For this reason, the
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preferred server is selected from the servers that are neither empty nor fully utilized. The
objective of this algorithm is the minimization of power consumption by the DC. However,
it does not consider the increase in resource utilization. The integer quadratic program
with linear and quadratic constraints (Vakilinia, 2018) aims to optimize power in the DC.
Additionally, server power consumption, migration cost, and network communication via
VMP are optimized. However, the approach is not consistently successful as the system
scales up in size. The resource aware VMP algorithm (Gupta & Amgoth, 2018) aims to
minimize the number of active PMs to reduce power consumption and resource wastage.
The approach uses a new concept: resource usage factor. This is used to balance resource
optimization on active PMs. The algorithmperforms no operations on the VMand PM lists,
but instead computes the resource usage factor of each PM according to the requirements
of the VM resource. Following this, the calculated factor is used to select a suitable PM for
the VM such that resources are optimized. Although this approach maximizes resource
optimization and reduces resource wastage, it does not consider the power consumed. The
GA proposed by Jamali & Malektaji (2014) is based on the vector packing approach, and
aims to minimize power consumption by maximizing resource usage and reducing the
number of active PMs. The algorithm successfully reduces power consumption, however
resources are used inefficiently and reduction in resource wastage is not accomplished.

The improved Lévy-based whale optimization algorithm presented by Abdel-Basset,
Abdle-Fatah & Sangaiah (2019) is used to allocate VMs according to the current cloud
computing bandwidth. The proposed approach generates an optimal balance for network
load. However, the initial placement of VMs is not a feasible approach to load balancing
due to the continuous increase in task number and cloud size. Recently, an approach
based on an ant colony system (Alharbi et al., 2019) was proposed for dynamic VMP to
minimize the power consumption in DCs. The approach uses a novel heuristic such that
the PM with minimum power usage is designated to host VMs. This reduces DC power
consumption but leads to a long execution time which is problematic for large-scale DCs.
Furthermore, the effect on resource wastage was not measured. A VMP approach based
on multi-cloud flower pollination optimization (Usman et al., 2018) aims to maximize
resource utilization and reduce DC power consumption. The approach supports the use
of clustering, migrations, and power effectiveness techniques. However, implementations
of the approach have not successfully maximized resource utilization for the multi-cloud.
The framework introduced by Usman et al. (2019) obtains optimal VM placements onto
appropriate PMs by applying a flower pollination optimization algorithm. The approach
uses a strategy known as dynamic switching probability, which aims to efficiently acquire
an optimal placement solution and improves the performance of cloud DCs. However,
this strategy scales poorly. Fatima et al. (2018) resolve the VMP problem by merging an
improved Lévy-based particle swarm optimization algorithm and a variable-sized bin
packing algorithm that uses the best-fit strategy. The method initializes with the standard
operations of basic PSO: the swarm is applied in research space, and local and global best
solutions are predicted. The remaining steps are guided based on a probability value. If
the probability value is greater than 0.5, a basic PSO method is used to update the particle
velocities. Otherwise, the particle velocities are updated by Lévy flight. However, this
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method tends to allocate a large number of VMs onto a single PM which causes substantial
congestion on the selected PM. The improved PSO approach of Jensi & Jiji (2016) exploits
Lévy flight to obtain new particle velocities. The proposed algorithm has been verified by
21 well-known test functions, and is shown to improve the aptitude of comprehensive
search and increase the efficiency of convergence. However, the algorithm is limited to
linear problems.

A hybrid genetic wind-driven algorithm is proposed by Javaid et al. (2017). A controller
is inserted into a smart grid to manage energy for a residential area by use of a heuristic
algorithm that balances the load in the grid area network. The approach is applicable
to single or multiple homes, although a high request rate introduces delay. The discrete
three-phase hybrid PSO algorithm proposed by Shirvani (2020) solves parallelizable
scheduling on heterogeneous computing systems. The proposed algorithm merges discrete
PSO with the hill climbing technique to avoid the local optima problem. In Kumar &
Mandal (2017), a cloud model of VMP is simulated using three optimization algorithms:
PSO, GA, and hybrid GA PSO. The proposed model reduces the number of active physical
servers, lessens power consumption, and reduces cloud resource wastage. However, the
proposed model lacks the means to update the velocity and position of each particle. This
capability is necessary to make long jumps toward an optimal solution. In addition, the
proposed model requires substantial adjustments to achieve load balance.

VMP SYSTEM MODEL AND PROBLEM FORMULATION
This section demonstrates the VMP prefaces and applied architecture. In addition, the
problem formulation is presented. Moreover, the proposed fitness function, which is
central to the implementation of the proposed optimization algorithms, is presented. The
fitness function is a multi-objective function which is designed to obtain the optimal values
for placement time, power consumption, and resource wastage of the PMs within the cloud
DC.

VMP model
The architecture of the implemented VMP model is depicted in Fig. 1. It comprises four
key components: the cloud DCs, cloud information service, system mediator (including
cloud broker and VMP scheduler), and the cloud users’ devices. The cloud information
service registers the status of each PM within the cloud DCs. In addition, it continuously
notifies the cloud broker of every status update concerning the PMs that have adequate
resources to host requested VMs. The status should include the service rate offered by the
PM in the DC, and the expected waiting time in the queue of each DC.

Consequently, the cloud broker has two roles. First, it receives all user VM requests.
Second, it converts the gathered information concerning available PMs and requested VMs
into apposite vector forms and submits them to the VMP scheduler. The scheduler uses
these vectors to make the placement decisions for the requested VMs using the proposed
fitness function and optimization algorithms. In accordance with the scheduler decisions,
the requested VMs are placed onto the appropriate PMs.
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Figure 1 The systemmodel of VMP in cloud DCs.
Full-size DOI: 10.7717/peerjcs.834/fig-1

Problem formulation
To streamline the formulation of the VMP model, the mathematical formulation of the
VMP problem is as follows. Let P = {p1,p2,p3,...,pN } be a set of N available PMs within a
given DC. We assume that the resource capacity of pi is completely defined by its CPU and
memory. Let C = {c1,c2,c3,...,cN } and M = {m1,m2,m3,...,mN } be two sets denoting
respectively the CPU and memory resources of the PMs. Let V = {v1,v2,v3,...,vM } be a
vector ofM requested VMs. In addition, the CPU and memory requirements of these VMs
can be expressed respectively as C

′

= {c
′

1,c
′

2,c
′

3,...,c
′

M } andM
′

= {m
′

1,m
′

2,m
′

3,...,m
′

M }. To
establish the mapping between theM requested VMs and the N available PMs, an N ×M
placement matrixM, which defines the possible assignments of the mapping, is defined as
follows:

M= PT
×V , (1)

where PT is the transpose of the row vector P. Each element eij = pi vj ∈ M defines a
possible placement for each VM vj on a single PM pi, 1 ≤ i ≤ N, 1 ≤ j ≤M. Each VM may
have possible placements on multiple PMs. Hence, the decision binary variable eij can be
precisely identified as:

eij =

{
1, if vj placed on pi
0, otherwise.

(2)
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Let us define X to be the vector of PMs that have a probability to host at least one VM.
Each decision variable xk ∈ X , 1 ≤ k ≤ N can be expressed as:

xk =


1,

M∑
j=1

ekj ≥ 1

0, otherwise.

(3)

However, the values of each element eij ∈M and xk ∈ X are set to a binary decision variable
which equals 1 if and only if the following two constraints are fulfilled:

C
′

C
≤ 1 (4)

and

M
′

M
≤ 1. (5)

The normalized CPU utilizationU cpu
i offered by the PM pi to all hosted VMs can be defined

as follows:

U cpu
i =

M∑
j=1

eijc
′

j

ci
. (6)

The normalized RAM utilization U ram
i offered by the PM pi to all hosted VMs can be

defined as follows:

U ram
i =

M∑
j=1

eijm
′

j

mi
. (7)

The role of the VMP scheduler is to obtain the optimal placement solution with
respect to three objectives: minimization of placement time, minimization of power
consumption, and minimization of resource wastage. The following subsections introduce
the mathematical formulas for these three components.

Modeling placement time
This subsection derives a mathematical expression for the placement time Tj of a VM vj .
The placement time Tj is measured from the instant at which vj is requested to the expected
instant at which vj is to be placed onto a specified PM pi. From this definition, Tj consists
of two components.
1. The search time Sj is the time required by vj to find all the available PMs xk ∈ X that

fulfill its requirements, where |X | =N . Hence, the value of Sj can be written as

Sj =
N∑
k=1

xk

(
T
( c

′

j

ck
+

m
′

j

mk

)
+δk

)
, (8)

where T is the time required to find appropriate PMs on which to place the requested
VMs, and δk is the search time factor representing the time delay for each VM cycle.

2. The expected waiting time E[Wj] of vj in the cloud DC consists of the VM queuing
time and the VM service time. Let the arrival process of a given VM at the cloud DC
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be a Poisson process with arrival rate λ. Let the service time of a VM be exponentially
distributed with expectation 1

µ
. We assume that the DC has an infinite queue for

the hosting of all arrived VMs on N PMs. From this physical description, the system
dynamics (i.e., arrival, service, and departure) can be modeled as the well-known
multi-server queuing system M/M/N, where λ<µ is the steady state condition. The
expected waiting time E[Wj] of M/M/N can be written as (White, 2012)

E[Wj] =
µ
(
λ
µ

)Np0
(N −1)!(Nµ−λ)2

+
1
µ
, (9)

where p0 is the probability of an empty queue and is given by

p0=
[N−1∑
n=0

( λ
µ
)n

n
+

( λ
µ
)n

N !(1− λ
Nµ)

]−1
. (10)

Using Equations Eqs. (8) and (9), the placement time tj of vj is given as

tj = Sj+E[Wj]. (11)

The total placement time Tj can be calculated as follows:

Tj =

N∑
i=0

eij tj . (12)

Finally, the total placement time T for all VMs can be calculated using Eq. (12):

T =
M∑
j=0

Tj . (13)

Modeling power consumption
Jin et al. (2020) accurately modeled power consumption linearly as a function of the
resource utilization of the PMs in the cloud DC. In this model, power consumption is
based only on CPU utilization. Additionally, unused PMs are deactivated to save power.
Hence, power consumption can be computed for each PM pi ∈ P as follows. Let umax

i
and uidlei be the power consumption of PM pi at maximum CPU utilization and idle state,
respectively. The power consumption PUi of the PM pi due to the VM vj is given as

PUi= uidlei +
(
umax
i −u

idle
i
)eijc ′j
ci
. (14)

The power consumption PU
′

i of the PM pi due to all VMs is given using Equation (6) as

PU
′

i = uidlei +
(
umax
i −u

idle
i
)
U cpu
i . (15)

From Eqs. (14) and (15), the total power consumption PU of all PMs in a DC can be
computed as follows:

PU =
N∑
i=0

xi×PU
′

i . (16)
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Modeling resource wastage
The residual resources offered by each physical machine may vary according to the VMP
strategy. To maximize the utilization of multiple resources such as CPU and RAM, the
resource wastageWi of the PM pi can be calculated as follows:

Wi=

∣∣r cpui − r
ram
i

∣∣
U cpu
i +U

ram
i

+ε, (17)

where r cpui and r rami represent the normalized residual CPU and memory resources; the
values of U cpu

i and U ram
i are given in Eqs. (6) and (7); and ε = 0.001, a small positive real

number (Gupta & Amgoth, 2016). This model and its corresponding objective are included
to make best use of the resources of all PMs and achieve balance between multiple residual
resources. The total resource wastageW of all PMs in a DC is given by

W =
N∑
i=1

xi

∣∣(U cpu
i −

∑M
j=1ei,jc

′

j
)
−
(
U ram
i −

∑M
j=1ei,jm

′

j
)∣∣+ε∑M

j=1ei,jc
′

j +
∑M

j=1ei,jm
′

j

. (18)

Finally, the placement problem can be formulated:

Minimize T . (19)

Minimize PU . (20)

Minimize W . (21)

Subject to the constraints
N∑
i=1

ei,j = 1, ∀j = 1,2,...,M , (22)

M∑
j=1

ei,jc
′

j < ci, ∀i= 1,2,...,N , (23)

M∑
j=1

ei,jm
′

j <mi, ∀i= 1,2,...,M , (24)

and

xi,ei,j ∈ {0,1}, ∀i= 1,2,...,N ,j = 1,2,...,M . (25)

From Eq. (22), each VM can be placed only on a single PM. Equations (23) and (24)
stipulate that the summation of CPU and RAM respectively of all VMs hosted on a given
PM must not surpass that PMs CPU and RAM capacity. Finally, Eq. (25) formalizes
the domains of the variables M and N. Hence, there are MN possible solutions for the
placement problem.
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The fitness function
The primary goal of this work is to obtain the optimal solution for VMP. This is
accomplished by the use of a fitness function, which allows the optimizer to select the
optimal solution as a function of the three objectives described in Eqs. (19)–(21). The
fitness function is created from the three objective functions by using the scalarization
method (Gunantara, 2018):

F(x)=w1f1(x)+w2f2(x)+···+wnfn(x), (26)

where F(x) is the total fitness function and w1, w2, . . . , wn represent the weight values given
to each of the objective functions. Each weight value is determined by the priority of its
corresponding objective function within the total fitness function. The weight value has
a vital role in governing the performance of the corresponding objective function within
the total fitness function (Giagkiozis & Fleming, 2015). Hence, the weight values should
be determined prior to optimization. In this paper, equal weighting is assigned to each
component of the fitness function. This approach is used to equalize priorities for each
objective: minimization of placement time, minimization of power consumption, and
minimization of resource wastage.In this case each weight can be calculated as wi = 1/n,
where n is the number of objective functions. Accordingly, the equal weight value of each
objective function is wi= 1/3.

THE IMPLEMENTATION OF THE PROPOSED FITNESS
FUNCTION USING PSO, FPO AND HPSOLF-FPO
This section presents the proposed nature-inspired algorithms for cloud computing VMP:
PSO, FPO, and PSOLF-FPO. These algorithms use the proposed fitness function to find the
optimal placements for a set of VMs on available PMs within a cloud DC while minimizing
total placement time, total power consumption, and resource wastage.

The PSO algorithm
The PSO algorithm is modeled on the social behavior of fish and bird swarms (Clerc, 2010).
The following subsections describe the creation and configuration of the set of particles
that embody the swarm. In addition, the parameters of PSO are described in detail.

Particle encoding
Each particle represents a candidate solution for the placement of a set of VM requests on
a set of PMs. The placement matrix M, defined in Eq. (1), is used to initiate the particles.
In this manner, each created particle represents one of the MN possible solutions to the
placement problem.

For example, consider two different particles created from M in the initial swarm as
shown in Fig. 2. Each particle is created in a two-dimensional scheme that uses one-to-many
maps between each PM and its hosted VMs within the particle.

Particle evaluation
The optimal solution for placement is obtained through successive iterations of swarm
regeneration. A new swarm is generated whenever the position and velocity of the particles
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Figure 2 An example of particle encoding.
Full-size DOI: 10.7717/peerjcs.834/fig-2

are updated. The equations for particle position and velocity as implemented in the
standard PSO and PSOLF algorithms are as follows. Using PSO, the velocity of each
particle is updated as

Vi(t+1)=ω×Vi(t )+ρ1× c1× (Plbest −Pi(t ))+ρ2× c2× (Pgbest −Pi(t )), (27)

where i is the particle number within the swarm, ω is the inertia weight which determines
the impact of the previous velocity on the current velocity, Vi(t) is the current particle
velocity, Vi(t + 1) is the new particle velocity, Pi(t) is the current position of the particle
within the swarm, C1 and C2 are learning factors of the particle and swarm, and ρ1 and ρ2
are uniformly distributed random variables between 0 and 1. Using PSO, the position of
each particle is updated as

Pi(t+1)= Pi(t )+Vi(t+1), (28)

where Pi(t+1) is the new position of the particle within the search space, and Pi(t ) is the
current position. Standard PSO has a defect known as premature convergence that pushes
the particles to converge too early and become trapped within local optima (Nakisa et
al., 2014). To overcome this problem, Lévy flight can be combined with PSO to produce
PSOLF. This reduces early particle convergence by updating velocities in a manner that
causes the particles to take a long step towards the optimal solution (Haklı& Uğuz, 2014).
When using Lévy flight, the particle positions and velocities are updated as follows. Using
PSOLF, the velocity of each particle is updated as (Jensi & Jiji, 2016)

Vi(t+1)=ω×L×Vi(t )+ρ1× c1× (Plbest −Pi(t ))+ρ2× c2× (Pgbest −Pi(t )), (29)

where L is a step size emulating the large distance. This can be calculated using Lévy flight:

L(s,a)∼
λ×0(λ)× sin (πλ)

2

π
, (30)

where 0(λ) is the gamma function with index λ, a= 1 is a control parameter of the
distribution, and S is a large step which is given by

S=
U

|V |(λ−1)
. (31)

The parameters U and V are drawn from a Gaussian normal distribution and are given by

U ∼N (0,σ 2
u ),V ∼N (0,σ 2

v ), (32)
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where

σu=

[
0(1+λ)

λ0( (1+λ)2 )
×

sin(πλ2 )

2
(λ−1)

2

] 1
λ

. (33)

The size of each step is calculated using Jensi & Jiji (2016)

stepsize= 0.01∗S. (34)

Using PSOLF, the position of each particle is updated as

Pi(t+1)=Vi(t+1). (35)

The PSOLF-based VMP algorithm stages
Before describing the proposed PSOLF-based VMP algorithm, there are some preparatory
PSO principles that should be clarified and described. In the search space, each particle
has position Pi and velocity Vi. Both should be computed at each iteration of the swarm
evaluation. In addition, each particle has a key criterion known as the local best solution
Pl−best . During each iteration, Pl−best is updated with the particles computed position value
if the computed value is less than Pl−best . The swarm itself has an analogous criterion
known as the global best solution Pg−best . Generally, the global best solution is given by the
minimum value of the local best solution among all particles.

The proposed algorithm consists of three principal operations: swarm initialization,
swarm evaluation, and termination.

• Swarm initialization. The swarm is initialized by generating a particle vector P from
the placement matrix M. All initiated particles are restricted by the constraints in
Eqs. (22)–(25). The number of particles in the swarm is Nswarm. For each particle, the
initial position and velocity are generated randomly based on the particles index within
the vector P . The position of each particle is set to its corresponding local best solution
Pl−best . The minimum value of Pl−best among all particles is assigned to the global best
Pg−best of the swarm. In addition, the required PSO parameters are defined, including
the learning factors c1, c2, inertia weight coefficient ω, and the random variables ρ1, ρ2
∈ [0,1]. Moreover, the random function rand() is defined to generate random numbers
between [0,1], and the maximum number of iterations is set to Maxiter . Finally, the
fitness function of all particles is computed using Eq. (26) to obtain the local fitness of
each particle.
• Swarm evaluation. During each iteration, the particle velocities and positions are
updated by either PSO or PSOLF. The choice between algorithms is dependent upon the
value generated by rand(). If the value of rand() is less than 0.5, the particle velocities and
positions are updated as in Eqs. (29) and (35). Else, the particle velocities and positions
are updated as in Eqs. (27) and (28). Subsequently, the fitness values associated with the
updated particle position Pu and the position Pl−best are compared. If the fitness value
of Pu is less than the fitness value of Pl−best , then Pl−best is set to Pu. Furthermore, if the
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fitness value of Pl−best is less than the fitness value of the global best position Pg−best ,
then Pg−best is set to Pl−best .
• Swarm termination. Swarm evaluation continues iteratively until the maximum
number of iterations Maxiter is reached. Following the final iteration, the particle
corresponding to Pg−best is selected to represent the optimal fitness value for the VMP
solution.

The pseudo-code for the PSOLF algorithm is presented below.

Algorithm 1: The proposed PSOLF-based virtual machine placement algorithm

Input: Nswarm, Maxiter, ρ1, ρ2, ω
Output: Pgbest ← (optimalParticles(PM) and optimal f itness)

1 Possible particles P← Placement matrix;
2 for i = 1 to Nswarm do
3 Pposition ←Random position (P) ;
4 Pvelocity ← Random velocity (P) ;
5 Calculate fitness function using Equation 26;
6 Fitness← Record fitness value
7 Pbest ←PPosition;

8 end
9 Pgbest ←Min(Fitness)

10 for t=1 to Maxiter
11 for i = 1 to Nswarm do
12 if rand()<0.5 then
13 Pvelocity ←Update velocity using Equation 29;
14 Pposition ←Update position using Equation 35;
15 else
16 Pvelocity ←Update velocity using Equation 27;
17 Pposition ←Update position using Equation 28;

18 end
19 Pu ←Pposition
20 if Pu. f itness <= Pbest . f itness then
21 Pbest ←Pu;
22 end
23 if Pbest . f itness <= Pgbest . f itness then
24 Pgbest ←Pbest ;
25 end

26 end

27 end

4.2 The FPO algorithm365

Developed by Yang in 2012 Yang (2012), FPO is a fascinating algorithm based on the process of flower366

pollination in flowering plants. It employs features of the pollination process to evaluate both global367

pollination and local pollination Yang et al. (2014).368

4.2.1 Pollen encoding369

Each pollen grain encodes a possible VMP solution. The placement matrix M can be used to initialize the370

pollen as in the case of the particle swarm. An example of the pollen initialization is shown in Figure 3.371

Each pollen grain is created in a two-dimensional scheme that uses one-to-many maps between each PM372

and its hosted VMs within the pollen grain.373

Fig. 3. An example of pollen encoding.

4.2.2 Pollen evaluation374

The two principal steps of the FPO algorithm are represented by two pollination methods: global375

pollination and local pollination. The method used is selected based on a switching probability value β .376

The optimal placement solution is obtained through a series of iterations. During each iteration a random377
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The FPO algorithm
Developed by Yang (2012), FPO is a fascinating algorithm based on the process of flower
pollination in flowering plants. It employs features of the pollination process to evaluate
both global pollination and local pollination (Yang, Karamanoglu & He, 2014).

Pollen encoding
Each pollen grain encodes a possible VMP solution. The placement matrix M can be
used to initialize the pollen as in the case of the particle swarm. An example of the pollen
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Figure 3 An example of pollen encoding.
Full-size DOI: 10.7717/peerjcs.834/fig-3

initialization is shown in Fig. 3. Each pollen grain is created in a two-dimensional scheme
that uses one-to-many maps between each PM and its hosted VMs within the pollen grain.

Pollen evaluation
The two principal steps of the FPO algorithm are represented by two pollination methods:
global pollination and local pollination. The method used is selected based on a switching
probability value β. The optimal placement solution is obtained through a series of
iterations. During each iteration a random number between [0,1] is generated. This
number is compared with the switch probability β. If the random number is less than
β, global pollination will be used and updated using the Lévy distribution. Else, local
pollination is used. When using global pollination, the pollen vectors are updated as

S(t+1)i = Sti +L× (S
t
i −g

∗

best ), (36)

where Sti is the ith pollen vector (solution) at iteration t , g ∗best is the global best solution at
the current iteration, and L is the pollination strength and is calculated in the same manner
as the step size using Eqs. (30)–(34). When using local pollination, the pollen vectors are
updated as

S(t+1)i = Sti +ε[S
t
r1−S

t
r2], (37)

where Str1 and Str2 are a random selection of pollen grains (solutions) for local pollination.

The FPO-based VMP algorithm stages
The FPO algorithm consists of three principal operations: pollen initialization, population
evaluation, and termination.

• Pollen initialization.To initialize the pollen, the placementmatrixM is used to generate
all possible placement solutions Si. All solutions must obey the placement constraints
in Eqs. (22)–(25). Each solution Si is assigned randomly to a pollen grain. In addition,
the fitness function for each pollen grain is computed using Eq. (26). The minimum
fitness value among the pollen is selected as g ∗best . Furthermore, the population size is
set to Npop, and the maximum number of iterations is set to Niter . Finally, the switching
probability is defined as β ∈ [0,1].
• Population evaluation. During each iteration a random number ∈ [0,1] is generated
and compared with the switching probability β. If the random number is less than β then
global pollination and Eq. (36) are used. Else, local pollination and Eq. (37) are used.
Subsequently, the results of the new solutions Su are evaluated using the pre-computed
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fitness functions. If the fitness value of the new solution is less than the fitness value of
g ∗best , then g ∗best is set to the new solution.
• Termination. Population evaluation continues iteratively until the maximum number
of iterations Niter is reached. Following the final iteration, g ∗best is selected as the optimal
VMP solution.

The pseudo-code for the FPO algorithm is presented below.

Algorithm 2: The proposed FPO-based virtual machine placement algorithm

Input: Npop, Niter, β ∈ [0,1]
Output: g∗best ← (Optimal pollen(PM) , Optimal f itness )

1 Possible solutions S← Placement matrix;
2 for i = 1 to Npop do
3 Si ←Random solution(S)
4 Calculate fitness function using Equation 26;
5 Find the current best among the initial population:
6 g∗best ←Min f itness;

7 end
8 for t=1 to Niter
9 for i = 1 to Npop do

10 rand ← ∈ [0,1]
11 if rand< β then
12 Calculate a (d-dimensional) Lévy distribution step vector L using Equation 30;
13 Update the ith solution according to global pollination using Equation 36;
14 else
15 Create ε from a uniform distribution in[0,1]
16 Randomly choose sr1 and sr2 from the current population
17 Update the ith solution according to local pollination using Equation 37;

18 end
19 Evaluate the new solutions Su
20 if Su. f itness < g∗best . f itness then
21 g∗best ←Su
22 end

23 end

24 end
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The hybrid PSOLF-FPO algorithm
The trap of local optima is the primary obstacle to the use of PSO. This problem causes
particle velocities to decrease quickly over successive iterations. Consequently, the particle
positions will converge and search the local area of the same peak. Thus, the resulting
solution may not be optimal, due to the exclusion of other possible solutions further
away from the local peak. Despite the use of Lévy flight to update the particle velocities
(Hariya et al., 2015), the problem remains, as the Lévy flight implementation ensures that
the particle velocities will decrease after several iterations. Consequently, the local optima
may disappear for several iterations before reappearing. In addition, the PSOLF algorithm
tends to allocate a large number of VMs onto a single PM (Fatima et al., 2018). Such
an allocation causes substantial congestion on the PM. Hence, this subsection proposes
a hybrid VMP algorithm, HPSOLF-FPO, to overcome the local optima problem. The
proposed algorithm improves the optimal solution discovery process, as the FPO algorithm
is capable of updating solutions in the search space to continuously valued positions. The
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hybrid algorithm accomplishes three objectives. First, it achieves the required exploitation
and exploration capabilities. Second, it enhances the search accuracy. Finally, it increases
the probability of finding the global best solution to the problem. The algorithm combines
the advantages of PSO local search with FPO global search. This overcomes the weakness of
the global search capability of PSO and PSOLF, guaranteeing better placement decisions.
The hybrid algorithm consists of three principal operations: population initialization,
population evaluation, and termination.

• Population initialization As for swarm initialization (‘The PSOLF-based VMP
algorithm stages’), the Nswarm particles are derived from the placement matrix M.
The initial particle position and velocity are set, along with the particle fitness functions,
particle local best Pl−best and the swarm global best Pg−best . During each iteration, the
equations used to update the particle velocities are determined by the value of β ∈ [0,1],
where the switching probability β is used in place of the constant switching value 0.5,
to select between Lévy flight equations or basic PSO equations. The use of β improves
results. Furthermore, β can be controlled and changed for different experiments. As for
pollen initialization (‘The FPO-based VMP algorithm stages’), the pollen grains that
represent the possible solutions Si are derived from the placement matrixM. The initial
pollen parameters are set: position Si, fitness function, new solution Su and best fitness
value g ∗best . Consequently, all possible solutions represented by theNswarm particles of the
PSO module have corresponding pollen grains in the FPO module.
• Population evaluation. Across successive iterations, the population is evaluated across
three modules: the PSO module, the FPO module, and the update module. During
each iteration, the PSO module will compute all updated particle parameters. However,
the particle parameters are not updated. Instead, the updated parameters are moved
to the update module. In addition, the new particle positions Pu are input to the FPO
module. According to the value of the switching probability, the FPO module performs
either global pollination or local pollination. Consequently, all corresponding pollen
parameters are updated. Within the update module, for each solution the updated
position Su generated by the FPO module is compared to the corresponding solution
Pu generated by the PSO module. The lowest of the two is selected to update the
corresponding position of both solutions in the PSOmodule and FPOmodule. Based on
the updated position for each new solution, the remaining parameters are updated. They
include the fitness function, Pl−best , and Pg−best . The merging of the updated solutions
from both the PSOmodule and the FPOmodule successfully overcomes the local optima
problem.
• Termination Population evaluation continues iteratively until the maximum number
of iterations Maxiter is reached. Following the final iteration, Pg−best is selected as the
optimal VMP solution.

The pseudo-code for the HPSOLF-FPO algorithm is presented below.
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Algorithm 3: The proposed HPSOLF-FPO based virtual machine placement algorithm

Input: Nswarm, Maxiter, ρ1,ρ2, ω
Output: Pgbest ← (optimalParticles(PM) and optimal f itness)

1 Possible placement solutions S← Placement matrix
2 for i = 1 to Nswarm do
3 Pposition ←Random(S) ;
4 Pvelocity ← Random(S);
5 Evaluate fitness function using Equation 26;
6 Fitness← Record fitness values
7 Pl−best ←PPosition;

8 end
9 Pgbest ←Min(Fitness)

10 Determine the switch probability β ∈ [0,1]
11 for t=1 to Maxiter
12 for i = 1 to Nswarm do
13 if rand()< β then
14 Calculate Lévy distribution step vector L using Equation 30;
15 Pvelocity ←Update velocity using Equation 29;
16 Pposition ←Update position using Equation 35;
17 else
18 Pvelocity ←Update velocity using Equation 27;
19 Pposition ←Update position using Equation 28;

20 end
21 Pu ←Record updated solutions

22 end
23 \\Hybrid flower pollination algorithm block \\.
24 for each Pu do
25 if rand() < β then
26 Compute Lévy distribution step vector L using Equation 30;
27 Si←update ith solution by global pollination using Equation 36;
28 end
29 else
30 Create ε from a uniform distribution in[0,1]
31 Randomly choose sr1 and sr2 from the current population
32 Si←update ith solution by local pollination using Equation 37;

33 end
34 Evaluate updated solution Si;
35 Su ← Record updated solutions.

36 end
37 \\End of hybrid flower pollination algorithm block \\.
38 if Su. f itness < Pu. f itness then
39 Pu ←Su
40 end
41 if Pu. f itness <= Plbest . f itness then
42 update Plbest = Pu;
43 end if Plbest . f itness <= Pgbest . f itness then
44 update Pgbest = Plbest ;
45 end

46 end
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SIMULATION EVALUATION
This section compares the results of experiments with the three proposed algorithms:
PSOLF, FPO, and HPSOLF-FPO. The three algorithms are simulated using a MATLAB
tool to generate 2000 VM requests. The remaining implementation parameters are listed in
Table 1. The results from the three algorithms are compared to measure their performance
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Table 1 Parameter settings of the proposed algorithms.

Parameter name Value

Number of iterationsMaxiter 100
Population size Npop 100
ω 2
C1 2
C2 2
ρ1 U [0–1]
ρ2 U [0–1]
Switch probability β U [0–1]

Figure 4 The fitness function values of the proposed VMP algorithms.
Full-size DOI: 10.7717/peerjcs.834/fig-4

in terms of placement time, power consumption, resource utilization (inferred from the
number of active servers), and resource wastage.

Fitness function performance
Figure 4 shows the values of the proposed fitness function against the experimental
iterations for the three algorithms. The results show that the HPSOLF-FPO algorithm
outperforms the other two algorithms in terms of the rate at which the fitness value
decreases. In addition, the HPSOLF-FPO algorithm obtained the lowest fitness value in the
smallest number of iterations.

Placement time performance
Figure 5 shows the average placement time for the three algorithms. The average placement
times increase as the number of VM requests increase for each algorithm. However, the
highest average placement times are generated by the PSO algorithm, while the lowest
average are produced by the HPSOLF-FPO algorithm. Hence, the HPSOLF-FPO algorithm
effectively reduces placement times.
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Figure 5 The average placement time against the number of requested VMs.
Full-size DOI: 10.7717/peerjcs.834/fig-5

Figure 6 The power consumption against the number of requested VMs.
Full-size DOI: 10.7717/peerjcs.834/fig-6

Power consumption performance
The total power consumption of all active servers for the three proposed algorithms is
shown in Fig. 6. Power consumption increases as the number of VM requests increases for
all algorithms. However, as for the number of requested VMs, the HPSOLF-FPO algorithm
always has lower power consumption than the other algorithms. The placement strategy
when using the PSO algorithm produces the highest power consumption.

Resource utilization performance
To evaluate the performance of the algorithms in term of resource wastage, two different
experiments were performed. The first experiment used each of the three algorithms in
addition to a best-fit bin packing (BP) strategy. During the experiment the number of active
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Figure 7 Active servers against the number of requested VMs.
Full-size DOI: 10.7717/peerjcs.834/fig-7

Figure 8 Resource wastage against the number of requested VMs.
Full-size DOI: 10.7717/peerjcs.834/fig-8

servers was used to indicate the utilization rate of the PMs. Figure 7 shows the experimental
results comparing all algorithms when using the same number of user requests. The three
optimization algorithms outperform the best-fit bin packing strategy. The HPSOLF-FPO
algorithm outperforms all other algorithms and has theminimumnumber of active servers.
Hence, it effectively maximizes resource utilization in the cloud DC.

The second experiment was performed using the three optimization algorithms to
measure resource wastage. Figure 8 demonstrates the results. It can be observed that, with
an increasing number of VM requests, the HPSOLF-FPO algorithm wastes fewer resources
than the PSOLF and FPO algorithms. These results are obtained due to the decisionmaking
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process of the HPSOLF-FPO algorithm which accounts for available remaining resources
and uses them in a balanced manner to achieve minimum resource wastage.

CONCLUSION AND FUTURE WORK
This paper presented an efficient multi-objective VMP strategy for the cloud computing
environment. The proposed model aims to determine the optimal VMP solution among
all possible VMP solutions. The HPSOLF-FPO algorithm was developed to combine the
exploration capabilities of FPO with the exploitation capabilities of PSO. The algorithm
can move between FPO and PSO as needed. When trapped in local optima, the algorithm
utilizes FPO to move away. As the local optima disappear, the algorithm returns to using
PSO to improve its ability to obtain an optimal solution. The optimal VMP solution was
evaluated based on a fitness function that combines the values of three criteria: the total
placement time of requested VMs, power consumption, and resource wastage in the cloud
DC. TheHPSOLF-FPO, PSOLF, and FPO algorithms were evaluated based on the proposed
fitness function. The experimental results of the simulation evaluations showed that the
proposed HPSOLF-FPO algorithm is more efficient than the PSOLF or FPO algorithms.
Furthermore, when the server utilization was measured, the HPSOLF-FPO algorithm
outperformed the bin packing best-fit strategy. In future work, the proposed algorithms
may be used to fulfil additional VMP objectives such as load balancing, live migration,
and cost minimization. In addition, the proposed algorithm in combination with machine
learning techniques will be employed to serve real-time or non-real-time tasks in a cloud
computing environment.
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